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This paper introduces a novel method for shape optimization and form-finding of free-form, triangular grid shells, 
based on geometric deep learning. We define an architecture which consumes a 3D mesh representing the initial 
design of a free-form grid shell, and outputs vertex displacements to get an optimized grid shell that minimizes 
structural compliance, while preserving design intent. The main ingredients of the architecture are layers that 
produce deep vertex embeddings from geometric input features, and a differentiable loss implementing structural 
analysis. We evaluate the method performance on a benchmark of eighteen free-form grid shell structures 
characterized by various size, geometry, and tessellation. Our results demonstrate that our approach can solve the 
shape optimization and form finding problem for a diverse range of structures, more effectively and efficiently 
than existing common tools.
1. Introduction

Free-form surfaces are a major trend in contemporary architecture. 
However, while current tools well support the modeling of complex 
free-form geometries, their actual fabrication at architectural scale 
still poses many problems. Indeed, a design solution has to comply 
with structural constraints, including for example statics, space require-

ments, lighting, and cost. In the last fifteen years, it became apparent 
that many practical fabrication problems are of geometrical nature: ar-

chitectural applications started drawing increasing attention from the 
geometry processing community, marking the birth of a new field called 
architectural geometry. Relevant works range from paneling [1] to com-

plex equilibrium problems [2]. However, until now, the main ingredi-

ents in architectural geometry have been discrete differential geometry 
and numerical optimization [3], while the potential of artificial intelli-

gence and of 3D deep learning, in particular, have been explored to a 
lesser degree.

In this paper, we leverage innovative geometric deep learning tech-

niques and introduce a model to design free-form grid shells with 
optimized statics performance. We define a deep learning architecture 
which consumes a 3D mesh representing the initial design of a free-form 
grid shell and outputs vertex displacements to get a design-preserving, 
optimized, statics-aware grid shell (Fig. 1).

* Corresponding author.

Grid shell structures are discrete networks of straight bars connected 
by joints at the nodes; they play an important role in free-form surface 
design, as they can cover large spaces while keeping the amount of ma-

terial relatively small. We focus on statics, as equilibrium and stiffness 
are paramount to all architectural structures. Given a free-form surface 
design with boundary conditions, our model learns how to modify the 
surface shape to better balance forces, observe boundary conditions, 
and preserve the visual appearance of the original design. The main in-

gredients are a deep architecture able to learn on complex, unstructured 
3D geometric data, and the definition of a differentiable loss accounting 
for statics-related factors; the differentiability of the loss allows learning 
the parameters of the 3D deep learning model via gradient descent and 
backward propagation. The result is the first 3D deep learning pipeline 
for statics-aware grid shell design.

The pipeline is shown in Fig. 2. Our proposal is to compute local ge-

ometric features that are relevant to architectural free-forms (including 
curvature and geodesic distances), and feed them to attention-based, 
neural message passing layers that learn optimal vertex displacements. 
The learning process is iterative, as the input to each step is the dis-

placed output at the previous step. The process is guided by a loss 
evaluating the mean strain energy of the structure.

Our work fits within the trend of fabrication-aware design, a paradigm 
which fosters the development of digital design tools to assist users in 
modeling geometric shapes that automatically take into account fac-
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Fig. 1. (a) A 3D mesh representing a first design of a free-form grid-shell, and (b) the deformation it would undergo due to Service Load, in false colors; deformation 
is expressed in meters with frequency histograms per node. (c) The optimized, statics-aware grid-shell produced by our 3D deep learning technique, which preserves 
the design intent while reducing deformation (d).

Fig. 2. Our method takes as input a 3D mesh, computes a set of geometric features (vertex coordinates, normals, curvature, geodesic distances) and feeds them to a 
network for 3D deep learning. The network is made up of an encoder (Enc), attention-based graph convolutional layers (GAT), and a readout function (RO) which 
outputs learned vertex displacements. The intermediate output is the displaced mesh. A differentiable loss evaluates the mean strain energy over the edges of the 
displaced mesh, while gradient descent and backward propagation enable the network to learn the optimal vertex displacements. The network learns on the single 
mesh itself, as the input to each iteration is the intermediate output at the previous iteration until convergence.
tors related to buildability and costs, such as statics. The goal is to 
shorten the classical design loop, in which a first design is analyzed, 
feedback is provided to the designer, and a second loop is started. A 
tool that can automatically correct shape and preserve the design intent 
would significantly reduce the number of iterations and, consequently, 
the time needed to finalize the design. In our context, statics-aware grid 
shell design implies finding structures that are able to withstand spe-

cific loads without stresses or deformations exceeding safe limits [4–6]. 
A big challenge is to find a good trade-off between statics and visual fi-

delity. Our method enables one to automatically optimize the shape of 
an input design, without the need for tweaking different design param-

eters until the requirements are met, thus reducing the burden on the 
user’s side: our neural network only requires a single parameter to set, 
namely the learning rate. We believe this is an important methodologi-

cal step towards advancing the state of the art on computational design 
of free-form surfaces.

The search for shell shapes with predominantly in-plane or mem-

brane stress is a process known as form finding, in which the geom-

etry is controlled to be in equilibrium for given loads and boundary 
conditions [7]. Thus, forces shape geometry and vice versa. Form find-

ing traces back to Hooke’s law, clamped beam problem formulated by 
Galileo Galilei, and it was traditionally performed via the physical tech-

nique of ‘hanging models’, in which deformable meshes and elastic 
membranes are hung from the supports under their own weight. The 
form obtained is ideal for supporting tension, and if reversed with re-

spect to the horizontal plane, it leads to a purely compressed structure 
2

with no bending. This idea inspired designers like Gaudi, Isler, Otto, 
and also originated different computational form finding tools [8,9]. 
Most modern techniques, however, are based on shape optimization and 
the minimization of a fitness criterion, such as the strain energy of 
the structural system. For discrete structures such as grid shells, the 
variables of the optimization problem are the node coordinates. The 
topology, in terms of the number and connectivity of nodes, is fixed, 
unlike layout [10] and topology optimization [11] methods. Existing 
techniques include gradient-free techniques, such as genetic algorithms, 
and gradient-based optimizers [12–14].

Until now, machine learning techniques have only been proposed 
in architecture for other tasks, such as designing architectural materi-

als by substituting costly experiments or physics-based simulations with 
neural networks [15]. Moreover, with the exception of [16] that con-

sumes 3D point clouds to learn the mechanical response of deformable 
bodies, existing techniques only deal with simple domains and grid-like 
inputs, such as feature vectors and images [17]. In contrast, our method 
can learn on complex 3D free-form geometries, and generate variations 
with improved global statics performance. The main challenges are how 
to encode the local geometry of a 3D structure, predict its global statics 
behavior, and learn the local updates that improve global performance. 
We draw inspiration from the paradigm of geometric deep learning [18], 
which is gaining momentum in the computer graphics and vision com-

munities to learn on complex data such as 3D point clouds and triangle 
meshes and solve problems such as 3D shape classification and seg-

mentation [19]. However, we deal with a different problem, namely, 

a single-instance learning problem with no ground truth data, in which 
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Fig. 3. The model architecture. The input to the network is per-vertex feature vectors xv, which are encoded in a higher-dimensional space. The encoded features 
x𝑒𝑛𝑐

v
are fed to four Graph Attention Layers (GAT), whose outputs are concatenated to get per-vertex deep vectors x̃v. Finally, a readout function implemented as a 

multilayer perceptron maps deep features into per-vertex displacements 𝛿 .
v

learning takes place iteratively on a single item; this problem has re-

ceived considerably less attention in the literature [20].

