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Abstract
Coevolution is considered as an effectivemeans to optimize the conditions for the survival of
cooperation. In this work, we propose a coevolution rule between individuals’nodeweights and
aspiration, and then explore how thismechanism affects the evolution of cooperation in the spatial
prisoner’s dilemma game.We show that there is an optimistic amplitude of nodeweights that
guarantees the survival of cooperation evenwhen temptation to antisocial behavior is relatively large.
An explanation is provided from amicroscopic point of view by dividing nodes into four different
types.What is interesting, our coevolution rule results in spontaneous emergence of cyclic dominance,
where defectors with lowweight become cooperators by imitating cooperators with highweight.

1. Introduction

Cooperation behavior emerges not only in nature but also in human society [1–3]. It is interesting and
challenging to explain the emergence and evolution of cooperation among selfish individuals. The thesis has
attractedmuch attention across awide circle offields, such as sociology, physics, information science and
evolutionary biology [4, 5]. Evolutionary game theory is a potentmathematic tool to analyze diverse dilemmas in
nature and human societal systems, which combines game theoretical analysis and dynamic evolutionary
process analysis [6–8]. Relative to traditional game theory, evolutionary game theory ismore concernedwith the
dynamic equilibrium. The prisoner’s dilemma game (PDG), which forms a prototype of illustrating the dilemma
owing to pairwise interactions, has been frequently applied to theoretical and experimental analysis on such an
important issue. In the PDG, two individuals choose their strategies, namely, cooperation (C) or defection (D) at
the same time.When a cooperatormeets a defector, he receives Swhile the latter receivesT. Besides, they both
obtainR undermutual cooperation and Pundermutual defection. The payoffs are ordered asT>R>P>S.
It is easy to see that despite of the opponentʼs strategy, defection is the optimal strategywhich lead cooperation to
extinction [9, 10].

In the landmark discovery ofNowak, spatial topology has been proved to be effective in promoting the
coevolution of cooperation by themechanismwhich is widely called spatial reciprocity [11]. Enlightened by this,
a large number of spatial topologies were tested to study the dynamics of cooperation in evolution [12–27].
Besides, coevolution is an effective way to resolve social dilemmaswhichmeans strategies evolve synchronously
with other properties, such as the links between players [28, 29], teaching ability [30, 31], and immigration [32].
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In this paper, we consider the coevolution of nodeweights and strategy within a PDG. In previous studies, an
individual updates its strategy by comparing its payoff with its neighborhood. However, in real society,
individuals have different sensitivities to benefits. For instance, a player with higher satisfaction often tends to
keep the same strategy, evenwhen the payoff is lower. Therefore, we introduce anA-based coevolution rule in
which the satisfaction of the player is defined as the nodeweight, which influences itsfitness. In detail, when a
player’s payoff is larger (smaller) than its aspiration, its satisfaction increases (decreases). Enforcing such a
coevolution rule, the result is that cooperation can still bemaintained and promoted alsowith a high level of
temptation to defect. The paper is organized as follows. First, we give a detailed description of ourmodel. Then,
we show the results by graphs and try to give reasons. Lastly, we summarize and discuss themain conclusions.

2.Methods

All individuals occupy the nodes of a square lattice of size L×L, and connect with four neighbors respectively.
At the beginning of the game, each individual is assigned either as a cooperator Sx=C or as a defector Sx=D
with equal probability. Players obtain their payoffs bymeans of pairwise interactions with all their neighbors.
Following the standard PDGmodel,mutual cooperation leads to the rewardR, whilemutual defection conduces
to punishmentP. Under themixed case, the cooperator obtains the suckerʼs payoff and the defector gets the
temptationT. Hence, the payoff can be described by the following payoffmatrix with only one parameter b
(1<b<2).

( ) ( )
b
1 0

0
. 1

At each time step of theMonte Carlo simulation, a player x is selected randomly fromN players and gets his
payoff px by the following equation:
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where kx=4 is the degree of player x and pxy is the payoff that player x obtains from its neighbor y. Thefitness of
player x is determined by the equation:
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wherewx is defined as the nodeweight of player x. The nodeweightwx is initially set to 1 and evolves within the
interval [0, 2] as follows:
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where δ is the adjustment amplitude of nodeweights, andAx denotes the aspiration of player x. A larger value of
delta corresponds to a faster change inwx and a lower heterogeneity of this parameter.

Different δ values are set in different simulations. In conventional PDG evolution games, δ=0; in contrast,
we introduce our coevolutionmechanism by setting δ in the range of (0, 1]. Considering the heterogeneity of
each individualʼs aspiration level in reality,Ax is initially drawn randomly from the interval [0, 4b]. Clearly, 0 is
theminimumpayoff one player can gain in a round of games, while 4b is themaximum. The aspiration changes
alongwith the player’s strategy. Since our goal is to explore the impact of δ on the evolution of cooperation, for
simplicity, we do not consider the different types of aspiration distribution, such as the power-law or
exponential distribution, which have been already investigated in previouswork.

