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Abstract: This study introduces a fall detection system utilizing an affordable consumer smartwatch
and smartphone with edge computing capabilities for implementing AI algorithms. Due to the
widespread use of these devices, the system as a whole is extremely accepted, easy to use, requires
no tuning of any kind, and guarantees extended functioning for a long period. From a technical
standpoint, falls are identified using AI techniques to analyze 3D raw data acquired by the smart-
watch’s built-in accelerometer. However, existing AI models for fall detection are often trained on
simulated falls involving young people, which may not accurately represent the falls of elderly in
unhealthy conditions, such as arthritis or Parkinson’s disease, leading to limitations in detecting falls
in this population. Additionally, variations in hardware features among different smartwatches can
result in inconsistencies in accelerometer data measurements across X, Y, and Z orientations, further
complicating accurate fall detection. To address the challenge of limited and device-specific datasets
and to enhance model generalization across various devices, a Deep Transfer Learning approach is
proposed. This method proves effective when data are poor. Specifically, the Continuous Wavelet
Transform (CWT) is applied to raw accelerometer signals to convert them into 2D images, enabling
the use of deep architectures for Transfer Learning. By employing CWT on 5 s time windowed
raw accelerometer signals, heat maps (scalograms) are generated. Real-time accelerations sampled
at 50 Hz are collected using a smartwatch application, transmitted via Bluetooth to a smartphone
app, and converted into scalograms. These serve as input for pre-trained Deep Learning models
to estimate fall probabilities. Preliminary tests on the Wrist Early Daily Activity and Fall Dataset
(WEDA-FALL) show promising results with an accuracy of approximately 98%, underscoring the
efficacy of utilizing wrist-worn wearable devices for processing raw accelerometer data.

Keywords: transfer learning; deep learning; fall detection; smartwatch

1. Introduction

According to the latest report of the World Health Organization (WHO) [1], an average
of 37.5 million falls require medical assistance each year. In particular, about 30% of the
population over-65s falls each year, reaching 40% in the over-70s. Falling is the second most
frequent reason for accidental death worldwide, and adults over 60 years of age are the
most affected [1,2]. So, for this kind of user, a fall is a critical and unsafe situation requiring
rapid assistance to reduce the consequences from health, social, welfare, and economic
points of view. It has been shown [3,4] that elderly people having previous falls develop a
deep-seated anxiety of falling, resulting in a decrease in their level of mobility and quality
of life itself.
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In the last 15 years, fall detection systems received significant focus from the scientific
community, and several systems [5–8] have been implemented (often integrating simple
threshold-based or rules-based approaches [9,10] with different detection rates and levels of
acceptability/usability). Presently, two groups of fall detection sensors have been identified
in the scientific community. A first group of fall detection sensors is based on ambient
devices, such as floor pressure sensors [11,12], acoustic sensors [13], video cameras [14–16],
etc. Such devices are expensive; sensitive to surrounding conditions such as, for example,
uniform lighting and the presence of furniture in the environment, which can lead to
false alarms and decrease their accuracy [17]; and are dependent on number and position-
ing [7]. Furthermore, they may be subject to privacy issues inhibiting their use in the home
(especially in bedrooms and bathrooms, where many falls typically occur). The second
group involves wearable sensor-based methods used to evaluate speed and unexpected
position changes. Usually, accelerometers, gyroscopes, or magnetometers are employed
for fall detection [18–20], also using commercially available devices [21–23]. In contrast to
ambient sensors, wearable sensors have clear benefits such as user-friendliness, size, and
low cost, due to the presence of these sensors in devices already available to end-users
(e.g., smartphones and wristbands). Several commercial smartwatches have technology to
support elderly with health problems, detecting the main activities of daily living (ADLs)
such as walking, sitting and lying down.

