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Abstract

Description Logics (DLs) are logics with interesting representational and com-
putational features and are at the core of the Web Ontology Language OWL 2
and its profiles among which there is OWL 2 EL. The main feature of OWL 2
EL is that instance/subsumption checking can be decided in polynomial time.

On the other hand, fuzzy DLs have been proposed as an extension to classi-
cal DLs with the aim of dealing with fuzzy concepts and we focus here on Fuzzy
OWL 2 EL under standard and Godel semantics. We provide some reasoning
algorithms showing that instance/subsumption checking decision problems re-
main polynomial time for Fuzzy OWL 2 EL. We also identify some issues in
previous related work (essentially incompleteness problems).
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1. Introduction

Description Logics (DLs for short) [5] is a well-known family of logics for knowl-
edge representation, with various representational and computational charac-
teristics. In the last decades, DLs have gained popularity due to their close
connection with the Web Ontology Language OWL 2 [24], and its profiles OWL
2 QL [79], OWL 2 EL [78] and OWL 2 RL [g0].

On the other hand, Fuzzy DLs (FDLs) have been proposed as an extension
to classical DLs with the aim to deal with fuzzy concepts. In these logics,
axioms can be satisfied to some degree of truth (typically, a truth value in
[0,1]). There is quite some work on fuzzy DLs in the literature (see e.g., [12
60, [68, [69] for an overview). Some examples of applications of fuzzy DLs are
the Semantic Web [62], recommendation systems [23], image interpretation [25],
ambient intelligence [26], diabetes diagnosis [28], and robotics [27].

In this paper, we will focus on the fuzzy counterpart of OWL 2 EL, which
is based on the £L family of DLs [T}, B 22| [36] and that has as main feature
polynomial time reasoning algorithms (e.g., for instance /subsumption checking).
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We recap that, in the fuzzy setting, there has already been a notable amount
of work about the fuzzy £L family [4, 8, @l 10, 111, 17, 20, 211 B0, 42] [43] [45]
49, 56l [66] 70, [72), [73] [75] [76] [T, 82] (see Section {4 for a comparison with
related work), though none of them cover completely Fuzzy OWL 2 EL and
are complete inferentially. Here, we further advance the state of the art in this
context, especially [49], by addressing all salient parts of Fuzzy OWL 2 EL, i.e.,
fuzzy SL'I with nominals, fuzzy concrete domains, domain, range and reflexive
role restrictions. Specifically, the contributions of this paper are the following
ones:

e we address both the case of Godel logic as well as standard fuzzy logic
semantics;

e we allow reasoning with domain, range and reflexive role restrictions;

e we show that we may reduce the so-called nominal safe ontologies to on-
tologies without nominals. This not only simplifies the inference rules set,
but, as it happens for the crisp case, we expect it has a significant practical
impact with respect to computation time;

e we address further fuzzy concrete domains by extending usefully the notion
of fuzzy p-admissible concrete domains;

e we address the general case (for non-nominal safe ontologies) of nominals;

e we show that for all cases above subsumption checking can be decided in
polynomial time;

e we identify some issues in related previous work (essentially incomplete-
ness problems).

The rest of this manuscript is organized as follows. Section [2] starts by provid-
ing some background on fuzzy logic and the crisp DLs that will be considered
throughout this paper. Then, Section [3]discusses reasoning algorithms for fuzzy
logics of the £ family. Finally, Section [4] overviews some related work and
Section [9] sets out some conclusions and ideas for future work. All salient proofs
are in the Appendix.

2. Preliminaries

This section quickly overviews the main results on fuzzy logic (Section and
the classical £L£ family (Section that will be needed to follow this paper.

2.1. Fuzzy sets and fuzzy logic

Fuzzy set theory and fuzzy logic were proposed by L. A. Zadeh [81] to manage
imprecise and vague knowledge. While in classical set theory elements either
belong to a set or not, in fuzzy set theory elements can belong to some degree.
More formally, let X be a set of elements called the reference set. A fuzzy subset



Figure 1: (a) Trapezoidal function trz(q1, g2, g3, q4); (b) Triangular function tri(q1, g2, g3); (c)
L-function Is(q1,q2); and (d) R-function rs(q1,q2).

A of X is characterized by a membership function p4(z), or simply A(z), which
assigns to every x € X a degree of truth, measured as a value in a truth space NV.
The truth space is usually N' = [0,1], but other choices are possible. Indeed,
N does not need to be a total order, nor does it need to be infinite. As in
the classical case, 0 means no-membership and 1 full membership, but now a
value between 0 and 1 represents the extent to which x can be considered as
an element of the fuzzy set A. To distinguish between fuzzy sets and classical
(non-fuzzy) sets, we refer to the latter as crisp sets.

The definition of the membership function and its shape may depend on the
context and may be subjective. However, the trapezoidal (Figure [1| (a)), the
triangular (Figure [1| (b)), the L-function (left-shoulder function, Figure [1| (c)),
and the R-function (right-shoulder function, Figure [I| (d)) are simple, but most
frequently used to specify membership degrees.

Fuzzy logics provide compositional calculi of degrees of truth. The conjunc-
tion, disjunction, complement and implication operations are performed in the
fuzzy case by a t-norm function ®, a t-conorm function @, a negation function
© and an implication function =, respectively. For a formal definition of these
functions we refer the reader to [32, [38].

A quadruple composed by a t-norm, a t-conorm, an implication function and
a negation function determines a fuzzy logic. One usually distinguishes three
fuzzy logics, namely Lukasiewicz, Godel, and Product [32], due to the fact that



any continuous t-norm can be obtained as a combination of Lukasiewicz, Godel,
and Product t-norms [53]. In the following, we consider also what we call Stan-
dard Fuzzy Logic (SFL) that includes the conjunction, disjunction, and negation
originally proposed by Zadeh [81] together with Gaines-Rescher implication.

Table 1: Combination functions of various fuzzy logics.

Godel logic Lukasiewicz logic Product logic SFL
a®p min(a, 3) max(a + 8 —1,0) a- B min(«, 3)
ad®f max(«, 3) min(a + 38,1) a+p—-a-B max(a, 3)
1 ifa< 1 if a < 1 ifa<
a=f 1a_.ﬁ min(1 —a+ 3,1) 105_.6 104_.ﬁ
B otherwise B/a otherwise 0 otherwise
1 ifa=0 1 ifa=0
SJe] . 11—« . 11—«
0 otherwise 0 otherwise

Table [I] summarizes the fuzzy operators for the four fuzzy logics. Different
fuzzy logics satisfy different logical properties (for a detailed list of properties,
the reader is referred to [46]). In this paper, we will mainly focus on Gdodel
fuzzy logic. We will strongly use the fact that Godel t-norm is idempotent, i.e.,
a®a =« for any a € [0,1], and that Gédel implication = is an R-implication,
that is, it is defined as the residuum of its t-norm ®: a« = 8 =sup{y | a®~v <
8.

Each t-norm and its residuum satisfy the following properties
e = f=1iff a < f (ordering property),
e a=p0>~vif B> a®~y, and

e from o = S > v and a > § we can use fuzzy modus ponens to infer
B=>y®0.

Relations can also be extended by considering fuzzy subsets of the Cartesian
product over some reference sets. A (binary) fuzzy relation R over two count-
able sets X and Y is a function R: X x Y — [0,1]. Several properties of
the relations (such as reflexive, irreflexive, symmetric, asymmetric, transitive,
or disjoint with another relation) and operations (inverse, composition) can
be easily extended to the fuzzy case. In particular, the composition of two
fuzzy relations Ri: X x X — [0,1] and Rp: X x X — [0,1] is defined as
(R1 0 Ro)(x,2) = supycx Ri(2,y) ® Ra(y, 2).

2.2. On the EL Family

We recap here the various DL languages of the ££ family we are considering
here (for more insights, we refer the reader to [Il 3] [, [7, 22}, 35 [36]).



Table 2: Syntax and semantics of Sﬁ(’)r

Syntax Semantics
Individuals
Individual a at e AT
Roles
Atomic role r T C AT x AT
Role chain riory {{z,y) | Fz € AT s. t. (z,2) € 1T and (2,y) € ro7}
Concepts
Atomic concept A AT C AT
Top T AT
Bottom 1 0
Conjunction cnbD cTnDI
Existential restriction  3Ir.C {re AT |Fye AT s. t. (z,y) €T and y € CT}
Nominal {a} {a®}
Azioms
Concept inclusion CCD ct c pt
Role inclusion rCs rT C st
Role composition rroraCs  (rio 7‘2)1 C st
Concept assertion C(a) at e CT
Role assertion r(a,b) (aZ,bT) € rT

Syntaz. The vocabulary is given by a set of atomic concepts (or concept names)
Ne = {A1, As, ...}, aset of atomic roles Ngg = {r1,72,...,51, $2,...} and a set
of individuals Ng = {a,b,c,...}. All these sets are assumed to be enumerable
and pairwise disjoint.

To start with, EL concept expressions C, D, ..
following syntax:

. are built according to the

C,D—A|T|CND|3C.

An ontology O is a finite set of azioms. A General Concept Inclusion (GCI)
axiom is of the form C T D (C is subsumed by D), meaning that all instances
of concept C' are also instances of concept D. We use the expression C' = D as
a shorthand for having both C C D and D C C.

On the other hand, concepts, roles and azioms of the extension of £L called
ELOT are defined recursively as in Table [2 [36].

Remark 1 (Some languages of the ££ family). The logic ELT is the extension
of EL with role inclusion and composition axioms [6].

The subscript L denotes the fact that the bottom concept is supported. So,
e.g. ELT is the DL ELT with the addition of the bottom concept [36].

The use of nominal concepts is denoted with the letter O in the DL liter-
ature [3] and, thus, e.g. ELO, is EL extended with nominal concepts, while
ELOT is ELT with nominal concepts [36].

When there are individuals, it is possible to have concept and role assertions.
A concept assertion aziom is of the form C(a) dictating that individual a is
instance of concept C. A role assertion is an expression of the form r(a,b),
dictating that individual a is related to individual b via role r.



It is possible to extend the logic with concrete domains, indicated with the
letter D. The language ELOT (D) is also called ELYT [1]. Even after extending
the logic with range and reflexive role restrictions (see Section later on),
the same name is still used [3] and the latter is indeed the core of the OWL EL
specification [78].

Example 2. O; = {AC 35.0NTMN3s.{a},C C B,3s.B C B} is an ELOT on-
tology with three azioms. Oy = O1U{C C {a}} extends it with a fourth axiom.

Remark 3. Three important types of axioms are representable in €£j or more
expressive logics:

e a concept disjointness axiom can be expressed as C1 M Cy C L;

e o complex role composition ry orgo---or, C s is a shorthand for the set
of azioms 11019 T 1y, Ty, 073 E Ty, ooy Ty, 070 TS5

e finally, a transitive role aziom can be represented as ror C r.

Note also that a role inclusion r € s is a special case of role composition with

the identity role as one of the roles in the left side (see Section later on).

A nominal safe language L of the £L family is the language £ with some
restrictions on the occurrence of nominals and is defined as follows [36]. A
L concept C' is safe if C has only occurrences of nominals in sub concepts of
the form 3r.{a}; C is negatively safe (in short, n-safe) if C is either safe or a
nominal. A GCI C C D is safe if C' is n-safe and D is safe. An L ontology is
nominal safe if all its GCIs are safe. It is worth noting that nominal safeness is
a quite commonly used pattern of nominals in OWL 2 EL ontologies [36].

Example 4. Revisiting again the ontologies in Ezample [, the ontology O is
nominal safe, while Oy is not.

In the following, let O be an SEOI ontology. Let Nf; be the set of atomic
concepts and nominal concepts occurring in @. We say that O is normal form
if all axioms in it are, i.e., each axiom has one of the following forms (n > 2)

ACB, Ain..NA,CB, ACI.B, IrACB,rCs, rorgCs,
where A, B € NQ U{T, L} and 4; € NZ.

Semantics. An interpretation is a pair T = (AZ,.T), where A is a non-empty
set, called interpretation domain and -T is an interpretation function

1. mapping atomic concepts A into subsets A7 C AZ;

2. mapping T into TZ = AZ;

3. mapping roles r into a subset rZ C AT x AZ;

4. mapping each individual a € N into an object aZ € AZ.



The interpretation function -£

shown in Table 2

An interpretation T satisfies (is a model of) an axiom 7, denoted Z = T,
if the corresponding condition in Table [2[ holds. Z satisfies (is a model of) an
ontology O, denoted Z = O, if 7 satisfies each axiom in @. An ontology O is
consistent if it has a model, otherwise it is inconsistent. An axiom 7 is entailed
by an O, denoted as O |= T, if every model of O is a model of 7. A concept C
is unsatisfiable w.rt. O if O = C C L, otherwise C is satisfiable w.r.t. O. A
concept C' is subsumed by concept D w.r.t. O if O = C C D. Concepts C, D
are equivalent w.r.t. O if O | C = D. An individual a is instance of a concept

Cwrt. Oif O = C(a).

Remark 5. Note that concept assertions C(a) and role assertions r(a,b) can
easily be represented in e.g. nominal safe ELOT via the mapping C(a) — {a} C
C and r(a,b) — {a} C Ir.{b}.

is extended to complex concept expressions as

In the following, we recap here some salient facts related to nominal safe £ EOI
[36, Appendix A]. That is, one can replace nominals in a nominal safe £ L'OI on-
tology O with newly introduced concept names, yielding an SEI ontology O,
such that O’ supports the same entailments as O. Hence, an entailment deci-
sion procedure for ££T suffices to decide entailment for nominal safe ££LOT (but
not for unrestricted EEOI). Please note that although there is a more general
procedure that works even for non-nominal safe ontologies [35] (see also Sec-
tion , the case of nominal safe ontologies is very interesting from a practical
point of view: (i) many ontologies are nominal safe; and (ii) the specialized rules
for nominal safe ontologies are much more efficient than those for the general
case[l]

Specifically, consider an ELC’)I ontology O. For each individual a occur-
ring in O consider a new atomic concept N,. For x an EﬁOI concept, GCI,
or ontology, we define N(z) to be the result of replacing each occurrence of
each nominal {a} in « with N,. The following proposition provides a sufficient
condition to check entailment.

