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EditordNon-operating room anaesthesia (NORA) involves

administering sedation and anaesthesia outside the traditional

operating room setting for diagnostic and therapeutic proced-

ures, with the goal of enhancing patient comfort during these

interventions. However, deeper levels of sedation carry an

increased risk of complications, such as airway obstruction or

respiratory arrest. This risk is particularly heightened when

using drugs such as propofol that have a narrow therapeutic

index.1,2 Complications induced by deep anaesthesia are

frequently accompanied by a burst suppression pattern on

electroencephalography (EEG) (i.e. a period of spindle-like or

rapid spiking activity [bursts]), followed by a flat line phase of

isoelectric suppression. Burst suppression is detectable

exclusively by using EEG and is correlated with an increased

risk of postoperative cognitive impairment, particularly in

older patients.3e5 Monitoring brain activity during anaesthesia

is critical for detecting burst suppression, and processed EEG

tools, such as the bispectral index (BIS),6 are commonly used.

Nonetheless, processed EEG might lead to imprecise

assessments of anaesthesia depth, especially in sedation

scenarios where susceptibility to interference from movement

artifacts is heightened.

The aim of this study was to assess the interpretative

capability of both NORA and operating room staff using raw

EEG traces obtained from a single dry-electrode device for

sedation monitoring during NORA. The device utilised is the

NeuroSky MindWaveMobile-2 (San Jose, CA, USA)7 which uses

a single dry electrode positioned on the forehead above the eye

(Fp1) to transmit EEG data wirelessly via Bluetooth to a
For Permissions, please email: permissions@elsevier.com
compatible tablet or computer. The Brain Raw Visualizer app8

was used to visualise the raw EEG waveform.

The study was conducted at the Endoscopy Unit of Santa

Maria Maddalena Hospital (Volterra, Pisa, Italy) between

October 2022 and January 2023 (Clinical Trial Registration:

NCT05584904). It included all members of the NORA and

operating room staffs, 18 nurses (15 female, three male) and

eight anaesthesiologists (five women, three men). None of the

participants possessed prior familiarity with EEG interpreta-

tion, and all fulfilled the study requirements.

EEG experts conducted a training course involving all study

participants with the goal to familiarise them with the primary

EEG patterns observed during awake and anaesthetised states.

BIS and Neurosky EEG data were collected concurrently for the

training course and the evaluation test from 10 consecutive

patients undergoing colonoscopy under sedation. None of the

training course EEGs were used for the evaluation test. EEG

traces that were stable for 4 s and consistent with clinical con-

ditions were selected. Using the Observer’s Assessment of

Alertness/Sedation (OAA/S) scale9 to assess clinical status and

the accompanying EEG BIS values, each EEG segment was clas-

sified into three real rank values as follows: level 1, OAA/S 1,

deep sedation, BIS <65; level 2, OAA/S 2e4, intermediate state,

BIS from66 to85; and level 3,OAA/S5, light sedation, BIS>86.10,11

Twelve traces acquired from Neurosky systems, four for

each real rank value (Fig. 1), were individually and randomly

presented to participants for the final evaluation test. None of

these were utilised during the course. Participants were

instructed to indicate the number corresponding to the
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Fig 1. Sedation levels and EEG changes. The central column displays the 12 raw EEG traces utilised for the test, whereas the right column

showcases the corresponding digital BIS values. BIS, bispectral index.
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sedation level (1, 2, or 3) for the presented raw EEG trace. The

data obtained from participants’ responses were analysed

using R Studio version 4.0.3 (R Foundation for Statistical

Computing, Vienna, Austria). Because of the non-normal dis-

tribution of data, a non-parametric KruskaleWallis test was

utilised to compare participants’ scoring to real rank values. A

significance of P<0.05 was applied, followed by post hoc Dwass-

Steel-Critchlow-Fligner pairwise comparisons. A confusion

matrix was used to visualise the classification made by
participants’ scoring regarding the true class real rank values.

This matrix illustrates the number of accurately and inaccu-

rately classified observations for each sedation level (1, 2, 3).

The data analysis indicates that the majority of participants

accurately interpreted raw EEG tracings for light sedation

(80.8%) and deep sedation (89.4%), with no significant differ-

ence between them (P>0.05). However, accuracy was lower

when interpreting intermediate sedation stages compared

with both light and deep sedation (P<0.001 for light vs
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intermediate; P<0.003 for deep vs intermediate). The confusion

matrix results (see Supplementary Table S1) showed mis-

classifications primarily between levels 2 and 3, with 6.4% of

level 3 answers misclassified as level 2, and 15.7% of level 2

answers misclassified as level 3.

These findings indicate that a majority of participants

accurately interpreted levels of light and deep sedation. How-

ever, interpreting intermediate sedationwasmore challenging.

The study achieved an overall accuracy rate of 74.4% for clas-

sifying the three sedation levels. These findings align with

previous studies underscoring the significance of structured

training in enhancing interpretation of raw EEG traces.12e14

Our study underscores the effectiveness of a single dry-

electrode device in accurately assessing depth of sedation

during NORA. It offers valuable insights into the interpretative

ability of non-expert staff using raw EEG traces, emphasising

the need for training to improve accuracy, particularly in dis-

tinguishing between intermediate sedation and the awake

state. Despite certain device limitations, such as constraints

related to patient positioning and absence of shielding in the

presence of electrosurgical units, our study supports direct

EEG interpretation by anaesthesiologists, and should

encourage development of user-friendly and affordable in-

struments tailored for personal use beyond the operating

room. The reliability of raw EEG interpretation, particularly in

deeper stages of sedation preceding burst suppression and

total suppression, is crucial for ensuring the safety of vulner-

able patients and special populations, such as older patients

who may be more susceptible to the harmful effects of

excessive sedation. Further research with larger and more

diverse populations is recommended to explore device effec-

tiveness in various clinical settings and populations.
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