For gradient evaluation, we leverage the paradigm of Automatic Dif-

ferentiation (AD), in which functions are expressed as sequences of 
basic operations and function derivatives are computed via the chain 
rule in calculus. The advantages of AD with respect to either numerical 
or symbolic derivation are accuracy and efficiency. Also, AD is suited 
to training neural architectures via backpropagation. Until now, AD in 
architectural design has been used for topology optimization [21], for 
optimizing shell structures expressed via NURBS (Non-Uniform Rational 
B-Splines) [22], and for form finding via CEM (Combinatorial Equilib-

rium Model) [23]. However, the problems considered have been simpler 
in terms of models, degrees of freedom, and the dimension of the search-

ing space. Also, none of these works implements a fully end-to-end 
neural architecture [24]. In contrast, we design a network and demon-

strate it can be trained even with a function whose computational graph 
is highly articulated, being the loss a strain energy whose computation 
requires solving linear systems. We also provide a fast implementation, 
which ensures reasonable inference times to get optimized designs.

To validate our method, we use eighteen complex free-form grid 
shell structures, characterized by various sizes, geometry, and tessel-

lation. The results demonstrate that our approach can solve the shape 
optimization and form finding problem for diverse structures more ef-

fectively and efficiently than competitors.

2. Methods

Section 2.1 describes how we cast the problem of finding statics-

aware grid shells in terms of deep learning on 3D meshes. The learning 
architecture is detailed in Section 2.2, while Section 2.3 describes how 
we define and compute the loss.

2.1. Problem formulation

This paper deals with triangular grid shells, that is, three-dimensio-

nal single-layer structures in which external loads are supported by a 
network of beams. A triangular grid shell can be encoded naturally as a 
triangle mesh  ∶= (𝑉 , 𝐸, 𝐹 ), with 𝑉 , 𝐸, 𝐹 the sets of vertices, edges, 
and faces, respectively: mesh vertices are structural nodes, edges are 
beam elements, and faces are cladding panels.

We cast the problem of learning a statics-aware grid shell as a 
problem of learning mesh vertex displacements, which minimize a loss 
function

() ∶= 1
|𝐸|

∑
𝑒∈𝐸

𝑆𝑒 (1)

representing the mean strain energy over mesh edges. The strain en-

ergy 𝑆𝑒 on edge 𝑒 is the total stress acting on the corresponding beam. 
3

We consider an orthonormal local frame {x𝑒, y𝑒, z𝑒} ∶= {e, n𝑒, e × n𝑒}, 
where e is the edge direction and n𝑒 the edge normal. Then, 𝑆𝑒 is given 
by the sum of six components (or degrees of freedom): axial elongation 
and torsion along x𝑒, and transverse bending and shear along planes 
{x𝑒, y𝑒} and {x𝑒, z𝑒} [25]. We assume part of the boundary 𝜕𝑉 is free 
to move, while a subset 𝜕𝑉 ⊂ 𝜕𝑉 of boundary vertices are prescribed 
as fixed.

A classical approach would optimize directly on mesh vertex dis-

placements. However, the locality of the approach can lead to sub-

optimal solutions and result in noisy and jagged meshes. Therefore, we 
switch from a vertex-centric to a mesh-centric approach, resorting to 
geometric deep learning. In particular, we define a neural model 𝑇𝜽
(Section 2.2), and formulate the problem as learning the optimal set of 
network parameters that minimize the loss. In other words, we formu-

late the problem as searching for

∗ ∶= 𝑇𝜽∗ ()

such that

𝜽
∗ ∈ argmin𝜽(𝑇𝜽(𝑀)). (2)

We underline that our goal is to improve the grid shell efficiency by 
finding optimal vertex displacements while leaving the grid topology 
unchanged. In other words, the connectivity of beams is left unchanged 
during the learning and optimization procedure.

2.2. Deep learning model

Fig. 3 summarizes our deep learning architecture. The input to the 
network is a matrix 𝑋 ∈ ℝ|𝑉 |×𝑑 , whose rows are per-vertex feature 
vectors x𝑣, with 𝑑 the number of encoding channels; the mesh con-

nectivity is also fed as input. The features describe both positional 
properties (vertex coordinates and normals) and differential properties 
of the underlying manifold surface (curvature and geodesic distances), 
cf. Section 2.2.1. The feature vectors are fed to three feature encoders, 
then to a sequence of four Graph Attention (GAT) Layers [26,27] with 
skip connections.

GAT layers are applied to the 𝑘-nearest neighborhood graph in the 
vertex feature space; in other words, GAT layers update every vertex 
representation by aggregating the representations of its 𝑘 neighboring

vertices (cf. details in Section 2.2.2). GAT layers are preferred over clas-

sical Graph Neural Network (GNN) layers [28], as they learn a weighted 
aggregation of representations using attention scores, thus improving 
the expressing power of the neural message passing mechanism which 
underlies GNNs. Moreover, in our architecture, the graph is dynamically 
updated at each layer, that is, the graph is recomputed using nearest 
neighbors in the feature space produced by each layer [19]. The advan-

tage is that our architecture learns the graph used at each layer, rather 
than assuming it fixed: information is passed considering not only ge-

ometric proximity but also semantic proximity in the space of learned 

features.
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Fig. 4. Input features computed on model Station, in false colors: blue stands for lower values, red for higher values. Top: base features, including vertex coordinates 
and normals. Middle: the two surface principal curvatures. Bottom: from left to right, geodesic distance from boundary vertices, geodesic distance from fixed 
boundary vertices, vertex centrality with respect to the boundary and vertex centrality with respect to the fixed boundary.
Skip connections are implemented by concatenating each embedded 
nodal feature vector after every GAT layer into a final nodal embedding 
vector; this is done to retain local information from previous layers. 
Finally, a Readout Function, implemented as a shared Multi Layer Per-

ceptron (MLP), outputs vertex displacements.

The loss evaluates the static performance of the mesh updated with 
vertex displacements, in terms of mean strain energy over edges, ac-

cording to Eq. (1). The loss computation requires solving a linear sys-

tem; we provide a differentiable and fast loss implementation, enabling 
us to plug it into the deep learning pipeline (Section 2.3). At each train-

ing iteration, the displaced mesh delivered at the previous iteration is 
fed as input to the network until convergence.

