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Abstract. Inspired by the modelization of 2D materials systems, we characterize
arrangements of identical nonflat squares in 3D. We prove that the fine geom-
etry of such arrangements is completely characterized in terms of patterns of
mutual orientations of the squares and that these patterns are periodic and one-
dimensional. In contrast to the flat case, the nonflatness of the tiles gives rise to
nontrivial geometries, with configurations bending, wrinkling, or even rolling up
in one direction.
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1. Introduction

The serendipitous isolation of graphene in 2004 [25] attracted enormous interest
on the physics of 2D materials systems. Driven by their fascinating electronic and
mechanical properties [34], research on 2D systems is currently witnessing an ex-
ponential growth. Beyond graphene [2,16], 2D material systems are continuously
synthetized and investigated [7,9,19,36] and findings are emerging at an always
increasing pace, ranging from fundamental understanding to applications [1].

Free standing 2D material samples are often not flat, but rather present rippling
patterns at specific length scales [18]. The origin of such nonflatness is currently de-
bated, one possible explanation being the instability of perfectly flat arrangements
at finite temperatures, as predicted by the classical Mermin-Wagner theory [22,23].
In the case of graphene, ripples have been experimentally observed [20,24], compu-
tationally investigated [12], and analytically assessed [13,14]. The phenomenon is
however not restricted to graphene, and surface rippling has been detected in other
2D systems as well [5,30]. Understanding the global geometry of 2D materials is of
the greatest importance, as flatness is known to influence crucially the electronic,
thermal, and mechanical behavior of these systems [8,10,33,35].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00032-022-00350-5&domain=pdf
https://orcid.org/0000-0002-7170-0261
http://orcid.org/0000-0002-2059-9001
http://orcid.org/0000-0002-3969-2716


132 M. Friedrich et al. Vol. 90 (2022)

θ∗

θ∗

θ∗θ∗

Figure 1 The regular nonflat square.

In this paper, we tackle the question of flatness of 2D systems with square sym-
metry. Our interest is theoretical and our arguments are not tailored to a specific
material system. Still, we remark that square-like 2D crystals have been predicted in
selenene and tellurene [32]. We formulate the problem in the setting of molecular me-
chanics [3,17,26] by associating to each point configuration a scalar configurational
energy and focusing on its ground states in the quest for optimal geometries [4,15].
In the square-symmetric case, each atom has four first neighbors and the topology
of the configuration is that of the square lattice Z

2 [21]. The configurational en-
ergy is assumed to feature both two- and three-body effects [6,27,29], depending
on bond lengths (distances between atoms) and angles between bonds, respectively.
We present conditions ensuring that global minimizers of the configurational energy
have all bonds of equal length, all angles formed by bonds to first neighbors of equal
amplitude θ∗, and the four first neighbors of each atom are coplanar. As a result,
minimal cycles of four atoms form regular squares featuring equal sides and equal
angles θ∗, see Fig. 1. Such identical squares arrange then in an infinite 3D configu-
ration, which under the above provisions we call admissible and which we interpret
as the actual geometry of the crystal.

The goal of this paper is to classify all admissible configurations, namely all
possible 3D arrangements of identical regular squares. In case the squares are flat,
namely if θ∗ = π/2, the result is straightforward: the only configuration of flat
squares where all first neighbors of each atom are coplanar is the plane. In order
to tackle genuinely 3D geometries, we hence need to focus on the case θ∗ < π/2
instead, which induces nonflatness, as per Fig. 1.

Our main result is a complete characterization of admissible arrangements of
identical regular nonflat squares in 3D, see Theorem 2.8. We prove in particular that
admissible configurations can bend, wrinkle, and roll in one direction and that such
flexural behavior is completely characterized by specifying a suitably defined section
of the configuration in the bending direction, see Fig. 4 below. More precisely, one
classifies patches of four squares sharing an atom (4-tiles) in six different classes,
in terms of their mutual orientation, see Fig. 6. We prove that just three of these
classes actually give rise to admissible configurations, that the whole geometry is
specified by knowing the pattern of such classes, and that such pattern is periodic.

One can visualize the square in Fig. 1 as (the boundary of) a nonflat tile. Our
result can hence be interpreted as a classification of all possible tilings with such
nonflat tiles under the condition that the four neighbors of each atom are coplanar.
The relevance of this coplanarity condition is revealed by considering the limiting flat
case. In case tiles are flat and the four neighbors of each atom are coplanar, the only
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possible tiling is the plane. By dropping the coplanarity requirement, we however
allow for tilings ensuing from foldings of the reference square lattice Z

2 along a
set of parallel coordinate directions. Thus, the coplanarity requirement serves the
purpose of excluding the effect of the symmetry of the reference lattice on the onset
of nontrivial geometries.

In the case of hexagonal symmetry, the characterization of global arrangements
of regular nonflat hexagons has been obtained in [13,14]. To some extent, the results
in this paper for squares are akin to the hexagonal case, for in both cases the
arrangement shows some distinguished one-dimensional patterning. Compared with
the hexagonal setting, the present square-symmetric case is however much more
involved. This is an effect of the different symmetry of the underlying reference
lattices. In the square case, arguments require to consider the detailed geometry of
patches of up to sixteen neighboring squares, which makes the combinatorial picture
much richer.

The paper is organized as follows. Section 2 is devoted to the statement of our
main results. The molecular-mechanical model is discussed first and the detailed
geometry of ground states is assessed. A first description of admissible configurations
is presented in Theorem 2.2. We then introduce the concept of 4-tile and of its type,
collect all possible types and classes, and discuss the possibility of attaching two
4-tiles by analyzing the corresponding boundary, see Lemma 2.6. This eventually
paves the way to the statement of our main result, namely the characterization of
Theorem 2.8. Section 3 is entirely devoted to the proof of the main result, hinging
both on combinatorial and geometrical arguments. Some proofs are postponed to
the Appendix in order to enhance the readability of the arguments.

2. The Setting and Main Results

2.1. Ground States of Configurational Energies

We focus on three-dimensional deformations y : Z
2 → R

3, defined on the two-
dimensional reference lattice Z

2. For any open subset Ω ⊂ R
2 we define the config-

urational energy of a deformation on Ω by

E(y, Ω) :=
1
2

∑

(x,x′)∈N1(Ω)

v2

(|y(x) − y(x′)|) +
1
2

∑

(x,x′)∈N2(Ω)

v2

(|y(x) − y(x′)|)

+
1
2

∑

(x,x′,x′′)∈T (Ω)

v3

(
�y(x) y(x′) y(x′′)

)
, (2.1)

where

N1(Ω) :=
{
(x, x′) : x, x′ ∈ Z

2, x ∈ Ω, x′ ∈ Ω, |x − x′| = 1
}

(2.2)

denotes the set of nearest-neighbors and

N2(Ω) := {(x, x′) : x, x′ ∈ Z
2 ∩ Ω, |x − x′| =

√
2;

(x − x′) · e1 > 0 ifx ∈ ∂Ω or x′ ∈ ∂Ω} (2.3)
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is the set of closest next-to-nearest-neighbors. Moreover, by �y(x) y(x′) y(x′′) we
denote the bond angle in [0, π] at y(x′) formed by the the vectors y(x) − y(x′) and
y(x′′) − y(x′), where the set of triplets T (Ω) is defined by

T (Ω) := {(x, x′, x′′) : (x′, x) ∈ N1(Ω), (x′, x′′) ∈ N1(Ω), x �= x′′}. (2.4)

The factor 1/2 reflects the fact that bonds {y(x), y(x′)}, (x, x′) ∈ N1(Ω) ∪ N2(Ω),
and bond angles �y(x) y(x′) y(x′′) appear twice in the corresponding sums. Let us
point out that in order to take surface effects at ∂Ω properly into account, bonds
{y(x), y(x′)} are only counted once if {x, x′} ∈ N1(Ω) and either x ∈ ∂Ω or x′ ∈ ∂Ω,
or if {x, x′} ∈ N2(Ω) and x ∈ ∂Ω or x′ ∈ ∂Ω. Bonds where {x, x′} ∈ N1(Ω) with
x ∈ ∂Ω and x′ ∈ ∂Ω are not counted at all. This asymmetry of counting bonds is
motivated by the specific choice of the cell energy, see Sect. A.5.

We assume the two-body interaction potential v2 : R
+ → [−1,∞) to be of short-

range repulsive and long-range attractive type. In particular, we assume that v2 is
continuous and attains its minimum value only at 1 with v2(1) = −1. Moreover,
we suppose that v2 is decreasing on (0, 1), increasing on [1,∞), and that v2 is
continuously differentiable on (1, 2] with v′

2 > 0 on (1, 2]. The three-body interac-
tion density v3 : [0, π] → [0,∞) is assumed to be strictly convex and smooth, with
v3(π) = 0.

In the following, we will be interested in minimizing the energy of a configura-
tion on the whole reference lattice. To this end, we define the normalized energy of
y : Z

2 → R
3 by

E(y) = sup
m∈N

1
(2m − 1)2

E(y, Qm), (2.5)

where Qm ⊂ R
2 is the open square centered at 0 with sidelength 2m. A deformation

is called a ground state if it minimizes the energy E.
For a fine characterization of the minimizers, some additional qualification on v2

and v3 will be needed. More precisely, we suppose that there exist small parameters
η, ε > 0 such that

v2(1 − η) > 3 + 4v2(
√

2) + 8v3(π/2), (2.6)

v2(1 + η) > −1 + 4v2(
√

2) − 4v2(
√

2(1 − η)2) + 8v3(π/2), (2.7)

v3(θ) > 2 + 2v2(
√

2) + 4v3(π/2) if θ ≤ π/2 − η, (2.8)

(�1, �2, θ) �→ 1
4
v2(�1) +

1
4
v2(�2) + v2

((
�21 + �22 − 2�1�2 cos θ

)1/2
)

+ v3(θ)

strictly convex on [1 − η, 1 + η]2 × [π/2 − η, π] and

strongly convex for θ ∈ [π/2 − η, π/2 + 3η], (2.9)

|v3|, |v′
3| ≤ ε in a neighborhood ofπ, (2.10)

0 < −2
√

2
√

1 − cos θv′
3(θ) < � sin θ v′

2

(√
2�

√
1 − cos θ

)

for � ∈ [1 − η, 1] and θ ∈ [π/2 − η, π]. (2.11)

Properties (2.6)–(2.7) entail that first-neighbor bond lengths range between 1 − η
and 1+ η, whereas (2.8) ensures that bond angles are not significantly smaller than
π/2. Eventually, assumptions (2.9)–(2.11) yield that the contributions of first and
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second neighbors are strong enough to induce local geometric symmetry of ground
states, i.e., bonds and bond angles will be constant, see (2.12)–(2.14) below.

Note that the assumptions (2.6)–(2.11) are compatible with a choice of a den-
sity v2 growing sufficiently fast out of its minimum. In particular, the quantitative
Lennard–Jones-like case of Theil [28] (see also [11,31]) can be reconciled with
assumptions (2.6)–(2.7), upon suitably choosing densities and parameters. Let us
however remark that the specific form of (2.6)–(2.11) is here chosen for the sake
of definiteness and simplicity. Indeed, these assumptions could be weakened, at the
expense of additional notational intricacies. Under the above assumptions we have
the following result, where we set N1 := N1(R2), N2 := N2(R2), and T := T (R2)
(see (2.2)–(2.4)).

Proposition 2.1. (Ground states). Let v2 and v3 be the above-introduced two- and
three-body-potentials satisfying assumptions (2.6)–(2.11). For η small enough and
ε = ε(η) small enough there exist � ≤ 1, θ < π/2, and δθ < π only depending on
v2 and v3 such that a deformation y : Z

2 → R
3 is a ground state of the energy E if

and only if y satisfies

|y(x) − y(x′)| = � for all (x, x′) ∈ N1, (2.12)

and

�y(x) y(x′) y(x′′) = θ for all (x, x′, x′′) ∈ T with (x, x′′) ∈ N2, (2.13)

as well as

�y(x) y(x′) y(x′′) = δθ for all (x, x′, x′′) ∈ T with (x, x′′) /∈ N2. (2.14)

Here, the conditions (x, x′′) ∈ N2 and (x, x′′) /∈ N2 correspond to the case that
the vectors x − x′ and x′′ − x′ form an angle π/2 or π, respectively, in the reference
lattice. We will see later that δθ is uniquely determined by θ due to a geometric
compatibility condition, see Lemma 2.4 below.

The proof of Proposition 2.1 is similar to the one in [13, Proposition 3.1] and
is postponed to Appendix A.5. At this stage, let us just comment on the effect
of condition v′

2 > 0 in a neighborhood of
√

2, see (2.11), which guarantees that θ
is strictly smaller than π/2. Indeed if v′

2 = 0 in a neighborhood of
√

2, we would
obtain � = 1 and θ = π/2, i.e., y(Z2) would coincide with Z

2 up to isometries. For
θ < π/2 instead, ground states exhibit interesting nontrivial geometries. The aim of
this paper is precisely that of characterizing these nontrivial geometries.

2.2. Necessary Conditions for Admissibility

Deformations y : Z
2 → R

3 satisfying the conditions (2.12)–(2.14) are called admissi-
ble. Without restriction, we suppose for notational convenience that � = 1. Indeed,
this can be achieved by replacing y by 1

�y without effecting the geometry of admis-
sible configurations.

Obviously, conditions (2.12)–(2.13) constrain the local geometry of configura-
tions: let {x1, x2, x3, x4} be a simple cycle in Z

2, called a reference cell , where here
and in the following the labeling is counterclockwise and counted modulo 4. The
image via y is the simple cycle {y1, y2, y3, y4}, where yi = y(xi), called an optimal
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(b) Optimal cell of form �

Figure 2 The two optimal cells, defined via the vector p and the
normal vector of one face. For the sake of illustration, they are po-
sitioned in such a way that p is parallel to e3, which is why here
y1 · e3 = y3 · e3 and y2 · e3 = y4 · e3. In symbols, we indicate optimal
cells with � or �, according to the direction of the lower diagonal.

cell . Since θ < π/2 from (2.13), optimal cells are not flat. Indeed, the sum of interior
angles is strictly less then 2π, i.e.,

∑4
i=1 �yi−1 yi yi+1 = 4θ < 2π, see also Fig. 2.