Proposition 6 ([36], Lemma 5 and Corollary 2). Let O be an ELOT ontology
and T an 5EOI axiom that do not contain atomic concepts of the form N,.
Then

1. if N(O) = N(7) then O = 7;
2. if N(O) = N, C L for some a then O is inconsistent.

The converse of Proposition [6] does not hold in general, but holds for nominal

safe Sﬁ(’)j

Proposition 7 ([36], Theorem 4). Let O be a nominal safe ELOT ontology
and T a safe 5EOI GCI that do not contain atomic concepts of the form N,.
Assume N(O) = No C L for all a. Then

ndeed, it is one of the optimizations implemented in the efficient crisp DL reasoner
ELK [36].



1. O is consistent;
2. if O =7 then N(O) = N(1).

Note that Proposition [7] fails if the use of nominals is not safe (see [36], Remark
2] for an example).

2.2.1. Reasoning in 5/.31 and nominal safe 5LOI

Here we provide the inference rules for the case of assertion free ££T. Since
by Propositions and Remark [5| any nominal safe ELOI ontology can be
reduced to an assertion free 5£1r ontology, this also covers nominal safe ££Oir.

Remark 8. Please, note that in [39, [£0, [{1] and [35, Remark 6] it is shown
that the calculus for ELY, and in particular for ELO, as illustrated in [1, 3], is
incomplete in the presence of unrestricted use of nominals. For instance, given
the ontology [35] (but see also [40] for other examples),

0O = {AC3Ir(Bn{a}),AC 3s.{a},Is.BC B},

then O = A C B, because if A is not empty then a is an instance of B. However,
the algorithm in [1, [3] is not able to infer it. For further insights we refer the
reader to [34, 135, (39, [40, (41, [48], and specifically to [34],[33] for a complete and
similar to [1l, [3] calculus for the case of unrestricted use of nominals. For a
Datalog based calculus, we refer the reader to [39, [10, [£1]].

A general reasoning problem is checking entailment, i.e., given an ontology O
and an axiom 7, check if O |= 7 holds. However, a major problem consists of the
ontology classification problem that is the task to compute the taxonomy rep-
resenting all entailed subsumption and equivalences between L, T, and atomic
concepts occurring in O. This is justified e.g. by the fact that O = C C D iff
OU{AC C,DLC B} E AL B, where A, B are new atomic concepts.

So, let O be an assertion free EL’I ontology. In the following, we present
a simple procedure to determine all subsumption relationships among atomic
concepts in N, inspired by [1} 2} 3} [36].

To start with, Figure [2| shows the inference rules to transform an 5£OI
ontology, and thus also O, into normal form (in particular, see [2, Figure 1]).
The precondition of the rule is above the horizontal line, while its conclusion is
below the line. The label in front of the rule is its name and the side conditions
are after the rule.

Example 9. Given the ontology Oy from Ezample |3,
N(O)={AC3Is.CNTMN3Is.N,,CC B,3s.BC B} .
The transformation of N(O1) into normal form produces, via rule N,
0, ={AC3s.C,ACT,AC3Is.N,,C C B,3s.BC B} .

The inference rules over an £ Eir ontology in normal form are depicted in Figure
instead. Let closure(O) be a set that is closed under the rules in Figures [2| and
[B] applied to O.



Example 10. Given the ontology N(O1) from Ezample[d, closure(N(0y)) con-
tains the following axioms:

(1) AC3s.C

(2) ACT

(3) AC 3s.N,

(4) CCB

(5) 3s.BCB

(6) AC A

(7) BCB

(8) cCC

© N.CN,
(10) BCT
1) ccT
(12) N,CT
(13) 3s.BCT
(14) Is.CCT
(15) SN, C T
(16) AC3s.B
(17) ACB.

Azioms (1)-(5) come from the original ontology (rule Rz), rule Ry added (6)-
(9), Ry added (10)-(15), rule R3 added (16), and, finally, RE added (17).

The following follows from [T}, 2] B} 36]E|

Proposition 11. Let O be an assertion free EEI ontology and let A, B € N%.
Then

1. closure(©) can be computed in polynomial time w.r.t. |O|.
2. OEAC B iff AC B € closure(O) or AC L € closure(O).

Remark 12. Please note that in Proposition[11], the concept names A and B
have to occur in the ontology O and, thus, cannot be chosen among the newly
introduced ones, as e.g. by rule (N3).

By Propositions [6] and [7], and by Remark [} we have
Corollary 13. Propositz'on holds also for nominal safe SEOI ontologies.
We conclude with the following remark.

Remark 14. If we restrict our attention to concept subsumption then rule Ry«
18 in fact not needed.

2In particular, see Lemmas 5 (complexity), 6 (soundness), and 7 (completeness) in [2].



CinlnC;CD
(Nol) 1I_IJ_ED2_ :

T\ C.NTNnC2:CD .
(NO ) C1nC2CD

C1nCNCyCD
(Nl) CEAI, ClﬂAZHCQED :C & N% U {Ll, T}, A new concept name

(NQ) % Cc g No%, A new concept name
(Ng) CEZF%: C,D ¢ N% U {Ll, T}, A new concept name

BC3r.C
(N4) m c¢ N%,A new concept name

CCD.MD
(N5) CCD; 10;12)2 :

Figure 2: Normal form transformation rules for E[,OI.

(Ro) 4mz: A€NQU{L T}

(Rl) CCT’ C C T in normal form

2\ ACB1..ACB, BiN..MB.CB o
(RE) yings ©A,B,B; eNQU{L, T}

AC3r.B BCC o
(R3) SSiETro ABCENQU{LTHO#L

AC3r.B BC L
(Ry1) 41 ABs NQU{L,T}

AC3r.B rC
(Ri) A5

rilre rolrs
(RH* ) rCrs ’

A;C3r;.B BC3rp. Ay Tlo’l‘zgs' o
(Ro) A C3s. A, :A1,B, Ay e NQU{L, T}

Figure 3: Inference rules for Eﬁj.
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Table 3: Syntax and semantics of range, domain and reflexive role restrictions.

Syntax Semantics
Azioms
Domain restriction dom(r)C A T C AT x A%
Range restriction ran(r)C A T C AT x AT
Reflexive role restriction eLC r ef C T

2.2.2. Reasoning with domain, range and reflexive role restrictions

Following [3], we next recap that one may extend &€ £j“_ further with reflexive role,
range and domain restrictions, and show that subsumption remains tractable if
a certain syntactic restriction is adopted on role composition axioms. We will
adapt this approach in Section to the fuzzy case.

To this end, the syntax and semantic conditions of domain restrictions, range
restrictions and reflexive role restrictions are described in Table where (i) € is
the identity role whose extension is e = {(x,z) | z € AT}, for all interpretations
Z; and (ii) A is an atomic concept. According to [3], to avoid intractability (and
even undecidability), we have to impose a restriction on the structure of an
ontology that prevents the otherwise too intricate interplay of range restrictions
and role inclusions. Specifically, for an ontology O, roles r, s, we write O - r C s
iff r = s or O contains role inclusions

rmCEry...,7p1Cr, withr=ryand s=r, .

Furthermore, we write O t ran(r) C A if there is a role s with O F r C s and
ran(s) £ A € O. Now, the mentioned restriction is as follows:

(¥) Ifrio...or, Cse€Owithl<n<2andOF ran(s) C A,
then O F ran(r,) C A.

The restriction ensures that if a role inclusion 1 o...or, C s € O implies a role
relationship (z,y) € s, then the range restriction on s does not impose new
concept memberships of y.

Remark 15. Note that the condition (x) is obviously true if the role inclu-
sion is a reflexive role restriction, a role hierarchy statement, or a transitivity
statement.

Remark 16. OWL 2 EL satisfies the above-mentioned condition (x) [78].

Reasoning. We next show how to deal with these additional axioms in order to
decide concept subsumption.

Remark 17. At first, let us note that an axiom dom(r) C A can be replaced,
w.l.o.g., with a concept inclusion axiom Ir.T T A (in normal form) and, thus,
we have not to deal with domain restrictions further. Note also that for more
expressive DLs, such as ALC [J]], range restrictions can be replaced with the
ALC concept inclusion T T Vr.A, which however is not an ELI azxiom.
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Reflexive role axioms are dealt with by adapting rules Ry, Ry+, and R, to
consider the case € C r as well.

We next show how to remove range restriction axioms. Let O be an assertion
free £ EI ontology, which may contain range and reflexive role restriction axioms.
Let us assume that O is in normal formﬁ We proceed as follows.

1. For each role 7, let ranp(r) = {A | O Fran(r) C A}.
2. For each C C 3r.B € O, introduce a new atomic concept X, p.
3. Let O be obtained from O by removing all range restriction axioms and
performing additionally the following actions:
(a) exchange every C' C Jr.B with the axioms C C Ir.X, g, X, p C B,
and X, p C A for all A € ranp(r);
(b) if eCr € O, then add T C A for all A € ranp(r).

Note that the size of O’ is quadratically bounded by |O|. The following holds.

Proposition 18 ([3]). Let O be an assertion free EEI ontology, which may
contain range and reflexive role restriction axioms, and A,B € Nf;. Then
OEAC Biff O E AC B, where O has been determined by the steps
above.

Of course, by Propositions [6] and [} and by Remark [5] we have that

Corollary 19. Proposition holds also for mominal safe SEOI ontologies,
which may contain range and reflexive role restriction axioms.

Therefore, by Proposition

Corollary 20. Subsumption can be determined in polynomial time for nominal
safe ELOI ontologies, even in the presence of domain, range and reflexive role
restriction arioms.

3. On the Fuzzy £L Family

In the following, we introduce the basics of the Fuzzy £L family, paying special
attention to the fuzzy DL SEOI(D). Conceptually, fuzzy DLs are a fragment
of Mathematical Fuzzy Logic with unary and binary predicates only. However,
additionally we also consider so-called fuzzy concrete domains [60]), which is
one of the main ingredients to make fuzzy DLs useful in practice and part of
the Fuzzy OWL 2 language [13].

8.1. Syntar and semantics

Fuzzy concrete domains. For the sake of completeness, we recap here the no-
tion of fuzzy concrete domain, that is a tuple D= (AP, .DP) with data type
domain AP and a mapping - that assigns to each data value an element of

3We assume here that axioms of the form ran(r) C A and € C r are normal forms.
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AP and to every l-ary data type predicate d a l-ary fuzzy relation over AP.
Therefore, -P maps indeed each data type predicate into a function from AP
to [0, 1]. Note that we restrict to unary datatypes only as they are the only ones
supported by crisp OWL 2 EL. In this work, for the sake of ease the presentation,
we will also always assume that AP is the set of rational numbersﬂ

The data type predicates d we are considering here are well known member-
ship functions supported in Fuzzy OWL 2 [13]:

d — Is(qi,q2) | rs(qi,q2) | tri(qr, g2, 93) | trz(qi, 92,93, qa)
| >0 | <o | =

where e.g. s, rs, tri, and trz represent the left-shoulder, right-shoulder, tri-
angular and trapezoidal membership functions respectively (see Figure [1) and
v € AP. If fuzzy concrete domains are considered then the letter D is used
in the specification of the language, e.g., EL(D) is L extended with (fuzzy)
concrete domains.

Syntazr. Similarly as in crisp DLs, the elements of fuzzy DLs are concept ex-
pressions, roles (which can be object properties or datatype properties), and
individuals. Informally, the range of an object property is a concept, while the
range of a datatype property is a datatype predicate. For a datatype property
t, we allow concept expressions of the form Jt.d, where d is a possibly fuzzy
datatype predicate and role t is assumed to be functional and crisp.

A fuzzy ontology O is a finite set of fuzzy axioms. If 7 is a crisp axiom and
a € (0,1] is a rational number, then (r, ) is a fuzzy aziom, dictating that the
degree of truth of 7 is greater or equal than «. The value a can be omitted
and in that case a =1 is assumedﬂ Furthermore, in case 7 is a domain, range,
reflexive role restriction axiom, or a concept equivalence axiom, we postulate
that @ = 1 (see also [I3], [15]).

The syntax of fuzzy ELOT (D) is shown in Table 4l Other languages of the
fuzzy family are named as in the crisp case (see Remark , but in the fuzzy
case we allow fuzzy axioms.

Example 21. O3 = {(AC 3s.C N T N3s.{a},0.8),(C C B,0.7),(Is.B C B,0.6)}
can be seen as a fuzzy version of the ontology Oy in Example[3

The notion of nominal safeness is as for 5[:(9 , where a fuzzy concept
inclusion axiom is safe if the involved crisp concept 1nclusion is safe.

For a crisp E'EOI axiom 7, we say that (7, a) is in normal form if 7 is. We
extend the notion of normal form to fuzzy ELOT (D) by extending normal form
axioms to the cases:

(AC3td,a), (3t.dC B, o),

4Note that other non-numerical datatypes such as strings or dates can be treated as num-
bers as well.
5In that case, we also omit ( and ).
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where A,B e N U {L,T}.

Remark 22. Similarly as in the crisp case (Remark@, several important types
of axioms are representable in SL’I or more expressive logics: concept disjoint
axioms of the form C1MCy C L, role composition of the form ryorgo---or, C s,
and transitive role azioms of the form ror C r.

Semantics. Let us fix a fuzzy logic and a fuzzy concrete domain. Unlike classical
DLs in which an interpretation Z maps e.g. a concept C' into a set of individuals
CT C AT, j.e., T maps C into a function CT : AT — {0,1} (either an individual
belongs to the extension of C' or does not belong to it), in fuzzy DLs, Z maps
C into a function C* : AT — [0,1] and, thus, an individual belongs to the
extension of C' to some degree in [0, 1], i.e., CT is a fuzzy set.