Our architecture is designed to take full advantage of the informa-

tion encoded in the 3D mesh representation of grid shells. The whole 
mesh is used to evaluate discrete counterparts of differential proper-

ties of the underlying surface, used as input geometric features. Then, 
the set of mesh vertices defines the point cloud on which GAT Layers 
are applied; this time, connectivity is defined and updated according 
to proximity in the learned feature space, instead of using the connec-

tivity of the original mesh. Finally, the wire skeleton made of vertices 
and edges is used to compute the loss, which is based on the structural 
analysis of the grid shell, whose load-bearing elements are uniquely the 
beams.

The following paragraphs detail the single steps in our model.

2.2.1. Input features

For each vertex v ∈ 𝑉 , we feed the network with an input feature 
vector xv ∈ℝ12, whose entries are shape features relevant in the context 
of architectural freeforms. Features are partitioned into three clusters, 
namely base, curvature and geodesic features (cf. the ablation study in 
Section 3.4.2).

Base features include vertex coordinates v ∈ ℝ3 and vertex normals 
n(v) ∈ ℝ3. Base features are local, extrinsic features, i.e., they are re-

lated to how the underlying surface is embedded in the Euclidean 3D 
4

space (Fig. 4, Top). Vertex coordinates and normals are the features 
traditionally considered for 3D deep learning [29]. To these, we add 
features describing differential properties of the underlying surface.

Curvature features include principal curvatures 𝜅1(v), 𝜅2(v), com-

puted via APSS fitting [30,31] (Fig. 4, Middle). Curvatures and changes 
of curvatures are relevant as they influence the distribution of internal 
forces within the grid shell surface. The efficiency of a shell depends on 
the capacity of transferring the external load into in-plane (normal and 
shear) forces. As a result of curvature, the surface gains spatial stiffness 
and develops membrane behavior.

Geodesic features serve to feed the network with information about 
the relative position of vertices with respect to the structure bound-

ary, since points farthest from the fixed boundary undergo higher load 
deformation (Fig. 4, Bottom). The first two geodesic features are the 
distance 𝑑(v, 𝜕𝑉 ) of vertices from the set 𝜕𝑉 of boundary vertices and 
the distance 𝑑(v, 𝜕𝑉 ) from the set 𝜕𝑉 of fixed boundary vertices, where 
𝑑(v, 𝑋) ∶= min{𝑑(v, w) | w ∈𝑋} denotes the distance from a set 𝑋 of 
vertices and 𝑑(v, w) is the geodesic distance between two mesh vertices, 
i.e. the length of the shortest edge path connecting them. The other two 
features are the vertex centrality measure 𝜕𝑉 (v) with respect to the 
boundary, and the vertex centrality measure 

𝜕𝑉
(v) with respect to the 

fixed boundary, where vertex centrality with respect to a set 𝑋 is de-

fined as

𝑋 (v) ∶=
∑

w∈𝑋

𝑑(v,w).

In contrast to base and curvature features, geodesic features are intrinsic, 
as they are related to the inner metric of the underlying manifold and 
are preserved by isometric deformations.

Smoothing iterations via neighborhood averaging are performed on 
both geometric and geodesic features.

Each of the three groups of features (which have different dimen-

sions 𝑛𝑖, 𝑖 = 1, 2, 3) are encoded to 256 channels via encoding maps

h𝑖,𝜽(x) ∶= tanh(𝑊𝑖,𝜽x+ b𝑖,𝜽)

with 𝑊𝑖,𝜽 ∈ℝ256×𝑛𝑖 and b𝑖,𝜽 ∈ℝ256; the hyperbolic tangent is employed 

to map channels onto the interval (−1, 1).
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The resulting encoded vector x𝑒𝑛𝑐
v

∈ ℝ768 is then fed to a sequence 
of four convolutional Graph Neural Network (GNN) layers working on 
the 𝑘-nearest neighbor graph induced by vertex feature spaces.

2.2.2. Graph convolution layers

To learn deep features on vertices, we employ graph convolu-

tional layers defined on the set of mesh vertices. We adopt the GATv2 
paradigm [27], and perform convolution using the 𝑘-nearest neighbor-

hood graph in the vertex feature space. Let us denote x𝓁
v

the input 
features to layer 𝓁 for each vertex v (x1

v
= x𝑒𝑛𝑐

v
for the first layer). Then, 

the updated vertex representation x𝓁+1
v

is a weighted average between 
x𝓁

v
itself and the features from the set v of its 𝑘 neighboring vertices 

(𝑘 = 16 in this paper). In formulae:

x𝓁+1
v

∶= 𝛼vv𝑊𝜽x𝓁
v
+

∑
w∈v

𝛼vw𝑊𝜽x𝓁
w

(3)

where 𝑊𝜽 is a learned matrix of parameters, and the attention weights

𝛼vw are scalars in the interval [0, 1] with 
∑

w 𝛼vw = 1. Attention weights 
are computed from learned a𝜽, 𝑊𝜽 as follows:

𝛼vw ∶=
exp

(
a𝑇
𝜽
𝜙
(
𝑊𝜽

(
xv || xw

)))
∑

w∈v∪{v} exp
(
a𝑇
𝜽
𝜙
(
𝑊𝜽

(
xv || xw

))) (4)

with 𝜙 a leaky ReLU activation function. Attention weights improve 
the expressing power of the neural message passing mechanism (cf. the 
ablation study in Section 3.4.3). Moreover, we use multi-head attention 
to enhance model stability [26,27]: the output of a layer is averaged 
from the results of a given number of feature transforms (heads), each 
one with its own set of learned parameters a𝜽, 𝑊𝜽. Five heads are used 
in this paper.

The neighboring vertices in v are computed using the Euclidean 
distance in the space of features. The set of 𝑘 neighboring vertices is dy-

namically updated at each layer, since distances are recomputed in the 
feature space learned at the previous layer. Therefore, the connectivity 
of the graph on which convolution takes place is learned at each layer, 
and information is shared among semantically-close vertices.

The four 256-dimensional GAT layer outputs are concatenated with 
x𝑒𝑛𝑐

v
to get a deep feature vector x̃v ∈ ℝ1792. Finally, a multilayer per-

ceptron k𝜽 trained on the whole mesh transforms the deep vector x̃v

into a vertex displacement 𝛿v ∈ℝ3.

Since we are performing single-instance learning, the optimal pa-

rameters 𝜽 of the model 𝑇𝜽 in Eq. (2) are found via an iterative training 
on the mesh itself, by minimizing the loss . The final, displaced mesh 
is given by ∗ = 𝑇𝜽() after the last training step.

2.3. Strain energy loss

In our model, the loss evaluates the static performance of the grid 
shell in terms of mean strain energy over mesh edges (Eq. (1)). A major 
challenge is how to implement the loss to be differentiable with respect 
to vertex coordinates, so that it can be plugged into the deep learning 
architecture, and gradient-based descent can be used to learn optimal 
vertex displacements. In this Section, we first introduce the linear sys-

tem we solve to evaluate the loss, then give the implementation details.

Note that we use the term deformation to denote the effect of load 
on vertices, while the term displacement indicates the vertex coordinate 
changes learned by the network and applied to the structure.

