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Abstract

In the k-labeled Spanning Forest Problem (kLSF), given a graph G with a label (color) assigned to each edge, and an

integer positive value kmax we look for the minimum number of connected components that can be obtained by using at

most kmax different labels. The problem is strictly related to the Minimum Labelling Spanning Tree Problem (MLST),

since a spanning tree of the graph (i.e. a single connected component) would obviously be an optimal solution for the

kLSF, if it can be obtained without violating the bound on kmax. In this work we present heuristic and exact approaches

to solve this new problem.

c© 2011 Published by Elsevier Ltd.
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1. Introduction

In this work, we introduce a new combinatorial optimization problem, namely the k-Labeled Spanning

Forest Problem, and present some heuristics as well as an exact method for its resolution. The k-labeled

Spanning Forest (kLSF) Problem belongs to a recently studied class of problems, defined on edge-labeled

graphs; that is, for each edge of the graph, a different label is assigned to it. Such a type of graphs may

be used to model many real-world situations in which we want to distinguish between different ”types” of

connections; for example, in telecommunication networks, there can be different types of communications

media (such as optical fiber, coaxial cable, telephone line) different companies to which the connections

belong, or different transmission frequencies. It is then clear that we may be interested in optimizing this

factor when we are considering the edges to be included in the solution of the problem that we are going to

solve.

In the kLSF Problem, we are interested in finding the minimum number of connected components that

can be found in an undirected edge-labeled graph when we have a constraint on the maximum number

kmax of labels that can be used. This type of constraint is meaningful with respect to many real-world

situations in which there is a limit that cannot be violated. For example, with the emergence of wireless

communication technologies (such as WiFi and cellular networks), in the last years we have been surrounded

by electromagnetic fields (EMFs) of many frequencies. The overall effect of this exposition on human beings
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and environment has risen concern in the scientific community (see for example [1]). In this scenario it could

be desirable to build a telecommunication network with hard constraints on the maximum number of used

transmission frequencies. In the case in which such constraints would not allow to obtain a single connected

network, a terminal hub for each connected component could be used to connect it with the others using

older, less effective technology (such as cable networks). Minimizing the number of connected components

would then mean to minimize the impact due to the performances or cost of older technology in the context

of a sustainable wireless network.

The kLSF generalizes a well-known problem in the context of edge-labeled graphs, that is, the problem

of finding the Spanning Tree of the graph that uses the minimum number of labels (Minimum Labeling

Spanning Tree, or MLST). In fact, a spanning tree would represent the optimum if we can find one that uses

at most the number of labels that we allow in a solution (note that an optimal single-component solution for

the kLSF may contain cycles, but then we could arbitrarily break each of them in polynomial time).

The MLST was introduced by Chang and Leu [2]. They proved it to be NP-complete and provided an

heuristic, the Maximum Vertex Coverage Algorithm (MVCA), as well as an exact A* algorithm. Krumke

and Wirth [3] proposed an improved version of MVCA. They also proved an approximation ratio of (1 +

2 log n) for the algorithm with respect to the optimal solution, where n is the total number of nodes. Wan et

al. [4] proved a tighter bound for the approximation ratio of MVCA, that is, 1 + log(n − 1)) if n > 1. Xiong

et al. [5] furtherly improved the bound by Wan et al., showing that the worst-case bound of MVCA is the

bth-harmonic number Hb =
∑b

i=1 1/i, where b is the bound on the maximum frequency of any label in the

graph. This is an improvement on the previous bound because Hb < (1 + log(n − 1)) and b ≤ (n − 1). They

also proved this new bound to be tight

In [6], the authors proved that a mixed integer linear relaxation of the problem always has an optimal

solution value that is equal to the one of the original problem.

Several metaheuristic approaches have been proposed for MLST. Xiong et al. [7] presented a Genetic

Algorithm (GA) that generally outperforms MVCA. Cerulli et al. [8] applied different metaheuristics to the

problem (Reactive Tabu Search, Simulated Annealing, Variable Neighbourhood Search, Pilot Method). The

Pilot Method obtains the best results for most of the instances, but generally requires a larger amount of

running time. Xiong et al. [9] implemented both a simplified version of the Pilot Method and a Modified

Genetic Algorithm (MGA). Consoli et al. [10] presented a Greedy Randomized Adaptive Search (GRASP)

and a Variable Neighborhood Search (VNS) algorithm.

