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1. Introduction

Newton’s cradle (Fig. 1) is a valuable paradigm of how physical
mechanisms are concealed into nature. It is a device based on
classical mechanics that demonstrates the conservation of
momentum and energy. On the other hand, Quantum Mechanics
has been shown to be one of most prolific sources of unexpected
and hard-to-understand phenomena. Therefore, achieving a
machine which is a paradigm for the quantum nature of a system
is an engrossing challenge.

In the work of Ref.[1] we propose a possible experimental
realization of a quantum analogue of Newton's cradle (NC). With
that aim we ask for the system to be:
    (i) a one-dimensional array,
    (ii) made of individual quantum objects, representing the
spheres in the NC,
    (iii) with a nearest-neighbour interaction between the individual
quantum systems,
         modelling the contacts between the spheres.

The above requirements, which are necessary for realizing a quantum NC (QNC), can be achieved with a system of
cold atoms trapped in a one-dimensional periodic potential. This system can be built by confining a Bose-Einstein
condensate into a one-dimensional tube using an optical potential that constrains it to a strict Tonks-Girardeau
regime. The first achievement of this regime in Bose-Einstein condensates has been reached in the remarkable
experiment by Paredes et al. [2], with a set-up closely similar to the one considered here. A further optical potential
of moderate amplitude, is superimposed along the longitudinal direction, so that it generates an optical lattice that
fulfills condition (i). The dynamics of this system is effectively described by a one dimensional Bose-Hubbard model
[3] where, due to the Tonks-Girardeau regime, the strong repulsive interaction between the atoms prevents the
double occupancy of lattice sites [4]. In our proposal the condensate is made of atoms with two possible internal
states, say |0> and |1>. Accordingly, each potential well hosts an effective two-state system (ii) and the
wave-function at each lattice site is a superposition of these internal states.

The tunnelling interaction between nearby wells can be globally tuned by the intensity of the optical lattice beam, and
provides the required coupling which meets condition (iii). We have shown that a local perturbation generated at one
end of such a lattice propagates back and forth between the lattice ends in a way very similar to that in which an
initial momentum pulse is periodically exchanged between the endpoint spheres of the classical NC. In fact, in the
QNC the role of the classical momentum ∆p transferred between the chain ends, is played by the wave-function
disturbance ∆Ψ which is transmitted through the system.

2PHYSICS.COM
(Lib. of Congress: ISSN 2372-1782)

Presenting ...

Key Developments in Physics

(Email: 2Physics@gmail.com )

Editor-in-chief: Biplab Bhawal

<< Home

2Physics.com publishes invited semipopular level articles on

key developments in various fields of Physics. Authors may

submit semipopular level articles based on their own research

paper(s) published in refereed journal(s). Alternatively, they

may consider sending a proposal (one short paragraph) and a

list of related publications before writing the full article. We will

let you know our decision within a few days after we receive

the proposal.

Categories

5 Breakthroughs

Astrophysics

        Pages:   2,   1

Atomic Physics

        Pages:   4,   3,   2,   1

Biophysics

        Pages:   2,   1

 Black Hole

Bose-Einstein Condensate

        Pages:   3,   2,   1

Condensed Matter

        Pages:   5,   4,   3,   2,   1

Complex System

        Pages:   4,   3,   2,   1

Dark Energy

        Pages:   2,   1

 Dark Matter

Cosmology (other topics)

        Pages:   2,   1

 Editorial

 Einstein

Elementary Particles

        Pages:   4,   3,   2,   1

Graphene

        Pages:   2,  1

Gravitation

        Pages:   3,   2,   1

Gravitational Waves

        Pages:   3,   2,   1

Invisibility Cloak

        Pages:   2,   1

 Metamaterial

        Pages:   2,   1

Nanotechnology

        Pages: 7, 6, 5, 4, 3, 2, 1

 Nobel Prize

Photonics

        Pages:   7, 6, 5, 4, 3, 2, 1

 Precision Measurement

        Pages:   3,   2,   1

.comment-link {margin-left:.6em;}

2Physics

2Physics Quote:
"The enormous speed of light allows us to observe distant galaxies and to communicate in real time at remote points on the surface of the earth. At smaller frequencies, light passes through

macroscopic solid objects almost completely unhindered, interact ing weakly with matter. Reducing its velocity down to zero is of fundamental scientific interest that could usher in a host of

important photonic applications, some of which are hitherto fundamentally inaccessible. These include cavity-free, low-threshold nanolasers, novel solar-cell designs for efficient harvesting of light,

nanoscale quantum information processing, as well as enhanced biomolecular sensing."

