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Abstract: We developed a novel approach in the field of spatiotemporal modeling, based on the
spatialisation of time, the Timescape algorithm. It is especially aimed at sparsely distributed datasets
in ecological research, whose spatial and temporal variability is strongly entangled. The algorithm
is based on the definition of a spatiotemporal distance that incorporates a causality constraint and
that is capable of accommodating the seasonal behavior of the modeled variable as well. The actual
modeling is conducted exploiting any established spatial interpolation technique, substituting the
ordinary spatial distance with our Timescape distance, thus sorting, from the same input set of
observations, those causally related to each estimated value at a given site and time. The notion of
causality is expressed topologically and it has to be tuned for each particular case. The Timescape
algorithm originates from the field of stable isotopes spatial modeling (isoscapes), but in principle it
can be used to model any real scalar random field distribution.

Keywords: spatiotemporal modeling; ecological modeling; sparse data; minkowskian geometry;
time series analysis; spatial statistics; isoscapes

MSC: 92-04; 92-08; 92D40; 92F05

1. Introduction

One of the major issues in ecological modeling is the associated occurrence of spatial
and temporal variability of the observations underlying the models [1]. Often one has to
merge old-fashioned and modern measurements in a coherent mixture, especially when
following the evolution of some phenomenon over time. Concerning both the purely spatial
and purely temporal dependence of the variables, we have a rich modeling toolbox at hand,
ranging from time series analysis [2,3] to spatial statistics [4–6]. However, when one cannot
decide whether to favour spatial or temporal variability, the toolbox offers fewer options,
commanding greater statistical intricacy [7–10], see for example the moving average pro-
cesses [11] or the covariance-based methods [12] implemented in R gstat package [13,14].
In some cases we could have a dynamical model at hand [15], so the modeling is generally
conducted via partial differential equations integration, as is often the case with popula-
tion dynamics [16], stochastic differential equations, and Gaussian random fields [17,18].
Other trending approaches include neural networks and deep leaning techniques [19,20]
and space–time Bayesian modeling [21]. Generalized linear models [22] and regression
trees [23] are also used in spatial and temporal ecological modeling. Furthermore, one
is often confronted with the problem of model scaling [24], though the computational
limitations are less and less important.

We chose to treat our observations as a random scalar field through standard geosta-
tistical techniques, without introducing an explicit dynamic model or any kind of machine
learning. Spatial statistics demands that the distribution of our observations obeys more or
less strict constraints, depending on the kind of modeling we would like to perform [4,25].
On the other hand, the distribution of observations in ecology is often sparse, both in
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time and space, especially when merging new data, collected according to a robust spa-
tial pattern, with old observations, typically collected just at spot sites or along transects:
data non-stationary and a spatially skewed distribution of the observations is often en-
countered [26], so the modeling should be conducted, as a matter of principle, also with
sub-optimal datasets, maybe at the expense of accuracy.

In order to deal with entangled spatial and temporal variability, we propose a novel
spatiotemporal interpolation technique—the Timescape algorithm— that estimates the spa-
tiotemporal distribution of a given variable (technically, a real random field ) from a set of ob-
servations. The key idea is borrowed from the machinery of relativistic physics [27,28], which
incorporates a notion of causality rooted into its very topological structure, the Minkowski
spacetime [29]. Time is treated as new spatial dimension [30], via the multiplication by
a constant with the dimensions of a velocity, and we also forbid the instantaneous prop-
agation in space of the field values by filtering the possible sources when estimating the
random field.

In a nutshell, the Timescape algorithm works at a topological level, introducing a
spatiotemporal distance that mimics the Minkowskian structure, then exploiting any ordi-
nary spatial interpolation tool for actually estimating the field values. Our spatiotemporal
distance can be tuned by a couple of parameters, the aforementioned velocity and a causal
strictness parameter, plus a form factor related to seasonality. The Timescape distance is
exposed in Sections 2.1 and 2.4 and the actual implementation is discussed at length in [31].

On practical grounds, we sought for a modeling tool that is: (1) not too choosy
about the distribution of the input data, (2) capable of accommodating seasonal variability,
(3) suitable for both both projected and geographical coordinates, (4) capable of running on
affordable hardware in decent times, (5) distributable as open source. The resulting software
implementations are a Python module [31] and two Java applications, one for projected [32]
and one for geographical coordinates [33]. The software is exposed in Section 2.5. A few
case studies are discussed in Section 3.

2. Methods

A Timescape model is a discrete representation of a scalar field on a space–time
continuum with a temporal dimension and any number of spatial dimensions (Figure 1),
i.e., a lattice of spatiotemporal cells (here and henceforth the target) whose values are
interpolated from a sparse set of observed field values (the source). A Timescape can be
regarded as a stack of sheets, each of which is an ordinary discrete spatial model, indexed
by the time, as well as a sheaf of time series, identified by their spatial location.
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Figure 1. The whole space–time centered about the event x of coordinates (x0, x1, x2): x is located at
(x1, x2) in a bi-dimensional space at time x0: x = (x0, x1, x2).

To define a spatio-temporal distance, we mimic the structure of the Minkowskian
relativistic metric [27,28,34]. According to the conventions of relativistic physics, we call
event any space–time element x = (xo, x1, x2 . . . xn), where x0 is the time and x1, x2 . . . xn
are the spatial coordinates.
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In the following, we will represent the time and only a single spatial component,
regardless of the actual number of dimensions (generally two, in both geographical and
whatever projected coordinates)—see Figure 2.
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Figure 2. A limited portion of the space–time centered about the event x = (x0, x1, x2 . . . xn).

The Minkowskian space–time incorporates a notion of causality due to its topol-
ogy [29]. In order to implement this geometric realization of causality, we must impose an
equivalent causal structure on our space–time.

2.1. Space–Time Distances

Each event x can be split in its time component x0 and space component~x = (x1, x2 . . . xn),
i.e., x = (x0,~x). Now define a spatial distance Ds(x, y) between the events x and y using any
given ordinary metric function d : D×D −→ R+, whereD is the spatial domain of interest
(a subset of Rn or any suitable manifold, e.g., the sphere S2 of geographical coordinates).
A metric d(·) must satisfy the the following conditions: identity: d(~x,~y ) = 0 ⇐⇒ ~x ≡ ~y,
non-negativity: d(~x,~y ) ≥ 0, symmetry: d(~x,~y ) = d(~y,~x ) and subadditivity: d(~x,~y ) ≤
d(~x,~z ) + d(~z,~y ) ∀~z ∈ D, also known as triangle inequality. The latter, in particular, gives
the metric its distinctive character of nearness measurement and it is often the key property
for the convergence of the interpolation algorithms. We define the spatial distance simply as

Ds(x, y) = d(~x,~y ) (1)

The metrics of practical interest in ecological modeling are the ordinary Euclidean
distance in Rn for projected coordinates

Ds(x, y) =

√
n

∑
k=1

(
xk − yk

)2 (2)

and the geodesic distance in S2 for geographic coordinates

Ds(x, y) = R arccos
[

sin x2 sin y2 + cos x2 cos y2 cos
(
x1 − y1

)]
(3)

where R is the radius of the Earth, x1, y1 the longitudes and x2, y2 the latitudes of the events
x and y [35,36].