Specifically, a fuzzy interpretation is a pair Z = (AZ,-T) consisting of a
nonempty (crisp) set AT (the domain) and of a fuzzy interpretation function X
that assigns:

1. to each atomic concept A a function AZ: AT — [0,1];

2. to T (resp. L) the function TZ(x) = 1 (resp. LZ(x) = 0);

3. to each object property r a function 7Z: AT x AT — [0, 1];

4. to each data type property t a function tZ: AZ x AP — {0, 1} such that

for all z € AT, for all vy, vy € AP if t7(x,v;) = 1 then v; = vy;

to each individual @ an element a? € AZ;

6. to each data value v an element vZ € AP such that for distinct values v,
and vy we have v7 # vZ.

o

Note that datatype properties are considered as functional and we further as-
sume they are crisp

The interpretation function -* is extended to complex concept expressions,
role composition and crisp DL axioms as shown in Table [d] and constrains the
identity role e such that ¢Z(x,z) = 1. We further assume that fuzzy interpre-
tations are witnessed [33], i.e., the sup and inf are attained at some point of
the involved domain. For instance, for all x € AZ there is y € AT such that
(Gr.C)* (z) = % (z,y) ® CZ(y).

A fuzzy interpretation Z satisfies (is a model of) a fuzzy axiom (7, ), de-
noted Z |= (7,a), if 77 > «, where 77 is defined in Table |4l Z satisfies (is a
model of) an ontology O, denoted Z |= O, if T satisfies each axiom in O. An
ontology O is consistent if it has a model, otherwise it is inconsistent. An axiom
(1, ) is entailed by a O, denoted as O = (1, ), if every model of O is a model
of (7, ). In that case we say that 7 is entailed to degree n w.r.t. O. A concept
C' is unsatisfiable w.r.t. O if O | C C L, otherwise C is satisfiable w.r.t. O.
The best entailment degree (bed) of a crisp DL axiom 7 w.r.t. O is defined as

A

bed(O, ) = sup{a|O | (1,a)} .

630 far, no meaningful example emerged requiring the contrary. Note that the reasoner
fuzzyDL [15] makes this assumption as well.
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Table 4: Syntax and semantics of fuzzy ELOT (D).

Syntax Semantics
Tndividuals
Individual a ot e AT
Roles
Object property r v AT x AT 5 00,1]
Data type property t tL. AT x AP {0,1}
Role chain ros (ros)f(z,y) = supzeAI{r‘I(z,z)@sZ(z,y)}
Concepts
Atomic concept A AT AT 5 j0,1)
Top T TL(z) =1
Bottom 1 LI(z) =0
Conjunction cnbD cnD)(z)=cT(z)® DL(x)
Object property restriction  3r.C @r.c) () = supyeAI{TZ(z, v) ® cL(y)}
Data property restriction 3t.d @t.d)L(x) = sup AD {tL (z,v) @ dP (v)}
Nominal {a} {a}T(z) =1 if T =z, else 0
Crisp DL Azioms
Concept inclusion cCD (cc oI = infreAI{CI(z) = DT ()}
Role inclusion rCs (rCs)T = infz’yeAI{'r-I(a;, v) = sL(z,y)}
Role composition riorg C s (riome C s)T = inf, eazilrio ro)L(z,y) = sT(x, )}
Domain restriction dom(r) C A (dom(r) C A)T = inf_ Az {{sup, AT rL(z, 9} = AZ(x)}
Range restriction ran(r) C A (ran(r) C A)T = inf__,7{l= infyeAI(rI(z, y) = AT (y)}}
Concept assertion C(a) (c@nT = cZ(aT) ‘
Role assertion r(a, b) (r(a, b))I = 'r'I(aI, bI)

In the following, we will restrict to the case of SFL and Godel fuzzy logics.
Before going on, we will add some useful remarks.

Remark 23. Please note that under SFL, if O = (C C D, a) then from o > 0 it
follows that for all models T of O and all x € AT we have that CT(z) < D*(x).
Specifically, note that if D is L then CT(x) = 0. Furthermore, this latter prop-
erty is also true for Godel logic and Product logic, but not for Lukasiewicz logic.

Remark 24. Like for Remark@ fuzzy concept assertions (C(a), ) and fuzzy
role assertions (r(a,b), ) can be represented in e.g. nominal safe fuzzy EEOI via
the mapping (C(a),a) = {{a} C C,a) and (r(a,b),a) — ({a} C Ir{b}, ) un-
der Gédel, Lukasiewicz and Product logics, but not under SFL, as for instance
({a} T C)F € {0,1} holds, for any fuzzy interpretation T (see Remark .

Remark 25. Since the implication used in the semantics of the concept in-
clusions satisfies the ordering property, the conditions for domain and range
restrictions are in agreement with Remark[17 in the sense that they are equiva-
lent to Ir. T C A and T C Vr.A, respectively.

Remark 26. Note that according to Table[4) the only difference between SFL and
Gédel logic for fuzzy Sﬁ(’)j (D) is related to the semantics of concept inclusion,
role inclusion, and role composition axioms.

An important consequence of Remark [26| about an inclusion axiom (7, &) under
SFL is that 77 € {0,1} for all fuzzy interpretations Z and, thus, under SFL
all truth values in concept inclusion, role inclusion and role composition axioms
can be replaced with the truth value 1. So, in the following, let 1(O) be as
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the &€ EOI (D) ontology O in which all concept inclusion, role inclusion and role
composition axioms (7, @) have been replaced with (r,1). Now, by Remark
as the semantics of fuzzy assertions is the same both for SFL as well as for
Godel logic, we have that

Proposition 27. Let O be an EEOI (D) ontology and ¢ a fuzzy ELZOI (D) az-
iom. Then the following statements are equivalent:

1. O = ¢ under SFL;
2. 1(0) = ¢ under SFL;
3. 1(0) & ¢ under Gédel logic.

Corollary 28. In agreement with Proposition[27, the following entailments are
easily verified:

1. (A(a),a), (AC B, ) = (B(a),a) under SFL;
2. (A(a),a),{A C B,1) E (B(a),a) under SFL;
3. (A(a),a),(AC B,1) = (B(a),a) under Gddel logic.

The consequence of Proposition is that fuzzy SEOI(D) under SFL is a
special case of fuzzy SEOI(D) under Godel logic. Hence, in the rest of this
paper we are not going to consider SFL further.

To simplify the writing and reading, we will denote a fuzzy DL L under
Godel logic with G-L£, while denote with L-£ the case Lukasiewicz logic is con-
sidered instead.

3.2. Reasoning in G-é’ﬁj and nominal safe G—Sﬁ(’)ir

At first, given the non-polynomial computational complexity results provided
in the related work section (see, e.g. [I7, 20} 21]), in what follows, to guarantee
a polynomial time reasoning algorithm, we will stick to Godel logics only.

Like for the crisp case, we start with the inference rules for the case of
assertion free G-EL£7 and then, will show how to easily extend it to cover nominal
safe G—&COI as well. At first, we focus here on the subsumption problem in
G—Eﬁj’_, i.e., on the problem to decide whether O = (A C B, ), where O is an
assertion free G-EL7 ontology and A, B € N U {1, T}

In the following, we are going to parallel the inference rules we have presented
for crisp assertion free ELT. We assume that whenever we have inferred (7, )
and (7, 3), the two axioms are replaced with (7, max(c, 3)). In this way, for
each 7, we have at most one fuzzy axiom involving it.

To start with, Figure shows the inference rules to transform a G-& EOI on-
tology, and thus also O, into normal form. The inference rules over a G—Sﬁir
ontology in normal form are depicted in Figure [5| instead.

In G-EL7T, given a fuzzy ontology O, let fclosure(O) be a set that is closed un-
der the rules in Figures [ and [5|applied to O. Note that indeed for (C' C D, ) €
fclosure(O) we always have a > 0.

"Note that like for the crisp case, O |= (C E D,a) iff OU{AC C,DC B} = (AC B,a),
where A, B are new atomic concepts.
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CiMLNC3ED,«
(FNg) e pa

Ty (CiNTNCLED, o)
(FNy ) Seresthay

(FNI) (Cll_ICHCQED,a)

) o
[CEAT) , (CinANC,Ch,a) * € # N U {4 T}, A new concept name

(3Ir.CCD,a)
(FNQ) (CCA1) (3r.ACD.a) :C ¢ Ng,A new concept name

CCD,«
(FN3) m: C,D ¢ N% U {Ll, T}, A new concept name

(BC3r.C,a)
(F'Na) (BEar Ay (aCoy : C # NG, A new concept name

CCED:1MDs,«x
(F'Ns) <cg<D1_,a>1 (C2;D>z,a> :

Figure 4: Normal form transformation rules for G—Sﬁ(’)IA

(FRO) m:AENg)U{L,T}
(FRl) m: C C T in normal form

(FRQ) 7:(2560

1\ (CiCC3,a1) (C2CC5,02)
(FRE) (CTEC3,Q1Z§O¢2§ 2

C . (AC n...nB,C
(FR%) (AEB1,a1)...(AC By o) (B1 BuCB.fB) A B, By e NOU{L, T}

(ACB,a1®...00,®B)

(AC3r.B,a1) (BCC,as)
(FRH) (AEHT.(IJ,(h@Ozz) :

1A, B,C,eNQU{L, T}, C#L1

(FRJ_) (AC3r.B,a1) (BCL,as)

. o
[ACL,01@05) :A,BeENgU{L, T}

(AC3r.B,a1) (rCs,az)
(FRH) T ooy A BENGU{LT)

riCro,a rolrs,a
(FRyp.) Gl

(FRO) (A1C3r1.B,a1 (BC3ra.As,an)) (rioraCs,as)

. o
(AC3s.Az,a1 ®@az®as) t A1, B, Az € Ng U{L, T}

Figure 5: Inference rules for G-E[ljr_ ontologies in normal form.
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Example 29. Given the fuzzy ontology O3 defined in Example the normal
form of N(Os) is

{{AC 35.C,0.8), (AC T,0.8), (3s.N,,0.8), (C C B,0.7),(3s.B C B,0.6)} .

It is easy to see that rule FR3 adds (A T 3s.B,0.7) to fclosure(N(O3)), while
rule FRL adds (A € B,0.6).

The following proposition, which is the fuzzy variant of Proposition [11} can be

shown (proof in [Appendix Al).

Proposition 30. In G—Sﬁi, let O be an assertion free fuzzy ontology and let
A Be€ Nf;. Then,

1. fclosure(O) can be computed in polynomial time w.r.t. |O).
2. O = (AC B,a) iff there is (AC B, ) € fclosure(O) with f > «, or
(AT L, B) € fclosure(0) [

Now, we present the fuzzy variants of Propositions [6] and [7] Like for the crisp
case, we define N (z) to be the result of replacing each occurrence of each nominal
{a} in expression & with N,. Then the following fuzzy variants of Propositions|6]

and [7] can be shown (proofs in [Appendix_A).

Proposition 31. In G-EﬁOI, let O be a fuzzy ontology and ¢ a fuzzy axiom
that do not contain atomic concepts of the form N,. Then,

1. if N(O) = N(¢) then O = ¢;
2. if N(O) = Ny C L for some a then O is inconsistent.

Proposition 32. In G-SEOI, let O be a nominal safe fuzzy ontology and ¢
a safe fuzzy GCI that do not contain atomic concepts of the form N,. Assume
that N(O) = N, C L for all a. Then,

1. O is consistent;

2. if O = ¢ then N(O) E N(9).
By Propositions [31] and and by Remark we get easily

Corollary 33. In G—SEOI, let O be a nominal safe fuzzy ontology and let
A Be€ ng. Then,

1. fclosure(N(©)) can be computed in polynomial time w.r.t. |O].
2. O E (AC B,«) iff there is (N(A) C N(B),8) € fclosure(N(O)) with
B> a, or (N(A) C L, B) € fclosure(N(0O)).

Remark 34. Note that if we restrict our attention to fuzzy concept subsumption
then rule F Ry« is in fact not needed.

8See Remark [23| for the case (A C L, 3).
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8.8. Reasoning with domain, range and reflexive role restrictions

We next address the case of fuzzy reflexive role, range and domain restrictions.
We recap that for such axioms, we postulated that the involved degree of truth
is always 1. We make the following fuzzy analogue restrictions of Section [2:2.2}
for ontology O, roles r, s, we write O - (r C s, ) iff 7 = s (in this case o = 1);
or O contains role inclusions

(ri Cro,an), ..y {tne1 Erp,an—1) withr =7 and s =r, witha=a1®...Qa,_1 .

Note that O F (r C s, a) implies a > 0. Furthermore, we write O - ran(r) C A
if there is a role s with O F (r C s,a) and ran(s) C A € O.
Now, the mentioned restriction is as follows:

(xf) If{rio...or,Cs,a) e Owithl <n<2and OFran(s) C
A, then O F ran(r,) C A.

Remark 35. Like for Remark the condition (xy) is true if the fuzzy role in-
clusion is a reflexive role restriction, a role hierarchy statement or a transitivity
statement.

Remark 36. Similarly to Remark[16, we postulate that Fuzzy OWL 2 EL, which
is the restriction of Fuzzy OWL 2 [13] to the OWL 2 EL sublanguage, needs to
satisfy the above-mentioned condition (xy). As discussed in Remark for the
crisp case, fuzzy 5[,(91' (D) with domain, range and reflexive role restrictions is
essentially the same as Fuzzy OWL 2 EL.

Reasoning. We next show how to deal with these additional axioms in order to
decide fuzzy concept subsumption. At first, by Remark [17|dom(r) C A can be
replaced, w.l.o.g., with a concept inclusion axiom (I».T C A, 1), and, thus, we
have not to deal with domain restrictions further. In order to support reflexive
role axioms, it is enough to adapt rules FRy, FRyg+, and F R, to consider the
case € C r as well. We next parallel the procedure for crisp SEOI to remove
range restriction axioms. Let us assume that O is in normal form. We proceed
as follows.