The kink of an optimal cell can equivalently be visualized as occurring along
the diagonal x3 − x1 or along the diagonal x4 − x2 of the corresponding reference
cell. We set m1 := (y1 + y3)/2 and m2 := (y2 + y4)/2 and define p := m1 − m2.
Let n be the normal vector of the triangle formed by y1, y2, and y4, in direction
(y2 −y1)× (y4 −y2). Then, we say that the optimal cell is of form � if p ·n > 0 and
of form � if p · n < 0, see Fig. 2. An optimal cell of any form can be transformed
into a cell of the other form simply via a rotation by π/2 along the vector p or via
a reflection with respect to the plane with normal p.

Our goal is to provide a complete characterization of admissible configurations.
In a first step, we will present necessary conditions for admissibility in terms of
optimal cells. To obtain a complete characterization, we will subsequently present
a refined formulation in terms of so-called 4-tiles, namely, 2 × 2 groups of optimal
cells, see Sect. 2.5. To state our first main result, we need to introduce some further
notation.

Form function. Given a reference cell {x1, x2, x3, x4} labeled in such a way that
for the lower-left corner x1 we have x1 = (s, t), we define the barycenter z of the
reference cell via z(s, t) := (1/2+ s, 1/2+ t). Thus, z(Z2) = Z

2∗, where Z
2∗ denotes

the dual lattice of Z
2. For an admissible configuration y, we define the form function

on the dual lattice τy : Z
2∗ → {�, �} as the map assigning to each reference cell

the form of the optimal cell in the deformed configuration. In other words, the
deformation y maps a reference cell with barycenter z(s, t) to an optimal cell of
form τy(z(s, t)). In the sequel, we simply write τ for notational convenience.

Incidence angles. We define the diagonals d1 = (1, 1) and d2 = (−1, 1). For i =
1, 2, we indicate signed incidence angles along the diagonal di for each bond of the
configuration via the mappings γi : ((Z + 1/2) × Z) ∪ (Z × (Z + 1/2)) → [−π, π]
defined as follows: first, for s, t ∈ Z, (s+1/2, t) parametrizes the horizontal bond in
the reference lattice connecting (s, t) and (s+1, t), and (s, t+1/2) parametrizes the
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(s, t)

z(s, t)

(s + 1, t)

(s + 1, t + 1)(s, t + 1)

(s+1/2,t)

(s+1/2,t+1)

(s,t+1/2) (s+1,t+1/2)

(a) Parametrization in the reference
lattice.

y1
bot

y1
top

(y1
top−y(s,t))

(y1
bot−y(s+1,t))

(b) Definition of the incidence angle
along d1 for a horizontal bond. The
shaded areas correspond to the bond
planes.

Figure 3 Notions for Theorem 2.2.

vertical bond in the reference lattice connecting (s, t) and (s, t + 1), see Fig. 3A. In
the following, we explicitly give the definition of the incidence angle γi(s + 1/2, t),
i = 1, 2, for horizontal bonds. The definition associated to vertical bonds follows
analogously, up to a rotation of the reference lattice by π/2.

Consider a horizontal bond parametrized by (s+1/2, t), which is shared by the
two cells with barycenters z(s, t−1) = (s+1/2, t−1/2) and z(s, t) = (s+1/2, t+1/2).
By ni

top we denote the unit normal vector to the plane spanned by the points y(s, t),
y(s+1, t), and yi

top := y((s, t)+vi), with direction (y(s+1, t)−y(s, t))×(yi
top−y(s, t)),

where for convenience we set v1 := d1 = (1, 1) and v2 := (0, 1). Analogously, we
let ni

bot be the unit normal vector to the plane spanned by y(s, t), y(s + 1, t), and
yi
bot := y((s + 1, t) − vi) with direction (y(s, t) − y(s + 1, t)) × (yi

bot − y(s + 1, t)),
see Fig. 3B.

Then, for all s, t ∈ Z, the signed incidence angles along the diagonal di of
horizontal bonds are given by

γi(s + 1/2, t) =
{

arccos(ni
top · ni

bot) if (yi
top − yi

bot) · (ni
top − ni

bot) ≥ 0
− arccos(ni

top · ni
bot) if (yi

top − yi
bot) · (ni

top − ni
bot) < 0.

(2.15)

Making use of the introduced notation, we are now in the position of formulat-
ing our first result. This is a simplified version of the later Theorem 2.8 and provides
necessary conditions on the existence of admissible configurations.

Theorem 2.2. (Basic structure of admissible configurations) There exists γ∗ ∈ (0, π),
depending only on θ, such that for every admissible configuration y : Z

2 → R
3, pos-

sibly up to reorientation of the reference lattice, the following holds true:

• (Constant form function along d1) We have τ(s, t) = τ(s + 1, t + 1) for all
s, t ∈ Z.

• (Vanishing incidence angle along d1) We have γ1(s+1/2, t) = 0 = γ1(s, t+1/2)
for all s, t ∈ Z.

• (Incidence angle along d2) It holds that γ2(s, t) = γ2(s+1/2, t+1/2) ∈ {±γ∗, 0}
for all s, t ∈ 1

2Z with s + t ∈ Z + 1/2.
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κ∗

Figure 4 An admissible configuration (left). Since the form function
is constant along the diagonal d1, as indicated by the orange area,
the same pattern repeats periodically and all necessary information
is contained in one cross section as shown on the right. The angle
κ∗ is defined in (2.17). The defining bond planes for vertical (on the
right) and horizontal (on the left) bonds of the incidence angles γ1

(orange) and γ2 (yellow) are marked, indicating that γ1 = 0 �= γ2.

This theorem implies that ground states are essentially one-dimensional, in
the sense that they can be characterized as two-dimensional deformations of one-
dimensional chains, see Fig. 4. Indeed, due to τ being constant along d1, any cross
section along d2 contains the same information. In particular, admissible configu-
rations can be any combination of flat, rolled-up/down areas in relation to the fact
that the incidence angle along d2 can be 0 (flat areas), −γ∗ (rolled-up areas) or +γ∗

(rolled-down areas).
In the next subsections, we will present a refined version of Theorem 2.2, namely

Theorem 2.8. We will show that Theorem 2.8 below implies Theorem 2.2. In Sect. 3
we then prove Theorem 2.8, which then also implies Theorem 2.2.

2.3. Geometry of Optimal Cells and Construction of 4-Tiles
We aim at obtaining a complete characterization of admissible configurations, by
resorting to so-called 4-tiles. To introduce this concept, we first need to investigate
the geometry of optimal cells in more detail. First, we consider an admissible defor-
mation y and an optimal cell of the configuration, consisting of the points y1, . . . , y4

and the corresponding midpoints m1 = (y1 + y3)/2 and m2 = (y2 + y4)/2, as indi-
cated in Fig. 2. We denote the length of the diagonal by 2v := |y1 − y3| = |y2 − y4|.
By the cosine rule we have

v =
√

(1 − cos θ)/2. (2.16)

Setting d := |y1−m2| = |y3−m2| = |y2−m1| = |y4−m1|, we obtain by Pythagoras’
theorem d =

√
1 − v2 =

√
(1 + cos θ)/2. This allows us to calculate the kink angle

κ∗ of an optimal cell by

κ∗ = π − 2κ, where κ := arccos(v/d) = arctan(h/v), (2.17)

with h =
√

1 − 2v2, see also Lemma 2.5. We refer to Fig. 5 with the optimal cell
formed by {C,M2, E2,M3} for an illustration. For θ = π/2 we have v/d = 1, and
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Figure 5 Example of a 4-tile with center C, middle points
M1, . . . , M4 and corner points E1, . . . , E4. We have also indicated
v, d, and κ∗ of the optimal cell {C,M2, E2, M3}.

thus κ∗ = π. In this case, as expected, optimal cells are flat. Let us firstly observe
that an optimal cell is uniquely determined by the coordinates of three points and
the choice of the cell form.

Lemma 2.3. (Optimal cell). Given any three points y1, y2, y4 ∈ R
3 of an optimal

cell, i.e., points satisfying |y1 − y4| = |y1 − y2| = 1 and �y4y1y2 = θ, there exists a
unique fourth point y�

3 and y�

3 , respectively, such that {y1, y2, y
�

3 , y4} is optimal of
form � and {y1, y2, y

�

3 , y4} is optimal of form �.

For the proof, we refer to Sect. A.1. A priori, by prescribing only the common
angle θ, many configurations are conceivable as each optimal cell can be of form �

or form �, and neighboring cells can in principle be attached to each other with
an arbitrary incidence angle. Condition (2.14) is therefore essential to reduce the
number of admissible deformations. To take (2.14) into account, we now consider
sub-configurations consisting of four optimal cells which are arranged in a square
sharing one common point. Such structures are called 4-tiles, and we refer to Fig. 5
for an illustration.

The point shared by all four optimal cells is called center and is denoted by
C. The additional four points shared by two optimal cells are called middle points
(as they are in the middle of the boundary of the 4-tile), are denoted by Mi for
i = 1, . . . , 4, and are labeled counter-clockwise such that

y−1(M1) − y−1(M3) = 2e1 and y−1(M2) − y−1(M4) = 2e2.

By construction, we have �Mi C Mi+1 = θ < π/2 which implies that the five points
C and (Mi)4i=1 cannot be coplanar. We introduce the nonplanarity angles δ13 and
δ24 by

δ13 := �M1 C M3 and δ24 := �M2 C M4. (2.18)

Note that |δ13 − π| and |δ24 − π| indicate how far the five points C and (Mi)4i=1 are
from being coplanar, and again refer to Fig. 5 for an illustration. The nonplanarity
angles δ13 and δ24 are related by the following lemma.
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Lemma 2.4. (Nonplanarity angles). The nonplanarity angles δ13 and δ24 satisfy

cos
(
δ13/2

)
cos

(
δ24/2

)
= cos θ. (2.19)

In particular, δ13 and δ24 coincide if and only if

δ13 = δ24 = δθ = 2 arccos(
√

cos θ).

Indeed, by (2.14) we always have δ13 = δ24 for every 4-tile of an admissible
configurations since M1, C, M3 and M2, C, M4 fulfill the condition in (2.14). This
yields that δθ = 2 arccos(

√
cos θ) is solely determined by θ. The proof relies on the

geometry of optimal cells, i.e., on assumptions (2.12) and (2.13), and will be given
in Sect. A.1.

We denote the four corner points of the 4-tile by Ei, i = 1, . . . , 4, as indicated
in Fig. 5. For the classification of all different 4-tiles, it is convenient to frame 4-tiles
in a reference position, as given in the following proposition.

Lemma 2.5. (Reference position). (i) By applying a suitable isometry, every 4-tile
can be positioned in such a way that the center C coincides with the origin, and we
have

M1 = (s, 0, ςh), M2 = (0, s, ςh), M3 = (−s, 0, ςh), M4 = (0,−s, ςh),

where s =
√

2v (see (2.16)), h =
√

1 − 2v2, and ς ∈ {−1, 1}.
(ii) Fixing ς ∈ {−1, 1}, and the form of each of the four optimal cells, the positions
of (Mi)4i=1 and (Ei)4i=1 are uniquely determined, up to isometry.

For the proof, we again refer to Sect. A.1. Lemma 2.5 entails that the middle
points (Mi)4i=1 are coplanar. For this reason, we call 4-tiles coplanar in the following.
By (2.14) coplanarity is a necessary condition for the admissibility of 4-tiles.

In view of Lemma 2.5(ii), there are 32 different types of 4-tiles. Indeed, there
are 24 = 16 possibilities to distribute either a form � or a form � optimal cell to
the four positions of a 4-tile. Additionally, one can do this construction for ς = 1
or ς = −1. As we show next, the different types can be classified into six classes
which are invariant under rotation by π/2 and reflection along the e1-e2-plane, see
Table 1. A representative of each class is shown in Fig. 6. The names of the classes
are inspired by their geometry: the I-tile is intermediate between the zigzag-shaped
Z-tile and the diagonally rolled-up D-tile (cf. the example in (2.22)). Similarly, the
J-tile joins the arrowhead-shaped A-tile with the E-tile, whose periodic pattern
resembles to egg cartons.

To denote a 4-tile we use a matrix-like notation, where the form of the optimal
cell in the square is represented by � or � in the respective position in the matrix.
The case of ς = −1 is indicated with a +-symbol in the center of the matrix, and
ς = 1 is denoted with a −-symbol. We use this notation since, given a 4-tile in
reference position, we have that for i = 1, . . . , 4 the center satisfies (C −Mi) · e3 > 0
if ς = −1 (e.g. in Fig. 6D) and (C − Mi) · e3 < 0 if ς = 1 (e.g. in Fig. 5), see
Lemma 2.5(i).

Reflection of a 4-tile in reference position with respect to the e1-e2-plane in-
terchanges the index + with −. Moreover, � and � are exchanged, as observed
in Sect. 2.2. Also a rotation by π/2 interchanges the forms of the optimal cells,
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Table 1 Full classification of all possible 4-tiles.

A-tile � �

� �
+ , � �

� �
+ , � �

� �
+ , � �

� �
+ , � �

� �
− , � �

� �
− , � �

� �
− , � �

� �
− Figure 6A

I-tile � �

� �
+ , � �

� �
+ , � �

� �
+ , � �

� �
+ , � �

� �
− , � �

� �
− , � �

� �
− , � �

� �
− Figure 6B

J-tile � �

� �
+ , � �

� �
+ , � �

� �
+ , � �

� �
+ , � �

� �
− , � �

� �
− , � �

� �
− , � �

� �
− Figure 6C

Z-tile � �

� �
+ , � �

� �
− Figure 6D

E-tile � �

� �
+ , � �

� �
− Figure 6E

D-tile � �

� �
+ , � �

� �
+ , � �

� �
− , � �

� �
− Figure 6F

(a) A-tile, � �

� �
+ (b) I-tile, � �

� �
+ (c) J-tile, � �

� �
+

(d) Z-tile, � �

� �
+ (e) E-tile, � �

� �
+ (f) D-tile, � �

� �
+

Figure 6 Representative 4-tiles of each class.

i.e., swaps � and �, see again Sect. 2.2. In addition, note that, by applying a π/2
rotation, one needs to permute the entries of the matrix accordingly, e.g.,

A �→ AT

(
0 1
1 0

)

for a clockwise rotation of the entries.
As an example, rotation leaves the 4-tile � �

� �
+ invariant, as interchanging � and

� yields � �

� �
+ and the rotation of the entries then leads to � �

� �
+ . However, rotating

� �

� �
+ clockwise, i.e., first swapping � and � to obtain � �

� �
+ and then rotating the

entries to � �

� �
+ , yields an 4-tile of the same class, but with different type, see Table 1.
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2.4. Boundary Orientation and Boundary Angles

In this subsection, we further refine the characterization of 4-tiles by introducing
a notion of boundary orientation. To this end, consider a 4-tile with notation as
indicated in Fig. 5, placed in reference position. We call three points Ei−1, Mi, and
Ei, and the two bonds in between a boundary of the 4-tile, where the indices have
again to be understood modulo 4. We define the boundary orientation of Ei−1 Mi Ei

by

O(Ei−1 Mi Ei) :=
{∧ if (Ei + Ei−1) · e3/2 < Mi · e3,

∨ if (Ei + Ei−1) · e3/2 > Mi · e3,
(2.20)

and the corresponding boundary angle by

�Ei Mi Ei−1. (2.21)

Intuitively, the orientation describes the fact that the boundary points upwards
(orientation ∧) or downwards (orientation ∨), see Fig. 6 for an illustration. Boundary
orientation and boundary angle are crucial for classifying admissible configurations
as they provide compatibility conditions for neighboring 4-tiles. To formalize this,
we now introduce the notion of attached 4-tiles.

