- Wﬂw&’v{} .\:

The Draft Formal Definition of Ada ©

Modeling Input-Output

DATE . FPrisa, Janusry, 1958 |
AUTHOR . &aus Bendix Niglsen, 200
Nivoig Borts, PO

Algzsardre Fenlachs, LE/ - MR
France 118zzs5ntr, CRA/

REPORT No -
 WORKPACKAGE : £(7r7a/ Definition) .

DISTRIBUTION : /nterns/ Use On/y

This work s pariially runded by the Commission of the Furapesn Communitias undar the
lTulti-Annual Pragramme in the 1ield of Date-Processing, proi. Noo 782 “The Dréf
Formal Pefinition of ANSIANIL -ST0 718754 Ads”

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

MIO - ‘1

Mod 1/0
TABLE OF COMTENTS . Page
T. INTRODUCTION ... e 2
2. EXTERNF\LFlLES.................................7 2
3. FILE OBJECTS .. 3
4 ATOMIC ACTIONS. ... e, 3
3. IMPLEMENTATION DEPENDENCES 4

MIO- 2

Mod 1/0

I INTRODUCTION

In the Formal Definition of the Ada Language, we are interested in giving the semantics to a
syntactic object {called user-program} built following an Ada grammar, but for which some
semantic restrictions hold {e.g. it should be legal for every implementation , etc.}[Dyn Sem
Extent]. ,

The predefined 1 /0 packages should not be seen as a part of the above mentioned Ada user-program
(indeed 1t i3 not a user problem to define them}, as they constitute a part of the predefined
language environment.

Hence the behaviour modelling the activity of the elaboration of the 170 packages cannot be defined
by the application of some denotational clauses to some syntaclic object, but should be explicitly
defined as & constant piece of the Formal Definition. In the Trial Definition a program can only
make use of the generic DIRECT_10 package, whose elaboration is indeed defined by the auxiliary
clause:

eied_Direci /- LOCAL_INF - local-inf-BEHAYIOUR

which returns the behaviour modelling the actiwvity of elaboration of the generic package
DIRECT_ID; this sctivity consists of the definition of the appropriate denotation corresponding to
the generic package, and of 113 inclusion in the global environment.

Apart from the clerical work of assembling the behaviours modelling the activities of elaboration
of the single declarative items into a generic package denotation, the main issues to be explored in
detail are related to the definition of the behaviours modeglling the aclivities of elaboration of the
single declarative items {(i.e. the type FILE_TYPE and the 1/0 operations}, desling with the
concepts of exiernsl file and file object, with the possible concurrency of the inputfoutput
primitives and with the representation of the implementation dependent aspects .

These topics are discussed separately in the following sections.

2 EXTERNAL FILES

About the concept of file, central to the Ada /0 definition, the Reference Manual clearly
distinguishes between the file (object) - that is, an object of type FILE_TYPE - and the external
file ~ that is, an entity which is external to the scope of the language and which represents the
phusical file on which data are actually written or read.

The problem is whether, and to which extent, the external file concept has to be modeled in the
formal definition of Ada, since it is an entity whose semantics is cornpletely outside the scope of

the language, and implementation-dependent, but on which some operations are vaguely defined in

MIO- 3

Mod 1/0

the manual.

Now, given such vagueness in the definition of external files, and the consideration that, as their
name implies, external files are considered conceptually external to the program in the manual
itself, we can limit our formal definition to the concepts internal to the scope of the language,
modeling the operations on external files just by means of actions of the final concurrent systemn
which represent explicit interactions with the external environment.

This choice of maodeling allows also to preserve the possibility of inserting the model of an Ada
program into a model of the "external environment”, constitutéd by a larger SMolCS systern in
which the program activity is composed in perallel with other activities (possibly Ade
programs) of the overall system.