Since the temporal coordinates live in (a subset of) R, we could naïvely take |x0 − y0|
as the temporal distance between x and y, but the dimensions of Ds(x, y) (length) and
|x0 − y0| (duration) are not coherent. In order to integrate space and time, we introduce
the first of the Timescape parameters: a time-to-space conversion factor c, i.e., a velocity
∈ R+ associated with each Timescape model. This velocity can have or not have a physical
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interpretation as a propagation/diffusion coefficient, depending on the model. It has to be
tuned to an optimal value, see Section 2.4. Thus, we define the temporal distance

Dt(x, y) = c
∣∣x0 − y0

∣∣ (4)

Now we combine the spatial and temporal distances via the Pythagorean theorem,
thus assuring the fulfillment of identity, non-negativity, symmetry, and subadditivity,

taking
√

D2
t (x, y) + D2

s (x, y). This function is a well-behaved metric but lacks a causal
structure: the point is that the symmetry property commands no distinction between x
and y, whatever x0 and y0, so we renounce the symmetry constraint, resorting to what
is technically a distance in a pseudo-metric space [37,38]. The distinctive “measure of
closeness” character of a metric is given by its subadditivity so, respecting the latter
constraint, we impose a directionality to our distance, restricting to the subset x0 ≤ y0, thus
introducing the asymmetric function D(x, y) from x to y:

D(x, y) =


√

D2
t (x, y) + D2

s (x, y) if x0 ≤ y0

∞ otherwise
(5)

so that if D(x, y) is finite D(y, x) = ∞ (the reverse is not true: D(x, y) = ∞ ; D(y, x) is
finite. The distances can be both ∞, e.g., whenever x0 = y0 and Ds(x, y) 6= 0). In a context
of spatial interpolation, what (5) is saying is that something happening at x might be a
cause of y but y cannot influence x (i.e., no time traveling in the past). We can be more
strict, requiring that x0 < y0 is not enough for a source in x to propagate up to y, i.e., we
forbid instantaneous actions-at-a-distance, introducing the second Timescape parameter,
the causal parameter k, positing

∆(x, y) =

{
D(x, y) if Ds(x, y) ≤ k Dt(x, y)
∞ otherwise

(6)

where k ≥ 0. Said E = T ×D the space of all the events, where T ⊆ R contains all the
events’ times, the ∆(x, y) in (6) coincides with D(x, y) in (5) only in a conical subset whose
tip is x (Figure 3). We call this subset C+x the future causal cone of x. It is the locus of the
possible outcomes of something happening at x. Formally, C+x =

{
y ∈ E

∣∣∆(x, y) < ∞
}

.
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Figure 3. A geometrical interpretation of ∆: ∆(x, y) is the hypotenuse of the triangle formed by
Ds(x, y) and Dt(x, y) if y ∈ C+x . For all the other events /∈ C+x the distance is infinte. For example:
∆(x, u) = ∞ because u0 < x0, ∆(x, v) = ∞ because v0 = x0 and ∆(x, w) = ∞ because Ds(x, w) >

kDt(x, w) even if w0 > x0.

Exploiting the Heaviside theta function θ(t) = 1 if t ≥ 0 or 0 otherwise, we also posit
finite

0 = ∞, the formal definition of the Timescape distance from x to y can be rephrased (it
is important to distinguish the starting event (from x) from the ending one (to y). We cannot
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simply say “distance between x and y” since ∆(x, y) lacks symmetry; the remnant shadow
of symmetry lies in the relation y ∈ C−x if x ∈ C+y ).

∆(x, y) =

√
D2

t (x, y) + D2
s (x, y)

θ
[
k Dt(x, y)− Ds(x, y)

] (7)

Note that (7) is parameterized by c and k: each pair of parameters gives a distinct distance,
and therefore a different Timescape model. In Section 2.4 we discuss in detail how to choose
c and k, maximizing the accuracy of the interpolation.

2.2. Causal Structure: Topology of the Events Space

Analogously of C+x , we introduce the past causal cone of x, defined as C−x =
{

y ∈
E
∣∣∆(y, x) < ∞

}
, where something occurring at an event in C−x is a potential cause of x.

The value of k tunes the causal cones width. The bigger k, the larger the cones,
the looser the causal constraint. While the smaller k, the thinner the cones, the stricter the
constraint (Figure 4). As limiting cases, as k→ 0, the cones shrink to vertical lines, while as
k→ ∞, C+x becomes, E+

x the whole future of x and C−x becomes E−x ; k→ ∞ corresponds to
an infinitely fast propagation of information in E.

k = 0

k→ ∞

C+x

C−x

E

x

Figure 4. Sheaves of future and past causal cones. x sits at the common tip of the cones. The cones
widen as k increases. For k = 0 the cones shrink to segments, and for k→ ∞ the cones coincide to the
whole past (E−x ) and future(E+

x ) of x.

The Timescape algorithm, in a nutshell, consists of topologically filtering the possible
causes for each target event from a set of given source events, picking only the source
events that fall into the past causal cone of the target event.

Further mathematical details can be found in the manual accompanying the Python
Timescape module [31].

Accommodating Seasonal Variability

In ecological modeling, it is of paramount importance to be able to cope with periodic
phenomena. We propose a refinement of the Timescape topological structure that includes
seasonality by reshaping the cones by means of a multiplicative positive form factor ψ(t)
that shrinks and inflates the cone width as ψ(t) < 1 or ψ(t) > 1, thus modifying the time
distance (4) as

D̃t(x, y) = c
∣∣x0 − y0

∣∣ψ
(∣∣x0 − y0

∣∣) (8)

and the Timescape distance (7) accordingly:

∆̃(x, y) =

√
D̃2

t (x, y) + D2
s (x, y)

θ
[
k D̃t(x, y)− Ds(x, y)

] (9)
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Figure 5 shows an example of periodic shrinking with period T, using the form factor
ψα, tuned by the parameter α, defined as (the period of cos2 is half the period of cos, so the
cosine argument’s normalization factor is π/T).

ψα(t) = α + (1− α) cos2
(πt

T

)
(10)

with 0 ≤ α ≤ 1 (the smaller α, the larger the correction). The resulting “Xmas tree” past
cone C̃−x clearly shows on- and off-season peaks.

E
x

y

z

C−x (k)

C−x (αk)

C̃−x

ψα(t) · t

−t/T0 0.5 1.0 1.5

α = 1
5

Figure 5. (Left): the causal cones C−x and C̃−x of x; note that ∆̃(y, x) < ∆̃(z, x) = ∞ even if ∆(y, x) >
∆(z, x). (Right): the cross section of C̃−x , backwards in time, in units of T. The slope of the dashed
line is 1 and that of the dotted line is α.

The trick operated by ψα(t) in (10) consists of shrinking C−x (k) the regular causal cone
of aperture, k, down to C−x (αk), i.e., a smaller cone of aperture αk, during the off-season
times, thus reducing the number of possible causes of x since C−x (αk) ⊂ C̃−x ⊂ C−x (k).
If α = 0, the shrinking is so severe that C̃−x becomes a union of saucers connected at single
events on the cone axis. The n-dimensional shrunk causal cone C̃−x is obtained by rotating
the t ψ(t) function’s profile about the horizontal axis (Figure 5). In bi-dimensional models
it is an ordinary solid of revolution; the rotational symmetry is required by the statistical
hypothesis of spatial isotropy, while the widening along time is due to the (finite speed)
propagation of the modeled field.

2.3. The Algorithm

A Timescape model consists of a set of estimated values of a scalar field Φ, generally
arranged as cells of a regular lattice (the target T). The field is interpolated from a set
of known values (the source S). Each model is characterized by the choice of a spatial
distance (the parameters c and k, and the form factor ψ) and the spatial interpolation
method. In general, there are no constraints on the distribution of the source events—see
Figure 6.

E
T

S

Figure 6. Source (•) and target (•) events. The target events are the centers of a regular lattice of equal
cells arranged as an (n+1)-dimensional box.

Some interpolation methods (e.g., Kriging) require the analysis of the variogram and
are also able to evaluate the accuracy of the estimate, while some others (e.g., Inverse Dis-
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tance Weighting) are less demanding but do not provide an accuracy figure. The Timescape
algorithm operates a topological filtering of source events before the actual interpolation,
so in principle one can choose any tool from the spatial statistical catalog.

The evaluation of a Timescape variogram deserves a note of caution. First of all, each
target event x possesses its own input set Sx, the causal neighborhood of x (Figure 7),
defined as

Sx = S ∩ C−x =
{

u ∈ S
∣∣∆(u, x) < ∞

}
(11)

so, as a matter of principle, each x ∈ T possesses its own variogram. However, a global
variogram can be evaluated by the pairwise comparison of the field values within the
source events S.