Given two 4-tiles T and T̃ with centers C and C̃, we say that the 4-tiles are
attached to each other if y−1(C)−y−1(C̃) ∈ {2e1,−2e1, 2e2,−2e2}. Note that T and
T̃ share exactly one of the middle points (Mi)4i=1 and (M̃i)4i=1 (and the adjacent
two corner points). This shared middle point is the center of the so-called middle
4-tile which is formed by two optimal cells of T and two optimal cells of T̃ .

The following result will be a key tool for the classification of admissible con-
figurations.

Lemma 2.6. (Attachment of two 4-tiles) If two 4-tiles are attached to each other,
the boundary angles and the boundary orientation at the shared boundary coincide.
If the boundary orientation is ∧, the corresponding middle 4-tile satisfies ς = −1
(see Lemma 2.5(i)), otherwise we have ς = 1.

Lemma 2.6 will be proved in Sect. A.2. The statement delivers necessary condi-
tions for attaching two 4-tiles. In fact, a crucial idea for proving the main theorem,
Theorem 2.8, is excluding many situations by checking that boundary angles or
boundary orientations do not match. In particular, this reasoning will allow us to
prove that admissible configurations exclusively contain Z-, D-, and I-tiles. To ease
the readability, from now on we include the boundary orientation in the notation,
at least for the relevant tiles, i.e., the Z-, D-, and I-tiles. This allows for an easy
check whether the boundary orientations match or not.

On lateral boundaries, we denote boundaries with orientation ∧ by <. Likewise,
lateral boundaries with boundary orientation ∨ are indicated by >. Table 2 gives
an overview of admissible 4-tiles with the new notation.

In the notation, we also denote corner points pointing downwards with ◦ and
corner points pointing upwards with • (of course, always assuming that the 4-tile
is in reference position). As an example, we refer to (b) and (f) in Fig. 6 for � �

� �
+

and � �

� �
+ , respectively. Note that this notation is not part of the characterization of
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Table 2 A table of all admissible Z-, D-, and I-tiles with corre-
sponding boundary orientations.

Z-tile � �

� �
+ , � �

� �
−

D-tile � �

� �
+ , � �

� �
+ , � �

� �
− , � �

� �
−

I-tile � �

� �
+ , � �

� �
+ , � �

� �
+ , � �

� �
+ , � �

� �
− , � �

� �
− , � �

� �
− , � �

� �
−

types, but is included only to visualize the directions along which the boundary rolls
up or down, respectively. (In fact, a + in the center along with � pointing towards
+ yields ◦ in the corresponding corner. In a similar fashion, a − in the center along
with � not pointing towards − yields •.) This notation facilitates to determine the
class of the 4-tile as Z-tiles have no •/◦, D-tiles have two, and I-tiles have exactly
one.

Lemma 2.7. (Boundary orientations). The boundary orientations of the different
boundaries of the Z-, D-, and I-tiles are given as indicated in Table 2.

Lemma 2.7 will be proved in Sect. A.2. We close this subsection with an example
illustrating Lemma 2.6. Let us attach the Z-tile � �

� �
+ and the D-tile � �

� �
− . From the

notation we can directly see that by attaching via
� �

� �
+ � �

� �
− , (2.22)

the boundary orientation match at the shared boundary, i.e., the 4-tiles can be
attached to each other provided that also the boundary angles coincide. (This indeed
holds true, as we will see later in Lemma 3.1.) The type of the middle 4-tile can
be determined directly by considering the forms of the four optimal cells in the
middle, i.e., � �

� �
− . As the shared boundary has orientation >, which corresponds to

∨, Lemma 2.6 implies that the middle 4-tile satisfies ς = 1. The latter implies a −-
symbol in the middle of the matrix, see the discussion below Lemma 2.5. Therefore,
the middle 4-tile is the I-tile � �

� �
− . Clearly, the procedure applies to all combinations

of 4-tiles.

2.5. Main Result: Characterization in Terms of 4-Tiles
After having introduced the necessary notation and concepts in the previous sub-
sections, we are ready to formulate our main result on the characterization of ad-
missible configurations in terms of 4-tiles. To this end, we need a variant of the form
function, the so-called type functions: consider an admissible deformation y and let
S1 = 0, S2 = (1, 0), S3 = (0, 1), and S4 = (1, 1). For i = 1, . . . , 4, we let σi be the
function defined on 2Z

2 such that σi(k, l) for (k, l) ∈ 2Z
2 indicates the type of the

4-cell with center y(Si +(k, l)). The four different functions account for the fact that
a translation of Z

2 by (0, 0), (1, 0), (0, 1), or (1, 1) leaves the deformed configura-
tion invariant, but groups together different optimal cells to form 4-tiles.With this
definition at hand, we now state the main result of this paper.
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Theorem 2.8. (Characterization of all admissible configurations) A deformation y
is admissible if and only if, possibly up to rotation of the lattice Z

2 by π/2, the
following holds true:

Only particular types of Z-, D-, and I-tiles are admissible, namely, for i =
1, . . . , 4 we have

σi : 2Z
2 →

{
� �

� �
+ , � �

� �
− , � �

� �
− , � �

� �
+ , � �

� �
+ , � �

� �
+ , � �

� �
− , � �

� �
−

}
.

(2.23)

Moreover, the type function is constant along d1, i.e., σi(s, t) = σi(s + 2, t + 2) for
all s, t ∈ 2Z and the following matching conditions are satisfied:

(M1) for all s, t ∈ 2Z we have

σi(s, t) ∈
{

� �

� �
+ , � �

� �
− , � �

� �
+ , � �

� �
−

}
⇐⇒

σi(s, t − 2) ∈
{

� �

� �
+ , � �

� �
− , � �

� �
+ , � �

� �
−

}
,

(M2) for all s, t ∈ 2Z we have

σi(s, t) ∈
{

� �

� �
− , � �

� �
+ , � �

� �
+ , � �

� �
−

}
⇐⇒

σi(s, t − 2) ∈
{

� �

� �
− , � �

� �
+ , � �

� �
+ , � �

� �
−

}
.

The theorem gives a complete characterization of all admissible configurations.
First, it shows that only Z-, D-, and I-tiles are admissible. More precisely, we see that
only such D-, and I-tiles from Table 2 are admissible, which roll-up/down along the
same diagonal, and that the type function is constant along the other diagonal. In
particular, no change between the direction of rolling-up/down is admissible. This
observation allows for a clear geometric interpretation: Z-tiles correspond to flat ar-
eas and D-tiles induce rolled-up/down areas. In order to match such 4-tiles, the I-tile
arises naturally as a combination of the Z-tile and D-tile. (See, e.g., Fig. 6B, which
is a D-tile left and a Z-tile right. See also the example in (2.22).) Clearly, rolling-
up/down exclusively along the other diagonal is admissible as well, corresponding
exactly to the other collection of D-, and I-tiles from Table 2. However, after a
rotation of the lattice Z

2 by π/2, one can always reduce to (2.23). Eventually, the
matching conditions (M1) and (M2) further restrict the admissible combination of
4-tiles, and account for the fact that the boundary orientations at shared boundaries
of two attached 4-tiles need to match, see Lemma 2.6. We close this discussion by
noting that the characterization cannot be simplified further, i.e., there are indeed
admissible configurations y which contain all eight types given in (2.23).

Let us now stress that Theorem 2.8 implies Theorem 2.2. To see this, we observe
that the type functions σi, i = 1, . . . , 4, are constant along the diagonal d1. This
along with the fact that all types in (2.23) have the same form of optimal cell (� or
�) along the diagonal d1 (i.e., in the lower left and upper right entry) shows that
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the form function τ introduced in Sect. 2.2 satisfies τ(s, t) = τ(s + 1, t + 1) for all
s, t ∈ Z.

The fact that all incidence angles along d1 vanish and that all incidence an-
gles along d2 lie in {0, γ∗,−γ∗} (with the property that the value is constant along
d1) follows by an elementary computation. We defer the exact calculation to Ap-
pendix A.4. At this stage, we only mention that inside Z-tiles, all incidence angles
along both diagonals are equal to zero. On the other hand, for the D-tile � �

� �
+ the

incidence angle along d2 is γ∗ and for � �

� �
− it is −γ∗. I-tiles have incidence angles

0 and ±γ∗, where the sign depends on • or ◦ in the notation.

3. The Proof of the Main Theorem

This section is devoted to the proof of Theorem 2.8. This hinges on two facts, namely,
that (1) attaching two 4-tiles is only possible if the boundary orientation at shared
boundaries match and (2) that such attachment needs to lead to an admissible,
i.e., coplanar middle 4-tile. Firstly, we use these ideas to show that actually only
Z-, D-, and I-tiles are admissible, see Proposition 3.2. In a second step, we further
restrict the set of admissible types by showing that D- and I-tiles necessarily need
to roll-up/down along the same diagonal, see Proposition 3.3. This is achieved by
considering four 4-tiles arranged in a square and exploiting the aforementioned
compatibility conditions. With similar techniques, we subsequently show that along
one diagonal the type has to be constant, see Proposition 3.4. Eventually, we provide
another auxiliary result (Proposition 3.5) stating that four 4-tiles arranged in a
square can be indeed realized by an admissible configuration y if all compatibility
conditions, including the matching conditions stated in Theorem 2.8, are satisfied.
With these results at hand, we are then able to prove Theorem 2.8.

3.1. Admissible Classes of 4-Tiles
In this subsection, we show that admissible configurations contain only Z-, D-, and
I-tiles and that pairs of such tiles can be attached. This is achieved in two steps. We
start by calculating the different boundary angles introduced in (2.21). Then, by
discussing the possibility of attaching two 4-tiles along a boundary with the same
boundary angle and the same boundary orientation, see (2.20), we are able to show
that Z-, D-, and I-tiles are admissible, while E-, A-, and J-tiles are not.

We start by observing that there are exactly three different boundary types.
In view of Lemma 2.5, we see that the three points forming a boundary (e.g., Ei−1,
Mi, and Ei, see Fig. 5) are completely characterized by ς ∈ {−1, 1} and the form,
i.e., form � or form �, of the two optimal cells adjacent to the boundary. (Strictly
speaking, in Lemma 2.5(ii), this was only shown once the forms of all four optimal
cells are fixed, but the argument clearly localizes at each boundary.)

This leads to at most 23 = 8 different boundary types, as indicated in Table 3.
Given a 4-tile in reference position, the boundary type remains invariant under re-
flection of the 4-tile along the e1-e2-plane and the e2-e3-plane. This shows that the
number of different boundary types reduces to three. We indicate the corresponding
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Table 3 Classification of the three types of boundaries.

Z-boundary D-boundary E-boundary

� �
+ ,

� �
−

� �
+ ,

� �
+ ,

� �
− ,

� �
−

� �
+ ,

� �
−

boundaries as Z-, D-, and E-boundaries, respectively, as the corresponding 4-tiles
have exclusively such boundaries, compare also Table 3 with Table 1. We also men-
tion that I-tiles have both Z- and D-boundaries, but no E-boundaries, and that J-
and A-tiles contain E-boundaries.

Lemma 3.1. (Boundary angles) The Z-boundary angle and D-boundary angle of
coplanar 4-tiles are given by δθ = 2 arccos

(√
cos θ

)
. The E-boundary angle of copla-

nar 4-tiles is strictly smaller than δθ.

Proof. We start by considering the Z-boundary angle. Without restriction we con-
sider a Z-tile in reference position with notation as indicated in Fig. 5, satisfying
M2 = (0, s, h) for s, h > 0, where s and h are given in Lemma 2.5. We observe that
the isometry x = (x1, x2, x3) �→ (x1, x2,−x3) + (0, s, h) maps M1 to E1, C to M2,
and M3 to E2. This yields that the Z-boundary angle coincides with δθ, see (2.14)
and (2.18). The fact that the D-boundary angle coincides with the Z-boundary an-
gle is postponed to Corollary A.3, and relies on the fact that two 4-tiles with the
respective boundaries can be attached to each other, cf. Lemma A.2.

Eventually, we show that the E-boundary angle is strictly smaller. To this end,
we let E1 = (s, s, 0), M2 = (0, s, h), E2 = (−s, s, 0) be again the points of the Z-
tile considered above. The corresponding points of an E-tile in reference position are
denoted by Ẽ1, M̃2, and Ẽ2. (They are obtained by changing the form of the optimal
cells containing E1 and E2, respectively.) By simple geometric considerations we
find

Ẽ1 = E1 + (−p,−p, q), M̃2 = M2, Ẽ2 = E2 + (p,−p, q) (3.1)

for some p, q > 0. One can check that q = Ẽ1 · e3 = Ẽ2 · e3 > 2h, see Lemma A.1(iv)
below. Given that |Ẽ1 − M̃2| = |Ẽ2 − M̃2| = 1, the E-boundary angle is calculated
by arccos((Ẽ1 − M̃2) · (Ẽ2 − M̃2)). We now compute by using (3.1) and q > 2h that

(Ẽ1 − M̃2) · (Ẽ2 − M̃2) = (E1 − M2) · (E2 − M2) +

⎛

⎝
−p
−p
q

⎞

⎠ ·
⎛

⎝
−s
0

−h

⎞

⎠

+

⎛

⎝
p

−p
q

⎞

⎠ ·
⎛

⎝
s
0

−h

⎞

⎠ +

⎛

⎝
−p
−p
q

⎞

⎠ ·
⎛

⎝
p

−p
q

⎞

⎠

= (E1 − M2) · (E2 − M2) + 2ps − 2qh + q2

> (E1 − M2) · (E2 − M2).