Other addressed problems in the same field include the Minimum Labelling Steiner Problem [11], [12],

[13]), the Minimum Labelling Generalized Forest [14], the Colorful Traveling Salesman Problem ([15], [16],

[17], [18]), the Generalized Minimum Label Spanning Tree Problem [19], the Label-Constrained Minimum

Spanning Tree Problem [20] and the Labeled Maximum Matching Problem [21].

The remainder of the paper is organized as follows. In section 2 the problem is formally defined and it

is shown to be NP-complete. Heuristic and metaheuristic appoaches are discussed in section 3. A Branch

and Bound exact algorithm is presented in section 4. The results of an experimental phase conducted on our

algorithms is presented in section 5. Section 6 contains conclusions and some final remarks.

2. Problem Description

Let G = (V, E) be an undirected edge-labeled graph with V being the set of nodes and E the set of edges.

Let L = {l1, l2, . . . , lc} the set of all the labels. We denote with L(e) ∈ L the label assigned to each edge e ∈ E.

Any subgraph H of G has associated the set of its labels L(H); analogously, let E(L′) be the subset of edges

with a label belonging to L′ ⊆ L. Given an integer parameter kmax such that 1 ≤ kmax ≤ |L|, we look for a

spanning forest of G, H = {H1, ...,Hw} such that each Hi is connected, the cardinality of H is minimized and

the cardinality of the set of its labels L(H) =
⋃

i=1...w(L(Hi)) is at most kmax. In the following, let n(H) be the

number of connected components for a given subgraph H of G.

Now, let us consider the decision versions of both MLST and kLSF. Let w be a positive integer:

MLST. Given kmax ≤ |L|, is there a connected subgraph H of G containing edges with up to kmax different

labels?
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kLSF. Given kmax ≤ |L| and w ≤ |V |, is there a subgraph H of G containing edges with up to kmax different

labels, and such that n(H) ≤ w?

kLSF belongs to the NP class. Indeed, given a feasible solution, it is possible to verify in polynomial

time whether it contains no more than w connected components. It can be noticed that MLS T is a special

case of kLSF with w = 1. Therefore, since MLS T is NP-Complete, kLSF is NP-Complete as well.

3. Heuristic Approaches

3.1. Modified MVCA

The first heuristic we developed is a variant of the Maximum Vertex Covering Algorithm for the Mini-

mum Labelling Spanning Tree problem, presented in [2] by Chang and Leu and enhanced by Krumke and

Wirth in [3]. Recalling that the Minimum Labeling Spanning Tree Problem consists in finding the spanning

tree with the minimum number of different labels, this heuristic adds iteratively labels reducing the number

of connected components by as many as possible, until one connected component is left. Our variant works

in quite the same way, with the major difference that the algorithm ends if the kmax limit is reached. More

formally, given an initially empty set of labels C, the algorithm iteratively selects label l ∈ L\C such that

subgraph H = (V, E(C
⋃{l})) has the minimum number of connected components and adds it to C, until

either H is connected or |C| = kmax. The algorithm is highly efficient in terms of computational time. For

this reason we decided to develop more complex metaheuristic approaches, where we use Modified MVCA

as a subroutine.

3.2. Pilot Method

The Pilot Method [22] is a metaheuristic based on the idea of using a basic heuristic algorithm (such as

the Modified MVCA) as a look-ahead mechanism by means of iterated executions. In each Pilot Method

iteration we evaluate every local choice available from a so-called master solution (i.e, we move to all the

neighbors of this solution), we run our basic heuristic on each of these choices and record the best result

obtained; we will move to its corresponding move for the next Pilot Method iteration.

We use the Pilot Method as a constructive scheme that starts from an empty solution (i.e., no selected

labels) and operates on a solution space made up of feasible solutions (i.e., no more than kmax selected

labels). Our neighborhood structure is based on the addition of labels (the neighbors of a given solution x
will be all the solutions that have all the labels of x selected, plus a new one). Therefore, at each step of our

algorithm we will add every unused label to our master solution, and perform the Modified MVCA for each

of this choices, moving for the next iteration on the neighbor that led to the best solution, until either kmax

labels have been selected or a single component has been obtained.

