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Abstract
1.	 The expansion of scientific image data holds great promise to quantify individu-

als, size distributions and traits. Computer vision tools are especially powerful to 
automate data mining of images and thus have been applied widely across stud-
ies in aquatic and terrestrial ecology. Yet marine benthic communities, especially 
infauna, remain understudied despite their dominance of marine biomass, biodi-
versity and playing critical roles in ecosystem functioning.

2.	 Here, we disaggregated infauna from sediment cores taken throughout the spring 
transition (April–June) from a near-natural mesocosm setup under experimental 
warming (Ambient, +1.5°C, +3.0°C). Numerically abundant mudsnails were im-
aged in batches under stereomicroscopy, from which we automatically counted 
and sized individuals using a superpixel-based segmentation algorithm. Our seg-
mentation approach was based on clustering superpixels, which naturally par-
tition images by low-level properties (e.g., colour, shape and edges) and allow 
instance-based segmentation to extract all individuals from each image.

3.	 We demonstrate high accuracy and precision for counting and sizing individuals, 
through a procedure that is robust to the number of individuals per image (5–65) 
and to size ranges spanning an order of magnitude (<750 μm to 7.4 mm). The seg-
mentation routine provided at least a fivefold increase in efficiency compared 
with manual measurements. Scaling this approach to a larger dataset tallied >40k 
individuals and revealed overall growth in response to springtime warming.

4.	 We illustrate that image processing and segmentation workflows can be built 
upon existing open-access R packages, underlining the potential for wider adop-
tion of computer vision tools among ecologists. The image-based approach also 
generated reproducible data products that, alongside our scripts, we have made 
freely available. This work reinforces the need for next-generation monitoring of 
benthic communities, especially infauna, which can display differential responses 
to average warming.
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1  |  INTRODUC TION

Imaging data have proliferated throughout studies of ecology 
and evolution (Høye et  al.,  2021; Schürholz & Chennu,  2023; 
Weinstein, 2018). Digital images are data-rich, conventionally rep-
resented as matrices of pixel intensities across three colour chan-
nels (red, green and blue; RGB) with millions of colour variations 
possible for each pixel in a 24-bit image. Instance segmentation 
(object detection) is a core computer vision task to locate and ex-
tract embedded objects from images. Advances in computer vision 
have made segmentation widely applicable across aquatic ecology 
to detect objects from images, ranging from microalgae and marine 
snow (Irisson et al., 2022; Orenstein, Ayata, et al., 2022) to whales 
(Fretwell et  al.,  2014). Analysing objects in digital images has en-
abled quantification of fundamental properties (e.g., species iden-
tity, abundance and size) towards describing global biogeographic 
patterns (Biard et al., 2016), broad-spectrum animal behaviour (Dell 
et al., 2014), ephemeral river plume controls on coastal fish commu-
nities (Axler et al., 2020), novel feeding strategies by planktonic het-
erotrophs (Mars Brisbin et al., 2020), cryptic parasitism (Orenstein, 
Saberski, et al., 2022) and discovering new life (Mordret et al., 2016). 
However, less attention has been given to imaging marine benthic 
organisms, despite these ecosystems harbouring a substantial por-
tion of global biodiversity and whose members are critical in ni-
trification, cycling carbon and other nutrients, and filtering water 
pollutants (Herbert, 1999; Snelgrove, 1997).

Benthic ecosystems are generally data-poor compared with 
pelagic zones (Hughes et al., 2021). Benthic habitats classifications 
with acoustics (Brown et  al.,  2011; Mehler et  al.,  2018), scanning 
images or videos on coral reefs (e.g., Pizarro et al., 2017; Schürholz 
& Chennu, 2023), or direct observations of epifauna (e.g., Piechaud 
et al., 2019) all help access species behaviour and interactions, but 
also omit infaunal groups that possibly comprise the greatest fraction 
of biodiversity and biomass on Earth (Snelgrove,  1998). Here, ex-
tractive sampling (e.g., sediment cores) to monitor specimens under 
controlled conditions still carries great value for high-frequency and 
repeated measurements of individuals. But after the difficulty of 
typical species collection—bulk sediment acquisition, core subsam-
pling, sieving, washing, chemical preservation and sorting—the issue 
of taxonomically identifying, counting and sizing individuals is a for-
bidding undertaking. An improvement would be to collect and image 
disaggregated sediments, automatize counting and sizing of individ-
uals, and store image records to be quickly reproducible, abiding by 
the now widely adopted FAIR (Findable, Accessible, Interoperable 
and Reusable) data protocols (Wilkinson et al., 2016).