2.3.1. Loss definition

The strain energy 𝑆𝑒 on an edge 𝑒 representing a beam depends 
on the forces and moments F𝑒 = [F𝑒

1, F
𝑒
2] ∈ℝ12 acting on the two beam 

endpoints, in the local frame. The forces are related to the vector beam 
deformation at endpoints u𝑒 ∶=

[
u𝑒
1,u

𝑒
2
]
∈ ℝ12 through the beam stiff-

ness in a linear system:
5

F𝑒 =𝐾𝑒u𝑒, (5)
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with the beam stiffness matrix 𝐾𝑒 ∈ℝ12×12 having a known sparse struc-

ture whose non-zero entries depend on beam material and geometry 
[25]. The global load-deformation relation on the whole grid shell struc-

ture is described by the global stiffness linear system

F =𝐾u (6)

where 𝐾 ∈ ℝ6|𝑉 |×6|𝑉 | is the sparse global stiffness matrix, F ∈ ℝ6|𝑉 | is 
the vector of forces and moments in the observer’s reference system, 
and u ∈ℝ6|𝑉 | is the vector of vertex deformations. The global stiffness 
matrix 𝐾 can be built by summing up contributions from the matrices 
𝐾̂𝑒 obtained from the local stiffness matrices 𝐾𝑒 after a change of coor-

dinates from the local frame to the observer’s reference frame (Fig. 5). 
Load is uniform and directed along the observer’s z axis, in the direction 
of gravity. Therefore, we express the load inside F as an external force 
acting on the structure nodes simulating a common Service Load. To 
ensure no deformation for constrained degrees of freedom, we reduce 
Eq. (6) by removing their corresponding rows and columns. After solv-

ing the reduced linear system for u, the inverse change of basis yields 
u𝑒 and F𝑒 via Eq. (5). Finally, since we adopt a 2-node beam formula-

tion, in which the internal forces are computed only at the endpoints, 
the discretized strain energy 𝑆𝑒 is constant over the half-length of the 
beam, and can be computed as the sum of the six components:

𝑆𝑒
𝑎𝑥𝑖𝑎𝑙

= 𝐿𝑒

4 ⋅
(𝐹𝑥,1−𝐹𝑥,2)2

𝑌 𝐴
𝑆𝑒
𝑠ℎ𝑒𝑎𝑟𝑦

= 𝐿𝑒

4 ⋅
(𝐹𝑦,1−𝐹𝑦,2)2

𝐺𝐴

𝑆𝑒
𝑏𝑒𝑛𝑑𝑦

= 𝐿𝑒

4 ⋅
(𝑀𝑦,1−𝑀𝑦,2)2

𝑌 𝐼𝑦
𝑆𝑒
𝑠ℎ𝑒𝑎𝑟𝑧

= 𝐿𝑒

4 ⋅
(𝐹𝑧,1−𝐹𝑧,2)2

𝐺𝐴

𝑆𝑒
𝑏𝑒𝑛𝑑𝑧

= 𝐿𝑒

4 ⋅
(𝑀𝑧,1−𝑀𝑧,2)2

𝑌 𝐼𝑧
𝑆𝑒
𝑡𝑜𝑟𝑠𝑥

= 𝐿𝑒

4 ⋅
(𝑀𝑥,1−𝑀𝑥,2)2

𝐺𝐼𝑥
,

(7)

where we called 𝐹𝑥,𝑖, 𝐹𝑦,𝑖, 𝐹𝑧,𝑖, 𝑀𝑥,𝑖, 𝑀𝑦,𝑖, 𝑀𝑧,𝑖 the components of F𝑒
𝑖

for 𝑖 = 1, 2, 𝐿𝑒 the beam length, 𝐴 the beam cross-section area, 𝑌 the 
Young’s modulus, 𝐺 the Poisson’s ratio and 𝐼𝑥, 𝐼𝑦, 𝐼𝑧 the second moments 
of area.

The final loss is given by the average strain energy over mesh edges.

We do not add to the loss explicit constraints to control adherence 
to the input geometry, such as a term which measures the Chamfer 
distance between the original and the displaced mesh [20]. Instead, we 
let the shape change at each iteration, being controlled by the learning 
rate only. This strategy is an advantage, as it enables us to address both 
problems of shape optimization from an input design and form finding 
from the flat (cf. the results in Section 3).

2.3.2. Boundary constraints

The final problem to solve is how to ensure that vertex displace-

ments 𝛿v are null for the subset of prescribed fixed vertices v ∈ 𝜕𝑉 .

Imposing a hard constraint 𝛿v = 0 for prescribed nodes at each train-

ing iteration may affect boundary fairness. Therefore, we opt for a soft 
constraint and introduce a penalty term

 ∶= 1
|𝜕𝑉 |

∑
v∈𝑉

||𝛿v|| (8)

so that the loss to minimize becomes

+ 𝜁 (9)

with the weight 𝜁 > 0. The weight is set so that the penalty term at the 
first step is a fixed percentage of the initial loss (30% in our implemen-

tation). This ensures that vertex displacements are kept small during 
the training, and can be simply set to zero at the final iteration.

2.3.3. Differentiable loss implementation

The loss is implemented in PyTorch [32]. For a fast computation, we 
order the six degrees of freedom and the edge endpoints in accordance 
with the ordering of vertices in the mesh data structure, so that the 
non-zero entries in the global stiffness matrix contributed by each beam 
are known in advance, and remain constant as all steps in our pipeline 

preserve mesh connectivity. Then, we perform coordinate changes and 
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Fig. 5. For each beam, we compute the beam stiffness matrix 𝐾𝑒 ∈ ℝ12×12 in the local reference frame, and apply a change of coordinates from the local frame to 
the observer’s reference frame. The four 6 × 6 blocs, corresponding to the 6 degrees of freedom and the 2 beam endpoints, are arranged in a 6|𝑉 | × 6|𝑉 | matrix 𝐾̂𝑒

according to the indices of the beam endpoints in the mesh data structure. Finally, the global stiffness matrix 𝐾 ∈ℝ6|𝑉 |×6|𝑉 | is the sum of all per-beam matrices 𝐾̂𝑒 .
sums of beam contributions in parallel for each edge: we stack all the 
local stiffness matrices 𝐾𝑒 and the coordinate change matrices Λ𝑒 along 
the first dimension, to get three-dimensional tensors K, 𝚲 ∈ℝ|𝐸|×12×12. 
The coordinate changes from local to global are computed via matrix 
multiplication as 𝚲K𝚲𝑇 via PyTorch 3D tensor product. Subsequently, 
to compute the stiffness matrix 𝐾 , we take advantage of PyTorch sparse 
tensors to assemble in parallel all edge contributions. PyTorch sparse 
tensors admit multiple non-zero entries at a same position, and switch-

ing from sparse to dense automatically solves collisions by summing 
colliding entries. Therefore, we initialize a PyTorch sparse tensor in 
which the positions of non-zero entries are known from the ordering of 
mesh vertices and filled with the flattened 𝚲K𝚲𝑇 . The global stiffness 
matrix 𝐾 is obtained after switching the tensor from sparse to dense. 
Finally, we compute the force vectors F𝑒 in parallel as (K𝚲𝑇 )U, where 
U ∈ℝ|𝐸|×12×1 is the beam endpoint deformation stacked per edge along 
the first dimension, and K𝚲𝑇 was previously stored as a partial compu-

tation.