3.3. Local Search Based Metaheuristics

While the algorithms described in Sections 3.1 and 3.2 behave in a constructive manner (that is, they

start from an empty solution and add new labels to it), the Tabu Search and Simulated Annealing procedures

(described in Sections 3.3.1 and 3.3.2, respectively) start from an input solution and iteratively try to improve

it. For this reason, a new type of neighborhood structure is required.

The solution space for our Tabu Search and Simulated Annealing procedures is composed of solutions

where kmax labels are selected. Indeed, these two procedures are initialized using Modified MVCA, which

always returns a solution composed of kmax labels, unless it contains a single component that does not need

to be improved.

Moreover, it is obvious that an optimal solution is always reachable when kmax labels are selected,

since adding new edges to an optimal solution with k < kmax labels would preserve the same number of

components.

Let l1, ..., lkmax be the chosen labels in our current solution x, and h1, ..., hk′ be the unchosen ones (please

note that k′ = |L| − kmax). For each i = 1, ..., kmax and for each j = 1, ..., k′ there will be a neighbor xi j of x,

whose list of selected labels is l1, , l(i−1), h j, l(i+1), , lkmax (that is, h j substitutes li).
Therefore, each neighborhood size is kmax(|L| − kmax).
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3.3.1. Reactive Tabu Search
The basic paradigm of Tabu Search is to use information about the search history to guide local search

approaches to overcome local optimality (see [23] for a survey on Tabu Search). In general, this is done by

a dynamic transformation of the local neighborhood. Based on some sort of memory certain moves may be

forbidden, we say they are flagged as tabu (and appropriate move attributes such as a certain index indicating

a specific label put into a list, the so-called tabu list). The search may imply acceptance deteriorating moves

when no improving moves exist or all improving moves of the current neighborhood are flagged as tabu. At

each iteration a best admissible neighbor may be selected. A neighbor, respectively a corresponding move,

is called admissible, if it is not tabu.

Reactive Tabu Search (RTS) aims at the automatic adaptation of the tabu list length [24]: if the tabu

memory indicates that the search is revisiting formerly evaluated solutions, then the tabu list size is in-

creased. A possible specification can be described as follows: starting with a tabu list length ls of 1 it is

increased to min{max{ls + 2, ls × 1.2}, bu} every time a solution has been repeated, taking into account an

appropriate upper bound bu (to guarantee at least one admissible move). If there has been no repetition for

some iterations, we decrease it to max{min{ls − 2, ls/1.2}, 1}. To accomplish the detection of a repetition of

a solution, one may apply a trajectory based memory using hash codes.

For RTS, it is appropriate to include means for diversifying moves whenever the tabu memory indicates

that we are trapped in a certain region of the search space. As a trigger mechanism one may use, e.g.,

the combination of at least three solutions each having been evaluated three times. A very simple escape

strategy is to perform randomly a number of moves (depending on the average of the number of iterations

between solution repetitions).

The main termination criterion is given by the individuation of a feasible solution composed of a single

connected component; alternatively, the procedure ends when a given time limit is reached.

3.3.2. Simulated Annealing
Like the Tabu Search, Simulated Annealing (SA) extends basic local search. The basic concept of SA

may be described as follows: starting from an initial solution, a candidate move in the current neighborhood

is accepted if it leads to a solution with a better objective function value than the current solution, otherwise

the move is accepted with a probability that depends on the deterioration Δ of the objective function value.

The acceptance probability is computed according to the Boltzmann function as e−Δ/T , using a temperature

T as control parameter. Various authors describe robust realizations of this general SA concept. Follow-

ing [25], the value of T is initially high, which allows many worse moves to be accepted, and is gradually

reduced through multiplication by a parameter coolingFactor according to a geometric cooling schedule.

Given a parameter sizeFactor, sizeFactor · nsize candidate moves are tested (nsize denotes the neighbor-

hood size) before the temperature is reduced. The starting temperature is determined as follows: Given a

parameter initialAcceptanceFraction and based on an abbreviated trial run, the starting temperature is set

so that the fraction of accepted moves is approximately initialAcceptanceFraction. A further parameter,

f rozenAcceptanceFraction is used to decide whether the annealing process is frozen and should be termi-

nated. Every time a temperature is completed with less than f rozenAcceptanceFraction of the candidate

moves accepted, a counter is increased by one, while this counter is re-set to 0 each time a new best so-

lution has been obtained. The whole procedure is terminated when either a solution composed of a single

component is found or the counter reaches a parameter f rozenLimit.