Coastal ecosystems are prime candidates for increased explo-
ration of benthic communities. Coastal zones encompass the most 
productive marine regions on the planet (Behrenfeld et  al.,  2006; 

Field et al., 1998), which have experienced profound depletion and 
rearrangement of living resources driven by the density of human 
settlement (Jackson et  al.,  2001; Lotze et  al.,  2006). Coastal tidal 
mudflats are highly productive ecosystems that provide essen-
tial habitat for seagrasses, support large bird populations, along-
side breeding and nursery grounds for coastal fishes (Dissanayake 
et  al.,  2018). Tidal mudflats also support diverse assemblages of 
benthic macroinvertebrates (>1 mm) that modify sediments through 
bioturbation—altering the fabric of species-to-species and species-
environment interactions, thereby creating or rearranging habitats 
(Meadows et al., 2012; Meysman et al., 2006). The infaunal hydro-
biid (Hydrobiidae, Stimpson, 1865) mudsnails exhibit several spe-
cies distributed throughout European coastal waters, which can 
achieve high numerical abundance and biomass in tidal sediments 
(Barnes, 1999; Blanchard et al., 2000; Schückel & Kröncke, 2013), 
imparting significant contributions to ecosystem functions including 
sediment stabilization and water quality improvement owing to their 
filtering potential (Andersen & Pejrup, 2002; Gresens et al., 2009; 
Reynoldson & Metcalfe-Smith,  1992). Detecting changes in abun-
dance or morphology in these or in other intertidal ectotherms on 
fine temporal scales can clarify the relative role of environmental 
conditions on growth. Temperature shapes individual growth across 
life stages (O'Connor et al., 2007) and accelerated warming poten-
tially favours an earlier onset of smaller-size individuals (Pörtner 
et al., 2014) or drives population abundance shifts due to heatwaves 
(Pansch et  al.,  2018). Given the effects of environmental changes 
in coastal ecosystems, establishing image-based workflows for as-
sessing the growth responses of important infaunal groups can help 
advance benthic monitoring towards next-generation approaches.

In this work, we apply a segmentation approach to extract 
hydrobiid mudsnails from stored images and automatically esti-
mate multiple morphological properties, including assessing their 
size-distribution responses to experimental warming treatments. 
Segmentation is based on clustering of superpixels—grouped rep-
resentations of underlying pixels with similar colour, texture, edges 
and other low-level features (Ren & Malik, 2003) that has achieved 
accuracy and efficiency across benchmark datasets in computer vi-
sion (Achanta et al., 2012; Stutz et al., 2018). This method expedited 
hydrobiid size measurements tremendously, tallying >40k individ-
uals, reducing the need for manual measurements, limiting human 
measurement bias and generated reproducible data that could be 
inspected for segment quality. Computer vision tools more broadly 
can make quantitative monitoring possible for benthic population 
bioindicators combining abundances or functional diversity (e.g., 
Salas et al., 2006) to assess impacts by species invasions, acute en-
vironmental stressors and broader climate changes. Advances in 
computer vision will continue to improve and modernize ecologi-
cal studies and here we demonstrate a fast method for accurately 

K E Y W O R D S
automatic size measurement, Hydrobiidae, image segmentation, mesocosm experiment, 
superpixels, Wadden Sea
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scaling a crucial step in benthic ecology research, revealing a con-
sistent growth response of an important invertebrate group under 
anticipated ocean warming.