Our implementation ensures the loss is differentiable with respect to 
vertex coordinates, and that Automatic Differentiation can be used for 
backward propagation. Also, the loss is tensor-based and therefore fast 
to compute and highly parallelizable on GPUs. This strategy ensures 
reasonable timings for design optimization at inference time (cf. the 
timings reported in the next Section).

3. Results

To discuss the effectiveness and relevance of our method, we analyze 
fifteen free-form grid shells. Section 3.1 introduces the dataset and the 
experimental settings. Section 3.2 presents qualitative and quantitative 
results on some models. Section 3.3 compares our results with popu-

lar form finding tools (Kangaroo and Karamba). Finally, Section 3.4
6

presents an ablation study to discuss some of our design choices about 
the neural architecture. The complete results on the whole dataset are 
reported in the Appendix A.

3.1. Dataset and experimental settings

Tale 1 reports the main statistics about the fifteen models analyzed, 
in terms of mesh size, average edge length, area of the grid shell surface, 
area of the beam cross section. The structures analyzed are character-

ized by various sizes, geometric features, and triangular tessellations. 
For all cases, we fix all degrees of freedom on the ground, while we 
do not restrain any movement along the other boundaries, such as 
holes and openings. All examples are subject to a vertical loading of 
3 𝑘𝑁∕𝑚2, in the gravity direction, which is distributed on the nodes 
by tributary area computed through the Voronoi graph of the triangu-

lar mesh. Additionally, the weight of the beams is included as a lumped 
load, assuming the material density as 78.5𝑘𝑁∕𝑚3. This scenario sim-

ulates a Serviceability Limit State. We adopt two solid circular cross 
section types: 0.017𝑚 tube radius for the smaller examples, and 0.08 𝑚
tube radius for the larger examples.

The different cross section radius and the different size of the bound-

ing box for the two types of meshes change the scale of the initial loss 
during the gradient descent. Therefore, we tune the learning rate to 0.01 
for the cross section of radius 0.017 𝑚 and 0.0005 for the cross section 
of radius 0.08 𝑚. The optimization is performed via Stochastic Gradient 
Descent (SGD); the stopping criterion has a relative component (differ-

ence between the maximum and the minimum loss of 0.1 ⋅0) and an 
absolute component (loss variation of 0.005 in the last 50 iterations). 
We employed a Microsoft Windows® 10 Pro machine with a i7-6700K 
CPU, 32 GB of RAM, a NVIDIA GeForce GTX 1080 GPU with 8 GB of 

dedicated memory.
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Table 1

Dataset models: model name; average edge length 𝐿𝑒 ; area of the grid shell surface 𝐴𝑡𝑜𝑡 ; beam cross section radius 𝐶 ; number of vertices; number of edges; size of 
the axis-aligned bounding box.

name scale metrics

𝐿𝑒 𝐴𝑡𝑜𝑡 𝐶 verts edges size

(𝑚) (𝑚2) (𝑚) (#) (#) (𝑚 x 𝑚 x 𝑚)

2Spheres 1.03 1197.47 0.017 1373 3989 34.23 x 30.56 x 11.38

Blob 1.06 2381.45 0.017 2551 7482 55.51 x 34.98 x 19.57

Botanic 0.97 918.11 0.017 1121 3272 30.80 x 28.57 x 7.69

CreaseShell 2.02 1487.93 0.017 465 1304 36.75 x 33.08 x 17.19

Gopher 0.72 704.13 0.017 1709 4888 20.26 x 29.09 x 12.12

Neumunster 0.81 514.63 0.017 1209 3440 31.11 x 15.36 x 2.96

QuadFlat 0.68 259.81 0.017 780 2229 15.00 x 17.32 x 0.00

Ruled 2.01 270.27 0.017 99 258 14.77 x 18.71 x 4.13

Wave 1.02 958.08 0.017 1130 3239 28.27 x 49.03 x 9.91

BoonieBraced 2.48 1150.63 0.08 284 803 36.48 x 33.13 x 8.90

BoonieChaotic 2.38 1190.88 0.08 308 878 36.48 x 36.45 x 8.93

BubbleShell 1.52 1190.88 0.08 1530 4394 61.50 x 48.56 x 20.40

Hall 1.74 1584.07 0.08 645 1846 39.74 x 38.59 x 13.53

HallCrease 1.72 1790.21 0.08 753 2159 41.72 x 40.36 x 14.21

Envelope 1.72 3041.46 0.08 1257 3626 57.06 x 55.71 x 20.16

Station 1.74 4368.66 0.08 1773 5151 84.77 x 52.49 x 23.93

Tent 1.74 4302.68 0.08 1785 5133 87.05 x 59.25 x 21.64

Yarn 1.74 3059.84 0.08 1233 3561 51.28 x 71.56 x 26.18
Table 2

Results: model name; learning rate; number of gradient descent iterations; av-

erage loss gradient computation time 𝑇∇ and average iteration time 𝑇𝑖𝑡 on both 
GPU and CPU executions.

name learning rate iterations average times

GPU CPU

𝑇∇ 𝑇𝑖𝑡 𝑇∇ 𝑇𝑖𝑡

(#) (s) (s) (s) (s)

2Spheres 0.01 197 0.14 0.59 1.16 4.00

Blob 0.01 103 0.47 1.82 3.17 16.4

Botanic 0.01 73 0.1 0.45 0.87 2.48

CreaseShell 0.01 110 0.03 0.15 0.24 0.57

Gopher 0.01 170 0.21 0.85 1.62 5.09

Neumunster 0.01 156 0.1 0.46 0.92 2.53

QuadFlat 0.01 74 0.05 0.29 0.49 1.13

Ruled 0.01 92 0.02 0.05 0.04 0.09

Wave 0.01 159 0.11 0.46 0.91 2.52

BoonieBraced 0.0005 857 0.02 0.11 0.33 0.62

BoonieChaotic 0.0005 763 0.02 0.12 0.36 0.68

BubbleShell 0.0005 599 0.18 0.78 2.45 6.09

Hall 0.0005 463 0.04 0.22 0.39 0.92

HallCrease 0.0005 738 0.05 0.26 0.48 1.25

Envelope 0.0005 462 0.128 0.52 1.02 3.02

Station 0.0005 612 0.26 0.96 1.81 7.58

Tent 0.0005 952 0.25 0.94 1.83 6.46

Yarn 0.0005 445 0.13 0.51 1.03 3.26

Table 2 reports the execution times. Our method provides solutions 
in a reasonable time. Moreover, having an implementation that works 
with GPUs brings a considerable advantage over CPUs.