RangeElimination Step:

1. For each role r, let ranp(r) = {A | O Fran(r) C A}.
2. For each (C C 3r.B,a) € O, introduce a new atomic concept X, p.
3. Let O be obtained from O by removing all range restriction axioms and
performing additionally the following actions:
(a) exchange every (C' C 3r.B, o) with the axioms (C' C Fr.X, g, ), (X, g C B, 1),
and (X, p C A, 1) for all A € ranp(r);
(b) if eCr € O, then add T C A for all A € ranp(r).

As for the crisp case, the size of O is quadratically bounded by |O]. The
following is the fuzzy analogue of Proposition [18| (proof in |[Appendix Al).
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Proposition 37. In G—Sﬁir, let O be an assertion free fuzzy ontology, which
may contain range and reflexive role restriction axioms, and A, B € NS;. Then,
Ok (ACB,a) iff O E (AC B,a), where O’ has been determined by the
RangeElimination step.

Of course, by Propositions [31] and [32] and by Remark [24] we have that

Corollary 38. Proposz'tz'on holds also for nominal safe G—EC(’)I ontologies,
which may contain range and reflexive role restriction axioms.

Therefore, by Proposition

Corollary 39. In G—SEOI, subsumption can be determined in polynomial time
for nominal safe fuzzy ontologies, even in the presence of domain, range and
reflexive role restriction axioms.

Eventually, we address the best entailment degree problem. From [59] we know
that bed(O, A C B) has to be one of the truth values that occur in O and, thus,
a binary search over these values has been proposed to solve the best entailment
degree problem in general. However, like in [49], for the specific case of nominal
safe G-& £OI ontologies we can do better: indeed, by analyzing on how fclosure
is determined it turns out that the axioms in it are already “maximized” in
their truth and, thus, we immediately have the following:

Proposition 40. In G—&C(’)j_, let O be a nominal safe fuzzy ontology, which
may contain domain, range and reflexive role restriction axioms, and let A, B €
N% Then,

1. bed(O, A C B) = « iff « = max(f, B2) with
(a) 14 (A C B,v1) € fclosure(O) then 51 =y, else B1 =0;
(b) if (AT L,~s) € fclosure(O), then By =1 else Sy = 0.

2. bed(O, A C B) can be computed in polynomial time w.r.t. |O].

3.4. Reasoning with fuzzy concrete domains

To start with, it is easily verified that the inference rules in Figure [4] also apply
to G-£LOT (D) in the sense that they transform a G-££OT (D) ontology into
normal form. Therefore, in the following, we always assume that ontologies are
in normal form. Next, for ease of exposition, we recap the case of crisp concrete
domains before addressing fuzzy ones.

P-admissible crisp concrete domains. For the moment, let us restrict data type
predicates to {>,,<,,=,}. As a consequence, concept expressions of the form
3t.d are always crisp: i.e., for all interpretations Z, for all z € A%, we have that
(3t.d)*(z) € {0,1} (recall that we are assuming that ¢ is crisp). Furthermore,
let us assume that the ontology O is crisp as well. Then, Figure [f] illustrates
the inference rules for crisp concrete domains that are an adaption of the rules
CRY7 and CRS8 in [1] to our setting.
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(D ) AC3t.d,,...,AC3td, Ac N% U {Ll, T}, a new individual , and
1 ACL © {(3t.d1)(a),...,(3t.d,)(a)} unsatisfiable

3Jt.d occurs in O,
AC3t.dq,...,AC3t.d, ’
(Dg) = Al’ga;:.d* : A€ N% U {Ll, T}, a new individual , and

{@Etd)(a), ..., (3td.) (@)} E (3t.d)(a)

Figure 6: Inference rules for crisp concrete domains.

Remark 41. Please note that in rules (D1) and (D), given an atomic concept
A and datatype property t, the azioms A T 3t.d; are all those in the ontology
or inferred so far. Note also that in rule (D1), testing the (un)satisfiability of
{(3t.dy1)(a),..., (3t.d,)(a)} is the same as to test whether the set of constraints

di(t) = 1(1<i<n)

over rational-valued variable t and functions d; has a solution or not])
On the other hand, concerning (D3), the condition

{(Bt.dy)(a),. .., (3td.)(a)} E (Gt.d)(a)

equals to test whether the optimization problem

min d(t)
st. di(t)=1(1<i<n)

has solution 1.

As [1] shows, there are however some constraints on the fuzzy concrete domain
that need to be met to guarantee that these two rules are correct and the
procedure runs in polynomial time: this is called p-admissibility. The adaption
of the notion of p-admissibility as by [I] to our setting is as follows.

Definition 42 (P-admissible concrete domain). A concrete domain is p-admissible
if the following conditions hold:

1. satisfiability and entailment decision problems indicated in rules (D) and
(Dy) are decidable in polynomial time; and
2. convexity: if

U {Gtdi(e)} = @tdiu...u3td),)(a)

1<i<n

then

U {Btd)(@)} = (3t.d))(a)

1<i<n

for some 1 < j <m.

9Note that this reduction holds as the datatype property ¢ in 3t.d; is functional.
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Before moving to the fuzzy case, it is worth mentioning some remarks.

Remark 43. Note that the main difference to [1] is that convexity does not
require to involve various datatype properties, but we may stick to a datatype

property t only. That is, a direct translation of p-admissibility according to [1]
would be: if

U {(Gtdi)(@)} E Gtdi u...U3t,.d},)(a)

1<i<n

then

U {Gtid) @)} = (3.d))(a)

1<i<n

for some 1 < j < m. In our setting we may replace the t; and t;- with t.

The reason is due to the fact that in [1] (and also in [{9]) fuzzy concrete
domain predicates may be n-ary (n > 1) and, thus, may involve various datatype
properties, while in our setting (and that of Fuzzy OWL 2) concrete domain
predicates are unary only.

Remark 44. Note that the first condition on p-admissibility corresponds to
requiring that the optimization decision problems in Remark are decidable
in polynomial time. On the other hand, the second condition of p-admissibility
can be reduced to optimization decision problems as follows. Assume that the
optimization problem

min d)j(t)

has solution 1 as well.

Remark 45. [1] shows that {>,,=,} and {<,,=,} are both p-admissible, while
e.g. {<y, >y} is not. In the latter case note that

(3t. <10)(a) F ((3t. <5) U (3. >5))(a),
while

(3t.
(3t



ALC Jt.d , Q1) AC Eltdn; an, A e NQ U{L,T},a new individual , and
(FD1) AL : 1>AEL< = ) : {((Ht-i)(a),al), o
B ((3t.dy)(a), an)} unsatisfiable

AC3tdy,a1),. (AC 3td,, a,) A€ NS U {L, T}, 3t.d occurs in O,

a new individual , and

<A C Jt.d, 6> . 0 < B = bed(Ui<i<n{((3t.d;)(a), a;)}, 3t.d)

(F'Dy) <

Figure 7: Inference rules for fuzzy concrete domains.

Furthermore, [1] shows that the failure of the convexity property of D implies
that one may simulate concept disjunction on the right-hand side of GCls. In
fact, e.g. given O with azioms

A C Ft <y
d.<5 E B
dt.>5 C  Bs

B C B
B, C B

we have

O E ACB UBy
O E ALCB
O ¥ ACB;, (i=1,2).

Therefore, the subsumption problem in EL(D) becomes as hard as subsumption
i ELU, which is a EXPTIME-complete problem. Therefore, for non-convex
concrete domains D, the subsumption problem in EL(D) is EXPTIME-hard and,
thus, the inference rules in Figure[6 cannot be sound and complete in this case.

Fuzzy p-admissible concrete domains. For G-EL1Y, [49] provides similar rules
as CR7 and CR8 in [I]. In our setting, the inference rules for fuzzy concrete
domains are instead illustrated in Figure [7] and are an adaption of those in
Figure [0] to the fuzzy case.

Remark 46. Similarly to the crisp case (see Remark, in rule (FDy), testing
the (un)satisfiability of {{(3t.d1)(a), 1), ..., ((3t.dn)(a), an)} is the same as to
test whether the set of constraints

over rational-valued variable t and functions d; has a solution or not.
On the other hand, concerning (FDa3), determining

bed(UlSign{((Elt.di)(a), Oéi>}, Ehfd)
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equals to solve the optimization problem

min d(t)
st. di(t)>a; (1<i<n).

Of course, to restrict the computation to polynomial time and to guarantee com-
pleteness, we need to extend the notion of crisp p-admissibility to the fuzzy case
as well (see also [49]). Essentially, we need to guarantee that the rules (FDy)
and (F'Ds) are computable in polynomial time and that the set of concrete fuzzy
predicates is convex.

Definition 47 (Fuzzy p-admissible concrete domain). A fuzzy concrete domain
1s fuzzy p-admissible if the following conditions hold:

1. satisfiability and best entailment problems indicated in rules (FD1) and
(FD3) can be solved in polynomial time; and
2. convexity: if

B = bed(Ur<i<n{((3t.d;)(a), a5}, Gt.d; U ... L 3td’,)(a)) > 0

then
B = bed(U1<i<n{((Ft.di)(a), i)}, (3t.d’)(a))

for some 1 < j <m.
Let us now add a couple of remarks.

Remark 48. Similarly as Remark [[4), note that the first condition on fuzzy
p-admissibility corresponds to requiring that the optimization decision problems
in Remark[{0 are decidable in polynomial time. On the other hand, the second
condition of p-admissibility can be reduced to optimization decision problems as
follows. Assume that the optimization problem

min z
st dj(t) <z (1<j<m)
d;(t) > a; (1<i<n)

min dj(t)

has solution 3 as well.

Remark 49. [[9] shows that {rs(q—10,q) | ¢ € Q} and {ls(q,q+10) | ¢ € Q}
are both fuzzy p-admissible. Note that we may further add >, to the former and
<, to the latter, respectively, without losing fuzzy p-admissibility.

Note also that there can be non-convex fuzzy concrete domains using convex
fuzzy sets, e.g. {tri(g—1,q,q+1) | ¢ € Q} and {trz(¢—1,q,q+1,¢+2) | g€
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Q} are not convex and, thus, not fuzzy p-admissible, as the following example
illustrates. For convenience, let

d, = tri(0,1,2)
ds := tri(—0.5,0.5,1.5)
d; = tri(0.5,1.5,2.5) .

Then, it can be verified that
0.5 = bed({(3t.d1)(a),0.5), (Ft.d2 Ll (3t.d3)(a))
while

= bed({(3t.d1)(a),0.5), (3t.d2)(a))
= bed({(3t.d1)(a),0.5), (3t.d3)(a))

and, thus, {tri(q —1,q,q+ 1) | ¢ € Q} is not conver. Non convezxity introduces
disjunction: in fact, consider the ontology using the above triangular functions

O ={ ({a} C3t.dy,0.5),
Jt.d, C C,
3t.d; C D,
CC A,
DCAY.

Then, it can be verified that

O E ({a}CCUD,0.5)

O E ({a} CE A,05)

O FE {aCCa) (a>0)
O E ({a}ED,a) (a>0).

Therefore, disjunction on the right-hand side of GCls has been introduced and,
thus, the rules in Figure@ cannot be complete (see Remark for nominal safe
G—E[:Oj: (D) if fuzzy p-admissibility is not satisfied.

Moreover, as shown in [49], in the fuzzy case there is yet another problem that
has to be addressed.

Example 50. [/9, Example 11] shows that fuzzy concrete domains may affect
running time and truth set. Specifically, unlike nominal safe G-ELO, in which
the set of truth values in fclosure(Q) is the set of truth values occurring in an
ontology, this may no longer be true in presence of fuzzy p-admissible concrete
domains.
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In fact, consider the following nominal safe ontology O with axiomﬂ

({a} C 3Ft.rs(10,20),0.5)
Jt.rs(10,20) C A
A T 3trs(10.5,20.5) .

For O it is not difficult to see that, by applying the (incomplete) inference rule
set in [49], the degree of truth of A(a) increases each step by 0.05 until it reaches
1, i.e., O (A(a),1) holds. Therefore, polynomial execution time w.r.t. |O| is
not guaranteed.

Remark 51. Any crisp p-admissible concrete domain does not suffer of the
problem risen in Example [50,

To address the issue shown in Example [49] proposes two solutions, which
we adapt to the Fuzzy OWL 2 EL context, namely (i) restricting the usage of
fuzzy concrete domains; or (ii) using strict fuzzy p-admissible concrete domains.

Definition 52 (Loose fuzzy p-admissible concrete domain). A fuzzy p-admissible
concrete domain is loose if it satisfies the following DL language restriction:

e an expression t.d may only occur in the form
((Ft.d)(a),a), {a} ETtd,a), (FtAdCC,a)

where C' can be some arbitrary concept description as long as neither it,
nor any of its subconcepts, is an expression of the form 3t’.d’.

Definition 53 (Strict fuzzy p-admissible concrete domain). A fuzzy p-admissible
concrete domain is strict if it satisfies the following conditions: for all

o= |J {@Ed)@,a}

1<i<n

for all 3t.d" with
a = bed(O, (Ft.d")(a));

for all B € [0,1] with

o' = |J {((3tdi)(a), min(as, B))};

1<i<n
for all
O" = {{(Ft.d")(a),a”) | {((3t.d")(a),a”) € O and o > a}

it holds that

10We corrected the example as the original one seems not correct.

26



min(«, 8) = bed(O’, (3t.d")(a));
if O is inconsistent, then O is also inconsistent;

a occurs in O;
a = bed(O”, (3t.d")(a)).

- o

Essentially, the aim of the conditions of strict fuzzy p-admissibility is to avoid
the creation of new truth degrees. Of course, by Remark [51] any crisp concrete
domain, such as {>,,=,} and {<,,=,}, is strict fuzzy p-admissible. [49] also
provides a fuzzy variant =% of =, that is strict, which is defined over Q x [0, 1]:

_Qy,y _J if v/ =w
v (V) { 0 otherwise.