2  |  MATERIAL S AND METHODS

2.1  |  Sediment collection and mesocosm setup

Located on the European shelf of the North Atlantic Ocean (Figure S1), 
the Wadden Sea ecosystem contains the largest continuous inter-
tidal flats (sand mudflats) on Earth (UNESCO, 2011). We collected 
bulk sediment samples at low tide (09:00–11:00 CET) on 22 March 
2022 from an intertidal bed (54°31′55.83″ N, 8°42′40.36″ E) next to 
Pellworm, a German island in the Schleswig-Holstein Wadden Sea 
National Park (Figure S1). Bulk sediments were randomly assorted to 
mesh-lined baskets and introduced to a mesocosm setup, located at 
the Alfred Wegener Institute for Polar and Marine Research Wadden 
Sea Station (55°01′19.28″ N, 118 8°26′17.43″ E), on the northwest 
coastal island of Sylt, Germany. A full overview of the mesocosm tank 
configurations, tidal simulation system, physico-chemical sensors 
and evaluation under warming, acidification and nutrient treatments 
has been published (Pansch et al., 2016).

Briefly, we used 12 cylindrical mesocosm tanks (height × width, 
water volume; 170 cm × 85 cm, 1800 L) covered with a translucent 
lid permitting 90% photosynthetically active radiation. The tanks 
are supplied with non-filtered seawater pumped from 50 m off-
shore in the Sylt-Rømø Bight with tank flushing achieved every 18 h 
(1.67 L min−1), and a sinusoidal tidal scheme allowing stepwise ver-
tical gain (70–20 cm depth) of the 1 m2 sampling platform at a 6-h 
tidal cycle. Tidal currents are simulated with compressed air supplied 
from opposing sides of the lower 30 cm of each tank through two 
porous rubber ventilation hoses (90 cm long, 10 mm diameter) with 
1 mm holes at 1 cm intervals (OSAGA, Glandorf). A multi-sensor mon-
itoring system is equipped for pairs of tanks, using a Hydrolab DS5X 
Probe (OTT Messtechnik GmbH, Kempten Germany) to measure a 
suite of environmental variables every minute—this work focused on 
temperature as the primary factor driving differences between tanks. 
Experimental warming was simulated using three heaters per tank 
(Titanium heater 500 W; Aqua Medic, Bissendorf, Germany) and cool-
ing to balance overheating (Titan 2000 or Titan 4000; Aqua Medic, 
Bissendorf, Germany); both aspects are regulated automatically by a 
software program (Labview based, version 4.1.0.30; 4H-Jena engi-
neering, Jena, Germany). Temperatures were manually adjusted twice 
a week to correct for seasonal changes and maintain temperature 
treatment conditions based on field measurements collected through 
the Sylt Roads Marine Observatory time series in Königshafen, Sylt, 
Germany (55°02′17.88″ N, 8°26′17.88″ E; Rick et al., 2023). For our 
analyses, the in-tank sensor data were aggregated to median hourly 
values. Independent manual temperature (Testo 110 thermometer) 
measurements were taken weekly around noon (12:00 CET).

The warming experiment was conducted using four tanks per 
treatment: Control tanks at ambient seawater temperature, +1.5°C 

and +3.0°C above ambience. Temperature treatments were ran-
domly assigned across the 12 tanks conditional that adjacent tanks 
must contain different treatment conditions. Sediments were ex-
posed continuously to the experimental treatments, including diur-
nal variation from inflowing seawater, from 23 March through 20 
June 2022. To analyse infauna throughout this period, four sam-
pling events were used to collect sediment cores (x̄  = 664.32 cm3, 
σ = 53.07 cm3) from one mesocosm basket per tank, per event: (1) 
30 March, (2) 25 April, (3) 24 May, (4) 20 June. Cores were immedi-
ately washed and sieved (1 mm mesh size) to disaggregate sediments 
and collect benthic invertebrates. The sieved material was promptly 
placed in 250 mL PVC bottles, filled with 5% buffered formalin and 
stored until further sample processing. The invertebrates were 
sorted and identified to the lowest possible taxonomic resolution.