As δθ = arccos((E1 −M2) · (E2 −M2)) and arccos is strictly decreasing on [−1, 1] we
find that the E-boundary angle is smaller than δθ. This concludes the proof. �
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Proposition 3.2. (Nonadmissible classes of 4-tiles). An admissible configuration does
not contain E-, A-, and J-tiles.

Proof. Suppose by contradiction that the configuration contains a 4-tile of class E,
A, or J. As each E-, A-, or J-tile contains at least one E-boundary, see Tables 1
and 3, by Lemma 2.6 and Lemma 3.1 we deduce that the configuration contains at
least two adjacent 4-tiles in these three classes such that the shared boundary has
an E-boundary angle. For the corresponding middle 4-tile between the two 4-tiles
we thus get that the corresponding δ13 or δ24 as defined in (2.18) coincides with
the E-boundary angle which is strictly smaller than δθ by Lemma 3.1. On the other
hand, by (2.14) we have δ13 = δ24 = δθ for the nonplanarity angles of the middle
tile, a contradiction. �

3.2. Proof of the Main Result

In this subsection we give the proof of Theorem 2.8. The argument rests upon
two propositions, showing that only certain arrangements of Z-, D-, and I-tiles are
admissible. A third auxiliary result verifies that such arrangements are indeed ad-
missible. We start by stating these results, whose proofs are postponed to the next
subsections. Recall the notation of the 4-tiles in Table 2.

Proposition 3.3. (Roll-up/down along one diagonal). Consider any four adjacent 4-
tiles of class Z, D, or I of an admissible configuration arranged in a square. Then
all D- and I-tiles locally roll-up/down along the same diagonal, i.e., the type of the
four 4-tiles is either exclusively contained in A or exclusively contained in B, where

A :=
{

� �

� �
+ , � �

� �
− , � �

� �
− , � �

� �
+ , � �

� �
+ , � �

� �
+ , � �

� �
− , � �

� �
−

}
, (3.2)

and

B :=
{

� �

� �
+ , � �

� �
− , � �

� �
− , � �

� �
+ , � �

� �
+ , � �

� �
+ , � �

� �
− , � �

� �
−

}
. (3.3)

Note that B can be obtained from A through a rotation of the reference lattice
by π/2, and vice versa. The proposition shows that locally only 4-tiles which roll
along the same diagonal can be attached to each other. The following result states
that locally admissible configurations have the same type along one of the diagonals.

Proposition 3.4. (Arrangements along diagonals). Consider four adjacent 4-tiles of
an admissible configuration with types either in A or in B, see (3.2)–(3.3), arranged
in a square and denoted by

A D

B C .

If the types are in A, we have B = D, and if the types are in B, we have A = C.

The previous two results yield restrictions for the arrangement of 4-tiles in
admissible configurations. The next result shows that such arrangements are indeed
admissible.
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Proposition 3.5. (Admissible arrangements of 4-tiles). (i) If two coplanar 4-tiles in
A are attached along a boundary with matching boundary orientation, the resulting
middle 4-tile is a coplanar 4-tile in A.
(ii) If four adjacent coplanar 4-tiles with types in A are arranged as

A D

B C
(3.4)

such that B = D and such that the four 4-tiles satisfy the matching conditions (M1)–
(M2) stated in Theorem 2.8, there exists an admissible deformation y : {0, 1, 2, 3, 4}2

→ R
3 such that the 4-tiles of y({0, 1, 2, 3, 4}2) have the types indicated in (3.4).

A similar statement holds for 4-tiles with types in B by rotation of the reference
lattice by π/2. We are now in a position to prove our main result.

Proof of Theorem 2.8. Step 1: ⇒. We recall the definition of σi, i = 1, . . . , 4, before
the statement of Theorem 2.8. Without restriction we only consider σ1 in the fol-
lowing proof. By Proposition 3.2 we have that the configuration only contains Z-,
D-, and I-tiles.

We next show that all types are either in A or in B, see (3.2)–(3.3), i.e., rolling
up/down occurs at most along one diagonal. Assume by contradiction that there
were two 4-tiles rolling along different diagonals, i.e., T1 ∈ A \ B and T2 ∈ B \ A.
Choose si, ti ∈ 2Z, i = 1, 2, such that σ1(s1, t1) = T1 and σ1(s2, t2) = T2. By
Proposition 3.3 we can apply Proposition 3.4 and thus find σ1(s1 + r, t1 + r) = T1

and σ1(s2 + r′, t2 − r′) = T2 for all r, r′ ∈ 2Z. For a particular choice of r and r′ this
entails T1 = T2 or that T1 is adjacent to T2. In both cases, we obtain a contradiction
to Proposition 3.3.

This shows that all types of 4-tiles are either in A or B. Up to a rotation of
the reference lattice by π/2, we may suppose that all types of 4-tiles lie in A, which
corresponds to the notation of Theorem 2.8. By Proposition 3.4 we get that the
type function is constant along d1, i.e., σi(s, t) = σi(s+2, t+2) for all s, t ∈ 2Z and
all i = 1, . . . , 4.

It remains to show that the matching conditions (M1) and (M2) hold true as
indicated in the statement. These properties rely on the fact that the boundary
orientations of each two attaching 4-tiles need to match, cf. Lemma 2.6.

We only prove matching condition (M1) as the proof for (M2) follows along
similar lines. Since the type function is constant along d1, i.e., σ1(s, t) = σ1(s +
2, t + 2) (s, t ∈ 2Z), for any s, t ∈ 2Z such that σ1(s, t) ∈

{
� �

� �
+ , � �

� �
− , � �

� �
+ , � �

� �
−

}
,

we have one of the two possibilities
� �

� �
+ � �

� �
+ � �

� �
+ � �

� �
+

� �

� �
+ � �

� �
+

� �

� �
+ ,

where the boundaries of the 4-tiles with type σ1(s, t) = σ1(s + 2, t + 2) are depicted
with solid lines. The given boundary orientations and Lemma 2.6 imply that only a
4-tile from (compare Table 2)

{
� �

� �
+ ,

� �

� �
− ,

� �

� �
− ,

� �

� �
+ , � �

� �
−

}
can be attached in the
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blank position top left indicated by the dotted 4-tile (where its straight boundaries
represent arbitrary boundary orientations). Within the class of admissible 4-tiles
A in (3.2), exactly the four choices

{
� �

� �
+ ,

� �

� �
− ,

� �

� �
+ , � �

� �
−

}
match this boundary

orientation. Conversely, for s, t ∈ 2Z such that σ1(s, t) ∈
{

� �

� �
+ , � �

� �
− , � �

� �
+ , � �

� �
−

}

an arrangement as above yields one of the two possibilities
� �

� �
+ � �

� �
+

� �

� �
+ � �

� �
+ � �

� �
+ � �

� �
+ .

However, due to the given boundary orientations, the 4-tiles in{
� �

� �
+ ,

� �

� �
− ,

� �

� �
+ ,

� �

� �
−

}
are the only 4-tiles from A which can be attached in the

blank position bottom-right, again indicated with the dotted 4-tile. This concludes
the check of the matching conditions (M1).
Step 2: ⇐. The existence of an admissible configuration y : Z

2 → R
3 follows directly

from Proposition 3.5(ii) and an induction argument. Indeed, (2.12) and (2.13) are
satisfied since each cell is optimal. To see (2.14), it suffices to check that all 4-tiles
are coplanar. In fact, then (2.14) follows from Lemma 2.4. First, by construction in
Proposition 3.5(ii) we get that all 4-tiles related to the type function σ1 are coplanar.
By using Proposition 3.5(i) we find that also the 4-tiles related to the other type
functions σi, i = 2, 3, 4, are in A and are coplanar. This shows that all 4-tiles are
coplanar, as desired. �
3.3. Rolling Along One Diagonal

This subsection is devoted to the proof of Proposition 3.3. The proof fundamentally
relies on Lemma 2.6, i.e., the fact that the boundary orientations of attached 4-tiles
match. To this end, we will make extensive use of the matrix diagrams introduced
in Table 2 in order to exclude certain arrangements of 4-tiles. Unfortunately, not
all nonadmissible cases can be ruled out by such compatibility analysis and we
also need to consider some more refined tools, based on the real three-dimensional
geometry of the 4-tiles. For this reason, we will use the following lemma concerning
the attachment of four coplanar 4-tiles. Recall the types of 4-tiles A and B introduced
in (3.2)–(3.3), as well as the different types of boundaries in Table 3.

Lemma 3.6. (Arrangements of four 4-tiles) Consider four adjacent 4-tiles of an ad-
missible configuration with types either in A or in B, see (3.2)–(3.3), arranged in a
square and denoted by

A D

B C .
(3.5)

Then: (i) If three tiles are Z-tiles and one tile is an D-tile, then the D-tile is in
{A,C} (case A) or in {B,D} (case B).
(ii) If two tiles are Z-tiles and two tiles are D-tiles, then the Z-tiles are arranged
along one diagonal and the D-tiles along the other diagonal.
(iii) If three tiles are D-tiles and one tile is a Z-tile, then the Z-tile is in {A,C} (case
A) or in {B,D} (case B).
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(iv) The arrangement
� �

� �
+ � �

� �
−

� �

� �
− � �

� �
+ .

(3.6)

is not admissible.

We postpone the proof of this lemma to Appendix A.3 and proceed with the
proof of Proposition 3.3.

Proof of Proposition 3.3. We proceed in two steps: in Step 1 we show that two
attached 4-tiles cannot roll-up/down along different diagonals. In Step 2 we show
that in four adjacent 4-tiles arranged in a square, the two pairs of diagonal 4-tiles
cannot roll-up/down along different diagonals. These two steps imply the statement.
Step 1: Attached 4-tiles. Up to interchanging the roles of • and ◦, and up to reflection
along the e1- or the e2-axis, there are six different cases to address:

1) , 2) , 3) , 4) ,

5) or , 6) or .

Here, the symbol is a placeholder both for the corresponding I-tile � �

� �
− and the

D-tile � �

� �
− . The meaning of the other symbols is analogous. For the proof, we refer

the reader to Table 2 which collects all possible 4-tiles.
Case 1: . This case leads to a contradiction to Proposition 3.2 as necessarily
the middle 4-tile is the A-tile � �

� �
− . As an example, among the four possibilities, we

consider the case where both 4-tiles are I-tiles. In this case, we have � �

� �
− � �

� �
− .

Case 2: . This case ensues if two 4-tiles with different boundary orientations are
attached, which contradicts Lemma 2.6. As an example, among the four possibilities,
we consider the case where both 4-tiles are D-tiles. In this case, we have � �

� �
− � �

� �
+ .

Case 3: . First, if both 4-tiles are D-tiles, then up to a reflection along the
e2-axis, we are in Case 1 and obtain a contradiction as explained before. In the
case that one is a D-tile and the other is an I-tile, we obtain a contradiction to
Lemma 2.6 as then the boundary orientations do not match. In fact, these two last
cases are � �

� �
− � �

� �
− and � �

� �
− � �

� �
− .

We can therefore assume that both 4-tiles are I-tiles, i.e., take the form
� �

� �
− � �

� �
− . We will now consider which 4-tiles are admissible on top of the given

4-tiles. Since we have already ruled out Case 1 and the boundary orientations need
to match by Lemma 2.6, we see that on top of the left I-tile we can only have � �

� �
+ ,

� �

� �
− , � �

� �
+ , � �

� �
+ , or � �

� �
− , and on top of the right I-tile we can only have � �

� �
+ ,

� �

� �
− , � �

� �
+ , � �

� �
+ , or � �

� �
− . In any case, the 4-tile in the middle of the four considered

4-tiles, will be an A-tile of the form � �

� �
+ or � �

� �
− . This contradicts Proposition 3.2

and concludes the proof of Case 3.
Case 4: . If both 4-tiles are D-tiles, then up to a reflection along the e2-axis,
we are in Case 2 and obtain a contradiction as explained before. If both 4-tiles are
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I-tiles, we have � �

� �
− � �

� �
+ , i.e., the boundary orientations are different and we obtain

a contradiction to Lemma 2.6. The two remaining possibilities are � �

� �
− � �

� �
+ and

� �

� �
− � �

� �
+ . We prove the contradiction only for the first configuration as the second

configuration can be treated along similar lines. In order to do so, we proceed as in
Case 3 and attach 4-tiles at the top, yielding

� �

� �
−A � �

� �
−B

� �

� �
− � �

� �
+ .

(3.7)

In (3.7), the straight dotted lines encompass all possible boundary orientations.
We start by noting that the I-tile in the middle of � �

� �
− � �

� �
+ is of the form � �

� �
− .

Since we have already ruled out Case 1 and the boundary orientations need to
match by Lemma 2.6, only the 4-tiles � �

� �
+ ,

� �

� �
− ,

� �

� �
+ ,

� �

� �
+ , � �

� �
− can be attached

on top of the D-tile (left), i.e., at position A. Similarly, on top of the I-tile (right) at
position B we can only attach the 4-tiles � �

� �
− ,

� �

� �
+ , � �

� �
+ ,

� �

� �
− ,

� �

� �
− , see Table 2.

As the boundary orientations between A and B have to match as well, there are
only eight possibilities of the upper two 4-tiles which are indicated in the first two
columns of Table 4. The two upper 4-tiles A and B form middle 4-tiles which are
indicated in the third column of Table 4. Note that the 4-tile attached on the bottom
of this 4-tile is exactly the middle 4-tile between the original two 4-tiles, i.e., � �

� �
− .

Therefore, in the first four cases we obtain a contradiction to Lemma 2.6 since
the boundary orientations of the shared boundary of the two middle 4-tiles do not
match.

For the second four cases we need a different argument instead. To this end,
we consider also the middle 4-tile between the D-tile and A (left middle 4-tile) and
the middle 4-tile between the I-tile and B (right middle 4-tile), see the last two
columns in Table 4. We observe that in none of the cases the boundary orientations
of the shared boundary of the left and right middle 4-tiles match. This is again a
contradiction to Lemma 2.6, concluding the check of Case 4.
Case 5: or : Without restriction we address only the first case as the
second can be treated analogously (and, in fact, obtained by a rotation). We have
to distinguish two cases. Firstly, the 4-tile on the left is a D-tile, i.e., . Then
up to a reflection along the e2-axis, we are in Case 1 and obtain a contradiction as
explained before. Secondly, if the left 4-tile is not a D-tile, it has to be an I-tile.
We obtain the two possible configurations � �

� �
− � �

� �
− and � �

� �
− � �

� �
− which both

contradict Lemma 2.6 as the boundary orientations do not match.