E

x

y

C−x C−y

Figure 7. Two target events x and y with their input sets Sx and Sy.

To evaluate the variogram, we introduce the set Sδ(h) of the causally connected pairs
of S with a distance within the interval of width δ about h:

Sδ(h) =
{
(u, w) ∈ S× S

∣∣∣ h− δ
2 < ∆(u, w) ≤ h+ δ

2

}
(12)

the corresponding variogram value is

γ(h) =
1∣∣Sδ(h)
∣∣ ∑

(u,w)∈Sδ(h)

(
Φ(u)−Φ(w)

)2
(13)

where
∣∣Sδ(h)

∣∣ is the number of elements of Sδ(h). The bin width δ has to be chosen in

order to have no overlapping bins, typically δ = max{∆}
N , where N is the optimal number

of bins [39] and h is taken at regular intervals hn =
(
n− 1

2
)
δ counting n = 1 . . . N. There is

not the usual variogram factor 1
2 in (13) since the asymmetry of ∆ in (12) prevents double-

counting, in fact the intervals in (12) do not overlap but they do not contain 0. This is of
no harm since a zero Timescape distance means at the same place and the same time and,
since Φ has to be single-valued, there cannot exist u, w ∈ S such that ∆(u, w) = 0 and
Φ(u) 6= Φ(w).

Generally speaking, for each target event x, the value of the field at x is a weighted
average of the field values of the source:

Φ̂(x) = ∑
u∈Sx

W
(
u, ∆(u, x) . . .

)
Φ(u) (14)

the actual functional form of the weight W depends on the spatial interpolator of choice,
distance being the only common input to all the interpolators. Note that if Sx =∅ there is
no way to estimate Φ̂(x). If this is the case, we attribute a null value to Φ̂(x). Other than the
field value Φ̂(x), one has to calculate the accuracy of the estimate σ̂(x); some interpolators
provide such a figure, but some others do not. In the latter case, it is advisable to find
the accuracy by jackknifing techniques upon the completion of the interpolation—see
Section 2.4 for details.
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Timescape Algorithm

∀ x ∈ T

Observations
{

Φ(u)
}

Source set S

Variogram γ(h)

Distance ∆

Params c, k, ψ

Empty target T

Filter Sx = S ∩ C−x

Sx 6= ∅ SPATIAL
INTERPOLATION

Update Φ̂(x), σ̂(x)

Accuracy of T Finished target T

INPUT

YESNO

Φ̂(x) = null Φ̂(x), σ̂(x)

OUTPUT

START

END

Figure 8. Timescape flowchart. Users must choose a target set T , a spatial interpolator, the distance
parameters c and k, and form factor ψ (thick boxes). The accuracy can be evaluated by the spatial
interpolator itself or a posteriori, depending on the chosen spatial interpolator.

Summing up, the Timescape workflow proceeds as follows (a block flowchart is
given in Figure 8): firstly, one must create an empty target T, choose a distance function
(Equation (7) or (9)) and a spatial interpolator, then, for each target event, the algorithm
goes as detailed in Table 1.

Table 1. Target events’ loop (dashed box of figure 8).

1 C−x ← u ∈ S |∆(u, x) < ∞ Equation (7) Equation (9) Figure 3

2 Sx ← S ∩ C−x filtering–Equation (11) Figure 7

3 η(x)← |Sx| Equation (15)

4

if Sx = ∅ =⇒ Φ̂(x)← null

else Φ̂(x)← ∑Sx W(u...)Φ(u) estimate–Equation (14)

if interp. allows σ̂(x)←
√

var Kriging. . .

else σ̂(x)← null IDW. . .

5 update x:
[

Φ̂(x), σ̂(x), η(x)
]

It is advisable to allocate all the space needed by the finished T before starting the
actual interpolation, not to run short of resources during the interpolation. The Python and
Java Timescape implementations do so, as a bulk of internal memory (Python) or database
records (Java)—see Section 2.5.

The loop above can be parallelized in a number of ways, since all the events in T are
all considered independent of each other. A useful performance figure can be calculated
during the interpolation—it is the number η(x) of elements in Sx:

η(x) =
∣∣ Sx

∣∣ (15)

the larger η(x), the more robust are Φ̂(x) and σ̂(x).
Upon the completion of the loop one has to estimate the model’s accuracy, if it has not

already be done by the interpolator itself. If it is not the case, the accuracy can be estimated
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by jackknifing the source set [40], removing a few random elements at a time, and repeating
this process a number of times N [41]. A consistent standard deviation estimate is thus [42]:

σ̂(x) =

√
1

N − 1 ∑
k

(
Φ̂′k(x)− Φ̂(x)

)2
(16)

where S′k is the kth replica (k = 1 . . . N) of S with some random elements removed, Φ̂(x) is
the model’s field estimate at x, and Φ̂′k(x) is its estimate on the subset S′k. Note that this
accuracy estimate is very time-consuming. On practical grounds, (16) can be performed
only on a few S′k sub-sources, since the running time of each subset is comparable with that
of the full Timescape model. Note also that one cannot remove too many events from S
since it could lead to too many empty S′k sets, i.e., too many null Φ̂′k(x). Further details on
the procedure can be found in Python Timescape module manual [31].

The overall accuracy can be assessed by two figures: a global variance σ2
model and the

ratio of null target events over the total target size ηmodel

σ2
model =

1
| T∗| ∑

x∈T∗
σ̂ 2(x) , ηmodel =

| T∗|
| T | (17)

where T∗ =
{

x ∈ T
∣∣ Φ̂(x) 6= null

}
is the set of not-null elements of T. The ηmodel index,

in particular, measures the predictive power of the model. σmodel is expressed in the same
units of Φ, while η is adimensional and 0 ≤ η ≤ 1.

2.4. Model Tuning

Given the same input set S and output T , the very character of a Timescape model is
given by a number of factors: the spatial interpolator, the metric parameters c, k, and the
form factor ψ. We give some suggestions in order to wisely choose an optimal distance.

2.4.1. Spatial Interpolator

The vast family of Gaussian process regression techniques (in short, Kriging) provides
a wide choice of interpolators. Furthermore, such techniques provide an accuracy estimate
such as a variance figure, so that there is no need to perform the post hoc jackknifing. On the
other hand, some old-style deterministic interpolation techniques, like the Inverse Distance
Weighting, though lacking the accuracy, are extremely lightweight and fast to perform, so
they should be considered, especially when geographic coordinates are involved, with a
spatial distance like (3) (As a matter of principle, one should evaluate the geodesic distances
on the Earth as elliptic integrals, while (3) just measures the arc length between the locations
~x and ~y). As a rule of thumb, it is advisable to pick the same spatial interpolator one would
choose if all the events were located at the same time.

2.4.2. Metric Parameters

c and k affect the metric of E: tuning these values is of paramount importance for a
successful interpolation. Other than a trial-and error strategy, one should pick the best
performing (c, k) pair. What best performing means is a compromise between fast running
and accuracy [43]. We recommend a procedure based on residuals minimization by source
jackknifing [40]. The idea is based on the cross-estimation of the field values of S with S
itself, similar to (16) with S in place of T , for a whole ensemble of (c, k) values, picking the
best performing pair (c̄, k̄).

Let us define Φ̂ck(u) the Timescape estimate of Φ(u)—which is known—with parame-
ters (c, k). The estimate is performed on the reduced source set S\{u}. Mimicking (16), we
introduce two indicators: the cumulative residuals R2(c, k) and the non-null events ratio
N(c, k):

R2(c, k) =
1

| S | − 1 ∑
u∈S

(
Φ̂ck(u)−Φ(u)

)2
(18)
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N(c, k) =
∣∣∣{u ∈ S

∣∣ Φ̂ck(u) 6= null
}∣∣∣ (19)

the best performing pair (c̄, k̄) can be found by minimizing R2(c, k) and maximizing N(c, k)
at the same time. Figure 9 shows an example of R2 and N surfaces as functions of c and k
on a regular lattice. Note that, for a given c, N(c, k) is a decreasing function of k: this is the
consequence of the fact that a larger k implies a looser causality (see Figure 4).