2.2  |  Image dataset and processing

Hydrobiid mudsnails were distributed across a petri plate and imaged 
under brightfield stereomicroscopy (Nikon SMZ18, DS-Fi3 camera 
5.39 megapixels, and LED base light with oblique coherent contrast, 
1× magnification). Images are 2880 × 2048 pixels with 96 pixels per 
inch resolution, 83 pixels per millimetre scale and at ~17 MB per 
image; the resultant 1008 images from 48 samples totalled ~18 GB. 
Due to hydrobiids' numerical abundance, counting and measuring 
each individual manually was prohibitive. To test an automatic work-
flow for image segmentation and object measurement, we manually 
measured hydrobiid mudsnails at their longest axis to approximate 
size in millimetres from four sediment samples in ImageJ (Abramoff 
et al., 2004), totalling 4595 individuals from 90 images.

All image processing and analysis were conducted in the R pro-
gramming language (R Core Team,  2022). Raw images were pro-
cessed using the package EBImage (Pau et  al.,  2010; Figure  S2): 
Images were blurred with a low-pass Gaussian filter to remove back-
ground noise and normalized (0–1) to flatten irregularities in pixel 
intensity. The standard deviation for the Gaussian filter was set at a 
high value (σ = 8) to reduce the occasionally substantial background 
noise due to reflected light on the plate edges.

2.3  |  Object segmentation

To detect hydrobiids from images, we used a clustering approach 
in the package SuperpixelImageSegmentation (Mouselimis,  2022a), 
which combines a simple linear iterative clustering algorithm 
(SLIC) with affinity propagation and mini-batch K-means clustering 
(Zhou, 2015; Figure S3). Clustering partitioned images semantically 
based on superpixels, which were generated by SLIC to group pixels 
by low-level properties (Ren & Malik,  2003). In our approach, we 
tested segmentation using 600 (default; Zhou, 2015) and 1500 su-
perpixels per image, while keeping a small colour radius argument 
constant (sim_color_radius = 20) to create more finely detailed seg-
ments of hydrobiid individuals, which were complex in shape, size 
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and colour (Figure 1). A comparison between each setting (600 and 
1500 superpixels per image) and manual measurements suggested 
that 1500 superpixels generated more accurate representations of 
mudsnail sizes (Figure S4) and was therefore applied to the larger 
dataset presented below.

Segmentation followed four steps: (1) SLIC divided processed 
images into superpixels, (2) a negative Euclidean distance computed 
a similarity matrix of superpixel features, (3) affinity propagation 
clustered superpixels based on similarity and (4) vector quantization 
of clusters using mini-batch K-means qualitatively refined clusters. 
The resultant clusters were extracted as an image array and seg-
mented using three different algorithms including threshold-based 
(binary), edge-based (Frei & Chen,  1977; Mouselimis,  2022b) and 
a region-based algorithm (watershed; Beucher & Meyer,  1993) to 
test for sensitivity in defining each segment as an individual (i.e., in-
stance). Segments were filled to remove holes or inner gaps to create 
final, complete segments. The result was that mudsnails occupied 
multiple clusters (object masks in Figure 1) and were segmented in 
rich detail as compositions of multiple clusters. Morphological pa-
rameters from each hydrobiid contour (Pau et al., 2010; Supporting 
Information) were calculated, converting pixels to millimetres, where 
the maximal diameter was considered an approximation of hydrobi-
ids' elongated shape.

To evaluate predicted versus observed size distributions for each 
image, we quantified distribution overlap using kernel density esti-
mations from the package overlapping (Pastore,  2018). Comparing 
the overlap between kernel density estimates incorporates all the 
information about mudsnail sizes, rather than relying on a traditional 
statistical significance test which compares only group means and 
standard deviations. Assessing size estimation at the individual level 
was ignored for two reasons: First, it was impractical to generate 

additional annotations for individuals within each image; secondly, 
we focused on population-level responses to experimental warm-
ing treatments instead of individual-level variations. Subsequent 
methods and results are presented from the watershed segmenta-
tion algorithm, chosen due to its comparatively high performance 
demonstrated below. After evaluating size estimations on four man-
ually measured samples (90 images), the segmentation approach 
was applied automatically to the remaining 44 samples (918 images) 
across treatments and time points. To test the relative effect of tem-
perature on mudsnail size within our experiment, we constructed 
a generalized linear mixed model (GLMM) using temperature and 
sampling event (time) as fixed effects, tank identity as a random ef-
fect and a model selection procedure described in the Supporting 
Information (Figures S7–S8, Table S1). The variation in five additional 
morphological parameters (perimeter, area, roundness, elongation 
and complexity, e.g., Vilgrain et al., 2021) was also explored using a 
principal component analysis (PCA; Jolliffe & Cadima, 2016) across 
events and temperature treatments (Figure S9, Table S2).