3.2. Evaluation

We assess our results visually to check if the main features, in par-

ticular surface smoothness, are preserved. We report the displacement 
color map to highlight the areas of shape alterations. Additionally, we 
report load deformation maps as a practical quantitative measure of 
the stiffness. Together with color maps, we also provide the maximum 
Euclidean norm of displacement vectors (𝛿𝑚𝑎𝑥) and the maximum Eu-

clidean norm of load deformation vectors (𝑢𝑚𝑎𝑥).

Fig. 6 reports a first illustrative example on model Blob, a large-

scale non-membrane grid shell with a hole and large areas of low/null 
7

curvature. The optimized results reduce, on average, the strain energy 
by 91.4%. Compared with the starting condition, the shape slightly 
changes and acquires smooth curvature in the flat areas. Also, relevant 
features, such as the hole position and shape, are well preserved dur-

ing the displacement. Smoothness is also maintained, as shown by the 
continuous reflections of the panels in the rendered view. Even though 
a maximum displacement of 𝛿𝑚𝑎𝑥 = 1.287 𝑚 occurs, the shapes are per-

ceived to be similar, and the stiffness is significantly increased.

While Blob is continuously supported along the base boundary 
curve, the case Envelope (Fig. 7) has long free boundaries. In partic-

ular, the freeform shape and large openings make it inherently ineffi-

cient if used as a single-layer structure because the bending behavior 
becomes predominant over the membrane behavior. Large deforma-

tion and strain energy accumulate close to the front profile, which is 
shaped as a multi-centered arch. For a change of 4.315 𝑚, the structure 
earns relevant stiffness with the deformations reducing from 9.27 𝑚 to 
0.128 𝑚. For such a large-scale example, the shape is raised in the area 
of the front profile, however the plan outline is preserved. Even though, 
remarkably, the strain energy drop is about 98%, it must be pointed out 
that the adopted linear solver for the strain energy computation can be 
less accurate in case of large deformations, therefore the strain energy 
reduction and deformations can be overestimated.

The case Station in Fig. 8 is a shallow freeform shape and suffers 
from large deformations in the starting configuration. Moreover, it re-

lies on very few supports, making it structurally inefficient. Like the 
previous examples, it is meshed with an isotropic triangulation that dis-

tributes the structural elements randomly. In symmetric shapes, this 
strategy might produce, as in the present case, an asymmetrical dis-

placement plot. The impressive loss reduction of 96% comes at the cost 
of an increased height of the structure, for a maximum displacement 
𝛿𝑚𝑎𝑥 = 12.691 m.

Finally, the two case studies in Fig. 9 show a highly variable distri-

bution of internal forces (positive/negative axial and bending forces). 
Moreover, the case BoonieChaotic exhibits an uneven triangulation, and 
the case BubbleShell has multiple boundaries with different geometry.

The learned, optimal shapes show high geometric fidelity for all 
cases considered. As expected, the more inefficient the shape, the higher 
the displacement. However, when the structure can rely on enough 
fixed boundary nodes, the method returns the finest result as the shape 
gets stiffer with features-preserving displacement. Most importantly, all 
optimized results achieve a high structural efficiency. The beams uti-

lization is more uniform than the starting condition, and the material is 

more properly employed.



A. Favilli, F. Laccone, P. Cignoni et al.

Fig. 6. Results on model Blob. Left: the input shape; Right: the displaced model. 
From top to bottom, the edge strain energy, the deformations, the displace-

ments, and the loss curve.

3.3. Comparison with form finding results

We validate the effectiveness of our method against two computa-

tional form finding tools, namely Kangaroo [33,34] and Karamba [35]. 
Both tools are implemented as plug-ins in Grasshopper [36], and are 
commonly employed in the shaping and optimization of grid shells.

Kangaroo (kan in the following) is a multi-physics solver that uses 
8

the Dynamic Relaxation Method (DRM) to simulate the equilibrium of 
Computers and Structures 292 (2024) 107238

Fig. 7. Results on model Envelope. Left: the input shape; Right: the displaced 
model. From top to bottom, the edge strain energy, the deformations, the dis-

placements, and the loss curve.

hanging models for given boundary constraints and loads. The DRM in-

tegrates the dynamics equilibrium equations tracking the deflections, 
and damps the motion of the structure artificially until it reaches the 
static equilibrium. During the simulation, the solver minimizes the 
bending energy of the structure while keeping the edge length changes 
small.

In Kangaroo, the user is allowed to modify several parameters to 
reach the desired solution. The most important are the edge strength 
and its length factor, the magnitude of external load and the con-
vergence tolerance. For a fair comparison, we generate a solution in 
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Fig. 8. Results on model Station. Left: the input shape; Right: the displaced 
model. From top to bottom, the edge strain energy, the deformations, the dis-

placements, and the loss curve.

Kangaroo to have similar strain energy with respect to our model. The 
energy is computed with our 2-dof solver. Indeed, since the methods 
use different element formulations and solvers, the shape would be too 
distant if obtained for the same load. The optimal form-found shape has 
indeterminacy in the vertical direction. Therefore, we tentatively scale 
the load to match the criterion and act on tolerance (indirectly on the 
9

number of iterations) to reach convergence.
Computers and Structures 292 (2024) 107238

Table 3

Results: model name; initial mean strain energy on edges 𝑠𝑡𝑎𝑟𝑡; mean strain en-

ergy on edges of the output of our method 𝑜𝑢𝑟𝑠 ; an energy configuration 𝑘𝑎𝑟(𝐸)
similar to 𝑜𝑢𝑟𝑠 belonging to an output of the form finding tool Karamba; mean 
strain energy on edges 𝑘𝑎𝑟(𝛿) of a Karamba output with the same displacement 
maximum norm; mean strain energy on edges 𝑘𝑎𝑛 of the output of the form 
finding tool Kangaroo; list of figures featuring the example.

name mean strain energies Figs.

𝑠𝑡𝑎𝑟𝑡 𝑜𝑢𝑟𝑠 𝑘𝑎𝑟(𝐸) 𝑘𝑎𝑟(𝛿) 𝑘𝑎𝑛

(kJ) (kJ) (kJ) (kJ) (kJ)