2. Related Works

Fall detection via smartwatches is becoming increasingly popular in recent years,
as evidenced by the number of recent scientific publications using different algorithimic
approaches. In [24], a fall detection solution is proposed, consisting of a smartwatch paired
with a smartphone, a cloud-based storage system, and data analysis packages using a
Machine Learning (ML) approach training a Support Vector Machine (SVM) algorithm
using the following features: the resulting minimum and maximum acceleration in a
sliding window of 750 ms; the Euclidean norm of the difference between the maximum
and minimum acceleration in the same sliding window; and the acceleration vector length
at the time of sampling. An average accuracy of 93.8% was obtained with this model.
The main limitation of this study is that only data from young and healthy individuals
were used for training. In [25], a Deep Learning (DL) strategy to effectively detect four
different types of fall and nine common ADLs was investigated. The performance of four
different DL models and six ML models in classifying different human activities other
than falls is compared, and Gated Recurrent Units (GRU) model was selected as the best
model, with an average accuracy of around 90.5% on a dataset proposed in the same
paper which, however, contains data on falls performed by seven young subjects aged
between 21 and 55, which presents generalization limitations. A DL approach for fall
detection is also introduced in [26]. First, a data augmentation methodology is used due to
data imbalance. Subsequently, a BiLSTM network is trained using, as input, (1) only the
acceleration values, (2) only the gyroscope values, and (3) their combination. The paper
reports both the obtained accuracy in classifying specific ADLs (sitting, squatting, walking,
running) and the obtained accuracy to differentiate the fall from the activities. The achieved
results show that the fall can only be classified using the measured acceleration from the
smartwatch. However, also in this work, data were acquired with end-users aged between
19 and 25 years. A very interesting approach is presented in [27] using a combination
of smartwatch and smartphone. In particular, an Android application called “SmartFall”
is implemented that acquires accelerometer data from a smartwatch, and processes it
using a DL architecture. Two standard ML algorithms, SVM and Naive Bayes (NB), are
compared with a GRU model. Training was performed using data from three different
benchmark datasets containing more general training data compared to previously work in
the literature. The highest average accuracy obtained was 79%. Additionally, the related
studies were summarized according to the used methodology, fall classification accuracy,
and limitations, as shown in Table 1.
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Table 1. Summary of related studies.

Paper Method Accuracy (%) Limitations

[24] SVM 93.8 Only data from young and healthy individuals
[25] GRU 90.5 Data from seven young subjects
[26] BiLSTM 97.35 End-users aged between 19 and 25 years
[27] GRU 79 Not high accuracy, but more general training data

As highlighted, most of the proposed work has limitations in data type used to train
learning patterns, since young subjects are normally used to replicate ADLs and falls.
However, it is known that the movements of the elderly can be affected due to motor
pathologies that increase violent movements in the smartwatch, which can lead to the
generation of patterns in the accelerometer data uncorrelated with falling. To overcome
the problem of the lack of datasets related to falls by elderly subjects, the proposed work
introduces the application of a Transfer Learning (TL) strategy applied to one-dimensional
signals (e.g., raw accelerometers on three axes) and based on the use of the Continuous
Wavelet Transform (CWT). Using the CWT, the classification problem of 1D signals is
reduced to the image classification (the typical input of a deep architecture used for TL),
representing the same input signal in two dimensions. For this purpose, in order to more
accurately classify the fall event, three different pre-trained architectures among the most
widely used in the literature are compared: DenseNet201, VGG16, and ResNet50.

The remainder of this paper is organized as follows. Section 3 reports some details on
the implemented algorithmic pipeline. The preliminary results are included in Section 4,
while the conclusions are reported in Section 5.

3. Materials and Methods

In this paper, an algorithmic pipeline for real-time fall detection using the raw ac-
celerometer data returned by any consumer smartwatch is introduced. The architecture of
the proposed system is shown in Figure 1.

Figure 1. Overview of the proposed fall detection system using raw accelerometer data obtained
from a commercial smartwatch.

First, an Android application was developed and installable on any commercial
smartphone to collect estimated acceleration values from the smartwatch in real time,
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along all three axes. The app acts as a server, receiving data from an app installed on the
smartwatch reading the raw accelerometer data sampled at 50 Hz and encapsulating it in a
JSON message in 5 s packets. The collected data from the smartwatch are sent to the cloud,
for use by any processing unit on which TL’s fall detection strategy is implemented. More
details can be found in the following subsections. In IoT applications, data privacy is a
major issue in healthcare monitoring systems. In the developed application, the collected
data are all de-identified and indexed with a user id, whose association to the end-user is
only known to the associated caregiver.

As described above, the goal is to use this approach on any commercial smartwatch
that can be paired with Android-based smartphones. However, at this prototyping stage,
the Fitbit Sense [28] was chosen as the wristwatch device due to the variety of supported
sensors and its low cost. In fact, this smartwatch is capable of detecting heart rate, electro-
dermal activity, skin temperature, sleep monitoring, respiratory rate, SpO2, GPS position
and, of course, it has an accelerometer and a gyroscope, from which it is possible to acquire
a different sampling rate. The Samsung Galaxy A32 5G smartphone [29] was selected
to execute our fall detection app, and to receive sensor data from the smartwatch via a
Bluetooth communication protocol. It has a 2GHz octa-core processor and 4 gigabytes of
RAM that allows for real-time data reception and processing over a long period.