-- Kosmas L Tsakmakidis, Ortwin Hess
(Read Full Article: "`True' Stopping of Light – A New Regime for Nanophotonics" )



Figure 2

We start with the lattice prepared with all sites in (say) the |0> state, and the initial disturbance ∆Ψ consists in
changing the first site to the |1> state: the disturbance will propagate through the `sea' of |0> states (the analogy is
shown in Fig. 2).

2. Tonks–Girardeau regime: Fermionizing Bosons

The system of atoms with two internal states has to be subjected to a strong transverse trapping potential and to a
further standing-wave laser beam that creates a periodic potential in the longitudinal direction. At low temperatures
and for sufficiently strong transversal and longitudinal potentials the system excitations are confined to the lowest
Bloch band. The low-energy Hamiltonian is then given (see [4]) by the Bose-Hubbard model for two boson species
labeled by α=0,1. In one dimension the homogeneous Bose–Hubbard model, has two remarkable limits: i) the case
of a vanishing repulsion, the model reproduces two independent ideal Bose gases on a lattice, and ii) the case of
strong repulsive interaction, that we consider here with a number of atoms equal to the number of sites (filling one).
In the Tonks-Girardeau regime, an ideal Fermi gas is found. In fact, very high values of repulsion entail such a high
amount of energy for accumulating more than one atom in a given site, that no site can be doubly occupied.
Therefore, the only observable states are those where the occupancy of any site is equal to one.

The two possible one-atom states at a site j are |0>j, and |1>j, and correspond to the jth atom in the internal state
0 or 1, respectively. In this way the dynamics is ruled by only internal states and an effective Pauli exclusion is
realized.

3. The analogy

During an oscillation of the classical NC there are several spheres at rest and in contact with each other, and some
moving spheres. When a moving sphere hits a sphere at rest, the latter keeps being at rest and exchanges its
momentum with the nearby sphere (see video 1).

Video 1

In the quantum analogue of the NC the role of the spheres’ momenta is played by the wave-functions at each site.
Rather than the transfer of mechanical momentum, in the quantum system there is a transmission along the lattice
of a disturbance of the wave-function. This is represented in video 2. Furthermore, in the place of the spheres
oscillating at the boundaries of the chain, we expect to observe the oscillation of the wave-function amplitude on the
lattice ends due to the disturbance that runs forward and back.
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Video 2

The system’s wave-function at each lattice site j can be a superposition of the two atomic internal states |0>j and
|1>j. Under the analogy we propose, one can for instance associate to the spheres at rest the states |0>j.
Accordingly, a moving sphere, let us say the first one, corresponds to a state a0|0>+a1|1>, a superposition of the
two internal states. In terms of atoms this amounts to considering all sites initially populated by a species-0 atom, but
for (a partial superposition with) a species-1 atom in the first site.

This setup triggers oscillations whose dynamics essentially consists in the disturbance travelling along the lattice: the
solitary species-1 atom propagates through the chain of species-0 atoms and migrates until the opposite end, where
it is reflected back -- thus determining the NC effect (see video 2).

Remarkably, this analogue of the classical propagation is described in terms of fermions: the most ‘non-classical’
particles.

4. Bad and Good Quantum Newton’s Cradles

Uniform QNC

In the simplest case all tunneling interactions are equal and the chain is uniform.

Figure 3
In Fig. 3 it is clearly shown that the initial disturbance of the wave-function travels along the chain in the form of a
wave-packet, which reaches the opposite end of the chain and is reflected backward. However, one can clearly see a
significant attenuation of the transmitted signal, an effect essentially due to the destructive interference of the
wave-function components. In other words, after a few bounces the initial state evolves to a state where the
species-1 atom is delocalized along the chain. This is the situation that occurs in a dispersive system: the
wave-function spreads over the lattice during time and the initial wave-packet is rapidly lost. A similar phenomenon
also occurs in the classical NC if the masses of the spheres are not identical, i.e., in the non-uniform case.