2Spheres 0.0177 0.0079 0.0078 0.0071 0.0061 14, A.1

Blob 0.1379 0.0118 0.0121 0.0084 0.0117 6, A.2

Botanic 0.0021 0.0018 0.0018 0.0017 0.0018 A.3

CreaseShell 1.5337 0.0248 0.035 0.0295 0.0304 A.4

Gopher 0.0037 0.0012 0.0012 0.0017 0.0009 13, 16, A.5

Neumunster 0.0008 0.0004 0.0003 0.0003 0.0003 A.6

QuadFlat 0.404 0.0018 0.0019 0.0014 0.0018 10

Ruled 0.1112 0.0132 0.0245 0.0262 0.0355 A.7

Wave 0.1704 0.0253 0.0240 0.1786 0.0156 12, 14, 16

BoonieBraced 0.4651 0.0427 0.0393 0.0495 0.0587 A.8

BoonieChaotic 0.4783 0.0531 0.0500 0.1144 0.0478 9, A.9

BubbleShell 0.8108 0.1208 0.0935 0.2337 0.1129 9, A.10

Hall 0.2199 0.0751 0.0746 0.142 0.0035 A.11

HallCrease 0.2395 0.0375 0.035 0.103 0.0019 11

Envelope 2.3357 0.046 0.045 0.0631 0.0088 7, A.12

Station 4.4404 0.0674 0.0589 0.1603 0.031 2, 4, 8, A.13

Tent 1.9381 0.1261 0.1265 0.0416 0.0226 1, A.14

Yarn 3.3016 0.0558 0.0551 0.437 0.0608 A.15

Karamba is a finite element software that includes several algo-

rithms for linear and nonlinear simulations, among which the ‘Ana-

lyze Large Deformation’-component handles the behavior of hanging 
models through an incremental solver that considers geometric non-

linearity. The loads are applied in small steps for a better approxima-

tion. Similarly to kan, this tool employs an accurate beam model, in 
which we plug the specific cross sections and material. The solution is 
load-controlled and depends on the increment parameter, namely the 
number of load steps, which is also the rate of model updating. Being 
non-adaptive, this strategy usually leads to convergence issues. How-

ever, the most interesting feature is the possibility of constraining the 
maximum displacement at a user-defined value. To compare the perfor-

mances, we generate two solutions for Karamba to have similar strain 
energy (kar(𝐸)) and similar maximum displacement (kar(𝛿)) with re-

spect to our model. Table 3 reports quantitative data: the value of the 
mean strain energy for the original model, and the values of the final 
energy of the displaced structure for our method and the competitors. 
Below is a qualitative, visual evaluation.

A first benchmark example is the form finding of a flat mesh built on 
a rectangular perimeter (Fig. 10), which is expected to return the clas-

sic pillow shape. The mesh is obtained by diagonalizing a quad mesh 
with uniform equal faces, so it turns into an anisotropic grid, as shown 
by the displacement and deformation maps. In kan, the model is akin 
to a perfect hanging net with hinge joints, and it outperforms the form 
finding task because it can produce membrane solutions even for small 
target height, i.e. obtaining very shallow shells. Our model instead uses 
a beam formulation with fixed boundary nodes. Thus, the shape is af-

fected by a more stiff boundary condition. The starting tangent at the 
boundaries is horizontal, and the height is larger than other solutions. 
For this reason, our model is less stiff for a similar strain energy. A simi-

lar conclusion holds for the comparison with kar(𝛿). However, although 
the starting shape presents no relevant geometric features, our method 
is capable of delivering a good, smooth solution where the displace-

ments are consistent.

HallCrease is a grid shell with a crease line, i.e. a chain of edges that 
break the continuity of the surface realizing a corrugation (Fig. 11). 
The large front opening results in two consecutive arches with un-

supported spring point in between. Our model provides the smaller 

shape alteration by displacing the central part of the shape towards 
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Fig. 9. Results on models BoonieChaotic (top) and BubbleShell (bottom). Left: the input shape; Right: the displaced model. Metrics assess the validity of our method. 
In both cases, the Service Load deformation (from 𝑢𝑚𝑎𝑥,𝑠𝑡𝑎𝑟𝑡 to 𝑢𝑚𝑎𝑥,𝑜𝑢𝑟𝑠) is reduced, and the maximum vertex displacement norm (𝛿𝑚𝑎𝑥 = 2.289 m for BoonieChaotic, 
𝛿𝑚𝑎𝑥 = 3.976 m for BubbleShell) is broadly contained into the bounding box dimensions.

Fig. 10. Comparison of results from our model and form finding tools for similar strain energy (kar(𝐸) and kan) and similar displacement (kar(𝛿)). Model: Quad.
an increased doubly curvature. The position of the crease line and the 
opening shape are kept in the original position. On the other hand, 
other solvers strongly alter the shape: in kar(𝐸) the corrugation be-

comes more sloped and the front opening changed in both plan shape 
and height, up to 𝛿𝑚𝑎𝑥 = 4.905 𝑚; in kan, the shape, although more effi-
10

cient, is entirely changed into a relaxed hanging chain with a maximum 
displacement of 𝛿𝑚𝑎𝑥 = 8.580 𝑚, and no affinity with the starting shape. 
In this latter case, the mesh is smoothed until the crease line is lost.

The Wave model (Fig. 12) is a freeform shape developing membrane 
behavior in the central part, with cantilevering boundaries and large 
openings, where the highest deformations occur. Our model achieves 

an impressive loss reduction of 85% and high stiffness with the low-
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Fig. 11. Comparison of results from our model and form finding tools for similar strain energy (kar(𝐸) and kan) and similar displacement (kar(𝛿)). Model: HallCrease.
est deformation 𝛿𝑚𝑎𝑥 = 0.918 𝑚. The shape is slightly altered and the 
smoothness is preserved. The kan model presents several wrinkles as 
the solution of the hanging model stuck into a local minimum because 
the anchoring nodes are in small number. The kar(𝐸) strongly changes 
the cantilevering profiles and the open boundaries up to 𝛿𝑚𝑎𝑥 = 2.199 𝑚. 
In contrast, kar(𝛿) has a closer appearance to our solution, but it is more 
deformable (𝑢𝑚𝑎𝑥 = 8.009 𝑚, namely even more than the starting solu-

tion 𝑢𝑚𝑎𝑥 = 5.181 𝑚). All form finding solutions tend to form negative 
Gaussian borders on the free boundaries to limit the inextensional de-

formation and increase the stiffness. Instead, our results well preserve 
the borders and the sharp features, which usually characterize the de-

sign of a grid shell from an architectural standpoint.

3.4. Ablation study

This Section proposes an ablation study to evaluate the single pa-

per contributions. Section 3.4.1 evaluates the advantages of introducing 
feature encoding and convolutional layers over a plain optimization 
strategy not using deep learning. Section 3.4.2 discusses the relative 
importance of the geometric features we defined as input to the net-

work. Finally, Section 3.4.3 evaluates the advantages of introducing the 
attention mechanism in the convolutional layers over a baseline with-

out attention.

3.4.1. Advantages of 3D deep learning over optimization

One of the main advantages of reformulating shape optimization as 
11

a deep learning problem is that one switches from a vertex-centric ap-
proach, in which each single vertex is displaced without knowledge of 
what happens in its proximity, to a mesh-centric approach. In this pa-

per, this is a consequence of the mechanism of neural message passing 
implemented by GAT layers, which enable the sharing of information 
among vertices in the same (geometric and semantic) neighborhood. 
The immediate effect is reducing geometric noise and the jagging effect, 
which can be observed with classical optimization strategies without re-

sorting to geometric regularizers such as smoothing terms [14]. This is 
handy, as balancing energy terms and regularizers is often challenging, 
as they often have different and contrasting objectives.