3 FILE OBJECTS

From the specification of the operations that can be performed on file objects, as are informatly
described in sections 14.2.1 and 14.2.4, it turns out that the absiract properties of type
FILE_TYPE are completely defined: these properties refer to the status of the Ada file (whether
open or closed, and the value of the index) and to the identification of the external file (by its
- NAME, etc.).

Moreover, the fact that in the manual FILE_TYPE is defined, in the private part of the 1/0
packages, as "implementation dependent”, means oﬁlg that an implementation can choose any
structure to record the information needed by the allowable operation - and the minimal
information needed is deducible from the manual and is not implementation dependent -plus any
other information that is convenient to record for the particular implementation.

Hence the FILE_TYPE tupe can be given a full formal definition in terms of an abstract data type.

4 ATOMIC ACTIONS

Carefully reading the manual, we can see that nothing at all is said about the possibility that two
. 1/0 operations are performed concurrently by more than one task. Apart from the impact that
such possibility could have on the external environment, which as already said is outside the
scope of the language, we are concerned here with the impact on the modeling of the file object.

For this purpose, we can choose among two different extreme interpretations of the manual:

MIO - 4

Mod 170

a) we can make the restrictive assumption that, since neither is said in the manual that the

concurrent use of file objects can induce unpredictable results, nor that such use should be
considered erroneous, 1/0 operations have to be considered as atornic actions, i.e., they cannot
interfere with each other. ’
This assumption implies that the 1/0 operations should be modeled as (a nondeterministic
choice among possible) single actions, even in the case that the manual explicitly describes
their effect explicitly mentioning some sequential steps (this is the case, for instance, of the
READ procedure of the DIRECT_IO package, whose definition is given in the manual in three
simpler steps - the very reed and two index settings). If interfering, such actions would not
be allowed to be composed in parallel.

b) The second, 1éss restrictive, interpretation is that the reference manual actually allows any
kind of interfere‘nce, and that the informal steps in which an 1/0 operation is described (e.q.
the three steps of DIRECT_I0.READ) should be modelled as a sequence of elementary actions,
possibly overapping when several operations are executed concurrently. In this case the
effects of the execution of a single 1/0 operation can be rather diffrent from those expected in
the sequential case. Moreover, even in the case in which an 1/0 operation is informally
described as a single step, concurrent executions of the operation might be allowed to produce
unpredictable effects (e.g. the case of the OPEN operation).

The approach adopted in the Trial Definition is to consider as atomic (i.e. indivisible and not
interfering) only all those operations whose informal description does not explicitly mention a
sequence of internal steps (e.g. OPEN, CLOSE,).

However the correctness of the adopted approach should be verified (an AJPO clarification seems
needed), hence the Final Definition will not necessarily adopt the same approach.

S5 IMPLEMENTATION DEPENDENCES

Most characteristics that at a first glance seem implementation dependent are on the converse
dependent on the external environment (namely, the syntax and semantics of NAME and FORM, the
raising of various exceptions, and so on); hence, their modeling is referred to the model of

external environment, outside the scope of the present formal definition.

Moreover, we have seen that the specification as "implementation dependent” given for tupe

MIO- 5

Mod 1/0

FILE_TYPE (of the generic package DIRECT_I0) means only that there is some freedom in the
implementation choices, which however does not affect the abstract properties of the type itself
(also due to the restrictions on the set of programs of interest, which exclude programs which
directly refer the internal structure of a file object - such a program could not be legal on every
implementation).

In the end the only aspects of the DIRECT..10 package that turn out to be semantically dependent on
the implementation seem to be:

1) the range of the COUNT type,

ii) the consistency check of the read value with the type ELEMENT_TYPE (nate that this check

can also be omitted by an implementation for complex types).

This kind of implementation dependences are pointed out making parameterized the definition of
the semantics of a program. With respect to the definition of the DIRECT_10 package, we need to
provide as parameter the value of the upper bound of the range of the COUNT tupe and the test
operation (part of the GLOBAL_INF specification) used to specify the global condition under
which the synchronous actions READ and RAISE_DATA_ERROR are allowed.