3.4. Genetic Algorithm

Genetic Algorithms (GAs) rely on analogies to the natural processes of evolution and natural selection

of individuals belonging to a population. Each individual represents an element of the solution space, with

the hope to evolve (after a certain number of generations) to a near-optimal solution. The elements that must

be provided in order to implement a GA are:

1. An abstract representation for each member of the population (generally called its chromosome); in

our algorithm the chromosome is simply the list of labels selected in the solution. As for the local

search based metaheuristics, we only consider solutions where exactly kmax labels are selected.
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2. A function to evaluate each individual (the fitness function); our fitness function is given by the num-

ber of connected components.

3. Mechanisms to derive new solutions, either from two ”parent” solutions (crossover) or from a pertur-

bation of a single individual (mutation).

Given two distinct feasible solutions S ′ and S ′′, each composed of kmax labels, the crossover operator

in our proposed GA starts by considering the union U of their labels (such a set will contain at least

(kmax + 1) elements, since the two solutions are different). At this point, the algorithm creates a new

solution by applying the Modified MVCA algorithm on this set of labels (that is, only labels belonging

to U will be considered at each step of the procedure), until kmax of them are selected.

The mutation mechanism, instead, operates by adding a random unselected label to a given feasible

solution S . At this point, an unfeasible (kmax + 1)-labeled individual has been created, and therefore

one label must be removed. The algorithm performs this task by removing the label that gives the best

value in terms of fitness function, i.e., such that the increase in the number of connected components

is minimized. Only the original labels of S are considered for removal (i.e. we will not obtain a

solution identical to S ), since the aim of the mutation operator is to diversify the population. Finally,

a set of rules that describe how the above presented mechanisms are applied and how new individuals

(new generations) substitute the older ones must be defined.

Our proposed GA is derived from the one developed by Xiong, Golden and Wasil in [7]. This pro-

cedure is designed to be extremely simple. Indeed, while other genetic procedures rely on a series of

parameters and random choices to determine events such as the verification of a mutation or the se-

lection of individuals that will generate a new solution, this scheme depends on a single user-defined

parameter, that represents both the population size and the number of iterations of the procedure. Let

p be the value of this parameter; moreover, let {S 0, . . . , S (p−1)} be the initial population.

The Genetic Algorithm creates the generic i-th population from the (i − 1)-th as follows:

for each j from 0 to (p − 1), do:

• T j=crossover(S j,S (( j+i) mod p))

• T j=mutation(T j)

• S j= the solution with the better fitness value between T j and S j

Our GA follows all the above described steps. The initial population is created randomly. The solution

with the best fitness value created during the execution is always stored as incumbent optimum. The

procedure ends before the last generation if a solution composed of a single component is found.

4. Branch and Bound Approach

We developed an exhaustive search algorithm for the k-Labeled Spanning Forest problem.

Some fundamental notation used in this section is now introduced. During the execution of the algo-

rithm, let Lopt ⊆ L be the subset of labels corresponding to the best solution found so far, that is, such that

n(Hopt) is the minimum value found, where Hopt = (V, E(Lopt)). Lopt is initialized with the empty set (cor-

responding to the trivial upper bound n(Hopt) = |V |). Any given node of the Branch and Bound search tree

represents a solution Hcurr = (V, E(Lcurr)), Lcurr ⊆ L, where Lcurr represents a decision about which labels

to include from a subset of labels {l1, . . . , ld}, d ≤ |L|. If d < |L|, labels l(d+1),. . .,l|L| could be added to Lcurr

in the solutions represented by the nodes belonging to the subtree rooted at the current node; such labels are

called undecided.