In Fig. 13, we compare the results of our deep learning technique 
with the results of an optimizer implemented in PyTorch using the same 
loss on two different models (Gopher and a triangle flat structure sup-

ported at the vertices). The optimizer only adopts gradient descent to 
produce vertex displacements starting from the initial vertex positions 
and normals, without the feature encoding and the convolutional layers 
we introduced in this paper; the loss is the same for both procedures. It 
can be observed that the introduction of feature encoding and convolu-

tional layers produce smoother results, the final energy and deformation 
being equal. Therefore, our method implicitly regularizes the displaced 
mesh, without the need for additional smoothing terms, which might 
divert from the optimal solution in terms of shape design.

3.4.2. Role of geometric features

An important aspect of the network we introduced is the use of 

differential quantities (curvature and geodesic distances) as features, 



Computers and Structures 292 (2024) 107238A. Favilli, F. Laccone, P. Cignoni et al.

Fig. 12. Comparison of results from our model and form finding tools for similar strain energy (kar(𝐸) and kan) and similar displacement (kar(𝛿)). Model: Wave.

Fig. 13. Comparison between the results of our deep learning technique (middle) and a plain optimizer (right) on a flat triangle and on model Gopher (left). It can 
12

be observed that the message-passing mechanism among vertices during displacement learning has the effect of reducing geometric noise at the same time.
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Fig. 14. Introducing principal curvatures as input features helps preserve the design intent, as it reduces the Hausdorff distance between the input mesh and the 
displaced mesh after learning. The effect on model Wave (left) and 2Spheres (right), with the distance values in false colors. Learning rate: 0.01, 200 SGD iterations.

Fig. 15. Introducing features based on geodesic distances favors convergence towards sensible shapes and improves the loss reduction process. An input half-sphere 
model converges to a catenary dome if geodesic features are fed to the learning model, while full symmetry is not reached if geodesic features are omitted. The loss 
descent curve is also improved. Learning rate: 0.01, 800 SGD iterations.
alongside positional features traditionally employed in 3D deep learn-

ing. We propose an ablation study to discuss the effects of curvature 
and geodesic features, showing results with and without them.

We observe that using principal curvatures favors solutions with 
smaller vertex displacements for the same strain energy reduction, as 
shown in Fig. 14.

Concerning geodesic features, we observe they tend to favor conver-

gence towards funicular shapes, which is sensible in the context of form 
finding, as shown in Fig. 15. The same Figure also shows that curvature 
features act as regularizers in terms of loss reduction.

3.4.3. Effects of attention mechanisms

Attention mechanisms in graph convolutional layers are expected 
13

to improve the expressing power of message passing among vertices, 
as the representations of neighboring vertices are aggregated using a 
weighted scheme, with learned weights.

Fig. 16 compares the results of GATv2 layers with respect to plain 
dynamic edge convolution (DGCNN, [19]). It can be observed that at-

tention improves the fidelity to the original shape design for comparable 
static performance. The output from the DGCNN model results often in 
a more trivial pulled-up version of the original mesh, which, besides 
the increased surface area and weight, is characterized by more shape 
stiffness. Instead, adding attention leads to solutions with slighter shape 
modifications and less displacement in absolute terms.

4. Discussions and conclusions

This paper introduces a 3D deep learning pipeline for statics-aware 

grid shell design. We define a network that consumes a 3D mesh rep-
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Fig. 16. The results with attention layers (middle) and with simple dynamic edge convolution (left). Color mappings refer to the vertex displacements of the model 
outputs from the input. Attention layers offer better shape preservation with similar static performance. Models: Gopher, learning rate 0.1, 200 SGD iterations; 
Wave, learning rate 0.01, 200 SGD iterations.
resenting an input design and learns optimal vertex displacements to 
performance while preserving the design intent. Our network can per-

form both shape optimization from first designs and form finding from 
flat input shapes. The results demonstrate that our method performs 
better than competitors in shape optimization, as it produces structures 
with optimized performance and preserved geometric features, such as 
curvature and boundaries. The results in the form finding task are com-

parable with existing techniques. A major advantage, however, is that 
our method only requires a parameter to set, namely, the learning rate; 
therefore, it reduces the burden on the user’s side.

The learning rate has a fundamental role, as it controls how much 
the shape changes at each iteration. Setting properly the learning rate 
drives the convergence to an optimized shape, while controlling that the 
resulting geometry is smooth and close to the original shape. We show 
that good results can be obtained by simply setting the same learning 
rate for classes of objects that share the same beam cross section and 
scale. However, in the future, we plan to research adaptive methods to 
set the learning rate according to structural information.

Moreover, even though our results show that the original shape can 
be preserved by a carefully designed architecture, it would be interest-

ing to introduce explicit constraints to control adherence to the input 
design, such as sophisticated regularizers based on topological descrip-

tors that analyze the preservation of geometric features [37].

Finally, future work will include the statics-driven optimization of 
beam connectivity besides node positioning. Also, we plan to include 
material reduction as an optimization criterion to pursue sustainability 
besides statics performance. This extension could possibly be done by 
including the optimal shape of beam cross sections as an additional 
variable to learn to reduce steel weight.
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Appendix A. Additional results

This Section reports the results for all 18 case studies of Table 1 (see 
Figs. A.1–A.15). The performance of the present method is expressed 
in terms of mean strain energy on the beams 𝑜𝑢𝑟𝑠, modification of the 
node coordinates (displacement), and achieved stiffness (load deforma-

tion) with respect to the input shape. Moreover, comparisons with other 
computational tools are included. Using Karamba, we target a similar 
mean strain energy on the beams (kar(𝐸)) and a similar displacement 
maximum norm (kar(𝛿)). Using Kangaroo, we target a similar mean 
strain energy on edges (kan).

https://github.com/cnr-isti-vclab/GeomDL4GridShell#geometric-deep-learning-for-statics-aware-grid-shells
https://github.com/cnr-isti-vclab/GeomDL4GridShell#geometric-deep-learning-for-statics-aware-grid-shells
https://github.com/cnr-isti-vclab/GeomDL4GridShell#geometric-deep-learning-for-statics-aware-grid-shells
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Fig. A.1. 2Spheres. Results and comparisons with other tools.
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Fig. A.2. Blob. Results and comparisons with other tools.
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Fig. A.3. Botanic. Results and comparisons with other tools.
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Fig. A.4. CreaseShell. Results and comparisons with other tools.
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Fig. A.5. Gopher. Results and comparisons with other tools.
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Fig. A.6. Neumunster. Results and comparisons with other tools.
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Fig. A.7. Ruled. Results and comparisons with other tools.
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Fig. A.8. BoonieBraced. Results and comparisons with other tools.
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Fig. A.9. BoonieChaotic. Results and comparisons with other tools.
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Fig. A.10. BubbleShell. Results and comparisons with other tools.
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Fig. A.11. Hall. Results and comparisons with other tools.
20

Fig. A.12. Envelope. Results and comparisons with other tools.
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Fig. A.13. Station. Results and comparisons with other tools.
21

Fig. A.14. Tent. Results and comparisons with other tools.
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Fig. A.15. Yarn. Results and comparisons with other tools.
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