Evidently, in the quantum analogue, the uniformity of the system causes dispersion: therefore, it is important to
identify under which conditions such attenuation can be minimized.

Perfect QNC

Figure 4
The dynamic decoherence of the uniform case, can be not only reduced but even eliminated by letting the tunneling
amplitudes to vary along the chain with well-defined nonuniform values. In fact, in the case of a system of M lattice
sites, a dispersionless end-to-end quantum-state transmission can be obtained, when the Hamiltonian has nearest-



Figure 5

neighbour couplings given by τj ∝[j(M-j)]1/2. In this case a perfect QNC is realized, whose behaviour is illustrated in
Fig. 4. One has to observe that the accurate tuning of each tunnel coupling, is experimentally hard.

5. Two realistic schemes

We are going to show here that it is possible to minimally modify the least demanding uniform lattice in order to
strongly improve the cradle’s performance.

Quasi-uniform array
A simple way exists for the actual realization of a high-quality QNC in an essentially uniform chain, such that the need
for engineering is small. A natural strategy is that of weakening the extremal τjs. Indeed, keeping the requirement of
a mirror-symmetric chain, one can minimally modify a uniform chain taking equal couplings, τj=τ, but for the ones at
the edges, τ1=τM-1=xτ, with x<1, and look for the best transfer conditions. In Ref.[5] it is shown that the optimal

coupling results x≈1.03M-1/6. As a matter of fact, taking into play also the second bonds τ2=τM-2=yτ allows one to
guarantee a response larger than 0.987 (i.e., the transmitted amplitude deteriorates of only 1.3%) when the

coupling are tuned as x≈2M-1/3 & y≈23/4M-1/6, see Ref.[6].

Uniform array with a Gaussian trap
The last configuration we propose
can also be implemented in an
experiment. Besides the uniform
one-dimensional optical potential,
we add a trapping potential that
generates a site-dependent energy-
offset with a Gaussian profile (see
Fig. 5). Furthermore, we choose as
initial state a Gaussian wave-packet
along the lattice. Such a setup
appears to be the most realistic
compared with the previous ones.
In fact, in the schemes we
illustrated so far, the bounce of the
disturbance of the wave-function at
the lattice ends is caused by the
open-boundary conditions, while in
the present setup, the wave-packet
oscillates inside the trapping
potential and its speed inversion is
caused by the forces generated by
the trapping potential. In Fig.6 it is
evident that the packet never

reaches the lattice ends: when the wave-packet moves towards a lattice end, it is slowed down by the trapping
potential, until the motion is inverted and the packet is accelerated in the opposite direction.

Figure 6
6. Conclusions

We have investigated an experimental framework that could realize a quantum analogue of Newton's cradle, starting
from a Bose–Einstein condensate of two atomic species in an optical lattice. We have shown that the tunneling
between sites makes the system equivalent to a free-Fermion gas on a finite lattice. In these conditions, one can
trigger at one lattice-end a disturbance that starts bouncing back and forth between the ends, just like the extremal
spheres in the classical Newton cradle: the analogy associates the propagation of a wave-function disturbance with
the transmission of mechanical momentum.

However, in the quantum system the travelling wave undergoes decoherence, a phenomenon that makes a uniform
lattice almost useless. On the contrary, it is known that a special arrangement of the tunneling amplitudes can even
lead to a virtually perpetual cyclic bouncing.

That's why we looked for compromises that minimized the required experimental adaptation of the interactions and,
gave `almost' perfect quantum Newton cradles. Of course, the possibility of obtaining quantum systems that allow
high-quality quantum-wave transmission is not only relevant from the speculative point of view, but also in the field
of the realization of quantum devices like atomic interferometers, quantum memories, and quantum channels.
Nevertheless, realizing the quantum Newton cradle we proposed would be stirring by itself for the insight it would give
into the entangled beauty of quantum mechanics.
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