A proposition is now introduced and proven. The proposition gives an upper bound on the improvement

in terms of objective function that can be obtained by adding a subset of undecided labels M′ to a given

solution, using the contributions provided by the individual labels of M′. Such results are used by one of

the pruning operators of the Branch and Bound algorithm, as will be discussed next.
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Proposition 1. Let G = (V, E) be an input labeled graph, and let L be the set of its associated labels.
Let M and M′ be two nonempty subsets of L such that M ∩ M′ = ∅ and |M′| ≥ 1. Let H = (V, E(M)),
H′ = (V, E(M)∪E(M′)) and Hl = (V, E(M)∪E({l})) for a given label l ∈ L. The following inequality holds:

n(H) − n(H′) ≤
∑

l∈M′
(n(H) − n(Hl)) (1)

Proof. Proposition 1 is now proved by induction on the cardinality of M′. Suppose that |M′| = 1; in this

case, M′ is composed by a single label l, and both the left-hand side and the right-hand side of Inequality

(1) assume the same value n(H) − n(Hl). Therefore, the proposition is proved for the base of induction.

Now, consider the case |M′| > 1. Let l′ be an arbitrary element of M′, M′′=M′ \ {l′}, and H′′ =
(V, E(M) ∪ E(M′′)). By induction, suppose that n(H) − n(H′′) ≤ ∑l∈M′′ (n(H) − n(Hl)). Since adding edges

can not disconnect previously connected components, then n(H′′) − n(H′) ≥ 0. The proof is now carried on

distinctly for the two cases n(H′′) − n(H′) = 0 and n(H′′) − n(H′) > 0.

If n(H′′) − n(H′) = 0 (that is, adding the edges labeled with l′ to H′′ does not decrease the number

of components), then obviously n(H) − n(H′′) = n(H) − n(H′). Moreover, for the same reasons expressed

above, it can also be noted that n(H) − n(Hl′ ) ≥ 0. Therefore, it follows that n(H) − n(H′) ≤ ∑l∈M′′ (n(H) −
n(Hl)) + (n(H) − n(Hl′ )), and Proposition 1 is proved.

Otherwise, if n(H′′) − n(H′) = δ > 0, then δ distinct couples of disconnected components in H′′ get

connected by one or more edges when label l′ is added. For each couple of newly connected components,

select randomly one of the edges labeled with l′ connecting them. For each of such edges, it can be noted

that its endpoints belong to different components in H; indeed, they belong to different components in

H′′, and as previously noted, components can not be disconnected by adding new edges. It follows that

n(H) − n(Hl′ ) ≥ δ, and therefore n(H′′) − n(H′) ≤ n(H) − n(Hl′ ). It can then be noted that n(H) − n(H′′) +
n(H′′) − n(H′) ≤ ∑l∈M′′ (n(H) − n(Hl)) + (n(H) − n(Hl′ )), which again proves Proposition 1.

Our Branch and Bound algorithm can now be introduced.

As previously introduced, each solution explored can be considered as a node of a binary tree, and each

level of the tree represents a binary choice on the selection of a specific label. That is, the root of the tree

represents the starting partial solution where no choice has been made. The subtree rooted in the left child

of the root will contain all the solutions where the first label has been selected (and therefore l1 ∈ Lcurr in

their representation), while in the one rooted in the right child there will be all the ones in which this label

has been excluded (i.e. l1 � Lcurr). Similarly, for instance, the subtree rooted in the left child of the left child

of the root will contain all the solutions in which the first two labels have been selected ({l1, l2} ∈ Lcurr).

This search tree is explored with a steepest descent approach. Note that the value of parameter d for any

node depends on its level in the tree, more in detail d = 0 for the root node, d = 1 for its two child nodes,

and so on.

We define an ordering on the labels l1, . . . , l|L| based on their frequencies in the graph in non-increasing

order, and visit them in the tree according to it. Since the labels with higher frequencies are more likely to

be part of an optimal solution, this choice increases the chance of finding such a solution earlier. Moreover,

one of the pruning techniques, which measures the potential contribution of the undecided labels, is more

effective when most or all the remaining undecided labels have few edges.