By choosing a neighbor y randomly, the local player x imitates the strategy and aspiration of ywith the
following probability:

=
+ -


[( ) ]

( )( )P
F F K

1

1 exp
, 5x y

x y

whereK is the intensity of selectionwhich denotes the amplitude of noise.Without loss of generality, we
setK=0.5.

We carry out the simulation results by setting square lattice with L=100 and scale-free networkwith 10 000
nodes. Besides, we set the relaxation time equals to 5×104Monte Carlo steps. To ensure suitable accuracy, the
final results is the average number of 20 independent repeated experiments for each set of parameters.
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3. Results

First, we consider the influence of parameters δ and b on the coevolution. Figure 1 presents a contour plot
encrypting the fraction of cooperation ρc on the δ-b parameter plane.When δ=0 theweight of each individual
isfixed and themodel turns into the traditional case, where cooperation soon die out (approximately 1.0375). By
setting δ>0, the coevolution takes place and promotes cooperation. It is obvious that an intermediate δ value
(δ=0.1) promotes cooperation optimally.When δ>0.1, as δ increases, the fraction of cooperation decreases.
On thewhole, our coevolutionmechanism regarding the nodeweights and strategy enhances the survival of
cooperation significantly. The scenario is similar for scale-free networks as showed in figure 2.

Figure 3 shows the evolution of cooperation over time (MonteCarlo steps) for different δ values, which lead
to different evolutionary curves.When δ=0.001, the fraction of cooperation represented by a black curve keeps
decreasing; after approximately 102 rounds, cooperation is completely extinct. This result occurs because the
cooperators are in a disadvantageous payoff position in the gamewith respect to defectors, which leads to a lower
fitness of the cooperators.When δ=0.6, the situation is the same aswith δ=0.001.However, when δ=0.01,

Figure 1. Fraction of cooperation ρc depending on a definite b for different values of δ on square lattice . For δ=0, the condition
simplifies to the traditional PDG.When δ>0.1, as δ increases, ρc decreases. The panels show that the optimal value, where
cooperation is best promoted, lies in the range of approximately 0.1 irrespective of the temptation to defect b.

Figure 2. Fraction of cooperation ρc depending on a definite b for different values of δ on square lattice . For δ=0, the condition
simplifies to the traditional PDG.When δ>0.1, as δ increases, ρc decreases. The panels show that the optimal value, where
cooperation is best promoted, lies in the range of approximately 0.1 irrespective of the temptation to defect b.
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the situation becomes quite different. Specifically, the fraction of cooperation decreases to itsminimum
(approximately 0.1) until the 10thMC step. It then increases, until reaching itsmaximum (approximately 0.7)
and ultimatelymaintains dynamic stability at a value of approximately 0.33. Thus, relative to the case δ is very
small (δ=0), ourmechanismpromotes cooperationwhen δ is set to amoderate value.Our next step is then
explaining this phenomenon from amicroscopic perspective.

To gather information on the origins of the observed phenomenon, we show the characteristic snapshots in
both a strategy-specificmanner and aweight-specificmanner infigure 4. All the nodes on the square lattice are
divided into four types: cooperators with high nodeweights, cooperators with lownodeweights, defectors with
high nodeweights and defector with lownodeweights, as shown in blue, cyan,magenta, and red, respectively.
Highweightmeans that theweight of nodes is higher than the averageweight of all individuals at a certain time,
while lowweightmeans theweight of nodes is lower than or equal to the average weight of all individuals. For
different values of δ, from top to bottomonfigure 4, the processes of evolution and stability are completely
different. The top four snapshots show the evolutionary process for δ=0.001, fromwhichwe can observe that
due to the disadvantages of payoffs, the cooperators die out gradually. Because of too slow change of nodes
weight, a too small δwillmake the situation consistent with the traditional situation.However, when the value of
δ is set to 0.1, the situation becomes very different. As shown in themiddle four snapshots, the process of
coevolution can be divided into several stages, which is similar to the results shown infigure 3.

In thefirst few rounds, theweights of all nodes are almost the same for small δ values, and thus the evolution
of cooperation is similar to the traditional case, inwhich the number of cooperators decreases rapidly. At the end
of this stage, the distribution of the strategy and nodeweights has prominent spatial characteristics.Most of the
remaining cooperators have high nodeweights and are surrounded by defectors with both highweights and low
weights, and the remaining areas contain a substantial number of defectors with lownodeweights. A deeper
description can be obtained by looking atfigure 5(a). In early stages, even cooperators with highweights cannot
resist defecting since the increase offitness caused by the highweight ismuch less than the loss caused by being
taken advantage of by defectors. However, note that in this stage, theweights of the cooperators in clusters keep
increasing, while theweight of the average node of defectors continues to decrease. This stage is very important
since it not only protects cooperators by forming clusters but also directs the evolution of strategies into the next
stage, where cooperation expands.