Case 6: or . Without restriction we address only the first case as the
second can be treated analogously. If the 4-tile on the left is a D-tile, then we have
the two possibilities � �

� �
− � �

� �
+ and � �

� �
− � �

� �
+ . Thus, the boundary orientations do

not match which contradicts Lemma 2.6. If the right 4-tile is a D-tile, we are in
Case 4 and obtain a contradiction as explained before.
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Table 4 The eight different cases considered in Case 4.

At A At B Middle 4-tile
A–B

Middle 4-tile
left

Middle 4-tile
right

� �

� �
+ � �

� �
− � �

� �
+

� �

� �
+ � �

� �
+ � �

� �
+

� �

� �
+ � �

� �
+ � �

� �
+

� �

� �
+ � �

� �
− � �

� �
+

� �

� �
+ � �

� �
− � �

� �
− � �

� �
− � �

� �
+

� �

� �
− � �

� �
− � �

� �
− � �

� �
− � �

� �
+

� �

� �
+ � �

� �
− � �

� �
− � �

� �
− � �

� �
+

� �

� �
− � �

� �
− � �

� �
− � �

� �
− � �

� �
+

Therefore, both 4-tiles have to be I-tiles, i.e., we have

� �

� �
− � �

� �
+ . (3.8)

As in Case 4, we consider two 4-tiles attached on the top. By using arguments similar
to the ones above, we will show that the only possible choice how to assemble the
four 4-tiles would be given by

� �

� �
+ � �

� �
−

� �

� �
− � �

� �
+ .

(3.9)

This, however, is excluded by Lemma 3.6(iv). To see (3.9), in view of the fact that
we have already ruled out Cases 1–5 and the boundary orientations need to match
by Lemma 2.6, only the 4-tiles

� �

� �
+ , � �

� �
− , � �

� �
+ , � �

� �
+ , � �

� �
− (3.10)

can be attached on top of the left I-tile in (3.8). Analogously, on top of the right
I-tile in (3.8) we can only attach the 4-tiles

� �

� �
+ , � �

� �
− , � �

� �
+ , � �

� �
− , � �

� �
− , (3.11)

see Table 2. As in Case 4 we consider the middle 4-tile between the left I-tile in
(3.8) and the 4-tile on top of it (left middle 4-tile) and the middle 4-tile between
the right I-tile in (3.8) and the 4-tile on top of it (right middle 4-tile). In view of
(3.10)–(3.11), there are only the cases indicated in Table 5. From Table 5 we see
that the boundary orientations of the shared boundary of the two middle 4-tiles can
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Table 5 The different possible middle 4-tiles in Case 6.

Middle 4-tile left Middle 4-tile right

� �

� �
− � �

� �
−

� �

� �
− � �

� �
−

� �

� �
−

only match if the right middle 4-tile is of type � �

� �
− . By (3.11) this shows that only

� �

� �
− can be attached on top of the right I-tile � �

� �
+ . Then, in view of (3.10), only

� �

� �
+ can be attached on top of the left I-tile � �

� �
− as the other four 4-tiles in (3.10)

do not math the boundary orientation of � �

� �
− . This shows that (3.9) holds, and

concludes the proof of Case 6.

Step 2: 4-tiles on the diagonal. We now show that in four adjacent 4-tiles arranged
in a square, the two pairs of diagonal 4-tiles cannot roll-up/down along different
diagonals. Up to interchanging the roles of • and ◦, and up to reflection along the
e1- or the e2-axis, there are two cases to consider, where Case 1 represents one of
the eight situations

, , , , , , ,

and Case 2 represents one of the eight situations

, , , , , , , .

Here, as in Step 1, the symbols • and ◦ indicate both the corresponding I-tile and
D-tile. Without restriction we address only the first configuration in both cases as
all other situations can be treated along similar lines.
Case 1. We start by introducing the labeling

A D

B C .

We preliminarily note that, in view of Step 1, for B and D only 4-tiles in A ∩ B are
admissible, see (3.2)–(3.3), i.e., the two Z-tiles � �

� �
+ and � �

� �
− . We distinguish three

different subcases:

Case 1.1. If A is the unique I-tile, then Lemma 2.6 for the boundary between A and
D as well as the boundary between D and C implies that the 4-tile D cannot be a
Z-tile. In fact, the boundary orientation of A on the right is ∧ (indicated by < in
the notation) and the boundary orientation of C on top is ∨.
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Case 1.2. By a similar reasoning, if A is the unique D-tile and C is the unique I-tile,
Lemma 2.6 implies that the 4-tile B cannot be a Z-tile.

Case 1.3. If both A and C are D-tiles, we again use Lemma 2.6 and see that the 4-tiles
B and D can only be of type � �

� �
+ . Therefore, we need to consider the configuration

� �

� �
− � �

� �
+

� �

� �
+ � �

� �
− .

The middle 4-tile between A and B is given by � �

� �
− and the middle 4-tile between

C and D is given by � �

� �
− . Their shared boundary have mismatching boundary

orientations, contradicting Lemma 2.6.

Case 2. We start by introducing the labeling

A D

B C .

As in Case 1, due to Step 1, for B and D only the two Z-tiles � �

� �
+ and � �

� �
−

are admissible. We distinguish four different subcases:

Case 2.1. If both A and C are I-tiles, Lemma 2.6 implies that the 4-tile B cannot
be a Z-tile.

Case 2.2. If both A and C are D-tiles, then Lemma 2.6 implies that the 4-tile B

cannot be a Z-tile.

Case 2.3. If A is the unique D-tile and C is the unique I-tile, then Lemma 2.6 implies
that the 4-tile D cannot be a Z-tile.

Case 2.4. Now suppose that A is the unique I-tile and C is the unique D-tile. Then
B and D need to be of type � �

� �
− . Therefore, we need to consider the configuration

� �

� �
− � �

� �
−

� �

� �
− � �

� �
+ ,

(3.12)

and show that it is also not admissible. The I-tile rolls up in direction top left,
which has no influence in this (sub-)configuration. In other words, by replacing in
(3.12) the tile A with the Z-tile � �

� �
− and showing that this modified configuration

is not admissible, we also find that (3.12) is not admissible. In fact, in view of
Lemma 3.6(i) and the fact that the D-tile � �

� �
+ lies in B (see (3.3)), we see that the

modified version of (3.12) is not admissible. This concludes this step of the proof.
�

3.4. Constant Type Along the Diagonal

This subsection is devoted to the proof of Proposition 3.4.
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Proof of Proposition 3.4. We assume without restriction that all four 4-tiles lie in
A, see (3.2), as the other case is completely analogous. We consider

A D

B C ,

and note that we need to show that B and D are of the same type. We proceed in
two steps: first, we show that B and D are of the same class, i.e., both have to be
either Z-, I-, or D-tiles. In the second step, we then conclude that they even have
to be of the same type. In the proof, we will use the following observation which
directly follows from the definition of A:

• Z- and D-tiles: All four boundary orientations are identical,

• I-tiles: Left and upper boundary orientations are identical,

right and lower boundary orientations are identical.
(3.13)

Step 1. In this step, we show that B and D are necessarily of the same class.
Case 1.1. If exactly one of the two tiles B and D is an I-tile, in view of (3.13), we
obtain a contradiction to Lemma 2.6 as not all boundary orientations of the four
shared boundaries can match.

Thus, we can now assume that none of the tiles B,D is an I-tile. Actually, it
is also not restrictive to assume that the tiles A and C are not of class I. Indeed,
the upper left optimal cell of A and the lower right optimal C have no influence on
the subsequent arguments in Cases 1.2–1.4 and can readily be replaced by the other
type. This allows to replace tiles of class I by types of class Z or D in A, without
affecting the following arguments. Summarizing, it suffices to consider the case that
all four 4-tiles are Z- or D-tiles.
Case 1.2. If three 4-tiles are D-tiles and one tile is a Z-tile, we only have that
B and D are not of the same class if the Z-tile lies in {B,D}. This contradicts
Lemma 3.6(iii).
Case 1.3. If three 4-tiles are Z-tiles and one tile is a D-tile, we only have that
B and D are not of the same class if the D-tile lies in {B,D}. This contradicts
Lemma 3.6(i).
Case 1.4. If two 4-tiles are of class Z and two of class D, the claim follows directly
from Lemma 3.6(ii).
Step 2. In this second step we show that not only the class but also the type
has to be constant along the diagonal. First, if we had different Z-tiles or D-tiles
along the diagonal, in view of (3.2), these two 4-tiles would have different boundary
orientations. Again by using (3.13), we obtain a contradiction to Lemma 2.6 as not
all boundary orientations of the four shared boundaries can match.

We now address the case that B and D are I-tiles. Again in view of (3.13) and
the definition of A, we find

either a) B,D ∈
{

� �

� �
− , � �

� �
+

}
or b) B,D ∈

{
� �

� �
− , � �

� �
+

}

since otherwise the boundary orientations do not match, contradicting Lemma 2.6.
Whenever the type is not constant along the diagonal, the 4-tile in the middle of the
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four 4-tiles is an A-tile which contradicts Proposition 3.2. For simplicity, we show
this only in case a) as case b) follows along similar lines. In fact, by Lemma 2.6 we
find that A can only be of type � �

� �
− , � �

� �
+ , � �

� �
+ , or � �

� �
− , and C can only be of

type � �

� �
+ , � �

� �
− , � �

� �
+ , or � �

� �
− . Consequently, if B is of type � �

� �
− , in the middle

we find the A-tile � �

� �
+ or � �

� �
− , and if B is of type � �

� �
+ , we find the A-tile � �

� �
+ or

� �

� �
− , see Table 1. �

3.5. Admissible Arrangement of 4-Tiles
This subsection is devoted to the proof of Proposition 3.5.

Proof of Proposition 3.5. Without restriction we perform the proof only for the
types A defined in (3.2).
(i) We start by observing that each pair of 4-tiles in A with matching boundary
orientations can be attached since all boundary angles are either Z- or D-boundary
angles, see Table 3 and Table 1, and both angles coincide with δθ, see Lemma 3.1.
We first show that the 4-tile in the middle is again in A. In a second step, we check
that the middle 4-tile is also coplanar.

We recall that the type of the middle 4-tile can by determined by considering
the matrix notation, as exemplified in (2.22). In view of (3.2), we obtain the following
six cases:
Case 1. Attaching two Z-tiles, we find that the two tiles are of same type and the
middle tile is the Z-tile of the other type.
Case 2. Attaching two D-tiles, we find that the two tiles are of same type and the
middle tile is again of this type.
Case 3. Attaching two I-tiles, we can obtain all possible 4-tiles in A.
Case 4. Attaching a Z- and a D-tile, we obtain an I-tile in A.
Case 5. Attaching a Z- and an I-tile, we obtain any Z- and I-tile in A.
Case 6. Attaching a D- and an I-tile, we obtain any D- and I-tile in A.

Note that in all cases above exactly 4-tiles from A can occur, and no more than
those.

It remains to show that the resulting middle 4-tile is also coplanar. As attaching
two 4-tiles does not change the optimal angle θ, also the middle 4-tile consists of
four optimal cells with angle θ. Therefore, relation (2.19) holds for the middle 4-tile
as well. To conclude the proof, it suffices to show that one of the nonplanarity angles
δ13 and δ24 of the middle 4-tile is equal to δθ. To this end, note that one of these
angles coincides with the boundary angle of the shared boundary of the two 4-tiles.
By Lemma 3.1 this angle is equal to δθ.
(ii) We proceed constructively to show that every configuration consisting of four
4-tiles from A arranged in a square satisfying the matching conditions (M1)–(M2)
is admissible, i.e., can be realized by an admissible deformation y. By assumption,
B and D are of the same type. Then, one can check that, for any choice of A,C ∈ A
satisfying the matching conditions (M1)–(M2), the boundary orientations of A,C
match with those of B and D. In view of Lemma A.1(i), fixing B in reference
configuration and translating D from its reference position by the vector (2s, 2s, 0),
we see that these two 4-tiles share exactly one corner point, and we have |P − P̃ | =
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P

P̃

A D

B C
4v

2v

Q

Q̃

EA
1

EA
3

EC
1

EC
3

Figure 7 The points and rotations indicated in the proof of Propo-
sition 3.5.

|Q − Q̃| =
√

(2s)2 + (2s)2 = 4v, where P, Q ∈ B and P̃ , Q̃ ∈ D are the corner
vertices indicated in Fig. 7. By Lemma A.1(i) the opposite corner points along
the diagonal d1 have distance 4v, i.e., |EA

1 − EA
3 | = |EC

1 − EC
3 | = 4v. Therefore,

we can translate A and C from their reference positions such that their opposite
corner points coincide with P and P̃ and Q and Q̃, respectively. Since, for every
4-tile the distance between its center and a corner point equals

√
s2 + s2 = 2v, see

(2.16) and Lemma 2.5(i), after rotating A and C about (0, 2s, 0) + R(1, 1, 0) and
(2s, 0, 0) + R(1, 1, 0), respectively, as indicated in Fig. 7, the corner points of A, B,
C, and D in the interior of the configuration coincide. As the boundary orientations
match by (M1)–(M2) and the boundary angles coincide by Lemma 3.1, also the
respective middle points coincide after rotation of A and C. This along with part (i)
of the statement shows that the configuration is indeed realizable by an admissible
configuration y : {0, 1, 2, 3, 4}2 → R

3. This concludes the proof. �
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Appendix A: Remaining Proofs

A.1. Geometry of Optimal Cells and 4-Tiles
This subsection is devoted to the proofs of the lemmas stated in Sect. 2.3.

Proof of Lemma 2.3. Recall that m2 := (y2 + y4)/2 is the middle point between y2

and y4, cf. Fig. 2. We define a = m2 − y1, with |a| = d. Let n be a normal vector to
the plane spanned by y1, y2, and y4, in direction (y2 − y1) × (y4 − y1).

Observe that by assumption the fourth point y3 has to satisfy |y2 − y3| =
|y4 − y3| = 1 and thus has to lie on the plane spanned by a and n. Therefore, we
can make the ansatz

y3 = y1 + v3 a ± h3 n,

where v3 and h3 are to be determined, see Fig. 8. Note that in ± we choose + for
form � and − for form � . To conclude, we are left to prove that v3 and h3 can be
determined uniquely. Since the cell is optimal, we have �y3 m2 y1 = κ∗ (see (2.17))
as well as |a| = |m2 − y1| = |m2 − y3| = d. Consequently, the triangle with vertices
y1, m2, and y3 and thus also the values of v3 and h3 are uniquely determined. �

For convenience, we proceed with the proof of Lemma 2.5 and show Lemma 2.4
afterwards.