The following pseudocode BranchAndBound(Hcurr, d,Hopt) describes the behavior of the procedure

for any node of the search tree:

0. Input: Hcurr = (V, E(Lcurr)), d ≤ |L|, Hopt = (V, E(Lopt))

1. if |Lcurr | = kmax

(a) if n(Hcurr) < n(Hopt)

i. Hopt ← Hcurr

ii. if n(Hopt) = 1 return Hopt, end algorithm

(b) return Hopt

2. if (|L| − d < kmax − |Lcurr |) return Hopt
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3. evaluate max reduce
4. if (n(Hcurr) − max reduce) ≥ n(Hopt) return Hopt

5. Lcurr ← Lcurr ∪ {l(d+1)}
6. Hopt ← BranchAndBound(Hcurr, (d + 1),Hopt)

7. Lcurr ← Lcurr \ {l(d+1)}
8. Hopt ← BranchAndBound(Hcurr, (d + 1),Hopt)

9. return Hopt

The procedure takes as input the subgraph representing the current solution Hcurr, as well as its related

d value and the subgraph corresponding to the incumbent optimal solution Hopt.

As already discussed, an optimal solution will be in one or more solutions where kmax labels are selected.

Therefore, if such a solution has been reached (as checked in Line 1), n(Hcurr) is evaluated and compared

with n(Hopt) to check if a better solution was found and therefore if Hopt needs to be updated. If that is the

case, and the new optimum has a single connected component, the whole procedure ends and the new Hopt

is returned (see Lines 1(a)). In the case |Lcurr | = kmax and n(Hopt) > 1, regardless of the value of n(Hcurr),

since adding new labels would lead to an infeasible solution, the procedure backtracks to the parent of the

current node, discarding its subtree and returning the current incumbent optimum (Line 1(b)). Otherwise,

if |Lcurr | < kmax, in order to check whether the current subtree can be discarded, two different pruning

techniques are used. More in detail:

1. If |L| − d < kmax − |Lcurr |, as checked in Line 2, we cannot obtain a solution with kmax labels in the

subtree rooted at the current node (note that the left-hand side is the current number of undecided

labels). Since we are interested in such solutions, we can avoid visiting this region, and therefore the

procedure backtracks.

2. Otherwise, consider the current undecided labels, l(d+1), , l|L|. For each of them, let H(d+i) = (V, E(Lcurr)∪
E({l(d+i)})). Let us assume without loss of generality that n(H(d+1)) ≤ n(H(d+2)) ≤ . . . ≤ n(H|L|), and

let max reduce =
∑(kmax−|Lcurr)|)

i=1
n(Hcurr) − n(H(d+i)). By Proposition 1, this is an upper bound on the

number of components that can be reduced by adding to the current solution any subset of kmax−|Lcurr |
undecided labels. Therefore if n(Hcurr)−max reduce ≥ n(Hopt), (Line 4), no solution containing kmax

labels is better than the incumbent optimum, and again the subtree rooted at the current node can be

discarded. Implementation details regarding the evaluation of max reduce are given in Section 4.1.

If the current subtree was not pruned, the procedure is recursively invoked on the two children of the current

node (Lines 6 and 8, respectively), where the decision on including l(d+1) is taken. Note that, as previously

said, the child containing the new label is explored first.

Finally, the incumbent optimum is either returned to the parent of the current node, or returned as final

solution when the procedure backtracks to the root node.

4.1. Computing max reduce

For efficiency matters, instead of evaluating n(H(d+i)) for each undecided label with a different graph

visit, we implicitly evaluate n(Hcurr) − n(H(d+i)) by considering the connected components of the current

solution and the edges with label l(d+i). For each of these edges, the procedure checks if they connect different

components; some additional data structures (the variables parent and level defined on each connected

component) and the auxiliary procedure root are used to keep track of components that have already been

merged by some other edges.

0. Input: H1, . . . ,Hn(Hcurr) connected components of Hcurr, undecided label l(d+i)

1. ∀i = 1, ..., n(Hcurr), let parenti ← i, leveli ← 0

2. let (n(Hcurr) − n(H(d+i))← 0

3. ∀(i, j) ∈ E({l(d+1)}), such that i and j belong to different components Ha and Hb, if root(a) � root(b),

then

(a) if levelroot(a) > levelroot(b), then parentroot(b) ← root(a)
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(b) else
i. if levelroot(a) = levelroot(b) then levelroot(b) ← levelroot(b) + 1

ii. parentroot(a) ← root(b)

(c) (n(Hcurr) − n(H(d+i))← (n(Hcurr) − n(H(d+i)) + 1

4. return n(Hcurr) − n(H(d+i))

The pseudocode of the procedure root is the following:

0. Input: i ∈ {1, ..., n(Hcurr)}
1. current ← i
2. while parentcurrent � current, do

(a) current ← parentcurrent

3. return current

The value returned by root, accessible through parent pointers, makes sure that for each group of

merged components a single element is considered. The level values are used to determine this single

element. Reaching the root element for a given component takes O(log(n(Hcurr))) time. We show an example

of the procedure in Figure 1.