Figure 9. (Left): An example of R2(c, k). (Right): N(c, k) in percent units. Plots from a dedicated
function of the Python package [31].

As a rule of thumb, any ensemble of (c, k) values should initially include k0 = 1,
i.e., treating space and time on equal grounds. As of c, if there is a characteristic velocity in
the model (transport, diffusion, etc.) one can play around such a value, otherwise a naïve
first guess could be, given u, v ∈ S:

co =
[

max
u

(
u0
)
−min

u

(
u0
)]−1
×max

u,v

[
d(~u,~v )

]
(20)

ensuring a fair coverage of the causal cones: for Euclidean spaces, (20) makes S base
diameter and height equal.

2.4.3. Form Factor

The topology of the event space–time E is controlled by the form factor ψ. The causal
cones are actual cones if ψ ≡ 1 or any positive constant, which by the way can be absorbed
into k. The form factor is used to modify the shape of the cones and so the topology of E,
promoting or depressing the contribution of the events according to their temporal distance.
We propose two cases:

Threshold: we can impose a threshold T as a maximum time distance requiring
c
∣∣y0 − z0

∣∣ ≤ T, posing ψ(t) = θ(T− t) whose effect is to close the cone C̃+y . See Figure 10
for a comparison with a regular C+x , with ψ(t) = 1.

Periodicity: a periodic ψ(t) ≤ 1 accommodates seasonality into a Timescape model
shrinking the causal cone (Figure 5), thus filtering out the off-season events.

Given a period T, a straightforward form factor is ψ(t) = cos2 ωt, where ω = π/T.
If one wants to be more or less selective, some variations on the theme are at hand
(Figure 11). Higher even powers of the cosine have sharper maxima and flat minima,
so the cone is more selective. On the other hand, roots of cosine give smoother maxima
and sharp minima, corresponding to a looser causal constraint. The cross section of the C̃±
cones is given by the product function t ψ(t).
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Figure 10. The effect of ψ(t) = θ(T − t).
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Figure 11. (Left): three periodic form factors, solid line ψ(t) = cos2 ωt, dashed line (stricter)
ψ(t) = cos20 ωt, dotted line (looser) ψ(t) =

√
| cos ωt|. (Right): the corresponding cross-sections of

the causal cones.

As a rule of thumb, as a first guess take ψ(t) = 1 for non-seasonal field values and
ψ(t) = cos2(π

T t) for seasonal fields modeling, then α-tempering the form with ψα in (10),
as discussed therein. The larger the area below ψ, the looser the seasonal selectivity.

2.5. Timescape Implementations

Two algorithm implementations have been published: a Python and two Java versions.
All the software packages are released under the GNU-GPL license. Other than going deep
into the mathematical subtleties of Sections 2.1 and 2.2, the manuals accompanying the
software distributions treat in detail the practical implementation and describe the code.
In this paper, we only sketch the key features of the software. Both implementations are
limited to two spatial dimensions and provide some statistical analysis tools to explore the
source dataset and the finished models.

2.5.1. Python

The Timescape Python module [31] consists of a single module, exposing all the objects,
methods, and functions needed to perform source data analysis, parameter tuning, and the
actual model interpolation, alongside additional functions dedicated to data plotting and
exporting. All the examples in Section 3 have been computed with this software.

The usage is command line-based, but the functions can be easily integrated into users’
own code. The default spatial interpolator exploits the PyKrige module functions [44]; a
finished model is a Python object that can be saved in binary format and can be included in
a GIS workflow as a multi-layered geotiff image [45], one band per time sheet. The storage
is RAM-based, so this is the limiting factor for the number of target cells.

The Python package is designed to be easily configurable, allowing users to code their
interpolators. Predefined interpolation methods include Kriging (examples in Sections 3.1
and 3.2) and Inverse Distance Weighting (Sections 3.3 and 3.4). Other than the Euclidean (2)
and Geodesic (3) spatial distances, square and diamond metrics are provided. The allowed
form factors are ψ ≡ 1 and a periodic ψ = cos2 πt

T (Equation (10), see for example Sec-
tion 3.2). Defining other distances or form factors requires a non-trivial intervention on
the code.
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2.5.2. Java

The Timescape Java implementation consists in two stand-alone applications, one for
projected coordinates, the local version [32,46], and one for geographical coordinates, the
global version [33,47]. These are distributed as self-consistent jar executables.

The storage of the Timescape models is based on a Hibernate midlayer [48] that
manages the connection with any compatible relational database management system
(MySql [49] scripts are included in the distribution). The user interaction is mediated by
a Graphical User Interface based on standard swing widgets. The database storage is
more flexible, in that each target event is just a record of a table, but there is the need for a
dedicated database service.

The Java applications allow a full customization of distance and form factor via a
javascript-like scripting language but, since it requires run-time interpretation, the per-
formance is dramatically affected. It is also possible to include ancillary variables along
with—or even instead of—the source field values.

The java applications come with a utility for the configuration of the database connec-
tion and other parameters. A set of tools is also provided to explore, subset, and export the
finished models.

2.6. Coping with Binary and Count Data

The Timescape Algorithm per se is designed for the interpolation of real scalar fields,
however, discrete data (binaries and counting) can be treated considering the source
dataset’s values as reals and applying these workarounds:

Counts: Apply ex-post (i.e., on the finished interpolated values) the floor or ceil-
ing function (The floor bxc is the closest integer lesser than or equal to x, similarly, the
ceiling dxe is the closest integer greater than or equal to x) thus reducing real values to
integers: Φ̂(x) 7−→ bΦ̂(x)c or Φ̂(x) 7−→ dΦ̂(x)e. A less crude method consists of counting
the passing of a series of not equally-spaced numerical thresholds {T1 . . . Tn}, mapping
Φ̂(x) 7−→ ∑k θ

(
Φ̂(x)− Tk

)
. The latter reduces to bΦ̂(x)c when {T1 . . . Tn} ≡ {1 . . . n}.

Binaries: we propose two distinct techniques. The first one consists simply of ex-
post thresholding: Φ̂(x) 7−→ θ

(
Φ̂(x)− T(x)

)
, where T(x) is a threshold value, possibly

depending on the event x; in its simplest version, representing true/false source events’
values in the {0, 1} set and given a single threshold T ∈ (0, 1), map eventually

Φ̂(x) 7−→ θ
(
Φ̂(x)− T

)
=

{
1 ∼ true if Φ̂(x) ≥ T
0 ∼ false otherwise

(21)

The second technique consists of loosely mimicking the neural network propagation of
signals [19,20,50]: only the first time sheet of target events is evaluated as usual, then the
sheets Φ̂(x) are reduced to firing/true and silent/false by (21) and used as input for the
next time sheet, which is in turn reduced through (21) and so on, up to the last sheet, thus
terminating the algorithm with binary target values. Notice that this technique introduces
fictitious source values.

The Java Timescape version (Section 2.5.2) provides a scripting language that can be
exploited to implement ex-post thresholding.

3. Results

We present four case studies. They cover a variety of coordinate systems, time scales,
and peculiarities encountered in ecological geostatistics: projected and geographical coor-
dinates, seasonal effects, uneven distribution, and number of observations.