While checking whether a concrete domain is loose is easily verified, this seems
not immediate for the strict case. Nevertheless, we provide next two additional
useful alternatives, in order to increase the choice of fuzzy p-admissible concrete
domains in practice.

Definition 54 (Finitely-valued fuzzy p-admissible concrete domain). A fuzzy p-
admissible concrete domain D is finitely-valued if each fuzzy concrete predicate
d in D has as range the well-known set of truth degrees L,, (na > 2), where

1 2
Ln, = {0 1

, 1} .
ng — 13 ) na — 17 }
Please note that only concrete domain predicates are finitely-valued, while con-
cepts and roles need not to be. Clearly, in case of a finitely-valued fuzzy p-
admissible concrete domain D, no new truth degree may be created beyond
those appearing in a fuzzy ontology O and in

Lp = U L, .
d occurs in D

If we consider the size of D as a fixed parameter, so is |Lp|, which allows us to
compute fclosure(O) in polynomial time w.r.t. |O].

Next, we propose to define another type of p-admissible fuzzy concrete do-
main by adding some constraints on the occurrence of datatypes in an ontology
to avoid circular usage of a datatype property, so that no new truth degrees are
introduced. To this end, at first, we define the notion for G-££T (D) and then
extend it to G-ELOT (D).

So, consider an assertion free G—SEI(D) ontology O. We define next the
relation uses, denoted ~»p, as follows. Consider (C' C D,a) € O

1. if atomic concept A occurs in C and atomic concept B occurs in D then
A uses B, denoted A ~¢ B;

2. if atomic concept A occurs in C' and datatype restriction 3t.d occurs in
D then A uses tq, denoted A ~~p tq;
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3. if datatype restriction 3¢.d occurs in C' and atomic concept B occurs in
D then tq uses B, denoted tq ~~¢ B;

4. if datatype restriction 3t.d occurs in C' and datatype restriction 3t.d’
occurs in D then tq uses tq:, denoted tq ~~p ta:;

5. if x ~p tq and tgr ~o y, d # d’ and B = bsd(f), It.d M It.d’) > 0 then tq
uses td/, denoted td O td/;

6. if z ~p y and y ~o 2z then x ~¢ 2.

Now, we say that O is datatype cyclic if there is a datatype ¢ such that
ta ~o tar ~o td
with d # d’. If O is not datatype cyclic, we say that O is datatype acyclic.

Definition 55 (O-d-acyclic fuzzy p-admissible concrete domain). Given an
assertion free G—EEI(D) ontology O, a fuzzy p-admissible concrete domain D
is O-d-acyclic if O is datatype acyclic.

Given an assertion free G—&COI(D) ontology O, a fuzzy p-admissible con-
crete domain D is O-d-acyclic if N(O) is datatype acyclic.

Example 56. The fuzzy ontology in Example[50 is datatype cyclic.

It is easily verified that the acyclicity condition in O-d-acyclic concrete domains
guarantees that for each 3¢t.d occurring in O rule (FD3) may introduce a new
degree S not occurring in O at most once. Hence, the number of truth de-
grees that will occur in fclosure(Q) will be bounded by |O|, which allows us to
compute fclosure(O) in polynomial time w.r.t. |O|. The following proposition
then extends the results in [49] to finitely-valued and O-d-acyclic fuzzy concrete
domains.

Proposition 57. Proposz'tz'on holds for nominal safe G—EE(’)I(D) ontolo-
gies, which may contain domain, range and reflexive role restriction axioms,
if D is either a loose, strict, finitely-valued or O-d-acyclic fuzzy p-admissible
concrete domain (where we consider the size of D as a fized parameter).

Runtime p-admissible concrete domains. So far, a major restriction related to
fuzzy p-admissible concrete domains is the fact that one may not use triangular
or trapezoidal membership functions, as usually done in Fuzzy OWL 2 ontology
construction. To partially alleviate this restriction, we are going to introduce
now a new type of p-admissibility. For ease of exposition, we will first illustrate
it in the crisp case and then extend it to the fuzzy case.

So, consider a crisp ELT (D) ontology O and consider closure(O) computed
according to the rules in Figures 2 [3] and [6]

Definition 58 (Runtime p-admissible). A concrete domain is runtime p-admissible
w.r.t. O if the following conditions hold:

1. satisfiability and entailment decision problems indicated in rules (D1) and
(Ds) are decidable in polynomial time; and
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2. O-convexity: if closure(Q) contains

A C Fd; (0<i
Jtd; E Bj (1<j<m

and
U {Gtdi)(e)} = @td;u...u3td),)(a)
0<i<n
then
U {Btd)(@)} & (3t.d})(a)
0<i<n

for some 1 < j <m.

Essentially, the difference between p-admissibility and runtime p-admissibility
w.r.t. O consists in the convexity condition: in the former case it has to hold
independently from any ontology, while in the latter case convexity is restricted
to hold for expressions occurring in closure(Q) only. In fact, O-convexity en-
sures that rule (Ds) in Figure |§| does not omit inferences due to ‘disjunctive’
entailment relations among datatype restrictions after the inference process is
completed.

Remark 59. Note that if the O-convexity condition does not hold we may
simulate a disjunction on the right hand side of a GCI, in a similar way as it
is shown in [ (see also Remark[{5). In fact, suppose closure(O) contains

A C 3Ftd; (0<i<n)

Jtd; £ Bj (1<j<m)

and
U {Gtdi)(e)} = @Etdiu...u3td),)(a)
0<i<n
U {Gt.d)(@)} ¥ Gt.d))(a), for some 1<j<m
0<i<n
hold. Then
OFEACBU.....UB,,
but

OFACB (1<j<m)

and, thus, the inference rules for 5£I(D) are not complete for this case. To
this end, please note that if O further contains B; T B (1 < j < m), we have
Ok AC B, but AC B & closure(O).

Anyway, the following follows from the discussion so far:

29



Proposition 60. Let O be an assertion free Eﬁir (D) ontology and let A,B €
Nf;. If D is runtime p-admissible w.r.t. O, then

1. closure(©) can be computed in polynomial time w.r.t. |O|.
2. O=ACB iff AC B € closure(O) or AT L € closure(O).

Corollary 61. Proposz'tion@ holds also for nominal safe SEOI (D) ontologies,
which may contain range and reflexive role restriction axioms.

Example 62. Consider the concrete domain D with predicates {<,,>,}. As
illustrated in Remark[{3, D is not convex. Additionally, it is easily verified that
D is not O-convez w.r.t. the ontology O in Remark[{5 On the other hand, D
18 O’ -convex, where O is

A C 3t <y
jt.>s C B
C C 3t<s.

Note that the O'-convezity of D has the consequence of not affecting the com-
pleteness of the inference rules in the sense that Proposition [60 still holds for

O’ (but not for O in Remark[{5).

Runtime fuzzy p-admissible concrete domains. We next address the notion of
runtime p-admissibility w.r.t. a G-E£T (D) ontology O. Let fclosure(O) be com-
puted according to the rules in Figures [ [f] and [7]

Definition 63 (Runtime fuzzy p-admissible). We will say that a fuzzy concrete
domain is runtime fuzzy p-admissible w.r.t. O if the following conditions hold:

1. all satisfiability and entailment decision test made in fclosure(O), as indi-
cated in rules (FD1) and (FDs), are polynomial in time; and

2. O-convexity: if fclosure(Q) contains

(A C 7
(@td; C BB (1<j<m)

and
B = bed(U1<i<n{((Ft.d;)(a), a;)}, (Ft.di U...L3t.d],)(a)) >0

then

f = bed(Ui<i<n{{(3t.di)(a), ai) }, (3t.d})(a))

for some 1 < j <m.
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In Remark we have shown that convexity can be tested via optimization
problems. However, we still need to show that these optimization problems
can be solved in polynomial time. To this end, it suffices to show that the
generated optimization problems are indeed linear programming optimization
problems, that are known to be solvable in polynomial time [37]. In particular,

for d S {ls(fh»(h)aQ17QQ)»15”(CI1»(12;QS)atTZ(CI17QZaCIS7Q4)}a it suffices to show
that constraints of the form d(¢) > « and d(¢) < z with ¢t € [0,1],« > 0 and

z € (0, 1] can be represented as linear programming constraints.

e Let us start with the case d := Is(¢q1,¢2). For d(t) > a, as a > 0, it is not
difficult to see that

t<q—alg—q)

has to hold, which is clearly a linear programming constraint. Similarly,
for d(t) < z we have that

t>q2—2(2 — q1)
has to hold, which is a linear programming constraint as well.
e The case d := rs(q1, ¢2) can be worked out similarly.

e Consider now the case d := tri(q1,q2,q3). For d(t) > a, as a > 0, it is
not difficult to see that

aleg—q)+a <t<g—alg—q)

has to hold, which is a linear programming constraint. Concerning d(t) <
z, this condition can be represented as

1 <t<gqs
t<q+2(q2—q1) +qay
t>q3—2(q3 —q2) — (3 — q1)(1 —y)
ye{0,1} .

e At last, let us consider the case d := trz(qi1, g2, ¢3,94). It is not difficult
to see that this case parallels the one for triangular functions. In fact,
d(t) > « can be encoded as

algg—q)+q <t <q—a(q—qs),

while d(¢) < z, this condition can be represented as

G <t<q
t<q+2(¢2—q1) +qy
t>qs—2(qa—q3) — (e —q1)(1 —y)
y€{0,1} .
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Please notice that in case of triangular and trapezoidal fuzzy concrete domain
predicates, we have to introduce a new binary variable and so end up in that
case with a Mized Integer Linear Programming optimization problem (MILP),
which is known to be exponential in the number of binary variables [55]. So, in
general, if we consider a typical fuzzification of a datatype property (using an
L-function, an R-~function, and 3 triangular functions), for each such datatype
property, we introduce at most three binary variables. Taking into account that
in practice few datatype properties are usually fuzzified and, thus, it is expected
that very few triangular fuzzy concrete domain predicates are involved in an O-
convexity test, i.e., , at most three for each datatype ¢, we may consider their
impact as negligible from a practical point of view.

Definition 64 (Various types of runtime fuzzy p-admissible concrete domains).
Given a fuzzy ontology O, a runtime fuzzy p-admissible concrete domain D
is loose (resp. strict, finitely-valued, O-d-acyclic) if it is a loose (resp. strict,
finitely-valued, O-d-acyclic) fuzzy p-admissible concrete domain in which the
fuzzy p-admissibility condition is replaced with the runtime fuzzy p-admissibility
condition.

Proposition 65. Propositz'on holds for nominal safe G-SL’OI(D) ontolo-
gies, which may contain domain, range and reflerive role restriction axioms,
if D is either a loose, strict, finitely-valued, or O-d-acyclic runtime fuzzy p-
admissible (where we consider the size of D as a fixed parameter).

3.5. Reasoning with nominals

As we have seen in Remark |8 the inference rules set presented in [I] is in-
complete w.r.t. ££ and, thus, so are those presented in [49]. [35] illustrates an
alternative that is complete w.r.t. ELO. In the following, we will adapt and ex-
tend [35] to cope with (non-nominal safe) fuzzy ontologies as well: specifically,
we will address G-EL£O7T (D) ontologies with domain, range and reflexive role
restrictions.

As pointed out in [35] (see also Remark [§), a GCI such as

AC3Ir(Bn{a}), (1)

besides stating that every instance of A is r-connected to the individual a, it
also states that a is an instance of B if A has at least one instance, i.e., is non-
empty. In order to express such a conditional property, the main idea of [35] is
to use conditional GCIs, which are of the form

E:CCD,

where E,C and D are concepts and with semantics Z = E: C C D if ET # ()
implies CZ C DZ. Therefore, is equivalent to A C 3r.{a} and A: {a} C B.
Note that the latter condition also says that if A is non-empty then B is non-
empty, and that B has at least individual a as instance. To track implications
between non-emptiness of concepts, [35] further introduces a new type of axioms
C ~ D (C, D concepts), called reachability azioms, with semantics Z = C' ~ D
if CT # ) implies DT # ().
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Remark 66. Please note that the definite GCI C T D implies a conditional
GCI A: C C D for every concept name A, and is equivalent to the conditional
GCIsC:CCDand T:CLCD.

We are going now to extend these two notions to the fuzzy case. Specifically, in
the following, given a concept C' and a fuzzy interpretation Z, we write CZ # ()
if CZ(z) > 0 for some z € AZ. Now,

1. a conditional fuzzy GCI is of the form
(E:CCD,q),

where FE,C and D are concepts, a € (0,1] and with semantics Z
(E: C C D,a) if ET # () implies (C T D)* > «;
2. a reachability aziom is of the form (C, D concepts)

C~D
with semantics Z = C ~ D if CT # () implies DT # ().

We are ready now to present the new inference rules. So, to start with, without
loss of generality, we will assume that all G—EEOI GClIs are in normal form.
The inference rules for assertion free G-& EOI are presented in Figure and are
an extension of those presented for Sﬁir in Figure

The first ten rules (FORy) — (FOR,) are the natural extension of those in
Figure[5| The remaining rules (~q)— (~3) are an adaption of some rules in [35]
to our setting. Specifically,

e Rules (~¢) and (~»1) are a kind of initialization rules and stem from the
initialization conditions established in [35, Theorem 4];

e Rule (~3) is used to infer new reachability axioms via concept inclusion
axioms involving existential concept restrictions. Reachability axioms can
either be used to infer new reachability axioms, as with rule (~3), or to
derive new inclusion axioms via rule (~3). The crisp version of rule (~2)
is rule (RY,) in [35];

e Rule (~+3) is the fuzzy variant of rule (Ryy) in [35] and essentially allows
to infer new subsumption relations in case concepts are inferred to be
nominals (i.e., concepts A and B). Note that the rule is symmetric
w.r.t. A and B and, thus, if (E: A C B, 1) is inferred then also (F: B C
A, 1) is inferred as well. The degree of these conditional fuzzy GCIs is 1
as A and B are either empty or a nominal, in any model of the involved
ontology.