3.1. Accelerometer Signals Processing Technique

As described in Section 1, DL strategies have been increasingly used for fall detection
algorithms in recent years, although classical approaches, such as SVM and Decision
Trees (DT), are still more popular due to the limited size of fall detection datasets. However,
artificial neural networks avoid the feature extraction and selection phase, which can be
a laborious task. Furthermore, the problem of small data size can be solved using TL
techniques [30], involving the use of pre-trained Convolutional Neural Networks (CNN).

Since such networks require images as input, it is necessary to transform 1-D ac-
celerometer signals into 2-D images. To achieve this, various approaches exist. In this work,
CWT was applied, which allows us to obtain a time-frequency representation (a scalo-
gram) of the signal, and to simultaneously capture its peculiarities in different frequency
bandwidths, which is useful to process non-stationary signals.

For a time series x(t), CWT is expressed as follows:

Xω(a, b) =
1√
a

∫ +∞

−∞
x(t)φ∗

(
t − b

a

)
dt (1)

where a and b are the scaling and translational value, respectively (a > 0, a and b ∈ R),
while φ∗(t) is the complex conjugate of the analyzed mother wavelet and, finally, 1/

√
a is a

normalization factor [31]. Applying CWT to time windows of accelerometer signals, a heat
map known in the scientific literature as a scalogram can be obtained. A scalogram represents
the absolute value of the CWT coefficients of a signal, with the b and a values along the x- and
y-axis, respectively, and the intensity of each point measured by Equation (1). In the proposed
approach, the scalograms were extracted from the time series of the three raw accelerometer
signals split into 5 s time windows. Normally, a smaller value of the scaling quantity enables
better evaluation of abrupt changes, while a higher value provides more information that can
lead to better classification accuracy. The most commonly used scaling values in this context
are 32, 64, 128, and 256. In the present work, the scaling value was set to 256, while Morlet
was used as a wavelet. The resulting scalograms are then resized to 224 × 224 to fit with the
input layer of the selected deep architectures shown in the next section.

Figure 2 shows an example of a scalogram obtained for walking (a) and fall (b) with
the corresponding raw accelerometer signals, respectively. For the sake of brevity, only
x-axis of the accelerometer signal is reported.
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Figure 2. Generated scalogram images (scale factor = 256 and wavelet = Morlet) from the raw
accelerometer x-axis signal for (a) walking activity and (b) fall event.

3.2. Model Selection for Transfer Learning

CNN architectures suffer from a major drawback, namely the need for a large amount
of data for training purposes. This problem is more evident when decisions must be
performed on rare data, as for fall detection. To overcome this problem, a TL strategy is
applied in our proposed fall detection system. The main idea of TL is to extract knowledge
from a dataset (i.e., “source domain”) and then transfer it to a new dataset (i.e., “target
domain”) to improve learning [32]. In the fall detection context via accelerometer data,
the principal reason to use TL is the lack of much data in the application domain, especially
falls of elderly subjects. Furthermore, the annotation of these data are expensive and
sometimes subjective, especially for areas requiring experts for data labeling and with a
high inter-/intra-class variability.

To select a CNN model, three popular architectures were tested, namely DenseNet201,
VGG16, and ResNet50 which, in the literature, have achieved important results in the classi-
fication of scalogram images. All of these models were trained on all generated scalograms.
Each input sample consisted of 3 scalograms (one scalogram for each signal channel).

Each network was modified and tuned for the fall detection problem. Each of the
original networks was trained to classify images for 1000 classes on the ImageNet dataset,
but in this work, there is a binary classification problem (Fall/No Fall). Therefore, the last
fully connected layer was replaced with a new classification layer structured through six
new blocks (flatten:1 and dense:5) producing two outputs (fall and no fall). In Table 2,
optimized hyperparameters for the three trained models are shown.

Table 2. Hyperparameters for the proposed TL models.

Hyperparameter Model Architecture
DenseNet201 VGG16 ResNet50

Learning rate 0.002 0.001 0.002
Batch size 128 128 128
Optimizer Adam Adam Adam
Output activation layer softmax softmax softmax
Number of epochs 50 70 50

For the sake of brevity, Figure 3 shows the graphical representation of the proposed
TL scheme for the DenseNet201 network only.
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Figure 3. Proposed DenseNet201 architecture for fall detection.

3.3. Dataset

To validate the proposed architecture, a series of tests were performed using the Wrist
Early Daily Activity and Fall Dataset (WEDA) [33] as benchmark dataset. It uses the
commercial Fitbit Sense® smartwatch to provide accelerometric and gyroscopic data on
25 users (14 young and 11 elderly over 80). Data are sampled at different frequencies from
5 to 50 Hz and labeled with 8 types of fall and 11 ADLs, shown in Table 3.