Fig. 1. Computing how many components can be merged by using a given new label. The five square nodes represent

the connected components of a given partial solution. Only the edges of the considered new label linking different

components are shown. The number assigned to each edge represents the order in which they will be visited by the

procedure. Table (0) shows the initialization value for each variable of each component and the initial values returned

by the root procedure. The other tables show the updated values after that the related edge has been visited. Note that

no changes occur when the third and the sixth edge are considered, since they connect components with the same root

(i.e., already connected before).

5. Experimental results

In this section, we collect the results of a series of experiments conducted on our metaheuristic ap-

proaches (Simulated Annealing, Reactive Tabu Search, Pilot Method and Genetic Algorithm) to prove their

effectiveness. Being Modified MVCA a simple and fast constructive heuristic, it was not compared with the

metaheuristics, but was used as a subroutine for them as described in Section 3. We also tested our Branch

and Bound procedure on instances that proved to be solvable using such an approach.



161 R. Cerulli et al.  /  Procedia - Social and Behavioral Sciences   108  ( 2014 )  153 – 163 

5.1. Testing environment, instances and parameters settings

Computational experiments were performed on an HP xw8000 Workstation with 1 GB RAM and a 2.8
GHz Intel Xeon processor. The metaheuristic framework HotFrame [26] was used for the implementations

of SA, RTS and Pilot Method, while GA and the Branch and Bound were coded from scratch. All the

algorithms were implemented using the C++ language.

A dataset of 200 randomly generated instances was used. These instances are derived from the ones

presented in [7] and [8] for the minimum label spanning tree problem.

For these instances, we used |V | = 100, 150, 200, 400, 500 and |L| = �|V |/4�, |V |/2, |V |, �1.25|V |�.
For each of these values, we generated datasets with a number of edges equal to |E| = (|V |−1)|V |

10
. For each

combination of |V | and |L|, 10 different instances are considered.

In order to be used in our problem, the additional parameter kmax had to be defined for each instance.

This is a factor of crucial relevance to create meaningful instances. In fact, if the chosen value is too large

(in particular, greater than the number of labels needed to obtain a MLST), it could be easy for the heuristics

to detect a single connected component as solution in a small amount of time. On the other hand, if the

value of kmax is trivially small, the problem could be equally easy since the search space could be quickly

covered.

Therefore, for each value of |V | and |L| we experimentally determined the value kmax as �|V |/2i�, where i
is the smallest value such that the generated instances did not report a solution value of 1 when solved with

Modified MVCA. The actual kmax values used are reported in Tables 1-2.

For the SA procedure, we follow the parameters setting indicated in [25], which was reported to be

robust for different problems. Namely, we use α = 0.95, initialAcceptanceFraction = 0.4,

f rozenAcceptanceFraction = 0.02, sizeFactor = 16 and f rozenLimit = 5. The RTS algorithm uses a time

limit as termination parameter; therefore, for each instance, we used the execution time of the related SA

execution. Since the procedure checks at the end of each iteration whether the time limit was reached, some

of the running times reported for RTS in Tables 1-2 are slightly higher than the related SA times. For the

single parameter p used by our proposed GA, after a preliminary testing phase we empirically chose the

value 50. The Pilot Method does not depend on specific parameters.

5.2. Comments on the results

Results as well as computational times, expressed in seconds, are reported in Tables 1-2. Each entry in

the tables is an average over the 10 instances of the related scenario. All of the instances with 100 nodes,

as well as the ones with 150 nodes and |L| = �|V |/4�, |V |/2, |V | could be solved exactly within one hour

of computational time. Therefore in Table 1 we compare heuristic and exact solutions on such instances,

while in Table 2 we compare the heuristics to investigate runtime growth and comparitive solution quality

on bigger scenarios.