Now, given a G-£ELOT ontology O, let fclosure(O) be a set that is closed under
the rules in Figures [§] applied to O. Then the following extension to Proposi-

tion 30| can be shown (proof in [Appendix Al).

Proposition 67. In G-SE(’)I, let O be an assertion free ontology and let A, B €
N% Then,
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(FORO) m:AEN%U{L,T},EEN%
(FORl) m C C T in normal form, F € N%

(FORy) Frg PO EENg

1y (E: C1CCh,0n) (E: CoCCs,0m) o
(FORL) (E: C1CCs,01®0a2) 1B eNg

2\ (E: ACBi,0;)(1<i<n), (E: B1N...NB,CB,B) o o
(FOR;) (E: ACB,01 ®...Qa, ®8) :A,B,B; € Ncg U {l,T},E € Ncg

(E: AC3r.B,a;) (E: BCC,as)
(FOR3) B AT Coarday) tA,B,CeNQU{L,T},C#1,EeN?

E: AC3r.B,« E: BC1l,«
(FOR)) ( X Aglﬁ,ofl@%) 2) A,BENQU{L,T},EcNg

E: AC3Jr.B,« rCs,a
(FORpg) { <E:7AEHS.BI,>051<®0¢2> 2. A BeNQU{L T} EeN

(FORg+) (riCrz,an) (raErs.az)

(r1Ers,a1®az)

(E: A1C3r1.B,a;1) (E: BC3ry.As,az) (rioraCs,as) o o
(FOR,) (B AT 35 As or00s0as) {A1,B, Ay eNQU{L, T}, EeNg

(WO) EwE": E € N%
(Wl) Folal: E € N2, a occurs in O

E~A/{E: AC3r.B
(vog) 22 ’<EW§T ’a>;A,BeN£;u{J_,T},EeN£;

E~~AE~B,(E: AC{a},a1),(E: BC{a},a
(~3) : (E: IEXE}B,llé : {aha2) 4 peng UL T E NG

Figure 8: Inference rules for G-& EOI ontologies in normal form.
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1. fclosure(©) can be computed in polynomial time w.r.t. |O).
2. O = (AC B,a) iff one of the following conditions holds:
(a) (A: AC B,p) € fclosure(O) with 8 > «;
(b) (A: AC 1, B) € fclosure(O);
(c) (A: {a} C L,p) € fclosure(O).

Note that apparently, the crisp analogue of case 2¢) in Proposition [67] has not
been contemplated in [35, Theorem 4], which may possibly hint to an incom-
pleteness for this very specific case. Anyway, the correction is negligible@

The following example illustrates the behavior from an inference point of
view.

Example 68. Let us consider the ezample in Remark[8, and a normal form of
it, i.e., the ontology O with arioms

(1) AC IrC

(2) CCB

B)  CCH{a}

(4) A C 3s{a}

(5) 3s.BC B .
We know that O = A T B holds. According to Proposition @, let us show

that indeed we get A: A © B € fclosure(OQ). The following inference sequence
illustrates it:

5) A~ A (~0) applied to A

(6) A: AC3Ir.C  (FOR2) applied to (1) and A
(1) A~C (~2) applied to (5),(6)

(8) A~ {a} (~1) applied to A and {a}
(9) A:CC{a} (FOR3) applied to (3) and A
(10) A:{a}C{a} (FORy) applied to A and {a}
(11) A:{a}CC (~3) applied to (7) — (10)
(12) A:CCB (FORy) applied to (2) and A
(13) A:{a}CB (FORc) applied to (11), (12)
(14) A: AC 3s{a} (FORz2) applied to (4) and A
(15) A:3s.BC B  (FORz2) applied to (5) and A
(16) A:ACB (FORZ) applied to (13) — (15)

which concludes.

Dealing with domain, range and reflexive role restrictions in G-Sﬁ(’)j It is
easily verified that the procedure described in Section still applies for G-
SL’OI ontologies as well as the management of domain, range and reflexive role
restrictions is essentially a pre-processing step. Therefore, we have immediately
that Proposition |40| extents to G—Eﬁ@j as well.

1INote that cases 2b) and 2c) roughly say that “A has no instance” and, thus, the sub-
sumption relation between A and B holds.
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AeNQU{L, T}, EeNg,
(FDl) <E: A C thlv a1>,...,<E: A C Ht-d'm an> . a newfndi\{/idual},and “
B ACT C{{Btdi)(a), ), ...,
((3t.dy,)(a), an)} unsatisfiable

AeNQU{L, T}, EecNG,
<E: AC Elt-dla a1>a'~~7<E: ALC Eltdn, Oén> . 3td ofcurs in O, “

(E: AC 3td,pB) " a new individual , and
0 < B = bed(Ui<; <, {{((3t.di)(a), ;) }, 3t.d)

(FD3)

Figure 9: Inference rules for fuzzy concrete domains in G-£ ﬁOi (D).

Corollary 69. In G—E/J(’)I, let O be an assertion free fuzzy ontology, which may
contain domain, range and reflexive role restriction axioms, and let A, B € N%.
Then,

1. bed(O,AC B) = « iff « = max(f, B2, B3) with
(a) if (A: AC B,v) € fclosure(O) then 81 = 1 else 81 = 0;
(b) if (A: AC L,v5) € fclosure(O), then B2 =1 else B2 = 0.
(c) if (A: {a} C L,~3) € fclosure(O), then fs =1 else B3 = 0.

2. bed(O, A C B) can be computed in polynomial time w.r.t. |O].

Dealing with fuzzy concrete domains in G-€ EOI (D). The extension of our cal-
culus involving conditional fuzzy GCls to G-£LOT (D), i.e., G-ELOT with fuzzy
concrete domains, is immediate. In fact, it suffices to replace the two rules in
Figure [7] with the ones in Figure [9]

The following proposition shows that Propositions [57] and [65 extend to G-
ELOT (D) as well.

Proposition 70. Comllary@ holds for assertion free G—SﬁOI(D) ontologies,
which may contain domain, range and reflexive role restriction axioms, if D is
either a loose, strict, finitely-valued, or O-d-acyclic (runtime) fuzzy p-admissible
(where we consider the size of D as a fized parameter).

4. Related work

In this section we overview previous works considering fuzzy extensions of logics
of the £L family.

In [56] the authors consider G-£L£ with graded concept inclusion axioms and
non-graded (crisp) role composition axioms, and without assertion axioms. In-
ference rules are provided to decide in polynomial time graded subsumption.
The algorithm is essentially a fuzzy variant of the subsumption decision algo-
rithm for E£1T presented in [1], which is known to be incomplete, but restricted
to ELT.

In [10] interval-valued fuzzy EL£1T is addressed, but with non-graded (crisp)
role composition axioms. Here an interval o1, a] is attached to a crisp ELTT ax-
iom 7 to state that the degree of truth of 7 is in [ay,as]. In principle, this
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generalises the usual fuzzy DL case, which can be seen as an interval-valued one
with intervals restricted to be of the form [, 1]. In [I0], the authors state to
rely on Lukasiewicz logic for the semantics of DL operators and also proposes
a subsumption algorithm in the style of [56] extended to ££TT. However, the
results in [I0] apparently exhibit various issues. For instance, besides missing
various fuzzy variants of rules described in [I], (i) the rules cannot be complete
as [I] is known being not complete for unrestricted usage of nominals [39, 40} 4T]
(see also Remark [§)); (ii) the rules cannot be complete as the algorithm in [10]
runs in polynomial time, contrary to the results in e.g. [I7] that state that in L-
EL the graded subsumption problem cannot be a polynomially solvable problem
(see later on).

In [82], the authors consider the same language as in [56], i.e., G-EL with
graded concept inclusion axioms and non-graded (crisp) role composition ax-
ioms, but they provide a MapReduce algorithm to decide graded subsumption.

The series of papers [72][73, [76],[77] is essentially about fuzzy /ordered €L with
crisp roles and the addition of aggregation operators over concepts (see, e.g. [14])
in place of concept conjunction. Aggregation operators are more general than
concept conjunction and are used here to model user preferences. However,
these works apparently exhibit an intrinsic issue similar to [I0]. Indeed, the
provided polynomial complexity results seem incorrect: for instance, by choosing
an aggregation operator @ to be Lukasiewicz conjunction, the subsumption
cannot be decided in polynomial time [I7]. Similar problems occur for other
choices of @ such as, e.g., disjunction or weighted sum.

In [75], the authors present a paraconsistent variant of a fuzzy EL£71 without
concrete domains. Paraconsistency is obtained using bilattices (see, e.g. [31]).
Essentially, a fuzzy interpretation is made of two ingredients: (i) a positive fuzzy
interpretation function defining the degree of membership; and (ii) a negative
fuzzy interpretation function defining the degree of non-membership. No rea-
soning algorithm is provided. The approach is essentially an adaption of [58] to
the DL case.

Notably, the work [49] is an extension of [56] and addresses G-ELTT. Specif-
ically, it extends [56] with nominals and specific fuzzy concrete domains to
guarantee polynomial decision algorithms. However, like for [10], the inference
algorithm in [49] follows that in [I] and, thus, is incomplete w.r.t. nominals (see
also Remark . Another question mark concerns inference rules CR8a and
CRS8b, which do not clarify how one has to find out the value d referred in
them.

The series of works [I7, 20, 2T] consider fuzzy £L in the general case, i.e.,
in the case any t-norm ® is used. These works illustrate, for [0, 1]-valued fuzzy
EL, various cO-NP-hard results for: (i) 1-subsumption under Lukasiewicz logic;
and (ii) positive subsumption (deciding whether the subsumption degree is al-
ways greater than 0) if ® starts with Lukasiewicz t-norm. On the other hand,
ExpPTIME-hardness is shown in case ® contains Lukasiewicz t-norm, for: (i)
p-subsumption (p € (0,1]) for [0, 1]-valued fuzzy £L; and (ii) p-subsumption
for finitely-valued fuzzy £L. They also show some PTIME-completeness results
for: (i) positive-subsumption in [0, 1]-valued fuzzy EL if ® does not start with
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Lukasiewicz t-norm, (ii) 1-subsumption in [0, 1]-valued fuzzy £L if ® does not
start with Lukasiewicz t-norm and if roles are crisp and the inclusion axioms
are normalized, and (iii) p-subsumption for finitely-valued fuzzy L if ® does
not contain Lukasiewicz t-norm. Moreover, in [I8] the focus is on Lukasiewicz t-
norm. Among others, it is shown that for E-E£L, the complexity of reasoning
increases from PTIME to EXPTIME, even if only one additional truth value is
added to {0,1}. Also, adding role composition axioms to the language, i.e.,
in L-£L*, the complexity further grows to 2-EXPTIME. On the other hand,
if the truth space is [0, 1], reasoning in L-£L becomes surprisingly undecid-
able. A partial undecidability result regarding the product t-norm is also shown
in [I8], extending the result in [19]. All these results motivate also why we
stick to Godel logic here to guarantee a polynomial time subsumption decision
algorithm.

In [8, @], the authors consider a Datalog rewriting-based approach, inspired
by [41], to reason with G-EL1T. We envisage here at least two issues: (i) the
use of enumerated concepts of the form {o1,...,0,} (which introduces non-
determinism), while neither ££7+ nor OWL 2 EL support these constructs
(only nominal concept {o} is supported); and (ii) the support of generalized
fuzzy concrete domains, while the inferences rules do not address this feature.
Additionally, as [I, 47, 49] illustrate, concrete domains have to be somewhat
restricted to prevent intractability or even undecidability.

Somewhat less related to our work are [4] 29, B0] in which £L is extended
with threshold concepts, such as C>,,, where the belonging of an individual a
to a concept C' is graded by means of a priori fixed interpretation function and
then a belongs to the extension of C,, if the grade is greater or equal than n.
Such expressions, though different, somewhat recall threshold concepts defined
in Fuzzy OWL 2 (see [I3] [15]), but basically their logic is crisp. The authors
also provide various computational complexity results related to their logic.

In [42] 43, [45] [44] [70] an application using G-EL(D) is shown, by illustrat-
ing how one may learn automatically graded G-£L£(D) GCIs from crisp OWL
ontologies. This gives also a partial answer to the typical question related to
fuzzy DLs in general: where do the numbers in graded axioms come from.

Eventually, in [I1], the author discusses the impact of crisp concepts and
roles in some reasoning algorithms for finite fuzzy extensions of OWL 2 EL
based on a reduction to classical ontologies.

5. Conclusions and future work

In this work we have addressed the basics of Fuzzy OWL 2 EL under standard
and Godel semantics, which is essentially G-& /.:Iwith nominals, fuzzy concrete
domains, domain, range and reflexive role restrictions. We have provided reason-
ing algorithms and shown that instance/subsumption checking can be decided
in polynomial time. We have also shown how to reduce the so-called nominal
safe ontologies to ontologies without nominals, which simplifies the inference
rules set. We have further addressed fuzzy concrete domains by extending the
notion of fuzzy p-admissible concrete domains to some other alternative, useful
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cases that occur when modeling fuzzy ontologies. Finally, we have identified
some issues in related previous work (essentially incompleteness problems).

As future work, we plan to implement, evaluate and optimize our reasoning
algorithm within the fuzzyDL system [I5]. To this end it is also interesting
to develop analogue fuzzy inference rules to those, highly optimized, provided
in [36] for the crisp case. As already pointed out also for Fuzzy OWL 2 [16],
optimizing the inference rules may change radically the running time. Other
further directions include the development of the other two Fuzzy OWL 2 pro-
files, namely Fuzzy OWL 2 QL and Fuzzy OWL 2 RL. Some departing points
may be works such as [50} 51] 52, B4, 57, [61), [63] [64, 65, 67, [71], [74]. Here, an
interesting point would be to investigate which of the other extension that be-
long to Fuzzy OWL 2, such as fuzzy modifiers, aggregation functions, etc., may
be migrated, and under which restriction, to the Fuzzy OWL 2 profiles without
altering the computation property of their crisp counterpart.
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Appendix A. Proofs

In the following, let us consider the following definition of fuzzy canonical inter-
pretation.