Proof of Lemma 2.5. In the proof, we again use the notation indicated in Fig. 5.
We recall the definition in (2.18) and drop for the moment the condition δ13 = δ24

induced by (2.14). To verify that every 4-tile can be placed in reference position,
we first rotate and translate the 4-tile such that C = 0 and M1 = (s1, 0, h1), and
M3 = (−s1, 0, h1), where a simple trigonometric relation yields

s1 = cos
(

π − δ13

2

)
= sin(δ13/2), h1 = sin

(
π − δ13

2

)
= cos(δ13/2). (A.1)

Here, we note that s1 > 0, while h1 is negative whenever δ13 > π. We now show
that the coordinates of M2 and M4 are given by

M2 = (0, s2, h2), M4 = (0,−s2, h2), (A.2)

where s2 = sin(δ24/2) and h2 = cos(δ24/2). We focus on M2 since the argument for
M4 is analogous. For convenience, we write M2 = (p1, p2, p3) and use the definition

y1

m2

y�

3

κ∗

v3

h3

Figure 8 Cross section along the plane spanned by a and n, as
defined in the proof of Lemma 2.3. From this perspective the points
y2, m2, and y4 coincide.
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of optimal cells, i.e., �M1 C M2 = θ = �M2 C M3 and |M1| = |M2| = |M3| = 1, to
find

cos θ = M1 · M2 = p1s1 + p3h1, cos θ = M3 · M2 = −p1s1 + p3h1.

By combining the two equalities we get p1 = 0. In view of (A.1), p3 is then given
by

p3 =
cos θ

h1
=

cos θ

cos(δ13/2)
, (A.3)

and, since |M2| = 1, we find p2 =
√

1 − p2
3. Thus, we have M2 = (0, p2, p3). By

a similar argument we find M4 = (0,−p2, p3). To conclude for (A.2), we need to
find the relation between p2 and p3. To this end, we use the fact that �M2 C M4 =
δ24 to calculate cos(δ24) = M2 · M4 = p2

3 − p2
2. This, together with p2

2 + p2
3 = 1,

verifies that p3 =
√

(1 + cos(δ24))/2 = cos(δ24/2) by using the double-angle formula.
Correspondingly, we find p2 = sin(δ24/2). This proves (A.2). Let us remark for later
purposes that (A.3) implies

cos(δ13/2) cos(δ24/2) = cos θ. (A.4)

From the condition δ13 = δ24 we get that s = s1 = s2 and h = |h1| = |h2| =
√

1 − s2.
We also let ς = sgn(h1) = sgn(h2). To conclude the proof of (i), it remains to check
that s =

√
2v, where v is defined in (2.16), i.e., is chosen in such a way that 2v

indicates the length of a diagonal in an optimal cell. This length can indeed be
expressed as |Mi − Mi+1| =

√
2s for i = 1, . . . , 4, which yields the desired relation.

We proceed with the proof of (ii). By fixing θ, the angle δθ is also determined
and, by (i), also fixing sgn(h1) determines completely the positions of the points
(Mi)4i=1. In view of Lemma 2.3, the positions of (Ei)4i=1 are determined as well, as
soon as the forms of the four optimal cells are given. �

Proof of Lemma 2.4. In the proof of Lemma 2.5 we have already verified (2.19), see
(A.4). Consider fθ : [0, π] → R defined by

fθ(δ) = 2 arccos(cos θ/ cos(δ/2)).

As cos θ > 0, fθ is decreasing and thus has at most one fixed point. Hence, fθ has
exactly one fixed point given by δθ = 2 arccos(

√
cos θ). This eventually shows that

δ13 and δ24 coincide if and only if δ13 = δ24 = δθ. �

We close this subsection with an elementary observation. We again refer to the
notation in Fig. 5.

Lemma A.1. (i) For any coplanar 4-tile in A (cf. (3.2)) in reference position, see
Lemma 2.5(i), we have E1 = (s, s, 0) and E3 = (−s,−s, 0).

(ii) For any Z-tile in A in reference position, we have E2 = (−s, s, 0) and
E4 = (s,−s, 0).

(iii) For any D-tile in A in reference position, we have |E2 − E4| < 4v, where
v is given in (2.16).

(iv) Assume that an optimal cell {y1, . . . , y4} is positioned in such a way that
e3 · y1 = 0 and e3 · y2 = e3 · y4 = h. Then, depending on its form, we have e3 · y3 = 0
or e3 · y3 > 2h.
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h

2h
κ∗

π − κ∗

|E2 − E4| < 4v
4v

ED
2 ED

4

EZ
4EZ

2 v

Figure 9 Cross section of a D-tile (bold, black and purple) and of a
Z-tile (thin lines in light orange), positioned as in Lemma A.1. The
distance between the diagonals is 4v for the Z-tile and smaller for
the D-tile.

Similar statements as (ii)–(iv) hold for B in place of A by changing the roles
of the diagonals.

Proof. Without restriction, we consider a 4-tile in A in reference position such that
ς = 1, cf. Lemma 2.5, as the other case only amounts to reflection along the e1-e2-
plane. By Lemma 2.5(i) we have that M1 = (s, 0, h), M2 = (0, s, h), M3 = (−s, 0, h),
and M4 = (0,−s, h). The optimal cells {C,M1, E1,M2} and {C,M3, E3, M4} are
of form �, see Fig. 2 and (3.2). Thus, by Lemma 2.3 we get E1 = (s, s, 0) and
E3 = (−s,−s, 0). This shows (i). We now suppose that the 4-tile is either of class
Z or of class D, i.e., is of type � �

� �
− or � �

� �
− . Therefore, the two optimal cells

{C,M2, E2,M3} and {C,M4, E4,M1} are of form � (D-tile) and of form � (Z-tile),
which yields to a cross section along the direction (−1, 1) as indicated in Fig. 9. We
now obtain

ED
2 · e3 = ED

4 · e3 > 2h for the D-tile and

EZ
2 · e3 = EZ

4 · e3 = 0 for the Z-tile. (A.5)

Indeed, for the Z-tile this follows from Lemma 2.3. For the D-tile we use Thales’
intercept theorem instead, with reference to Fig. 9. In particular, this implies (ii).
Then, as in the Z-cell the distance of the diagonals is 4v = 2

√
2s, (A.5) and Fig. 9

show that in the D-cell we have |ED
2 − ED

4 | < 4v. This implies (iii). Eventually,
property (iv) follows from (A.5). �

A.2. Boundary Orientations and Attachment of Two 4-Tiles
This subsection is devoted to the proofs of Lemma 2.6 and Lemma 2.7.

Proof of Lemma 2.6. The statement for the boundary orientation and the boundary
angle, defined in (2.20)–(2.21), respectively, follows from the fact that the notions are
determined uniquely by the three points which are shared by the two 4-tiles. More
precisely, given any 4-tile in reference position, by applying a rotation about the
e3 axis composed with a further small rotation (depending on θ), and a translation
one can ensure that a boundary of the 4-tile is contained in the e2-e3-plane and is
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symmetric with respect to the e1-e3-plane. Provided that θ is small, one can check
that this transformation does not change the inequality in (2.20). Clearly, each two
4-tiles with the same boundary angles can be transformed in this fashion in order
to be matched along the shared boundary.

Consider now two attached 4-tiles positioned such that the middle 4-tile is in
reference position, in particular, the shared middle point of the boundary is the
origin. If the boundary orientation of the shared boundary is ∧, then both shared
corner vertices satisfy Ei−1 · e3, Ei · e3 < 0, see (2.20), and thus for the middle 4-tile
we have ς = −1. An analogous argument applies if the boundary is ∨. �

Proof of Lemma 2.7. First, we note that, for any 4-tile in reference position, reflec-
tion about the e1-e2-plane interchanges all boundary orientations since the reflection
changes the sign of any e3-component. Moreover, rotation around e3 by π/2 leaves
the boundary orientation invariant. A rotation in the matrix notation therefore sim-
ply rotates the corresponding sides and interchanges ∨ with > and ∧ with <. For
example, rotating � �

� �
+ by π/2 counterclockwise, yields � �

� �
+ . This entails that it

is enough to check the boundary orientations for one representative of any class in
Table 2.

First, by Lemma 2.5 and Lemma A.1 we get that the orientation of all bound-
aries of the coplanar D-tile � �

� �
− is ∨. Indeed, assume that the 4-tile is in reference

position and use the notation of Fig. 5. Then the corner vertices E1 ·e3 = E3 ·e3 = 0
and Mi · e3 = h for i = 1, . . . , 4. Moreover, the optimal cells {C,M2, E2, M3} and
{C,M4, E4,M1} are positioned as in Lemma A.1(iv). Thus, we can conclude that
the corner vertices E2 and E4 have e3-coordinate strictly larger than 2h and hence,
in view of (2.20), we find that the boundary orientation is ∨.

Consider the Z-tile � �

� �
− in reference position. In this case, the middle points

satisfy Mi · e3 = h, i = 1, . . . , 4 and, in view of the forms of the four optimal cells,
the corner points satisfy Ei · e3 = 0, i = 1, . . . , 4. Thus, all four boundaries have
orientation ∧.

We observe that the above arguments actually only take into account the rela-
tive position of the two optimal cells adjacent to a boundary. Thus, one can repeat
the arguments above for the I-tiles. For instance, � �

� �
− has two ∨ boundaries top

and left, i.e., adjacent to • as in a D-tile, and two ∧ boundaries right and bottom,
as in a Z-tile. �

A.3. Arrangements of Four 4-Tiles
In this subsection we prove Lemma 3.6. We start by a result about the mutual
position of two attached 4-tiles. To this end, recall the types of 4-tiles A and B
introduced in (3.2)–(3.3), as well as the definition of s and h in Lemma 2.5(i).

Lemma A.2. Let T and T̃ be two attached Z-, I-, or D-tiles of an admissible con-
figuration. Without restriction, up to applying an isometry, suppose that T is in
reference position, and that the shared boundary consists of the three points E1, M1,
E4 and Ẽ2, M̃2, Ẽ3, respectively, referring to the notation in Fig. 5. We denote the
reference position corresponding to T̃ by T̃ ′. We denote by RA

α the counterclockwise
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ZA DD

ZB ZC

(a) Case (i): Three Z-
and one D-tile.

ZA DD

ZB DC

(b) Case (ii): Two Z- and
two D-tiles.

DA DD

ZB DC

(c) Case (iii): Three D-
and one Z-tile.

Figure 10 Different cases in the proof of Lemma 3.6.

rotation around the axis (1, 1, 0) by the angle α, and RB
α denotes the counterclockwise

rotation around the axis (−1, 1, 0) by the angle α.
(1) If the shared boundary is a Z-boundary of T , and a Z-boundary of T̃ , then we
have T̃ = (2s, 0, 0) + T̃ ′.
(2) If the shared boundary is a D-boundary of T and a Z-boundary of T̃ , we have

T̃ =

{
RA

2ςT κ((2s, 0, 0) + T̃ ′) if T ∈ A,

RB
2ςT κ((2s, 0, 0) + T̃ ′) ifT ∈ B,

where κ is defined in (2.17), and ςT corresponding to T is given in Lemma 2.5.
(3) If the shared boundary is a Z-boundary of T and a D-boundary of T̃ , we have

T̃ =

{
(2s, 0, 0) + RA

2ςT̃ ′κT̃ ′ if T̃ ∈ A,

(2s, 0, 0) + RB
2ςT̃ ′κT̃ ′ if T̃ ∈ B,

where ςT̃ ′ corresponds to T̃ ′.

The case of two shared D-boundaries is not addressed here as we will not need
it in the sequel. We warn the reader that, in the applications below without further
mentioning, we will apply isometries to the tiles in order to reduce the positions to
the ones indicated in the lemma. We postpone the proof of Lemma A.2 to the end
of this subsection, and proceed with the proof of Lemma 3.6.

Proof of Lemma 3.6. (i) Without restriction we suppose that the tiles lie in A and
we suppose by contradiction that the D-tile is given by D. We assume that B is given
in reference position. Then, by Lemma A.2(1) we see that C is in reference position
shifted by (2s, 0, 0), and A is in reference position shifted by (0, 2s, 0). By Lemma 2.5
this implies that the coordinates of the points Q and P , indicated with � and
respectively � in Fig. 10A, are given by Q = (s, 3s, 0) and P = (3s, s, 0), respectively.
In particular, we have that |P −Q| = 2

√
2s = 4v, cf. (2.16) and Lemma 2.5(i), which

corresponds to the length of the diagonal in D. For the D-tile D in A, however,
having the rolling direction as given in Fig. 10A, cf. (3.2), the corresponding diagonal
has length smaller than 4v by Lemma A.1(iii), a contradiction.

(ii) Without restriction we suppose that the tiles belong to A and we suppose
by contradiction that the Z-tiles are in A, B, and that the D-tiles are in C, D, as in
Fig. 10B. We also assume that B is given in reference position. By Lemma A.2(1) we
see that A is in reference position shifted by (0, 2s, 0), and thus the point Q, indicated
by �, has coordinates Q = (s, 3s, 0). By Lemma A.2(3) the position of the tile C

is obtained by taking the tile in reference configuration, rotating around the axis
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(1, 1, 0) by the angle ±2κ, and then by a shifting by (2s, 0, 0). As the corners where
no roll-up occurs are left invariant under the rotation, we find by Lemma A.1(i)
that the point P , denoted by a � in Fig. 10B, has coordinates (3s, s, 0). This implies
|P − Q| = 2

√
2s = 4v. As in (i), this contradicts Lemma A.1(iii) since the length of

the diagonal in the D-tile D where the tile rolls-up is less than 4v.
(iii) Again without restriction we assume that the tiles belong to A and we

suppose by contradiction that the Z-tile is in B, as in Fig. 10C. We assume that
B is given in reference position. By Lemma A.2(3) the position of C is obtained
by taking the tile in reference configuration, rotation around the axis (1, 1, 0) by
the angle ±2κ, and then by a shifting by (2s, 0, 0) (exactly in this order). As the
corners where no roll-up occurs are left invariant under the rotation, we find by
Lemma A.1(i) that the point P , marked with � in Fig. 10C, has coordinates P =
(3s, s, 0). In a similar fashion, the position of A is obtained by taking the tile in
reference configuration, rotating around the axis (1, 1, 0) by the angle ±2κ, and then
by a shifting by (0, 2s, 0). Lemma A.1(i) yields that the point Q, indicated with � in
Fig. 10C, has coordinates Q = (s, 3s, 0). This implies |P − Q| = 2

√
2s = 4v, which

as in (i) and (ii) contradicts Lemma A.1(iii) since the length of the diagonal in the
D-tile D where the tile roll-up is less than 4v.