Three examples come from the field of stable isotopes spatial and temporal distribu-
tion, also known as isoscapes [51], an increasingly widespread tool in the complex field of
spatial ecological analysis [52–54]. Isoscapes (i.e. isotopic landscapes) consist of spatial or
spatiotemporal distributions of stable isotopes elemental ratios [51], evaluated after a set
of suitable measurements. From a spatial point of view, isoscapes are just maps, or series
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of maps at different times; from a formal point of view, isoscapes are ordinary real scalar
fields, the relevant random variable being the actual isotope ratio, depicted as a function
of space and, possibly, time. Isoscapes are an important tool in ecological modeling, since
they can highlight spatial patterns in complex bio- and geochemical interactions, from the
field of hydrology [55] to plant physiology [56,57] to animal migration [58] and to forensic
science [59], naming only a few. In particular, we focus on the spatial distribution and tem-
poral evolution of three stable isotopes from the fields of hydrology and plant physiology.
The interpolated field in such isoscapes is the isotopic abundance of hydrogen (δ 2H), nitro-
gen (δ 15N) and oxygen (δ 18O). In further case studies, the interpolated field is temperature,
demonstrating the potentiality of the Timescape algorithm to deal with seasonality.

The measured isotope ratios are usually expressed as differences with respect to a
given reference standard, the so-called δ-notation:

δ nXh = 1000×
R sample − R standard

R standard
(22)

where R is the molar ratio of the heavy nX stable isotope vs. the lighter, most abundant mX,
the factor 1000 rescales the otherwise small numbers to easily readable figures; the deltas
are adimensional; for example, δ 13C represents the abundance of 13C vs. 12C in a given
sample. A positive δ 13C indicates an enrichment in 13C vs. the common 12C with respect
to the standard, while a negative δ 13C denotes a 13C depletion.

Table 2 resumes the spatial and temporal characteristics of the source events for each
model: number of events, geometry, spatial scale and temporal extension. All the examples
are available as extra material, included in the Python software distribution [31] (For
the sake of reference, all the examples are accompanied by R’s SpatialPointsDataFrame
objects [14,60] with the corresponding projection’s CRC objects [61]).

Table 2. Model features. |S| is the number of source events.

Model |S| Coordinates ∼Scale Time Span-Resol.

Fungi δ15N 62 Local Euclidean (x, y) 100 m few days– 1 day
Min temperature 2521 WGS84 UTM33 N 100 km 20 years–1 month
Olive oil δ18O 275 European Lambert 1000 km 3 years–1 year
Precipitation δ2H 1152 Geographical (λ,φ) 104 km 10 years–1 year

Table 3 shows the details of the target events set T consistency, the spatial interpolation
tool employed (Kriging or Inverse Distance Weighting), the distance function, and the
causal cone form factor.

Table 3. Model parameters. The target cells are ordered by time×horizontal×vertical.

Model Method Distance Form Target Cells |T |

Fungi δ15N Kriging Euclidean ψ ≡ 1 64× 128× 128 = 1,048,576
Min temperature Kriging Euclidean Equation (10) α = 0 240× 25× 32 = 192,000
Olive oil δ18O IDW Euclidean ψ ≡ 1 7× 74× 99 = 51,282
Precipitation δ2H IDW Geodesic ψ ≡ 1 20× 120× 50 = 120,000

In the following, we briefly describe each case.

3.1. Fungi δ15N

This dataset comes from a study about host trees–mycorrhiza relationship conducted
via geostatistical methods exploiting carbon and nitrogen stable isotopes abundances [62].
The model’s scalar field represents the hypogeous fungi’s ascomata δ15N (Tuber aestivum
Vittad—edible black truffles). The complex tree–fungi relations include the nitrogen trans-
port from fungi to the host tree, in particular, the δ15N difference, or fractionation, is a clue
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of tree–fungi symbiosis [63–65], with a significant difference in terms of δ15N, resulting in
a fungal 15N enrichment with respect to the host leaves [66,67]. From a spatio-temporal
point of view, the collection took place within 64 days of continuous fungi–tree interactions,
so it was impossible to treat spatial and temporal variability on different grounds. This
study led to the development of the Timescape algorithm.

The source consists of 62 events, repeated measures at the same sites, skew-distributed
both in space and time. The target is a stack of 64 time sheets counting 128 × 128 spatial
cells each (about one million cells).

Figure 12. (Top left): source events S. (Top right): target field values Φ̂(x). (Bottom left): η(x)
i.e., events in the causal neighborhood Sx. (Bottom right): accuracy σ̂(x). The source coordinates are
the actual ones, the target coordinates are cell indexes.

Figure 12 illustrates the typical Timescape behavior, time increasing from bottom to
top: as a new observation comes in, there is a sort of perturbation in the field that pushes
its value towards that of the following ones. This perturbation will eventually consolidate
or fade according to the closest subsequent source events. The round shapes are due to the
choice of Euclidean metric (2) as the spatial distance.

When treating cases like this one, it is important to check the accuracy of the interpo-
lation, so it is advisable to choose a statistical interpolator like Kriginig, which is capable
of calculating a target event’s variance estimate. Such variance could be relatively high,
but it is noteworthy that a time-unaware geostatistical interpolation would be impossible
to perform altogether. As it appears from Figure 12, accuracy stabilizes about the value
1 as time goes on; the upper right corner is meaningless since, spatially, it lies out of the



Earth 2022, 3 273

convex hull of the source events, it would be a non-informative area with any ordinary
geostatistical tool.

Figure 13. The topmost sheet of three models. (Left): fine-tuned Timescape, i.e., the topmost
horizontal sheet of predicted values Φ̂(x) (top right of Figure 12). (Center): the loosest possible
Timescape. (Right): three-dimensional Kriging.

Figure 13 shows a comparison between two Timescape interpolations and a three-
dimensional spatial Kriging. The leftmost graph shows the optimally tuned Timescape,
and it corresponds to the upper sheet of Figure 12 top-right, predicted values. Its accuracy,
estimated by the residuals with the source, is 0.74. The middle graph is from a Timescape
model with identical parameters, except for k → ∞. It is the loosest causal constraint,
the model’s accuracy is 1.08, significantly looser than the fine-tuned Timescape. The right-
most graph is derived from a purely spatial Kriging: the time is transformed into the third
spatial dimension via the same conversion factor c of the previous models. The accuracy
is only 2.52. The leftmost graph in Figure 13 clearly shows the interference of the causal
cones as they propagate over time; the circular shapes are due to the choice of Euclidean
metric for the spatial distance. The loose Timescape clearly shows the importance of the
causal parameters c and k. In fact, the loose Timescape is not far from a purely spatial
model, as the one rightmost graph of Figure 13, the only difference being that for the loose
Timescape C−x = E−x , while for the three-dimensional Kriging C−x = E ∀x—see also the
topological modifications of the Timescape distance in the discussion, Section 4.2.

3.2. Lowest Temperatures

This case study shows the ability of the Timescape algorithm to cope with seasonal
variability. The source dataset consists in the monthly lowest temperatures recording of the
Umbria region in central Italy [68,69].

The temperature records span 20 years with monthly time resolution (1/12 year ), and
their spatial resolution increases over time as more stations have been added in the two
decades considered. The interpolation has been conducted with a periodic causal cone
(T = 1 year) using universal Kriging. The great number of source events, more than 2000,
added further computational load: in fact, the throughput is as low as 30 target events per
second, see the following Table 4 in Section 3.5.

The source events are shown in Figure 14. Note the temporal gaps in the measurements.
Additionally, new stations started logging data over time, resulting in denser events from
year 1990 on, while around 1980 the collection is sparse in both space and time. This is the
typical distribution skewness of surveys based on a growing measurement network.
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Figure 14. Left): The weather stations network (red dots) in Umbria; A, B and C are referred to the
actual sites of the time series of Figure 15. (Right): spatio-temporal distribution of the source events.
Base map and boundaries from NaturalEarthData [70] and Geoportale Nazionale [71], map prepared
with Qgis [72].

The seasonal character of the output is apparent in the time series shown in Figure 15,
extracted from the Timescape at the sites marked A, B, and in Figure 14: the upper time
limit is 2005 (five years later than the source data ending), so in fact we are forecasting the
values (shaded areas).