Definition 71 (Fuzzy canonical interpretation). In G-ELI, let O be an asser-
tion free fuzzy ontology and assume that there is C' such that no (C T L, B) is
in fclosure(©). Then, the fuzzy canonical interpretation Z w.r.t. O is defined
as follows (max( =0).

AT = {zc | (CC L,B) ¢ fclosure(O) for every f > 0}
A(zc) = max{B|(CC A,pB) € fclosure(O)}
rf(za,25) = max{f|(ALC Ir.B,j3) c fclosure(O)} .

Note that 7 is well-defined as AT # ().

Proposition In G—Sﬁir, let O be an assertion free fuzzy ontology and let
A Be€ Nfg. Then,

1. fclosure(©) can be computed in polynomial time w.r.t. |O)|.
2. O = (AC B,«) iff there is (AC B, ) € fclosure(O) with 8 > «, or
(AT L,B) € fclosure(0)[7]

Proof. Computational complexity. As the inference rules in Figure @ an Figure[j]
are essentially a fuzzy extension of the inference rules for the crisp case, i.e.,
Figure [2|and Figure from Proposition |11]it follows easily that fclosure(O) can
be computed in polynomial time w.r.t. |O|.

Soundness. Now, it is easily verified that the inference rules in Figure [4
an Figure [5] are model preserving in the sense that if an interpretation Z is a
model of the antecedent of a rule then Z can be extended to a model of the
consequent of that ruleE Therefore, the inference rules are sound and, thus, if

12See Remark for the case (A C L, ).
13The extension of Z is needed for normal form transformations rules only due to the
introduction of new atomic concepts.
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there is (A C B, ) € fclosure(O) with 8 > «, or (AC L, ) € fclosure(O) for
some > 0 then O = (A C B, a).

Completeness. AsO = (AC B,«)iff O’ = (A C B, a), where O’ is a normal
form of O, w.l.o.g. and for ease of presentation we assume that O is already in
normal form.

Now, if (C C 1,5) € fclosure(O) with § > 0 for all concepts C then the
only if direction holds trivially. So, w.l.o.g. we assume now that there is C'
such that no (C'C L, ) is in fclosure(O). Next, consider the fuzzy canonical
interpretation Z w.r.t. O constructed as in Definition [71] which is well-defined
as AT £ .

Claim 1. For every atomic concept A such that no (A C L, B) is in fclosure(O),
x4 € AT and AT(x4) =1 hold.

Proof. Consider an atomic concept A such that no (A C L, 8) is in fclosure(O).
Then by construction of Z, 24 € AZ. Then by rule (FRy) we have that
(AC A1) € fclosure(O) and, thus, again by construction of Z, AZ(z4) =1. O

Now, let us prove the following claim.

Claim 2. For each xc € AT and each concept D, (C' T D, B) € fclosure(Q) for
some B > 0 implies D*(xc) > 3.

Proof. The proof is by case analysis on the structure of D. So, assume z¢c € AT
and (C C D, ) € fclosure(O) for some 8 > 0. Recall that (C C D,j) is in
normal form.

Case D = A: As (C C A, ) € fclosure(O), by construction of AZ, AZ(x¢) > f3.
Case D = T: As TZ(z) = 1 for all x € AT, we have TZ(z¢) = 1.

Case D = 1: This case is not possible as by the definition of AZ, (C C 1,3) &
fclosure(O) for every 8 > 0.

Case D = dr.B: Since axioms are in normal form, in this case C is an atomic
concept A and (A C Ir.B, B) € fclosure(O). Now, it cannot be the case
that (B C L,«a) € fclosure(O), as otherwise by rule (F R} ) we would have
(AC 1,8® «a) € fclosure(O) with f ® « > 0, contrary to the assumption
that 24 € AT. So, g € AT. By Claim we have BZ(zg) = 1. More-
over, as (A C 3r.B,3) € fclosure(Q), by construction of 7% we also have
that 7Z(z4,25) > B and, thus, (3r.B) (z4) > rZ(z4,25) ® BL(zp) =
rH(za,zB) > B.

This concludes the proof of the claim. O

Now, we proof the converse of Claim

Claim 3. Let C and D be two concepts such that C T D is in normal form. If
DI(z¢) > a > 0 then there is (C C D, B) € fclosure(Q) with B > a.
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Proof. The proof is by induction on the structure of D. In each case we assume
that D (z¢) > « and prove that there is (C C D, ) € fclosure(O) with 3 > a.

Case D = B: As BX(z¢) > a, by construction of Z there is (C' C B,j) €
fclosure(O) with 8 > a.

Case D = T: By rule (FRy) we have (C C T,1) € fclosure(O).
Case D = 1: This case cannot occur as 0 = J_I(acA) > «a > 0 is not possible.

Case D = 3r.B: In this case C is an atomic concept A. As DI(z4) > a,
by the definition of the 3 constructor and witnessed property, there is
g € AT such that a < (3r.BY (z4) = r%(za,25) ® BL(zg) and,
thus, rZ(z4,2g) > a and BX(zg) > a. By definition of 77 there is
(AC 3r.E, p1) € fclosure(O) with 81 > a. By induction hypothesis on zg
and B there is (E C B, 33) € fclosure(O) with Sz > «. By the (FR3) rule
(AC 3r.B, 1 ® Ba) € fclosure(O) with 81 ® B2 > a.

This concludes the proof of the claim. O

Eventually, we proof the following claim.

Claim 4. 7 is a witnessed model of O.
Proof. We prove that 7 satisfies each axiom in O.

Case (D; C Dy, 32). Consider zc € AT and assume D¥(x¢) = a. We have
to show that DI (z¢) > D¥(zc) ® B2 = a ® B2. Now, by Claim
there is (C' C Dy, 1) € fclosure(O) with 81 > a. By the (FRL) rule
we have (C'C Dy, 1 ® B2) € fclosure(O). Eventually, by Claim_ we
have Dy” (z¢) > 1 ® f2 > a ® fa.

Case (r C s, 32). Assume 7Z(z4,25) = a. We have to show that s?(z4,75) >
a® Bo. By definition of 7%, (A C Ir.B, 31) € fclosure(O) with £; > a. By
the (FRy) rule, (A C 3s.B, 81 ® fa) € fclosure(O) and, thus, by definition
of 7, st (xa,28) > f1® P2 > a® Ba.

Case (ry ory C s, 8). Assume (rq o 7“2)1(1',4, 2p) = « holds. We have to show
that sZ(za,2p) > a®fs. As (r o TQ)I(LIZ‘A, rp) = athereis zp € AT such
that 712 (x4, 2p) = a1 and 797 (zp, 23) = o with oy ®as = a. Therefore,
by definition of r;7, (A C 3r1.D, ay) € fclosure(O) and (D C Jre. B, ag) €
fclosure(©). Then, by the (FR,) rule, (AC 3s.B,a ® f2) € fclosure(O)
follows (recall that a; ® as = a). Therefore, by definition of sZ, we have
that sZ(za,28) > a ® Ba.

Eventually, as fclosure(O) is finite, the set of truth values involved in the con-
struction of 7 is finite and, thus, Z is witnessed. This concludes the proof of the
claim.

O
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We are ready now to complete the whole proof of the proposition. So, assume
O (AC B,«). If for some 5 >0, (AC L, 8) € fclosure(O) then the proposi-
tion trivially holds. Otherwise, assume (A C 1, 8) ¢ fclosure(O) for all 8 > 0.
Therefore, the fuzzy canonical interpretation Z is well-founded as A% # () and by
Claim Z = O. As thereisno (A C L, S) in fclosure(O), by Claim za € AT
and AT(z4) = 1. AsT = (A C B, a), we have that BZ(z4) > a® AL(14) = a.
Therefore, by Claim [3] there is (A C B,3) € fclosure(Q) with 8 > «a, which
concludes. O

Proposition In G—gﬁ(’)j, let O be a fuzzy ontology and ¢ an azxiom that
do not contain atomic concepts of the form N,. Then,

1. if N(O) = N(¢) then O = ¢;
2. if N(O) = Ny C L for some a then O is inconsistent.

Proof. The proof is essentially the same as for [30, Lemma 5].

1. Assume N(O) = N(¢) holds, but O = ¢. Then, there is a fuzzy in-
terpretation Z such that Z | O, but Z £~ ¢. Let us define a fuzzy
interpretation J by setting A7 = AT, NJ = {a®}, A = AT for A# N,
(for all @) and R7 = RZ. As N(-) merely replaces each {a} with N, and
N7 = {a®}, for every axiom v that does not contain atomic concepts of
the form N, we have Z = ¢ iff 7 = N(¢). AsZ = O and T [~ ¢, it
follows that J = N(O) and J [~ N(¢), which contradicts the assumption
N(O) = N(®).

2. Assume N(O) = N, C L for some a. Then, by point 1. (¢ := {a} C 1),
O E {a} C L follows, i.e., O is inconsistent.

O

Proposition In G-EEOI, let O be a nominal safe fuzzy ontology and ¢
a safe GCI that do not contain atomic concepts of the form N,. Assume that
N(O) £ N, C L for all a. Then,

1. O is consistent;

2. if O |= ¢ then N(O) = N().

Proof. The proof is an adaption of [36], Theorem 4]. By applying the rules
in Figure |4 to N(O), w.l.o.g. we may assume that N(O) is already in normal
form. Now, assume that N(O) £ N, C L for all a. Let J be the fuzzy
canonical interpretation w.r.t. fclosure(N(Q)). Note that J is well-defined and
A7 contains, for each individual a, a distinguished individual z, with, by
Claim [1] applied to J, NJ (zy,) = 1. By Claim [4 applied to J, J = N(O).
Now, let us define a fuzzy interpretation Z with AZ = A7, AT = A7 for atomic
concept A, rZ = r7 for role r, and a’ = z, for individual a. Then,

Claim 5. For every SEOI concept D, for all zc € AT:

1. if D is safe then D*(xc) = N(D) (x¢);
2. if D is n-safe then D¥(xc) < N(D)7 (z¢).
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Proof. The proof of point 1. is by induction on the structure of D. The only
non-trivial case of the induction is for D = Jr.{a}. At first, let us show that
Fr{a})t(zc) < 3Fr.N,) (zc). As al = N,, 3r{a})t(zc) = rf(zc,at) =
rt(zc,on,) = r(zc,2n,) = 17 (20, zn,) @ NS (zn,) < (3r.Na)7 (xzc) holds.
Vice-versa, let us show that (Ir.{a})Z(zc) > (Ir.N,)7 (z¢). Consider z¢ €
AT = AT If (3r.N,)7 (zc) = 0 then the inequality holds trivially. Otherwise,
let us assume (3r.N,)7 (z¢) > 0. By definition of J and its witnessed model
property, there is xx € A7 with (3Ir.N,) (z¢) = r7 (zc,75) ® N (zg). By
definition of 7 there is (C' C Ir.E, B;) € fclosure(N(0)) with 81 = r7 (zc, 2E).
By definition of N, there is (E C N,, 32) € fclosure(N(Q)) with 83 = N7 (z).
Therefore, by rule (F'R3), (C T 3r.Ng, 1 @ B2) € fclosure(N(O)). Therefore,
by construction of 7, 77 (zc,xn,) > B1®@Be = 17 (v, 25) @ NI (zg). As al =
ey, 7T =17, 3rf{a})(zc) = 7 (zc,at) = rT(zc,7n,) = 77 (20, 7N,)
7 (zc,7r) @ NJ (rg) = (3r.N,)7 (z¢). Therefore, we have (Ir.{a})%(zc)
(Ir.N, )7 (x¢), which concludes point 1.

Let us now prove point 2. If D is safe, point 2. follows from point 1. Oth-
erwise, let D = {a} and N(D) = N,. If {a}*(z¢) = 0 then point 2. holds
trivially. Otherwise, assume {a}(z¢) > 0, that is, {a}?(z¢) = 1 and, thus,
rc = al = xx,. In this case, by Claim [1| applied to J, we have N (z¢) =
N7 (zn,) =1 = {a}*(zn,) = {a}*(x¢), which concludes. O

IAA

We now show that Z = O. In fact, for role inclusions or composition axioms
¢ € O, since J = N(O), N(¢) = ¢ and T interprets roles as J, we have Z = ¢.
It remains to show that Z = ¢ for all fuzzy GCIs ¢ € O. So, let ¢ € O be of the
form (C' C D,a). We have to show that for z € AT, D¥(x) > a ® CZ(z) holds.
By assumption, ¢ is safe, that is C' is n-safe and D is safe. Then, for € AT by
Claim CT(z) < N(C) (x) and D*(z) = N(D)7 (z). Moreover, as J = N(O)
and N(¢) € N(O), J = N(¢) holds. That is, N(D)7 (z) > N(C)7 (z) ® a. As
a consequence, D*(x) = N(D)7 (z) > N(C)Y (r) ® a > C*(x) ® a and, thus,
T = ¢. As a consequence, Z is a model of O and, thus, Z is consistent, which
concludes the proof of point 1. of the proposition.

Let us now prove point 2. So, let ¢ be a safe fuzzy GCI (C C D, o) with
O E ¢ and a > 0. Without loss of generality, we may assume that D is an
atomic concept, while C' is either a nominal or an atomic concept. In fact, it is
easily verified that O | (C C D, a) it OU{B C D} = (C C B, «a), where B is
a new atomic concept and, thus, B C D is safe. If further C is not a nominal,
as C' is safe, we have OU{BC D} E(CC B,«a) ifft OU{AC C,BC D} |
(A C B, «), where A is a new atomic concept and, thus, A C C is safe.

So, let O be safe and let ¢ be a fuzzy GCI (C C D, «a), with O | ¢, where
D is an atomic concept B and C' is either a nominal {a} or an atomic con-
cept A. Now, if (N(C)C L,a) € fclosure(N(O)) then, by Proposition |30}
N(O) = N(¢). Otherwise, assume there is no (N(C) C L, «) € fclosure(N(O)).
Therefore, by construction of J and Z, zn ¢y € A7 = AT. Moreover, as O = ¢
and Z = O, T = ¢ follows. Now, we analyze the two cases of the form of C.