(iv) We finally show that (3.6) is not admissible. As before, we denote the 4-
tiles by A, . . . ,D, as indicated in (3.5). Our strategy hinges on (i)–(iii): we denote
by Q̃ the right middle point of A and by P̃ the upper middle point of C. In view
of Lemma 2.5(i) applied on D, their distance necessarily needs to be

√
2s = 2v. We

will show, however, that this is impossible.
In order to do so, we first assume that B is in reference position. In view of

Lemma A.2(3), the position of the tile C is obtained by taking the tile in reference
configuration, rotating it around the axis (−1, 1, 0) by the angle −2κ, and then by
a shifting by (2s, 0, 0) (exactly in this order). In a similar fashion, by Lemma A.2(2)
the position of the tile A is obtained by taking the tile in reference configuration,
followed by a translation by (0, 2s, 0), and then by rotation around the axis (1, 1, 0)
by the angle −2κ (exactly in this order).

We will now change the coordinate system to simplify the notational realization
of the procedure: we suppose that the common vertex of all three 4-tiles lies in the
origin and we reorient the coordinate system such that the rotation axis (1, 1, 0)
coincides with e1 and the rotation axis (−1, 1, 0) with e2, see Fig. 11. Then, the
points Q̃ and P̃ are given by Q̃ = Re1

2κQ and P̃ = R−e2
2κ P = Re2

−2κP , where Q =
(v, v,−h) and P = (v,−v,−h) are calculated by using Lemma 2.5, and the rotations
are given by

Re1
2κ =

⎛

⎝
1 0 0
0 cos(2κ) − sin(2κ)
0 sin(2κ) cos(2κ)

⎞

⎠, Re2
−2κ =

⎛

⎝
cos(2κ) 0 sin(2κ)

0 1 0
− sin(2κ) 0 cos(2κ)

⎞

⎠ .

An elementary calculation yields

Q̃ =

⎛

⎝
v
v
h

⎞

⎠, P̃ =

⎛

⎝
0

−v
0

⎞

⎠ + Re2
−2κ

⎛

⎝
v
0

−h

⎞

⎠ =

⎛

⎝
0

−v
0

⎞

⎠ + Re2
−4κ

⎛

⎝
v
0
h

⎞

⎠,
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Q

PB

A

C

e1

e2

0

Figure 11 The points P and Q are rotated by 2κ around the axis
in the respective directions. Note that P rotates clockwise.

Figure 12 Rotation of a Z-tile around the diagonal of a D-tile in
order to match the boundaries.

where we used the definition of κ = arctan(h/v), see (2.17), and the trigonometric
identities cos(2 arctan(x)) = (1 − x2)/(1 + x2) and sin(2 arctan(x)) = 2x/(1 + x2),
as well as (v, 0,−h) = Re2

−2κ(v, 0, h). Consequently, we obtain

|Q̃ − P̃ |2 = (2v)2 +
∣∣(Re2

0 − Re2
−4κ

)
(v, 0, h)

∣∣2

which is strictly larger than (2v)2 since κ ∈ (0, π/2), see (2.17). This establishes a
contradiction since, as stated above, the distance should be 2v. �

Proof of Lemma A.2. (1) Since the shared boundary is a Z-boundary of T and a
Z-boundary of T̃ , and the boundary orientations of T and T̃ match at the shared
boundary (see Lemma 2.6), Tables 2 and 3 show that ςT = ςT̃ and that the middle
4-tile between T and T̃ , denoted by T∗, is a Z-tile. By Lemma 2.6 we also find ςT∗ =
−ςT . Then by Lemma A.1(ii) it is elementary to check that CT̃ − CT = (2s, 0, 0),
where CT̃ and CT denote the centers of the 4-tiles, respectively.

(2) We prove the result only for the particular case of the two 4-tiles � �

� �
+ and

� �

� �
− , as depicted in Fig. 12. In fact, the general case can be reduced to this situation

by (a) replacing the optimal cells which are not adjacent to the shared boundary,
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κ∗

C2 P2

P̃2

2v
γ

κ

h
v

Figure 13 Cross section along the plane with normal (1, 1, 0).

as they do not affect the argument; and by (b) applying a suitable rotation or
reflection.

Suppose that T is in reference position and denote the reference position of T̃
by T̃ ′. We define T̃ ′′ := T̃ ′ + (2s, 0, 0). In view of Lemma A.1(i),(ii), we see that T

and T̃ ′′ share exactly one corner point E∗ = (s, s, 0) as depicted in Fig. 12. Clearly,
the rotation around the axis (1, 1, 0) by 2κ leaves E∗ invariant. We need to show
that under this rotation the points Pi, i = 1, 2, are mapped to P̃i, as depicted in
Fig. 12. We denote by Ci, i = 1, 2, the two points on (1, 1, 0) which intersect the
plane with normal vector (1, 1, 0) containing Pi and P̃i. By Lemma 2.5 we find that
C1 = (s/2, s/2, 0) and C2 = 0. We need to check that

|Ci − Pi| = |Ci − P̃i| and �Pi Ci P̃i = 2κ for i = 1, 2. (A.6)

We first address i = 1. By Lemma 2.5, we have P1 = (s, 0,−h) and P̃1 = (s, 0, h).
We also note that s =

√
2v. This along with C1 = (s/2, s/2, 0), κ = arctan(h/v) (see

(2.17)), and the trigonometric identity cos(2 arctan(x)) = (1 − x2)/(1 + x2) yields
(A.6) by an elementary computation.

We now address i = 2. As C2 and P̃2 form a diagonal of an optimal cell, see
Fig. 12, by the definition before (2.16) we get |C2 − P̃2| = 2v =

√
2s. On the other

hand, by Lemma 2.5, we find P2 = (s,−s, 0) and therefore |P2 − C2| =
√

2s. This
shows the first part of (A.6). To calculate the angle, we refer to the cross section in
Fig. 13. Since this cross section is the one of an optimal cell in a rotated position,
we can calculate the angle �P2 C2 P̃2 using the definition of κ∗ in (2.17) and thus
derive that γ = κ + (π − κ∗)/2 = κ + π/2 − (π − 2κ)/2 = 2κ. This concludes the
proof.

The proof of (3) is similar to (2) by interchanging the roles of the 4-tiles. We
omit the details. �

We proceed with a simple consequence for boundary angles defined in (2.21).

Corollary A.3. The boundary angle of a D-boundary coincides the the boundary an-
gle of a Z-boundary.

This immediately follows from Lemma A.2(ii). Indeed, if the statement was not
true, one could not attach the two 4-tiles, as described in the previous proof.

A.4. Incidence Angles in Coplanar 4-Tiles: Theorem 2.8 Implies Theorem 2.2

In this short subsection, we explain that Theorem 2.8 implies Theorem 2.2. In
Sect. 2.5, we already addressed the type function. Therefore, it remains to consider
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the last two items in Theorem 2.2, i.e., the incidence angles defined in (2.15) between
optimal cells.
Z-tiles. We start by showing that the incidence angles between optimal cells in a
Z-tile along both diagonals are given by zero. Observe that reflection about the e1-
e2-plane only interchanges the sign of the incidence angle. Thus, we assume without
restriction that ς = 1 (cf. Lemma 2.5). Due to symmetry, it suffices to consider
one of the four bonds contained in the 4-tile, e.g., the bond connecting C and
M1, referring to the notation in Fig. 5. Without restriction we only calculate the
incidence angle along d1 as the other one can be calculated in a similar fashion, again
exploiting symmetry. If the 4-tile is in reference position, Lemma 2.5(i) implies that
y1
top = E1 = (s, s, 0), y1

bot = M4 = (0,−s, h), C = 0, and M1 = (s, 0, h). Therefore,
since n1

top is in direction M1 ×E1 and n1
bot is in direction −M1 × (M4 −M1), we find

n1
top = n1

bot = 1√
s2+2h2 (−h, h, s). Thus, in view of (2.15), we get that the incidence

angle is arccos(1) = 0.
D-tiles. We now address a D-tile in (2.23), given in reference configuration. Due to
symmetry, it is again not restrictive to consider only the bond connecting C and
M1 and to suppose that ς = 1. Note that, due to Lemma 2.5 and Lemma A.1(i),
we have E1 = (s, s, 0) and E4 satisfies E4 · e3 = q and 0 < E4 · e1 = −E4 · e2 =
p :=

√
s2 − q2/2 < s for some q > 0. Since E1, M1, and M4 have the same position

as in a Z-tile, repeating the above calculation we find that the incidence angle
along d1 is zero. We now consider the angle along d2. To this end, we first find
that y2

top = M2 = (0, s, h) and y2
bot = E4 = (p,−p, q), see Lemma 2.5. Therefore,

since n2
top is in direction M1 × M2 and n2

bot is in direction −M1 × (E4 − M1), we
get n2

top = 1√
s2+2h2 (−h,−h, s), and an elementary computation yields n2

bot = v/|v|
for v = (−h,−h, s) + (0, qs/p, 0). This implies n2

top and n2
bot are not parallel and

therefore by (2.15) the incidence angle, denoted by γ∗, is not zero.
To determine the sign of the non-zero incidence angle, we need to determine the

sign of (y2
top −y2

bot) ·(n2
top −n2

bot) = (y2
top −y2

bot) ·n2
top −(y2

top −y2
bot) ·n2

bot. First note
that (y2

top−y2
bot) = M2−E4 = (−p, s+p, h−q) which yields (y2

top−y2
bot)·n2

top = −λqs,
with λ = 1/

√
s2 + 2h2 and (y2

top − y2
bot) · n2

bot = μqs2/p, with μ = 1/|v|. Therefore,
we obtain (y2

top − y2
bot) · (n2

top − n2
bot) = −λqs − μqs2/p < 0. Hence, the incidence

angle has a negative sign, see (2.15). Summarizing, we have shown that in D-tiles
the angles are also zero along d1 and lie in {−γ∗, γ∗} along d2.
I-tiles. It is obvious that for I-tiles, being combinations of Z- and D-tiles, we find
that the incidence angles along d1 are also 0 and along d2 they lie in {−γ∗, 0, γ∗}.

We close the proof by the observation that, due to the symmetries in Z-, D-,
and I-tiles contained in A, see (3.2), it is indeed elementary to check that γ2(s, t) =
γ2(s + 1/2, t + 1/2) for all s, t ∈ 1

2Z with s + t ∈ Z + 1/2.

A.5. Admissible Configurations and Ground States of the Energy

This subsection is devoted to the proof of Proposition 2.1.

Proof. Step 1. We start by introducing a specific unit cell : fix x0 ∈ Z
2 and denote

the four neighbors of x0 by x1 = x0+e1, x2 = x0+e2, x3 = x0−e1, and x4 = x0−e2.
Given a deformation y : {x0, . . . , x4} → R

3, we define
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yi = y(xi) for i = 0, . . . , 4, and we let y5 = y1. We introduce the cell energy by

Ecell(y) =
1
2

4∑

i=1

v2(|yi − y0|) +
1
2

4∑

i=1

v2(|yi − yi+1|)

+
4∑

i=1

v3(θi) + v3(δ13) + v3(δ24), (A.7)

where θi = �yi y0 yi+1 for i = 1, . . . , 4, as well as δ13 = �y1 y0 y3 and δ24 = �y2 y0 y4.
The cell (yi)4i=0 is called optimal if it minimizes (A.7).

Let us start by relating the cell energy to the configurational energy in (2.1). To
this end, let y : Z

2 → R
3 be a deformation, and for m ∈ N let Qm be the open square

centered at 0 with sidelength 2m. For j ∈ Z
2 ∩ Qm we denote by yj = {yj

0, . . . , y
j
4}

the cell considered above for x0 = j. Then, in view of (2.1), owing to the fact that
bonds related to nearest-neighbors and next-to-nearest-neighbors are contained in
two cells (apart from bonds intersecting ∂Qm), whereas each bond angle is contained
in exactly one cell, we find for every m ∈ N that

E(y,Qm) =
∑

j∈Z2∩Qm

Ecell(yj) = (2m − 1)2
1

#(Z2 ∩ Qm)

∑

j∈Z2∩Qm

Ecell(yj).

Then, recalling the definition in (2.5) and by arguing as in [13, Proposition 2.1] we
have that y : Z

2 → R
3 is a ground state if and only if for each x0 ∈ Z

2 the corre-
sponding cell {y0, . . . , y4} is optimal. Note that there exist admissible configurations
consisting of optimal cells by Theorem 2.8, e.g., a tiling with only Z-tiles. Therefore,
in the following it suffices to minimize the cell energy and to show that the unique
minimizer is identified by having specific bond lengths and bond angles.

Step 2. Let {y0, y1, y2, y3, y4} be an optimal cell. We show that |yj−y0| ∈ (1−η, 1+η)
as well as θj > π/2−η for j = 1, . . . , 4. Assume first by contradiction that |yj −y0| ≤
1 − η for some j = 1, . . . , 4. Then by using v2 ≥ −1, v3 ≥ 0, the fact that v2 is
decreasing on (0, 1), and (2.6) we get

Ecell(y) ≥ 1
2

4∑

i=1

v2 (|yi − y0|) +
1
2

4∑

i=1

v2 (|yi+1 − yi|)

≥ 1
2
v2(1 − η) +

1
2

∑

i �=j

v2 (|yi − y0|) +
1
2

4∑

i=1

v2 (|yi+1 − yi|)

≥ 1
2
v2(1 − η) − 3

2
− 2 =

1
2
v2(1 − η) − 7

2
(2.6)
> −2 + 2v2(

√
2) + 4v3(π/2) = Ecell(x0, x1, x2, x3, x4).

In the last equation, we have also used that v2(1) = −1 and v3(π) = 0. This estimate
contradicts the optimality of the cell.