Figure 15. Time series extracted at the sites A (top), B (middle) and C (botom) marked in Figure 14.
Time is in years and field values in ◦C. The shadowed area marks the extrapolated values. Time series
A starts in 1988, as there were no recording stations nearby before.

The series period remains constant (one year, of course) and the damping effect is
negligible. Seasonal variability is cumbersome for Kriging [73]; in our case, the Timescape
algorithm filtered out the off-season source values, thus reproducing the correct periodic
behavior. The plots shown in Figure 15 have different starting times, corresponding to
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the earliest meaningful time (i.e., the first non-null Φ̂(x)) for the the given site. The time
resolution of the series is one month. The B series of Figure 15 is initially influenced by
outlying low values, due to the influence of a distant mountain station, which eventually
becomes irrelevant, as closer measuring stations started logging data over time.

It is worth noting that the accuracy increases as more and more events are included in
the target x past causal cones C−x . This effect is not a sort of reverse heteroskedasticity, it is
just an effect of η(x) increasing with time (Equation (15)).

This example demonstrates how easily the Timescape distance incorporates seasonal-
ity. Figure 16 shows our model versus a “wrong” non-seasonal Timescape and a spatial
(three-dimensional) Kriging. It clearly appears from the time series that seasonality is
totally absent in the non-seasonal Timescape, whose other parameters are identical to the
original model, and that the spatial Kriging reproduces an extremely damped seasonal-
ity. The Kriging has been performed, transforming the input times in metric coordinates
(UTM—Universal Transverse Mercator projected coordinates) and multiplying time by
the same c of the Timescape model, which has the physical dimensions of a velocity, see
Table 2.

Figure 16. The same time series of Figure 15 at sites (A)–(C) compared with different interpolation
techniques. Black: periodic Timescape, the actual case. Red: Straight cone (i.e., non-seasonal)
Timescape. Blue: three-dimensional spatial Kriging. Time is in years and field values in ◦C, error bars
not shown.

3.3. Extra Virgin Olive Oil δ18O

This dataset comes from a study on the geographic traceability of Italian Extra Virgin
Olive Oil (EVOO) through isoscape analysis [74] based on the spatial distribution of
Carbon [57,75,76] and Oxygen [77–79] isotopic composition of precipitation and source
water [80]. The δ18O isoscapes, in particular, are related to the elevation and to the distance
from the sea and correlate with the year’s precipitation [77,78]; the original results in [74]
have been obtained by standard spatial statistical procedures.

The source events distribution and variogram are shown in Figure 17. Measurements
have been all taken at regular time intervals (once a year, at olive harvest time), as the spa-
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tiotemporal distribution clearly shows three distinct layers in the years 2009, 2010, and 2021.
Furthermore, the EVOO’s δ18O values are linked to the harvest years’ precipitation [74],
with nearly no correlation from one year to the other [77]. Although the variogram suggests
a good source events space–time distribution, the lack of intra-year correlation makes the
Timescape algorithm fail.

Figure 17. (Left): source events spatial distribution. (Center): source events spatiotemporal distribu-
tion, notice the layered time structure, time is expressed in years, space distances in thousands of
kilometers. (Right): the spatiotemporal variogram (13), distances in kilometers.

The Timescape interpolation of the same data gives results that are comparable
with [74] for the first year only (Figure 18, left), while the subsequent years (center and
right) do not match well with the source events. Note in particular how the extreme values
are averaged out in 2010 and 2011, completely washing out the output variance.

This example shows clearly that the Timescape algorithm is not a universal tool. In this
case, each year’s data are self-contained and independent of each other, so mixing three
years of observations is not correct.

Figure 18. 2009, 2010, and 2011 δ18O isoscapes as sheets of the model. Plots prepared with Data-
Graph [81] from exported geotiff images.

The computation per se, however, is straightforward: the high events throughput
(more than one thousand per second, see Table 4) is due to the relatively scarce number
of source events and, mostly, to the computational speed of the IDW. In this case, the
weight Function (14) is simply W(u, x) = ∆(u, x)−1. It is worth noting that the same model
interpolation by Kriging gave rise to a significant number of errors, about 35% of the target
events, in spite of the relatively large width of the casual cone (k= 5). This is due to the
fact that each year’s δ18O integrates that particular year’s water intake of the olive tree,
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and it is unrelated to other years’ values, resulting in different values with the same spatial
coordinates, which is particularly disturbing for Kriging [4]—the high number of target
event computational errors is an alarm bell, signaling a possible inconsistency of the source
events’ values or a badly chosen interpolation tool, as it is in this case.

3.4. Precipitation δ2H

This example is based on the renowned Global Network of Isotopes in Precipitation
(GNIP) dataset [82,83] from the International Atomic Energy Agency [84]. The collection
of isotopic abundance data started in the early 1960s and the station’s network has grown
dramatically over time. For historical and technical reasons, the spatial coverage is uneven
(Figure 19), with the earlier, denser coverage in central Europe.

Figure 19. Three sheets of the Timescape model, time increasing top to bottom (year 1981, 1985, and
1989). (Left): Causal neighborhood η(x), source events’ sites are shown as red dots. (Right): field
values Φ̂(x), note the typical bull’s eye shapes due to the IDW algorithm.

The interpolation algorithm chosen is a smooth version of the Inverse Distance Weight-
ing method, with a bell-shaped weight function

W
(
u, x
)
=

1
∆(u, x)2 + m2 (23)

where m2 is a positive inertial term that prevents the overweighting of the closest source
events. In our case m2 = 2. Moreover, a maximum number of ten neighbors has been
imposed. Nonetheless, the computation is CPU-intensive since the geodesic metric (3)
involves slow trigonometric calculations. Limiting the causal neighborhood requires Sx
to be ordered by distance, then trimmed retaining only the closest events to x; this is
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based on the heuristic observation that only the closest elements contribute significantly to
the weight functions. Both Python and Java Timescape implementations allow this kind
of trimming.

This example shows how the interpolation results are affected by the addition of new
sampling sites. The dates covered are from 1975 to 1984 (included). This is of course a very
crude model, based only on the GNIP δ2H observations, and further improvements could
benefit from a regionalised regression based on climatic ancillary data [78,85]. An acknowl-
edged source of Hydrogen isoscapes is the web-based application IsoMAP [86], which
also provides insightful information about precipitation hydrogen and oxygen isoscapes in
general [79].

3.5. Performance Analysis

The interpolation throughput has been estimated in terms of evaluated target events
per second, and typical values range from a few tens to more than one thousand, depending
on three factors: the number of source events |S|, the spatial interpolator (see the method
column in Table 3, Kriging is slower than IDW), the distance function (geodesic is much
slower than Euclidean), and the causal cone form factor (periodic is slower than straight).
The cone shape and width also influence the number of null target events. Table 4 resumes
the modeling performance of the Python Timescape version on three quite standard hw/sw
configurations, not claiming exhaustiveness:

- configuration 1: laptop–Intel i7 @ 2.60 GHz, 4 cores, 16 GByte RAM, SSD storage, Python 3.8 on
Windows 10 OS.

- configuration 2: laptop–Intel i7 @ 2.30 GHz, 4 cores, 8 GByte RAM, SSD storage, Python 3.7 on
Ubuntu Linux 19.10 OS.

- configuration 3: virtual machine–Oracle Virtualbox on MacPro host, Intel Xeon-E5 @ 3.50 GHz–4
dedicated cores, 16 GByte reserved RAM out of 64, SSD storage, Python 3.8 on Xubuntu Linux
20.04-LTS OS.

Table 4. Model performances, measured in target events per second. ηmodel (17) is expressed in
percent, running times in minute seconds.