Table 3. Types of falls and ADLs in the considered dataset.

Types of Falls Types of ADL

Fall forward while walking caused by a slip Walking
Lateral fall while walking caused by a slip Jogging
Fall backward while walking caused by a slip Walking up and downstairs

Fall forward while walking caused by a trip Sitting on a chair, wait a moment,
and get up

Fall backward when trying to sit down Sitting a moment, attempt to get up
and collapse into a chair

Fall forward while sitting, caused by fainting
or falling asleep

Crouching (bending at the knees),
tie shoes, and get up

Fall backward while sitting, caused by fainting
or falling asleep Stumble while walking

Lateral fall while sitting, caused by fainting
or falling asleep

Gently jump without falling (trying to
reach high object)
Hit table with hand
Clapping Hands
Opening and closing door

In our tests, accelerometer data sampled at 50 Hz were used, and training experiments
were performed on a Dell™ Precision 7920 Rack workstation, with 256GB RAM, dual Intel
Xeon Gold 5218R CPU@2.10Ghz processors, three NVIDIA™ RTX A2000 12 GB GPUs,
using Python version 3.8 and the following libraries: Tensorflow (2.10), pandas (2.0.3),
scikit-learn (1.2.1), spkit (0.0.9.6.7).

4. Results and Discussions

Firstly, to achieve the objectives of this study, and to evaluate the goodness of the
proposed approach in fall detection, three different models (DenseNet201, VGG16, and
ResNet50) were trained. The performance of these models were evaluated using a 10-cross
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validation [34]. Consequently, each model was trained with 80% of the data, and testing
was performed with the remaining 20% and, to avoid over-fitting, 10% of the testing set
was used as validation. The entire process was replicated 10 times, using different training
and testing sets to prevent the occurrence of the same samples in the training and testing
set at the same time. Four well-known metrics were calculated for the numerical evaluation
of performance, such as accuracy, precision, recall, and F1 score. Table 4 shows the obtained
results for each considered model, demonstrating the goodness of the proposed approach,
with an average accuracy in the range of 95.24% for VGG16 to 97.56% for DenseNet201.

Table 4. Comparison of the performance for each model.

Model Accuracy Precision Recall F1-Score

DenseNet201 0.9756 0.9743 0.9674 0.9741
VGG16 0.9524 0.9614 0.9520 0.9686
ResNet50 0.9619 0.9713 0.9620 0.9750

For brevity, Figure 4 shows, respectively, the loss and accuracy during training and
validation of our best performing model. In particular, from Figure 4, it is evident how
our model improves at varying epochs, fixed at 50 in this work, while Figure 5 reports the
confusion matrices of the obtained average accuracies for each considered model.

Figure 4. (a) Loss and (b) accuracy of the proposed DenseNet201 at training and validation phase.

Furthermore, Table 5 compares the classification performance (in terms of accuracy)
obtained with the proposed approach with two other research papers based on the same
dataset. As can be seen, the obtained accuracy is similar to [35], with the advantage of
a high degree of generalization approach due to the TL usage and, consequently, with a
greater adaptability in real-world contexts.

Table 5. Comparison of the performance for each model.

Model Accuracy

LightGBM [36] 0.9530
kNN [35] 0.9805
Our DenseNet201 0.9756

Furthermore, in [35] kNN is used, a supervised learning method requiring a large
amount of labeled training data with the difficulty of classifying against new data, resulting
in overfitting. Finally, another obvious difference between [35] and our approach is the
duration of the sliding window (9 s versus 5 s), a very important parameter given the need
to detect a fall in the shortest possible time.
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Figure 5. Confusion matrix for the proposed models: (a) DenseNet201, (b) VGG16, (c) ResNet50.

5. Conclusions

In this work, a system for automatic fall detection was designed and implemented,
using a commercial smartwatch for data collection and a smartphone as the processing
unit. TL was used for the analysis of accelerometric data extracted from the wearable
device, due to the lack of large amounts of data in the considered application context. Three
different pre-trained models were employed and it was shown that the DenseNet201 model
performed best in terms of accuracy in classifying the different types of analyzed falls.

However, the proposed system has limitations compared to commercial solutions
already on the market. The most important limitation derives from the use of the cloud,
increasing its cost and making it impossible to detect a fall if there is no network connection.
A second limitation relates to the impossibility of sending a fall detected in the event of no
network connection to the smartphone. A further limitation is the necessary proximity of
the smartphone to the smartwatch due to the Bluetooth connection required for the correct
transmission of the raw data.