3  |  RESULTS

Throughout our experiment, the temperature sensors recorded 
nearly 700k observations. Manual weekly measurements for tem-
perature totalled 804. Aggregating probe values to hourly resolution 
(30k observations) retained diurnal variation and captured seasonal 
trends from the Sylt-Rømø Bight: Spring warming from May through 
June was evident in the tanks with seawater rising from 7°C to 20°C 
(Figure 2). Temperature values closely tracked field values from the 
Sylt Roads Marine Observatory time series (Rick et al., 2023). The 
demarcation between temperature treatments is clearly shown in 

F I G U R E  1  General workflow for image segmentation. (a) Raw images (2048 × 2880 pixels; 96 dots per inch [DPI]) were processed (blurred 
and normalized) and then 1500 superpixels per image were generated using simple linear iterative clustering (SLIC). (b) Clusters were defined 
with affinity propagation, object masks were extracted from clusters, and segmentation was tested using binary thresholding, an edge-
based and a watershed algorithm. Gaps within segmented objects were infilled to generate a more complete representation of hydrobiid 
individuals.

 2041210x, 2024, 3, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14295 by H
G

F G
E

O
M

A
R

 H
elm

holtz C
entre of O

cean, W
iley O

nline L
ibrary on [24/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



548  |    MACNEIL et al.

manual measurements (Figure  2). Each trend described here also 
held for each individual tank, with varying degrees of temperature 
dictated by the warming treatment (Figure S5).

The principal result of this work demonstrates that hydrobiid 
mudsnails were generally segmented reliably from the plate back-
ground, enumerated accurately and measured end-to-end with a 
high degree of accuracy and precision (Figure 3). The performance 
of our segmentation approach appears robust to the choice of seg-
mentation algorithm (Figure 3). The number of individuals estimated 
was highly similar to manual counts (nthreshold = 4689, nedge = 4493, 
nregion = 4568, nobs = 4595), and their size distributions matched like-
wise (Figure  3). Kernel density estimates reveal consistently high 
overlap between observed and estimated length measurements 
from segmentation, averaging >90%, while the median values and 
variance (i.e., the overall shape) of our segmented estimates matched 
compellingly to observed values (Figure 3). For both counting and 
size estimation, our results provided generally conservative esti-
mates that were flexible against the number of individuals per image 
and the wide size distributions, which spanned an order of magni-
tude, <750 μm to >7.4 mm.

F I G U R E  2  Temperature values aggregated to hourly resolution 
from mesocosm probes across all 12 tanks (30k observations) 
plotted beneath points showing manual measurements by 
treatment type; vertical lines indicate sediment core sampling 
events.

F I G U R E  3  Overlap of manual versus estimated hydrobiid size distributions using superpixel-based segmentation across samples (SF: 
Sediment Fauna): (a) SF43 (nobs = 966), (b) SF84 (nobs = 1405), (c) SF114 (nobs = 1574) and (d) SF131 (nobs = 623). Overlap is represented 
as the percentage of overlapping area between manual and segmented kernel density estimates, coloured by segmentation algorithm 
(Pastore, 2018).
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After evaluating our segmentation method, we applied it onto 
the remaining 44 samples containing 918 images to count mudsnails 
and estimate their size distribution. Our approach to implement seg-
mentation consecutively for all images in each sample allowed each 
to be visually checked for segment quality after completion. The 
entire segmentation process took approximately 2 min per image 
and totalled roughly 40 h of computational time for all samples. In 
our experience, manual measurements of all individuals in an image 
(median mudsnails per image in manual samples = 54) took roughly 
10 min, suggesting our workflow offered at least a fivefold increase 
in efficiency. This efficiency gain was even greater in high-density 
images, which were laborious to complete manually.