Model ηmodel
Configuration 1 Configuration 2 Configuration 3

Time evt/s Time evt/s Time evt/s

Fungi δ15N 55% 87′32′′ 200 125′2′′ 140 75′33′′ 231
Min temperature 73% 115′49′′ 28 118′6′′ 27 78′20′′ 41
Olive oil δ18O 81% 39′′ 1315 47′′ 1091 35′′ 1478
Precipitation δ2H 62% 15′42′′ 157 16′4′′ 124 11′21′′ 176

The lowest throughput is associated with the temperature model (Section 3.2). In fact,
this model associates a large source set, a periodic form factor, and a Kriging spatial
interpolator, each factor adding its computational load.

A fair estimate of the python Timescape throughput can be set roughly about a few
hundreds events per second with a standard hardware configuration. A conservative
estimate of 100 evt/s is a good starting point for a new model.

We give no figures for the Java applications, since their time performance depends
essentially on the database connection speed.

4. Discussion

The outcome of a Timescape model is based on three elements: the source set distribu-
tion, the spatiotemporal geometry (i.e., the shape of the causal cone and the parameters
c and k), and the chosen spatial interpolation method. Picking a spatial interpolator is
a matter of personal taste and computational performance; it is worth stressing that the
Timescape distance is independent of (logically, it precedes the) spatial interpolation itself,
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so two models based on the same source with the same topology but different interpolators
should not be much different to two ordinary spatial models.

As for the scale of modeling, using geographical coordinates adds further complexity
due to the geodesic distance (3). If it is possible, i.e. the patches must be statistically
“rich enough” and the Timescape distance parameters have to be the same across the
patches (a necessary hypothesis is that far apart patches are independent of each other), it
is advisable to divide the whole target set into patches which are tractable with projected
coordinates, then merge the results, as could be done with any ordinary spatial interpolator
(Geometrically, one builds an atlas of compatible charts. Special care is required since the
spherical coordinates are periodic and singular at the poles).

We can explore further topological diversions modifying the structure of distance;
Section 4.2 introduces a few suggestions. Altering the definition of the causal cones has
a deep impact on causality, so the results can be unexpected even if the mathematical
procedure itself is sound. A possible scenario could be inferring the past from the future
(properly, retrodiction), exchanging the role of past end future cones C−x and C+x .

4.1. Measurements, Stationarity, Accuracy

As it is the case with any spatial and spatiotemporal modeling tool, the statistical
distribution of the input dataset is of the utmost importance for a reliable modeling strategy.
Non-stationary data are often encountered in ecological modeling, as well as spatially
uneven and skew-distributed measurements. The Timescape distance can help to mitigate
these problems since the topological filtering operated by (7) and (9), reducing the number
of input data events for each target output event, in some cases has a stabilizing effect
on the variances. This is not a general rule, though: every dataset behaves distinctly.
Seasonality, in particular, is well-managed by (9) the Xmas tree causal cone, since removing
the off-season events from the past causal cones stabilizes the mean value and reduces the
variance (see Figure 5).

Accuracy assessment is the most delicate phase of Timescape modeling. On the one
hand, statistical interpolators provide an accuracy figure σ̂(x) along with the estimated
field Φ̂(x) at running time, but it is also possible to apply jackknifing (16) on the finished
target for every interpolator. The Python Timescape module [31] offers a set of functions
(see Figure 9) for an initial guess of the model’s accuracy.

4.2. Timescape Topology Modification

The distance (7) can be modified in a more general way than just applying a form
factor that is only a function of time (9). As a matter of principle, the past causal cone C−x
of x can have any shape, provided that it is a subset of the past of x: C−x ⊆ E−x , where
E−x =

{
y ∈ E

∣∣ y0 ≤ x0
}

—see Figure 2. As a limiting case, C−x could be the whole x’s past
E−x . Any such cone shape would retain the property ∆(x, y) < ∞ =⇒ ∆(y, x) = ∞ but not
necessarily y ∈ C−x ⇐⇒ x ∈ C+y .

Another modification of (7) consists of including retrodiction; just glue C−x and C+x
by the common tip x as a double cone Cx. This restores symmetry in the metric function
(x ∈ Cy ⇐⇒ y ∈ Cx), but at the price of subadditivity, that only holds if, given x, y, z ∈ E,
the three events are mutually causally connected, i.e., x ∈ Cy, y ∈ Cz and z ∈ Cx (the con-
verse is guaranteed by symmetry). Otherwise symmetry is violated, as clarified in Figure 20.
Furthermore, allowing retrodiction requires a factor one-half in front of variogram (13) to
prevent double-counting.

Giving up causality altogether, the topological filtering can still be performed, with any
x-neighborhood in lieu of Cx double cone, but it would hardly be of any use in ecological
modeling. It is worth mentioning that taking the whole E as Cx for all x, though respecting
both symmetry and subadditivity just means performing a standard spatial interpola-
tion in one more dimension, with no topological filtering at all: this is not a Timescape
model anymore.
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~x ~y ~z

y0

x0 z0x

Cx
y

Cy

z

Cz

E

Figure 20. Symmetric double causal cones. Note that ∆(x, y) < ∞ and ∆(y, z) < ∞, nonetheless
∆(x, z) = ∞ because x0 = z0 ∧~x 6= ~z =⇒ x /∈ Cz.

Other than geometrically, the distance (7) can be modified according to a set of external
factors, i.e., exploiting the knowledge of one or more ancillary variables. For example,
the form factor-modified time distance D̃t (8) could be a function of some weather-related
variables other than the time

D̃t(x, y) = c
∣∣x0 − y0

∣∣ ψ
(

x0, y0
)

Ψ
(
a1(x) . . . an(x), a1(y) . . . an(y)

)
(24)

where the ak are the observations of ancillary variables at the x and y events. Note that
ψ
(

x0, y0
)

is more general than ψ
(
|x0 − y0|

)
in (8).

The Java applications [32,33] allow the mentioned modifications of distance function
and the inclusion of ancillary variables, via a scripting language. The Python module [31] can
only use symmetrical cones in the event’s past, allowing at most C−x = E−x as a limiting case,
letting k → ∞. Practically, a large enough k suffices, say k = max Ds(u, x)/ min Dt(u, x),
where u ∈ S, x ∈ T belong to the source and target sets, respectively.

4.3. Timescape vs. Minkowskian Geometry

Since the seminal work of Minkowski [87], the causal structure of relativistic space–
time has been encoded in the so-called light cone. Causally connected events lie within each
other’s light cone, while no signal can reach two events outside the cones. Furthermore,
the speed of light c acts as the obvious conversion factor between spatial and temporal co-
ordinates. Therefore, the Minkowskian space–time is naturally equipped with a topological
structure that incorporates causality straightforwardly.

The Timescape geometry purposely introduces a light cone like structure in the ordi-
nary, non-relativistic, space–time. The role of the speed of light is shared between our c and
k parameters, and the causal connection has to be introduced somehow forcefully, but the
resulting topology is almost identical.

As far as topology is concerned, the Timescape and Minkowskian spaces act similarly,
but the metric behavior is completely different. Using our symbols, the Timescape DT and
Minkowskian DM squared distances are

D2
T(x, y) = D2

t (x, y) + D2
s (x, y)

D2
M(x, y) = D2

t (x, y)− D2
s (x, y)

(25)

the minus sign of DM in (25) encodes the light cone structure (The sign of D2
M(x, y) defines,

for each event x, three different space–time regions: the so-called time-like one, correspond-
ing to the interior of our causal cones, the space-like region of causally unreachable events,
and their common boundary, the locus of light-like events y whose DM(x, y) = 0, reserved
for light (or other massless particles). This is not the kind of space one expects to find in
ecological modeling: DT(x, y) = 0 means that x and y coincide in space and time, unlike
DM(x, y) = 0 that includes all the light-like events’ pairs. Furthermore, DM is not even a
distance since D2