Possible future developments will focus on the use of additional benchmark datasets
(as MobiFall Dataset [37], SisFall [38], and tFall [39]) to validate the algorithmic method-
ology’s performance, try to reduce the cost of the entire solution, and for methodology
implementation directly on the smartphone using the network model previously trained on
high-performance computing hardware to avoid the use of the cloud, minimizing possible
data transmission and privacy issues. In addition, further deep architectures will be com-
pared in addition to the three considered to evaluate whether DenseNet201 continues to be
the best choice in terms of overall accuracy. In the end, to improve the quality of the results
and to estimate the performance on new subjects, a leave-one-out subject cross-validation
will be implemented.

Author Contributions: Conceptualization, A.L, A.M., G.R. and A.C.; methodology, A.L., A.M., G.R.
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preparation, A.L., A.M., G.R. and A.C.; review and editing, A.L., A.M., G.R. and A.C.; supervision,
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for healthcare applications. Biomed. Signal Process. Control. 2022, 71, 103242. [CrossRef]
27. Mauldin, T.R.; Canby, M.E.; Metsis, V.; Ngu, A.H.; Rivera, C.C. SmartFall: A smartwatch-based fall detection system using deep

learning. Sensors 2018, 18, 3363. [CrossRef]
28. Fitbit Sense. Available online: https://www.fitbit.com/global/us/products/smartwatches/sense (accessed on 3 July 2024).
29. Samsung Galaxy A32. Available online: https://www.samsung.com/it/smartphones/galaxy-a/galaxy-a32-5g-white-128gb-sm-

a326bzwveue/ (accessed on 3 July 2024).
30. Bozinovski, S. Reminder of the first paper on transfer learning in neural networks, 1976. Informatica 2020, 44, 17. [CrossRef]
31. Najmi, A.H.; Sadowsky, J. The continuous wavelet transform and variable resolution time-frequency analysis. Johns Hopkins Apl

Tech. Dig. 1997, 18, 134–140.
32. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A comprehensive survey on transfer learning. Proc. IEEE

2020, 109, 43–76. [CrossRef]
33. WEDA-FALL. Available online: https://github.com/joaojtmarques/WEDA-FALL (accessed on 3 July 2024).
34. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Spinger:

Berlin/Heidelberg, Germany, 2009.
35. Marques, J.; Moreno, P. Online fall detection using wrist devices. Sensors 2023, 23, 1146. [CrossRef]
36. Kim, J.K.; Lee, K.; Hong, S.G. Detection of important features and comparison of datasets for fall detection based on wrist-wearable

devices. Expert Syst. Appl. 2023, 234, 121034. [CrossRef]
37. Vavoulas, G.; Pediaditis, M.; Chatzaki, C.; Spanakis, E.G.; Tsiknakis M. The Mobifall Dataset: Fall detection and classification

with a smartphone. Int. J. Monit. Surveill. Technol. Res. (IJMSTR) 2014, 2, 44–56. [CrossRef]
38. Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A Fall and Movement Dataset. Sensors 2017, 17, 198. [CrossRef]
39. Medrano, C.; Igual, R.; Plaza, I.; Castro, M. Detecting falls as novelties in acceleration patterns acquired with smartphones.

PLoS ONE 2014, 9, e94811. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.lively.com/services-apps/fall-detection/
https://www.bayalarmmedical.com/medical-alert-system/bundle/
https://support.apple.com/en-us/HT208944
http://dx.doi.org/10.1016/j.bspc.2021.103355
http://dx.doi.org/10.1016/j.bspc.2021.103242
http://dx.doi.org/10.3390/s18103363
https://www.fitbit.com/global/us/products/smartwatches/sense
https://www.samsung.com/it/smartphones/galaxy-a/galaxy-a32-5g-white-128gb-sm-a326bzwveue/
https://www.samsung.com/it/smartphones/galaxy-a/galaxy-a32-5g-white-128gb-sm-a326bzwveue/
http://dx.doi.org/10.31449/inf.v44i3.2828
http://dx.doi.org/10.1109/JPROC.2020.3004555
https://github.com/joaojtmarques/WEDA-FALL
http://dx.doi.org/10.3390/s23031146
http://dx.doi.org/10.1016/j.eswa.2023.121034
http://dx.doi.org/10.4018/ijmstr.2014010103
http://dx.doi.org/10.3390/s17010198
http://dx.doi.org/10.1371/journal.pone.0094811

	Introduction
	Related Works
	Materials and Methods
	Accelerometer Signals Processing Technique
	Model Selection for Transfer Learning
	Dataset

	Results and Discussions
	Conclusions
	References