In total, 42,042 hydrobiid mudsnails were estimated across 
all images by our segmentation method (watershed algorithm; 
median mudsnails per image = 41, median size = 3.88 mm). The 
estimated growth response of hydrobiids across time points, tem-
perature treatments and mesocosm tanks is presented in Figure 4. 
Although growth was evident, the overall trend from March 
(x̄  = 3.65 mm) through June (x̄  = 3.89 mm) was marginal (Figure 4). 
Size differences were insignificant across temperature treatments, 
with only sampling events (time) indicating a significant relation-
ship to mudsnail sizes (Table  S1). Size distributions within tanks 
revealed most clearly that average size increased throughout the 
sampling period except in two tanks (C3 and D4). The raw, pro-
cessed (blurred and normalized), and segmented images including 
metadata are accessible in PANGAEA (MacNeil et  al., 2024) and 

the resulting features combined with R script are also available 
(MacNeil, 2024).

4  |  DISCUSSION

Using abundant mudsnails from a well-studied intertidal ecosys-
tem, this work demonstrated the ability of computer vision tools 
to rapidly harvest quantitative morphological properties with 
high accuracy and precision. The efficiency gains far surpassed 
manual measurements and our data products support reproduc-
tion (see Data Availability Statement). As a segmentation tool to 
delimit semantic information of biological traits (i.e., shape, size, 
colour), superpixels appear highly generalizable across faunal 
groups, including many infauna typically sampled from sediments 
(Figure S10), and using relatively simple segmentation algorithms 
that can suffer from oversegmentation (Bai & Urtasun,  2017). 
Accelerating digital imaging collection for groups of ecological rel-
evance such as coastal mudsnails—and molluscs more broadly—is 
a promising path towards unifying monitoring and conservation 
efforts in tidal mudflats, where there are natural alignments with 
seagrass restoration through their importance in facilitation and 
mutualism in the rhizosphere (Levin et  al.,  2001). Image-based 
monitoring will benefit from tools beyond the relatively low-
resolution stereomicroscopy used here, including higher resolu-
tion or three-dimensional scanning approaches (e.g., tomography), 

F I G U R E  4  Quantitative profiling (empirical cumulative distribution function) of hydrobiids' response to experimental warming was 
possible by rapid segmentation with accurate and precise measurements. The total size distributions are shown across each sampling time 
point (y-axis), temperature treatment (colours) and tank (facet headers). Vertical lines indicate quartiles where the centre line represents 
median values.
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which could offer signals of population vulnerability via gas-
tropod shell density changes under warming and acidification 
(Chatzinikolaou et al., 2017). Other modes of 3-D reconstruction 
by photogrammetry could improve feature acquisition (e.g., size, 
volume and shape) or microstructure detection for more reliable 
morphological identification and help scale ecosystem monitoring 
(Ferrari et al., 2021).

Improving image segmentation and analysis more broadly in 
ecology will first require generating annotations of big image data-
sets, which are difficult to acquire on brief field surveys or re-
search cruises. The mesocosm setup provided access to repeated 
samples from a controlled environment with high-resolution sed-
iment coverage. As a mesocosm receiving seawater directly from 
the Wadden Sea, we expect environmental conditions to have 
simulated near-natural conditions withstanding systematic dimi-
nution of light levels due to tank enclosure, wall effects and lower 
primary productivity (Pansch et al., 2016). Although this work fo-
cused on methodological advances for quantifying species abun-
dance and size structure, limits of our mesocosms towards holistic 
community experiments include the incomplete representation 
of the intertidal communities upon introduction, for example, the 
absence of coastal fish communities as important contributors to 
biogeochemical budgets through feeding and excretion (Allgeier 
et al., 2013; Saba et al., 2021). Lessened productivity could explain 
the insignificant difference in sizes across treatments, where heat-
stressed individuals required greater food to grow. It is also pos-
sible that high mortality under +3.0°C was not registered during 
discrete sampling events, artificially lowering size estimates and 
obscuring patterns in other morphological traits. Moreover, hyd-
robiids might have exhibited acute resilience to +3.0°C average 
warming during springtime owing to physiological plasticity and 
a diversity of life history strategies across species (Barnes, 1999). 
Our segmentation approach could also be improved to analyse 
other traits. For example, colour is a central eco-evolutionary trait 
among others for predator avoidance, regulating UV exposure, 
and a signal of key life stage developments (Martini et al., 2021). 
Colour is explicitly incorporated into superpixel calculation in 
combination with other low-level features. But in doing so, unique 
colour information is lost as an analysable trait. Although we cur-
rently do not extract colour categorizations of superpixels, recol-
orizations might be possible for a broad set of images and support 
wider trait-based analysis in biology (Weller et al., 2022).