In this stage, clusters of cooperators begin to expand following the pattern, as shown infigure 4. The
defectors with lowweights change to cooperators when they interact with high-weight cooperators. Then, the
weight of these cooperators along the boundary of clusters increases continuously because of their satisfaction
with their payoff. In this way, the clusters of cooperators expand and dominate themajority of the system that
was previously occupied by defectors with lowweights, as shown infigure 5. As defectors with highweights take

Figure 3. Fraction of cooperation given the time step t for different values of δ. The black, red and blue lines denote δ=0.001, 0.1, and
0.6, respectively, and the temptation to defect b isfixed at 1.2. A too-large or too-small value of δ inhibits the evolution of cooperation;
however, an optimal value of δ exists that can enable the survival of cooperation.
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advantage of the cooperators with highweights, the defectors with highweights gradually invade the cooperative
clusters. From the evolutionary process, we find that a closed loop exists with four types of nodes of the form
DH→DL→CL→CH→DH (DHmeans defector with highweight). This loop allows cooperators to
survive and determines the final distribution of the four types of nodes. Figure 6 shows the evolution of four
types of nodes’ fraction over time (MonteCarlo steps)when δ value is set to 0.1. To provide direct visual evidence
that a closed loop elevates cooperation as shown infigure 5, we start by separating the domains of the four types
of nodes and set the CHʼs weight as 1.78, which is the value of the final weight of highweight nodes when a loop
phenomenon exists in our previous simulation. In addition, we respectively set theDHʼs, CLʼs, DLʼs weight as

Figure 4.Characteristic snapshots of cooperatorswith high nodeweights (blue), cooperators with lownodeweights (cyan), defectors
with high nodeweights (red) and defectors with lownodeweights (magenta) on the regular lattice. The top to the bottom correspond
to δ values of 0.001, 0.1, and 0.6. From left to right, snapshots are shown ofMCS=0, 5, 50, and 49 999 for the top and bottom and
MCS=0, 10, 100, and 49 999 for themiddle. The results are obtained by setting b=1.2.

Figure 5.Conversion between different types of nodes at different stages when δ=0.1. The process of coevolution is divided into two
stages, which are shown in (a) and (b), and every stage has different evolutionary strategy directions.
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1.61, 0.53, 0.20 for the same reason. Infigure 7(a), wefind a closed loop in the evolution of cooperation, which is
proved to promote cooperation in ourwork.

Wenowmove to study the case of δ=0.6. The bottom four snapshots infigure 5 indicate that in the early
stages, although cooperators formhigh-weight clusters, these clusters are invaded by defectors with highweights
and soon die out. The phenomenon can be explained as follows. A large value of δ can destroy the closed loop
mentioned above. In detail, the defectors with lowweights can easily change to defectors with highweights,
whichmakes the cooperators with lowweights go extinct rapidly. As a result, cooperators die out, and all nodes
become defectors with lowweights (w=0). The evolution of the four types of nodes infigure 7(b) proceeds in
the sameway.Here, however, the defectors expand so fast that high-weight cooperators cannot protect low-
weight cooperators; hence, the closed loop is destroyed, and cooperation ultimately dies out as shown in
figure 7(c).

Figure 6. Fraction of four types of nodes given the time step t for δ=0.1.The temptation to defect b isfixed at 1.2. The line of
cooperators with high nodeweights is draw in blue, the line of cooperators with lownodeweights is draw in cyan, the line of defectors
with high nodeweights is draw in red, and the line of defectors with lownodeweights inmagenta.

Figure 7. Initial evolution of the prepared scenario. The population structure is represented by an 80×80 square lattice with
periodical boundary conditions. The top,medium and bottom correspond to δ values of 0.001, 0.1, 0.6 respectively. From left to right,
the snapshots correspond toMCS=0, 10, 50, 99, and 49 999. Differences clearly exist between the three evolution paths.
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4. Conclusion

To conclude, we have explored an evolutionary game under coevolution of nodeweights and strategy: this
scenario corresponds to the case which an individuals’ social satisfaction denoted by the nodeweight adaptively
changes according to their social performance. Through numerical simulations, we found that our
coevolutionary configuration can promote cooperation effectively, while these observations can be attributed to
the loop of different types of nodes. Too small or too large values of δ destroy the loop, which can be reflected via
the phenomenon of real society.When δ=0, just as in a society that lacks emotion, people lack expectations of
their own social performance and follow popular trends, and thus the death of cooperation is irreversible.
However, large δ describes an overly sensitive society where people aremoody and impulsive and the decline in
cooperation is very rapid once early setbacks are encountered.When δ is intermediate, people seem to bemore
rational and adapt their aspiration steadily. Under this situation, a stable social structure of cooperative behavior
is formed. The above results can give us a comprehensive understanding of the role of nodeweights on the
evolution of cooperation.
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