On instances with |V | = 100 and 150, the Branch and Bound procedure is actually on average the fastest

procedure in 3 scenarios, and the average lifetime per instance is less than one second for 5 scenarios.

Overall, the pruning techniques prove to be very effective on instances of this size.

For those instances where the exact solution is known, all the heuristics show a very good performance.

In these 7 scenarios, Simulated Annealing and Reactive Tabu Seach always find the optimal solution in 5

cases, the Genetic Algorithm in 6 cases and the Pilot Method in 3 cases.

Conversely, on the larger instances in Table 2, the Pilot Method emerges overall as the most accurate

heuristic, obtaining on average the best solutions in 8 out of 12 scenarios. SA and RTS obtain the best results

in 5 and 6 cases, respectively, while GA performs slightly worse than the other algorithms in all cases except

one.

Regarding computational times, Reactive Tabu Search performs in some cases faster than Simulated

Annealing. This shows that RTS tends to have a faster convergence (recall that for each RTS instance the

execution time of SA was used as time limit). The Genetic Algorithm is generally slower than both of

them, while the Pilot Method is the slowest heuristic, especially when the size of the problem grows and its

performances improve with respect to the other heuristics.
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Dataset SA RTS GA Pilot B&B

|V | |L| kmax sol. time sol. time sol. time sol. time sol. time

100 25 3 6.3 0.54 6.3 0.54 6.3 1.77 6.3 0.03 6.3 0.05

100 50 6 2.7 1.17 2.9 0.81 2.6 2.97 2.7 0.58 2.6 4.59

100 100 6 15.0 2.72 15.0 2.75 15.0 4.75 15.6 2.21 15.0 0.25

100 125 7 15.7 3.79 15.7 3.83 15.7 6.18 15.8 4.19 15.7 0.57

150 37 4 3.5 1.35 3.5 0.94 3.5 3.70 3.5 0.25 3.5 0.85

150 75 4 22.3 2.81 22.3 2.83 22.3 5.69 22.3 0.94 22.3 0.76

150 150 9 7.7 6.92 7.3 5.96 8.1 20.82 8.3 9.31 7.1 1518.00

150 187 11 6.1 9.34 6.2 7.80 6.2 23.32 6.1 13.22 N/A TL

Table 1. Algorithms comparisons for |V | = 100, 150

Dataset SA RTS GA Pilot

|V | |L| kmax sol. time sol. time sol. time sol. time

200 50 3 17.0 2.64 17.0 2.65 17.2 6.62 17.0 0.35

200 100 6 9.3 5.94 9.3 5.99 9.6 18.20 9.6 6.22

200 200 12 2.6 11.10 3.1 7.60 3.1 35.79 3.0 19.34

200 250 15 1.8 11.78 1.6 8.52 1.5 34.61 1.2 38.03

400 100 3 35.6 36.59 35.6 36.78 35.6 31.75 35.6 9.80

400 200 6 24.4 80.01 23.7 80.67 25.1 87.56 24.0 117.64

400 400 12 12.1 180.72 11.4 154.01 12.5 266.40 11.1 581.79

400 500 15 8.7 243.29 8.2 151.04 8.9 347.84 7.7 1159.22

500 125 4 22.7 93.24 22.7 93.72 22.9 75.79 22.7 59.30

500 250 7 22.4 195.84 21.5 197.28 22.8 175.97 21.9 235.35

500 500 15 6.3 335.78 5.3 298.95 6.6 537.67 5.0 1790.50

500 625 19 3.4 374.48 3.0 274.16 3.4 789.43 2.1 1522.14

Table 2. Algorithms comparisons for |V | = 200, 400, 500
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6. Conclusions

In this paper we addressed an optimization problem that generalizes the Minimum Labeling Spanning

Tree problem, namely the k-Labeled Spanning Forest Problem. We defined the problem and designed vari-

ous metaheuristic approaches, as well as a Branch and Bound exact procedure. The promising performances

of the algorithms have been shown experimentally on a set of 200 instances. Future research will be focused

in defining new metaheuristics and exact methods, such as a Branch and Cut approach, in order to extend

the classes of instances that can be solved efficiently to optimality.
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