Many different algorithmic approaches are possible to seg-
ment and extract features from mudsnails or other infauna. Deep 
learning models are a clear option because they have established 
benchmarks for accuracy and precision across computer vision 
domains (LeCun et  al.,  2015; Minaee et  al.,  2021). A transfer-
learning approach using pre-trained convolutional neural net-
works could adequately segment hydrobiid mudsnails from our 
images (e.g., Razavian et al., 2014); a recent package has compiled 
several transfer-learning tools for segmentation and classifica-
tion in the R programming language (Niedballa et  al.,  2022). Yet 
these techniques would typically require initial training rounds on 

pre-segmented examples to repurpose these models, commonly 
known as domain adaptation (Daumé III & Marcu,  2006). With 
convolutional neural networks, superpixels could replace raw 
2-D images as inputs, ensuring that highly similar pixels cluster-
ing around salient objects are predefined to improve hierarchical 
representation of object features (He et al., 2015). However, auto-
matic species identification and enumeration from deep learning 
classifiers remain challenging—aside from cryptic diversity ob-
scuring morphological identification between molluscs and many 
other infauna—due to limited annotated datasets for training pat-
tern recognition and by the propagation of training errors onto un-
seen samples, termed dataset drift (sensu González et al., 2018). 
Altogether, our approach avoided protracted model training and 
evaluation methods and suited our relatively straightforward task 
to segment and accurately measure objects with flexible outputs 
to segment mudsnails as composites of clusters. More sophisti-
cated evaluation metrics are available for future works beyond 
counts and length measurements using superpixel-based segmen-
tation, involving detailed inspection of segment boundary adher-
ence, variability, superpixel compactness or other estimates of the 
trade-offs between runtime and performance (Stutz et al., 2018). 
Perhaps most relevant to the uptake of computer vision techniques 
in ecology is that the R programming environment, ecology's most 
popular (Lai et al., 2019), lags behind Python in functionality and 
community engagement (e.g., OpenCV; Bradski, 2000). It is there-
fore important that our workflow was developed exclusively in 
R, except manual measurements, and that new R packages are 
integrating the array of computer vision tools (e.g., Garnier & 
Muschelli, 2022).

Assessing infaunal growth responses with computer vision opens 
greater possibilities to characterize benthic community structure in 
space or time, and to relate these patterns to shifts in ecosystem 
stability and functioning (Brose et al., 2017). More generally, future 
applications of digital imaging tools for monitoring should include 
combinations with multi-omic toolkits to bridge morphologically 
resolved, quantitative records with broad-spectrum surveys of hid-
den molecular diversity (Martini et al., 2021). Still, in an ideal setting 
with all data types available, interpreting community dynamics re-
mains difficult, but improving imaging analysis in specific tasks and 
extracting data-rich records can help reconcile patterns of species 
abundance and size structure. These records would be valuable indi-
cators for the continued restoration of the Wadden Sea in response 
to its millennium-long traces of human-driven activities (Lotze 
et  al.,  2005; Weijerman et  al.,  2005), where mudsnail abundances 
and growth rates are strongly associated with nutrient runoff, sea-
grass density and habitat quality (Gräfnings et al., 2023), while also 
relevant for assessing competition and threat from invasive benthic 
invertebrates (e.g., Pacific oyster Magallana gigas; Reise et al., 2017). 
More broadly, quantitative records of the macrozoobenthos give 
important baselines for the effects of climate or environmental 
change on coastal ecosystems (Harley et al., 2006), portending con-
sequences for species ranges, phenology, abundances and the struc-
ture of community composition.
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5  |  CONCLUSIONS