In a similar fashion, we assume by contradiction that there exists some bond
angle θj , j = 1, . . . , 4, such that θj ≤ π/2 − η. Then, by v2 ≥ −1, v3 ≥ 0, and (2.8)
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we have

Ecell(y) =
1
2

4∑

i=1

v2 (|yi − y0|) +
1
2

4∑

i=1

v2 (|yi − yi+1|)

+
4∑

i=1

v3(θi) + v3(δ13) + v3(δ24)

≥ −4 + v3(θj)
(2.8)
> −2 + 2v2(

√
2) + 4v3(π/2)

= Ecell(x0, x1, x2, x3, x4),

which is again in contradiction with the optimality of y.
We eventually show that for an optimal cell the bond lengths have to be less

then 1 + η. Basic trigonometry together with the least size of the bond lengths and
bond angles ensures that second-neighbor bonds have at least length

2(1 − η) sin(π/4 − η/2) = 2(1 − η)
√

2
2

(
cos(η/2) − 1

2
sin(η/2)

)

>
√

2(1 − η)2 > 1, (A.8)

where the last two inequalities hold for η sufficiently small. Assume now that |yj −
y0| ≥ 1 + η for some j = 1, . . . , 4. Then, we get by v2 ≥ −1, v3 ≥ 0, the fact that v2

increasing on [1,∞), and (2.7) that

Ecell(y) =
1
2

4∑

i=1

v2 (|yi − y0|) +
1
2

4∑

i=1

v2 (|yi − yi+1|)

+
4∑

i=1

v3(θi) + v3(δ13) + v3(δ24)

≥ −3
2

+
1
2
v2(1 + η) + 2v2(

√
2(1 − η)2)

(2.7)
> −2 + 2v2(

√
2) + 4v3(π/2) = Ecell(x0, x1, x2, x3, x4).

The latter inequality once again contradicts optimality and we conclude that all
first-neighbor bond lengths are at most 1 + η.
Step 3. To simplify notation, we denote the collection of angles by θ := (θi)4i=1 =
(θ1, . . . , θ4). We observe that δ24 can be written as a function of θ and δ13, i.e.,
δ24 = f(θ, δ13), where the function f is explicitly given in Step 8, see (A.21). We
will not need the exact form of this function, but only use that it is smooth for
θi in a left neighborhood of π/2 and δ13 in a small interval left of π, see Step 8
below. Using Lemma 2.4 we find that in a cell with θ1 = · · · = θ4 = θ it holds that
δ24 = f(θ, . . . , θ, δ13) = fθ(δ13), where fθ(δ) := 2 arccos (cos θ/ cos(δ/2)). Note that
fθ has a unique fixed point δθ := 2 arccos(

√
cos θ). We decompose the cell energy

Ecell defined in (A.7) as

Ecell(y) =
4∑

i=1

F (�i, �i+1, θi) + v3(δ13) + v3(f(θ, δ13)), (A.9)
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where �i := |yi − y0| for i = 1, . . . , 4 and

F (�i, �i+1, θi) :=
1
4
v2(�i) +

1
4
v2(�i+1)

+
1
2
v2

(
(�2i + �2i+1 − 2�i�i+1 cos θi)1/2

)
+ v3(θi).

We have proved that, if {y0, . . . , y4} is optimal, first-neighbor bond lengths �i lie in
(1−η, 1+η) and bond angles θi lie in (π/2−η, π]. Therefore, by using the convexity
assumption (2.9) on F we find

4∑

i=1

F (�i, �i+1, θi) ≥ 4F (�̄, �̄, θ̄), (A.10)

where

�̄ =
1
4
(�1 + · · · + �4), θ̄ =

1
4
(θ1 + · · · + θ4). (A.11)

Note that the inequality in (A.10) is strict whenever �i �= �̄ or θi �= θ̄ for some
i = 1, . . . , 4.
Step 4. We check that the map (�, θ) �→ F (�, �, θ) is minimized on (1 − η, 1 + η) ×
(π/2 − η, π] at some �∗ ≤ 1 and θ∗ < π/2. If we had �∗ > 1, one could reduce F by
reducing �, noting that v2 is increasing in (1,∞) and recalling (A.8). This, however,
would contradict optimality. We now exclude θ∗ ≥ π/2. Indeed, in this case we could
decrease θ∗ by 0 < θ̃ � 1 and by a Taylor expansion we would get that F changes
to first order by

−v′
3(θ

∗)θ̃ − v′
2

(√
2�

√
1 − cos θ∗) �

2
√

2
sin θ∗ θ̃√
1 − cos θ∗ .

By � ∈ (1−η, 1] and (2.11) we get that the above term is negative, which contradicts
minimality.
Step 5. Next, we show that for θ̄ defined in (A.11) it holds that θ̄ ≤ π/4 + θ∗/2. We
also establish a bound from below on δ13 and δ24. The argument is based on the
observation that by (A.9), (A.10), and the definition of δθ we find that 4F (�, �, θ) +
2v3(δθ) is an upper bound for the minimal cell energy for (�, θ) ∈ (1 − η, 1 + η) ×
(π/2 − η, π]. By definition we have δθ → π as θ → π/2. Thus, in view of (2.10), the
monotonicity of v3, and θ∗ ≥ π/2 − η, we can choose η sufficiently small depending
on v3 and find λ > 0 small such that |v3| ≤ ε on [π − λ, π], |v′

3| ≤ ε on [π − 2λ, π],
and

v3(δ) > 2ε > 2v3(δθ∗) for δ ≤ π − λ. (A.12)

We also suppose that ε is chosen small enough depending on v2, v3, and θ∗ such
that

F (�, �, θ) > F (�∗, �∗, θ∗) + 2ε for θ >
π

4
+

θ∗

2
and � ∈ (1 − η, 1 + η). (A.13)

Now, we can suppose δ13, δ24 ≥ π − λ (recall that δ24 = f(θ, δ13)) since otherwise
we get

Ecell(y) > 4F (�̄, �̄, θ̄) + 2v3(δθ∗) ≥ 4F (�∗, �∗, θ∗) + 2v3(δθ∗)
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by using (A.9), (A.10), and (A.12), which contradicts minimality. In a similar fash-
ion, we can suppose that θ̄ in (A.11) satisfies θ̄ ≤ π

4 + θ∗
2 as otherwise Ecell(y) >

4F (�∗, �∗, θ∗) + 2v3(δθ∗) follows using (A.9), (A.10), (A.12), and (A.13).
Step 6. We are left with the case δ13 ≥ π −λ and θ1 + . . .+ θ4 = 4θ̄ ≤ π +2θ∗ < 2π.
In this step, we show that

Ecell(y) ≥ 4F (�̄, �̄, θ̄) + v3(δ13) + v3(fθ̄(δ13)) (A.14)

with equality only if �i = �̄ and θi = θ̄ for i = 1, . . . , 4.
We start by noticing that θ1 + . . . + θ4 < 2π and θi > π/2 − η for i = 1, . . . , 4

imply θi < π/2 + 3η for i = 1, . . . , 4. Therefore, the convexity estimate in (A.10)
can be improved by using the strong convexity assumption (2.9) on F , and we find

4∑

i=1

F (�i, �i+1, θi) ≥ 4F (�̄, �̄, θ̄) + α

4∑

i=1

|θi − θ̄|2 (A.15)

for some α > 0. Moreover, a simple geometric argument shows that δ13 = π implies
θ1+. . .+θ4 = 2π, see Fig. 14. Therefore, by a continuity argument and θ1+. . .+θ4 ≤
π + 2θ∗ we get that δ13 ≤ δ∗ for some δ∗ < π only depending on θ∗. Consequently,
we need to consider the case that δ13 ∈ [π − λ, δ∗] and θi ∈ (π

2 − η, π
2 + 3η).

If α
∑4

i=1 |θi − θ̄|2 ≥ 2ε, by (A.9), (A.12), and (A.15) we obtain a contradiction
to minimality as v3(δ13) + v3(f(θ, δ13)) + α

∑4
i=1 |θi − θ̄|2 ≥ 2ε > 2v3(δθ∗).

If α
∑4

i=1 |θi − θ̄|2 < 2ε, we now show that fθ̄(δ13) cannot be too far away
from f(θ, δ13). Eventually, this will allow us to deduce (A.14). By choosing ε small
enough and recalling that θ̄ < π/2, we get that θi ≤ π/2 for i = 1, . . . , 4. By Taylor’s
Theorem there exists z ∈ {tθ + (1 − t)θ̄ : t ∈ [0, 1]}, where θ̄ = (θ̄, . . . , θ̄), such
that

f(θ, δ13) − fθ̄(δ13) = f(θ, δ13) − f(θ̄, δ13)

= ∇θf(θ̄, δ13)(θ − θ̄) +
1
2
(θ − θ̄)∇2

θf(z, δ13)(θ − θ̄)

=
1
2
(θ − θ̄)∇2

θf(z, δ13)(θ − θ̄) ≤ λmax

2
|θ − θ̄|2

=
λmax

2

4∑

i=1

|θi − θ̄|2, (A.16)

where we used that ∂
∂θi

f(θ̄, δ13) = ∂
∂θj

f(θ̄, δ13) and thus

∇θf(θ̄, δ13) · (θ − θ̄) = ∂
∂θ1

f(θ̄, δ13)

(
∑

i

θi −
∑

i

θ̄

)
= 0.

In (A.16) we denoted the largest eigenvalue of the Hessian ∇2
θf(z, δ13) with λmax.

Using the Gershgorin circle theorem, we find |λmax| ≤ 4cf where we use that f is
smooth for θi ∈ I := [π

2 − η, π
2 ] and δ13 ∈ [π − λ, δ∗], and define

cf := max
i,j=1,...,4

sup
θi∈I

sup
δ13∈[π−λ,δ∗]

∣∣∣∣
∂2

∂θi∂θj
f(θ, δ13)

∣∣∣∣ < ∞.
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The proof of the smoothness of f is deferred to the end of the proof in Step 8.
Therefore, we obtained

|f(θ, δ13) − fθ̄(δ13)| ≤ 2cf

4∑

i=1

|θi − θ̄|2. (A.17)

For ε small enough such that 4cfε ≤ αλ, due to α
∑4

i=1 |θi − θ̄|2 < 2ε, we have

|f(θ, δ13) − fθ̄(δ13)| ≤ 2cf

4∑

i=1

|θi − θ̄|2 ≤ αλ

2ε

4∑

i=1

|θi − θ̄|2 ≤ λ.

Hence fθ̄(δ13) ≥ π − 2λ as f(θ, δ13) ≥ π − λ by Step 5. Therefore, as |v′
3| ≤ ε on

[π − 2λ, π] and λ > 0 small, we obtain by (A.17)

|v3(f(θ, δ13)) − v3(fθ̄(δ13))| ≤ |f(θ, δ13) − fθ̄(δ13)| sup
[π−2λ,π]

|v′
3|

≤ 2cfε
4∑

i=1

|θi − θ̄|2 ≤ α

2

4∑

i=1

|θi − θ̄|2. (A.18)

Consequently, (A.14) holds by applying (A.15) and (A.18) to (A.9).
Step 7. We now conclude the proof by showing

Ecell(y) ≥ 4
(

1
2
v2(�̄) +

1
2
v2(

√
2�̄(1 − cos θ̄)1/2) + v3(θ̄)

)
+ 2v3(δθ̄), (A.19)

where δθ̄ = 2 arccos(
√

cos θ̄), and that equality holds only if �i = �̄ and θi = θ̄ for
i = 1, . . . , 4. To this end, we further estimate (A.14) by claiming

g(δ13) := v3(δ13) + v3(fθ̄(δ13)) ≥ 2v3(δθ̄), (A.20)

with equality if and only if δ13 = fθ̄(δ13). Computing g′(δ) = v′
3(δ)+ v′

3(fθ̄(δ)) f ′̄
θ
(δ)

shows that g′(δθ̄) = 0, because f ′̄
θ
(δθ̄) = −1 and δθ̄ = fθ̄(δθ̄). Moreover, we calculate

g′′(δ) = v′′
3 (δ) + v′′

3 (fθ̄(δ)) (f ′̄
θ
(δ))2 + v′

3(fθ̄(δ)) f ′′̄
θ
(δ) > 0, where we used the mono-

tonicity and strict convexity of v3 and the concavity of fθ̄, which follows from an
elementary computation. This indeed implies (A.20).

This, along with (A.14), implies that (A.19) holds, with equality only if all
bonds of an optimal cell have length �̄, all angles have amplitude θ̄, and δ13 = δ24 =
δθ̄. Clearly, for an optimal cell, �̄ and θ̄ are given uniquely. We finally observe that
�̄ ≤ 1 and θ̄ < π/2. For �̄, this follows from the fact that �∗ ≤ 1, as shown in Step
4, and θ̄ < π/2 has been checked in Step 5.
Step 8. Let us conclude by collecting some remarks on the function f(θ, δ13) used
throughout the proof. If δ13 = π, we have that θ1+θ2 = θ3+θ4 = δ13 = π. Therefore,
δ24 can be chosen arbitrarily in [0, π], see Fig. 14, and f(·, π) is hence not defined.
For δ13 < π, the definition is given by

f(θ , δ13) = arccos

{
cos θ1 cos θ4 +

(cos θ2 − cos δ13 cos θ1)(cos θ3 − cos δ13 cos θ4)

sin2 δ13

−
√

1− cos2 θ1 − (cos θ2 − cos δ13 cos θ1)2

sin2 δ13

√

1− cos2 θ4 − (cos θ3 − cos δ13 cos θ4)2

sin2 δ13

⎫
⎬

⎭ ,

(A.21)
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θ1

θ2

θ3

θ4

Figure 14 If δ13 = π, then θ1 + θ2 = θ3 + θ4 = δ13 = π and thus
θ1+· · ·+θ4 = 2π. Furthermore, the angle δ24 can be chosen arbitrarily
.

which can be derived by elementary, yet tedious, trigonometry. Let us now check
that f is smooth for all δ13 ∈ [π − λ, δ∗] and θ ∈ [π/2 − η, π]4 such that f(θ, δ13) =
δ24 ∈ [π − λ, δ∗] which we need in Step 6 of the proof. First, since δ24 ∈ [π −
λ, δ∗] the expression inside of arccos is bounded away from −1 and 1. As δ13 ∈
[π − λ, δ∗], sin δ13 is bounded away from 0. Thus, it suffices to check that the ex-
pressions inside the square roots are bounded away from 0. Indeed, θ ∈ [π/2 −
η, π]4 implies cos θ1 cos θ4 → 0 as η → 0 and (cos θ2 − cos δ13 cos θ1)(cos θ3 −
cos δ13 cos θ4)/ sin2 δ13 ≥ 0. As cos(f(θ, δ13)) lies in a neighborhood of −1, this
is indeed only possible if the value of each of the square roots is close to 1. �
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