Case C' = A. If C is an atom A then A = N(A),z4 = zy(4) and, thus, by
Claim [1] applied to J, AZ(x4) = A7 (z4) = 1. AsZ = ¢, BT (z4) =
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BI(z4) > a® AT(z4) = a > 0 follows. Therefore, by Claim [3| applied to
J, there is (A C B, 3) € fclosure(N(O)) with 8 > a.

Case C = {a}. Assume Cisanominal {a}. AsZ = ¢and o = zn,, B (zn,) =
Bf(a?) > a > 0 follows. Again, by Claim [3| applied to J, there is
(N, C B, ) € fclosure(N(O)) with 5 > a.

Therefore, in both cases above, by Proposition 30, N(O) = N(¢) follows, which
concludes the proof. O

Next we address Proposition [37} We start with the following Lemma.

Lemma 72. Consider Gédel logic and suppose T = ran(r) C A, then for all
y € AT, AT(y) > sup eaz (2, y).

Proof. Assume 7 |= ran(r) C A. Then by definition,

inf {1 = inf {r'(zy) > A4} =1

zEAT
iff  inf inf {r¥(z,y) = AT(y)} =1
1 wlenAI ylenAI{T (33, y) (y)}
M inf inf T = AZ =1.
1 ylenAI xlenAZ{r (.T, y) (y>}

Therefore, for all y € AT,

inf () = AT =1 (A1)

Next, we show that indeed Eq. implies that

sup 1% (z,y) < A%(y) (A.2)
reAT
holds for all y € AT,
So, assume Eq. holds. Therefore, for all z,y € AL, rZ(z,y) = AZ(y) =
1. Now, for y € A*, suppose to the contrary that sup,caz rI(z,y) > AL(y)
holds. Then there is z € AT such that r(z,y) > A%(y) and, thus, 1 =
rI(z,y)) = AT(y) = AZ(y) < r(x,y), which cannot be the case. Therefore, we
have sup,caz 1% (z,y) < AT(y) and, thus, Eq. holds, which concludes the
proof.
O

Now, we are ready to proof Proposition

Proposition In G—Sﬁi, let O be an assertion free fuzzy ontology, which
may contain range and reflexive role restriction axioms, and A, B € N%. Then,
O = (ACB,a) iff O' = (AC B,«a), where O' has been determined by the
RangeElimination step.
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Proof. For the < direction assume O’ |= (A C B,«a) and consider Z = O. Let
us extend Z to interpretation 7, by setting AY = AT and interpreting

X7p(y) = sup r*(z,y) ® B (y) .
zeAT

Let us show that J | O’. It suffices to show that J satisfies the new axioms
added during the RangeElimination step. So, consider (C C 3r.B,a) € O.

Case (C C Ir.X, g,a). We have Z = (C C Ir.B,a). Now, for all z € AT =

AI
(3. X,5)7 (@) = sup 17 (z,y) ® X 5(y)

yeEAT

= sup 17 (z,y) ® sup 17 (z,y) ® BX(y)
yeAZ ze AT

= sup r’(z,y) @ BX(y)
yeAT

= (@r.B)(x),

and, thus, J = (C' C 3r.X, p,«a), which concludes.

Case (X, 5 C B,1). We have X;5(y) = sup,cazr?(z,y) ® BE(y) < B%(y)
and, thus, J = (X, p C B, 1).

Case (X, p C A,1). Consider A € ranp(r). It suffices to show that for all
y € AT, AT(y) > X;ZB(y) = sup,eaz 7 (z,y) ® BX(y) holds. As T = O,
we have 7 |= ran(r) C A and, thus, by Lemma [72] we have

AT (y) = A'y)

> sup r7(z,y)
rxeAT

sup ¥ (z,y) © B (y)
zEAT

X{B(y) ’

Y

which concludes.

Now, from J = O, by assumption J |= (A C B, «) follows. As J is the same
as Z on A and B, T E (ALC B,a) holds, and, thus, O | (A C B, «), which
concludes the < direction.

For the = direction, assume O’ = (ALC B,«). We will show that O
(AC B,a). From O [£ (ALC B,a) there is J E O st. J = (AC B,a).
Note, J may not be a model of O as it may not satisfy some range restriction
in @. We are going to define now an interpretation Z, built from J, that will
be a model of O. Specifically, let Z be defined as J except that Z interprets
role differently: for z,y € Al = A7 let

rHay) =r@y) e 1 A7) .

A€ranp(r)
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To show that Z = O, we only consider the axioms in O that may be influenced
by the definition of Z.

Case (C C 3r.B,a) € O. Inthis case O’ contains (C C Ir.X, p, ), (X, g C B, 1),
and (X, 5 C A, 1) for all A € ranp(r). Consider z € AZ. Then by con-
struction of Z and by the fact that [J satisfies the former three type of
axioms, we have

a@Cl(z) = a®C’(z)
(Ir.X,.5)7 (z)

sup r7(z,y) © X 5(y)
yeAL

sup 7 (zy)@ ([ A)7(y)© B (y)
yeAT A€ranp(r)

= sup r’(z,y) ® B*(y)
yeAT

= (EIr.B)I(x) ,

IN

IA

which concludes this case.

Case (Ir.AC B,a) € O. In this case, (I AC B,a) € O and, thus, J E
(Ir.A C B,a). Now, for x € AT we have

BX(z) = BI(2)
a® (37‘.14)‘7(3;‘)
a® sup 7 (z,y) @ A7 (y)

v

yeAL

> a®@suwp () @AW ( [1 E)(y)
yeAT Ecranop (1)

= a®@ sup r*(z,y) @ A(y)
yeAT

= a® (@A) (2),
which concludes this case.

Case cCreO. Inthiscase e Cr € O, T C A€ O for all A € ranp(r),
and, thus, J satisfies all these axioms. Therefore, Vo € A7 we have that
r(z,x)=1and,as TC A€ O, 1= A7 (z) = AZ(x) holds. Therefore,

rf,2) = (@a)e( 1 A)7()
A€ranp (1)

rd (x, )

)

which concludes this case.
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Case (s Cr,a) € O. In thiscase (s C r,a) € O and, thus, J = (s C r,«) and,
by definition, ranp(r) C ranp(s). Then, by definition of Z, for z,y € AT
we have

a®st(z,y) = avs’/(@y)o( [ A7)
A€ranp(s)

< awsl(@ye( [1 A7)
A€ranp (r)

< ayel T A7

Aé€ranp(r)
= (=),
which concludes this case.

Case (riorg Crya) € O. In this case (rporg Cr,a) € O and, thus, J =
(r1 072 C 7, ) and from the syntactic constraint (%), we have that ranp (1) C
rano(rz). Now, by definition of Z we have

a® (riorm)(zy) = a® sup ri(z, 2)®@ri(z,y)
z€AT
= a@sup r{(z,2)@( [1 A)7(2)
z€AT A€ranp(r1)
earf(zye( M A7y
A€ranp(r2)
< a@sup Y (z,2)ord (ny)2( 1 A)7(y)
z€AT Aé€ranp(r)
< a®(mor)/(@ye( 1 A7y
A€ranp(r)
< @ye( 1 A7)
A€ranp (1)
= 1 (z,y),

which concludes this case.

Case ran(r) C A € O. Tt suffices to show that for all z,y € AT, AZ(y) >
rZ(x,y) holds. Consider x,y € AZ. Then, as A € ranp(r)

@ye( [1 B
Beranop (1)

< r(z,y)® A7 (y)

< AJ(y)

= Ay,

™ (x,y)

which concludes this and all cases.

Therefore, Z = O. As for x € AT, AT(z) = A (2),BI(z) =
J FE (AC B,a), we have that Z - (A C B,a) and, thus, O [~ (4
which concludes the proof.
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In the following, let us consider the following definition of fuzzy conditional
canonical interpretation.

Definition 73 (Fuzzy conditional canonical interpretation). In G-EE@I, let O
be an assertion free fuzzy ontology and assume that there is neither (A: AC L, )
nor (A: {a} C L, ) in fclosure(O), for all 8 > 0. Then, the fuzzy conditional
canonical interpretation Z w.r.t. O is defined as follows (max® = 0).

AT = {zc| A~ C € fclosure(O), and V3 >0 (A: C C L, ) ¢ fclosure(O)}

Bf(z¢) = max{f|(CC B,p) € fclosure(O)}
r(zp,,xp,) = max{B|(B; C Ir.By, ) € fclosure(O)}
aI = I{a} .

Note that by rule (~q), A ~ A € fclosure(O) and, thus, by construction,
ra € AT # (). Moreover, by rule (~1), A ~ {a} € fclosure(O) and, thus, by
construction, zyq) € AZT. Therefore, the interpretation Z is well-defined.

Proposition In G-Sﬂ(’)ir, let O be an assertion free fuzzy ontology and let
A Be€ Nf;. Then,

1. fclosure(©) can be computed in polynomial time w.r.t. |O|.
2. O E (A C B,a) iff one of the following conditions holds:
(a) (A: AT B, p) € fclosure(O) with 5 > a;
(b) (A: AC L,B) € fclosure(O);
(c) (A: {a} C L,p) € fclosure(O).

Proof. Without loss of generality, we may assume that O is in normal form.

Computational complexity. The computational complexity result is inherited
from Proposition [30] as (i) rules (FORy) — (FOR,) extend those in Figure
without any non-polynomial blow-up; and (ii) the remaining rules (~() — (~3)
can be applied in polynomial time and generate at most |O]? new axioms.

Soundness. Soundness can be proven exactly as for Proposition [30] by show-
ing that each rule is model preserving in the sense that if an interpretation Z is
a model of the antecedent of a rule then Z is a model of the consequent of that
rule.

Completeness. The proof follows the completeness of Proposition So,
assume that O | (A C B, «a) holds. If there is (A: AC 1, 3) € fclosure(O) or
(A: {a} C L, B) € fclosure(O) for some 8 > 0 then the (=) direction holds triv-
ially. Otherwise, assume that there is neither (4: AC L, 8) nor (A: {a} C L, /)
in fclosure(Q), for all § > 0. Next, consider the fuzzy canonical interpre-
tation Z w.r.t. O constructed as in Definition which is well-defined as
{r(a),za} C AT #0.

Now, it is not difficult to see that the analogue of Claims [I]- [] hold here as
well:

Claim 6. For every A € N such that no (A: AC L,B) is in fclosure(O),
x4 € AT and AT(z4) =1 hold.
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Proof. The proof is as for Claim Consider A € NS@Z such that no (A: AC 1,5)
is in fclosure(Q). By rule (~(), A ~> A € fclosure(O) and, thus, by construction
of Z, z4 € AT. Then by rule (FORy) we have that (A: A C A, 1) € fclosure(O)
and, thus, again by construction of Z, AZ(x4) = 1. O

Claim 7. For each xc € AT and each concept D, (A: C C D, ) € fclosure(O)
for some 3 > 0 implies D*(xc) > j3.

Proof. The proof is the same as for Claim [2| For illustrative purposes we con-
sider here only

Case D = Jr.B: As axioms are in normal form, C € Nfg. Now, consider
(A: C T 3r.B, ) € fclosure(O). It cannot be the case that (A: BC L, «) €
fclosure(O), as otherwise by rule (FOR)) we have (A: CC L,f®a) €
fclosure(O) with B®a > 0, contrary to the assumption that zc € AZ. So,
rp € AT. By Claim we have BZ(x) = 1. Moreover, as (A: C' C 3r.B,8) €
fclosure(Q), by construction of rZ we also have that 7 (z4,25) > 8 and,
thus, (3r.B) (z4) > (x4, 25) ® BX(zp) = 1 (za,x5) > B.

O

Claim 8. Let C and D be two concepts such that C T D is in normal form. If
DI(z¢) > a > 0 then there is (A: C C D, 8) € fclosure(O) with 5 > «a.

Proof. The proof is the same as for Claim [3| For illustrative purposes we con-
sider here only

Case D = 3r.B: In this case C € NQ. As DZ(z¢) > «, by the definition of
the 3 constructor and witnessed property, there is zz € AT such that
a < (HT.B)I(Q:C) = rH(zc,zp) ® B (zg) and, thus, % (zc,zp) > «
and BZ(zg) > a. By definition of rZ there is (A: C C Ir.E,B) €
fclosure(O) with 81 > «. By induction hypothesis on xp and B there
is (A: EC B,B2) € fclosure(O) with 2 > «. By the (FOR3) rule
(A: C C 3r.B, 31 ® B2) € fclosure(O) with 81 @ B2 > a.

O
Claim 9. 7 is a witnessed model of O.

Proof. The proof is the same as for Claim {4} For illustrative purposes we con-
sider here only

Case (D1 C Dy, 33). Consider ¢ € AT and assume D¥(z¢) = a. We have
to show that D (zc) > D¥(2¢) ® B2 = a ® B2. Now, by Claim |8 there
is (A: C C Dy, 1) € fclosure(O) with 31 > a. By the (FORL) rule we
have (A: C' C Do, 1 ® B) € fclosure(O). Eventually, by Claim we have
Dy (xc) > B1® B2 > a @ fa.

The argument supporting Z being witnessed is the same as for Claim O
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We are ready now to complete the whole proof of the proposition. So, as-
sume O = (AL B,a). Recall that we have assumed now that there is nei-
ther (A: AC 1,5) nor (A: {a} C L, ) in fclosure(O), for all g > 0. So, we
know that the fuzzy canonical interpretation Z is well-founded and by Claim [9]
Z = O. By Claim@, za € AT and AZ(z4) = 1. As T = (AC B,a),
we have that BZ(z4) > a ® AZ(x4) = a. Therefore, by Claim |8} there is
(A: AC B, p) € fclosure(O) with 8 > «, which concludes. O
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