M is not positive definite and, even when D2
M ≥ 0, it does not behave as a
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distance; on the boundary of the light cone Dt = Ds =⇒ DM = 0, which perfectly describes
the light in the relativistic arena, but it is far from what an ordinary distance is expected to
do. On the other hand, the plus of DT in (25) ensures subadditivity, i.e., DT restricted to
the causal cone is a proper distance. In fact, it is just a Pythagorean sum of squared sides
(Figure 3). Summarizing, our Timescape distance mimics the Minkowskian topological
structure, not its metric. The trick is operated by the θ(kDt − Ds) in the denominator of (7)
that makes ∆ singular. The topological correspondence being: Minkowski space-like inter-
val→ Timescape ∆ = ∞, time-like→ ∆ < ∞, light-like→ ∆ < ∞ also. There is nothing
special about the events laying on the boundary of the causal cones. Coping with infinite
values is not a problem with most modern structured programming language, however,
if singular distances were a concern, one could define a proximity measure ∆−1(x, y) from
x to y inverting (7) as

∆−1(x, y) =
θ
[
k Dt(x, y)− Ds(x, y)

]√
D2

t (x, y) + D2
s (x, y)

(26)

the denominator of (26) never vanishes since, given two events x 6= y, at least Dt(x, y) > 0
or Ds(x, y) > 0. This trick is based on the fact that spatial interpolators are defined or can
be rephrased in terms of inverse distances. The published Timescape implementations use
the distance (7), since both Python and Java cope well with infinities.

4.4. A Universal Tool?

The Timescape algorithm can be exploited, in principle, with any set of observed
variables varying in space and time. The Timescape algorithm should not be intended as
a universal tool, however. In Table 5, we sketch a decision tree to help decide whether it
should be chosen or not, depending on the distribution of input observations. In particular,
it has to not be chosen whenever there is a clear temporal or spatial pattern in the source
data that allows the disentanglement of spatial and temporal variability by subsetting the
input set—this is the case, for example, for the Olive oil δ18O case study, Section 3.3.

Table 5. Observations-driven decision tree. ODE/PDE = Ordinary/Partial Differential Equations.

Field Dependence Timescape Alternatives References

temporal only useless time series analysis [2,3]ODE and PDE

prev. temporal sharp cones k→ 0 dynamical systems [16,17,88]
machine learning [89]

entangled S + T optimal suitability

stochastic PDE [17,18]
covariance-based [12]
Bayesian modeling [21]
neural networks [19,20]

prev. spatial broad cones k→ ∞ gen. lin. models [22]
regression trees [23]

spatial only useless geostatistics [4,5]

The subject of spatiotemporal modeling offers some interesting alternatives to our
proposed algorithm. Table 5 is a decision tree, showing when we suggest applying the
Timescape algorithm, along with some possible alternatives. The decision should be based
not only on the actual measurements, but also on the very nature of the scalar field being
interpolated. A few references are suggested. Figure 21 synthetically resumes the decision
tree detailed in Table 5. The list of alternatives is far from complete and, of course, there
is a certain grade of arbitrariness about how entangled the spatial and temporal field
dependencies are.
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In the following, we describe the cases singled out in Table 5. The list of alternative
methods is far from exhaustive. The use cases are classified following the kind of spatial
and temporal dependence of the modeled field [25].

Purely temporal: when the input dataset can be clearly partitioned as a bunch of
time series, the algorithm can be applied, but it is unnecessarily complicated and time-
consuming; in this case, the Timescape result is at best comparable with ordinary one-
dimensional time series [2,3]. ODE techniques can also be considered [16].

Prevailing temporal: the Timescape algorithm can be advantageously applied. The min-
imum temperatures example is an example of this kind of distribution. In such cases, it is
advisable to use sharp (i.e., very selective, small k) causal cones to dampen the influence of
nearby points. Many alternative tools exist from the field of dynamical systems as exact
and stochastic differential equations [16,17,88].

Entangled spatial and temporal: this is Timescape’s ideal playground; the fungi δ15N
is a typical case of equal importance of time and space dependence of the measured
values. The Timescape parameters must be carefully tuned (Section 2.4) to optimize the
results. Alternative tools range from stochastic fields [17] to Bayesian modeling [21] and
covariance-based methods [12,26]. The choice is often a matter of personal taste and
confidence with the selected tool. It is also worth mentioning machine learning [50,89]
and neural networks [19,20], from the field of Artificial Intelligence. In order to select the
best performing tool, one should ideally have a control set against which they check the
results [53]. Unfortunately, this is not always the case with sub-optimal datasets, not to
mention non-stationarity, heteroskedasticity, etc. To deal with such datasets, the Timescape
accuracy (17) can be estimated from the input set itself. Other methods may offer different
options [43].

Prevailing spatial: in this case, the Timescape algorithm can advantageously be ap-
plied. The δ2H case study is an example of the kind. In such cases, it is advisable to use
broad (i.e., less selective, large k) causal cones to promote the influence of nearby points.
Broad causal cones can easily increase the computational load. Useful alternative tools
include generalized linear models [22] and boosted regression trees [23]. Sometimes or-
dinary geostatistics can do a good job, including the time as a third spatial coordinate,
without causal constraints [5].

Purely spatial: if the measurements do not have an explicit time dependence, the
Timescape algorithm is useless, of course. When the input data consists of repeated but
uncorrelated measurements at different times (as the δ18O example demonstrates), the
Timescape algorithm is even worse than a purely spatial model. Instead, each set of
equal-time measurements should be treated independently [4,5].

In a broad sense, Artificial Intelligence techniques can be suitable alternatives in
ecological spatiotemporal modeling as well as in many other fields of research [88,89],
especially when variables interaction is to be considered; the Timescape algorithm, as it
is implemented as of now [31–33], cannot cope with multiple variables, but its very core,
the Timescape distance (7), can be exploited in a more general multi-variable context.

Summarizing, the Timescape algorithm is not a universal tool, but it has a remarkably
wide range of applicability—the more entangled the space–time dependence, the better
(Figure 21). Furthermore, the topological filtering (Section 2.2) operated by (7) can easily
accommodate the periodic behavior of the modeled fields.

Binary variables and counts, although not strictly real fields, can be treated with the
workarounds described in Section 2.6 as subsets of real random variables. The input values
are simply treated as real.
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Input Dataset Distribution

Repeated observations at scattered sites
Time series analysisTime series analysisTime series analysis

YES

Layered but uncorrelated observations

NO

Spatial interpolationSpatial interpolationSpatial interpolation
YES

Timescape

NO

ENTANGLED SPACE + TIME DEPENDENCY

DISENTANGLED DEPENDENCY

BUNCH OF INDEPENDENT MODELS

T. UNNECESSARILY INVOLVED

TIMESCAPE UNSUITABLE

Figure 21. An input-driven decision tree. The extreme cases (purely spatial and purely temporal
dependencies, see Table 5) suggest that the Timescape algorithm is either unsuitable or far too involved,
and the entangled cases can be advantageously treated.

5. Conclusions

The Timescape algorithm is a modeling tool aimed at the interpolation of spatiotem-
poral field distributions from recorded observations presenting an entangled variability in
space and time. The spatial and temporal records of the modeled field are embedded into
a space–time inspired by the causal topology of the Minkowskian space, the well-known
arena of relativistic physics. This is achieved by applying the distance Function (7) for
filtering the causally connected events before submitting the actual field estimate to an
ordinary spatial interpolator. The choice of the interpolator is up to the user, as well as
a couple of parameters that tune the distance to fit the particular input data. Seasonality,
often encountered in ecological modeling, can be dealt with by modifying the distance
Function (7) by means of a form factor (9).

The Timescape algorithm has been already implemented as a Python module and
as two Java stand-alone GUI-based applications. The software is distributed under the
GNU-GPL open license. The software is meant to be used with georeferenced input data
and can be included in a GIS workflow, eventually exporting geotiff files.

Our modeling tool can cope with seasonality by playing with the shape of the causal
cone without subsetting the input set season-by-season. Moreover, the algorithm can be
applied with a variety of interpolation methods. Ideally, any spatial interpolator would do,
the choice being driven by the input data and the user’s taste.
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