Fast and accurate segmentation of hydrobiid mudsnails from im-
ages revealed seasonal growth under springtime conditions in a 
near-natural mesocosm setup and suggests resilience in size de-
velopment under ocean warming up to +3°C. Our computer vision 
approach expedited enumeration and size-distribution estimates 
at least fivefold compared with manual measurements and was 
robust to the number of individuals and varying size distributions 
per image. We advocate for a wider usefulness of superpixels to 
explicitly incorporate colour and other low-level features towards 
detecting objects and traits that are ecologically or evolutionarily 
relevant from images. Due to the in silico design of our workflow, 
all data products were automatically stored for quality assess-
ment, method improvement and accessibility. This work also 
illustrates the high value of mesocosm setups to boost data col-
lection for testing the capacity of image-based analysis to scale. 
The expansion of image segmentation techniques and computer 
vision more broadly has powerfully enriched the tools available 
to ecologists. This work demonstrates that a major bottleneck for 
the quantification of infaunal groups can be addressed using freely 
available tools in ecology's most popular programming language; 
it also underlines the importance of deeper investigation into ben-
thic ecosystems through imaging.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Sediment collection and preparation of the mesocosm 
setup.
Figure S2. The typical pixel intensities in raw images for each color 
channel (RGB).
Figure S3. Superpixel grid from a processed image (blurred and 
normalized) based on 600 and 1500 superpixels (Spx) generated 
from simple linear iterative clustering (SLIC).

Figure S4. Overlap of observed versus estimated hydrobiid size 
distributions using default number of superpixels (600; Zhou, 
2015) and the watershed segmentation algorithm (Automatic) 
across samples (SF: Sediment Fauna): (A) SF43 (nobs = 966), (B) SF84 
(nobs = 1405), (C) SF114 (nobs = 1574), and (D) SF131 (nobs = 623).
Figure S5. Temperature values aggregated to hourly resolution with 
automated probes for each mesocosm tank; manual measurements 
are represented as points.
Figure S6. Distribution of mudsnail sizes across the full dataset 
(nest = 42042) estimated by our superpixel-based segmentation 
method (watershed algorithm).
Figure S7. The selected GLMM model diagnostics using R package 
performance (Lüdecke et  al., 2021), summarizing predictive 
performance (panel 1), linearity (panel 2), heteroskedasticity (panel 
3), outlier influence (panel 4), collinearity (panel 5), normality of 
residuals (panel 6), and normality of random effects (panel 7).
Figure S8. The selected GLMM marginal effects (Lüdecke, 2018) of 
mudsnail size across sampling events (0 = March 30th, 1 = April 25th, 
2 = May 24th, 3 = June 20th) colored by temperature treatment.
Figure S9. The first three principal components (PC1–PC3) 
characterizing mudsnail morphological traits of shape (roundness, 
elongation, complexity) and size (length as size, perimeter, area) 
across (A) treatment conditions and (B) monthly sampling events.
Figure S10. Extra images demonstrating the generality of our 
superpixel-based segmentation method for (A) herring larvae (Clupea 
harengus), (B) blue mussels (Mytilus edulis), (C) a bivalve (Cerastoderma 
sp.), (D) and a brackish clam (Limecola sp.).
Figure S11. Returned masks from each cluster during image 
segmentation from 1500 superpixels, defined by affinity propagation 
based on pairwise similarity to color-centroid exemplars, and 
quantized with mini-batch K-means.
Table  S1. The selected GLMM model coefficients and p-values 
(***indicates < 0.001) where mudsnail size at time zero in ambient 
treatment is used as a reference level.
Table  S2. Morphological descriptors generated by EBImage (Pau 
et al., 2010); the values across treatments (ambient, +1.5°C, +3°C) 
indicate the ratio of descriptors from June:March (Event 3:Event 0).
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