
i
i

“output” — 2024/4/24 — 20:08 — page 1 — #1 i
i

i
i

i
i

UNIVERSITÁ DI PISA
DOTTORATO DI RICERCA IN INGEGNERIA DELL’INFORMAZIONE

ENHANCING AUTHOR NAME DISAMBIGUATION

WORKFLOWS IN BIG DATA SCHOLARLY KNOWLEDGE

GRAPHS

DOCTORAL THESIS

Author
Michele De Bonis

Tutor (s)
Dr. Paolo Manghi
Dr. Fabrizio Falchi
Prof. Marco Avvenuti

Reviewer (s)
Dr. Francesco Osborne
Dr. Markus Stocker

The Coordinator of the PhD Program
Prof. Fulvio Gini

Pisa, 1 2024

XXXVI



i
i

“output” — 2024/4/24 — 20:08 — page 2 — #2 i
i

i
i

i
i



i
i

“output” — 2024/4/24 — 20:08 — page 1 — #3 i
i

i
i

i
i

To my naivety,
which magnificently underestimated the stress factor in going for a Ph.D.



i
i

“output” — 2024/4/24 — 20:08 — page 2 — #4 i
i

i
i

i
i



i
i

“output” — 2024/4/24 — 20:08 — page I — #5 i
i

i
i

i
i

Acknowledgements

MY journey in these 3 years of the Ph.D. has been a rollercoaster of stress, pain,
and frustration but, of course, it had also its advantages. One of the biggest
lessons I learned is the importance of having a solid team by your side. And

by “team”, I don’t just mean supervisors to guide you or colleagues to work with, but
also friends and family to support you in moments of discouragement.

This is why I want to acknowledge the people who mostly contributed to this work,
starting with Dr. Paolo Manghi and Dr. Fabrizio Falchi: they have always been an
inspiration and a guiding light for me. Their precious suggestions got me through all
the challenges I faced and gave me the courage to proceed on this difficult path. Many
thanks go also to my supervisor Prof. Marco Avvenuti for accepting my Ph.D. project
and for the advice and support over these three years.

I would also like to say many thanks to my awesome colleagues at the Istituto di
Scienza e Tecnologie dell’Informazione “A. Faedo” in the CNR. My gratitude goes
especially to the SCI-Lab crew, which includes Michele Artini, Claudio Atzori, Miriam
Baglioni, Alessia Bardi, Giambattista Bloisi, Sandro La Bruzzo, Andrea Mannocci, and
Gina Pavone. They have been always ready to help me in every possible way. They
taught me everything I know, starting from tech stuff, going to paper writing and even
laughing at my bad jokes.

My friends have played an important role in this path. Some of them are in Pisa
(Pietro, Noemy, Leonardo, Diletta, Chiara, Chiara, Claudia, Ilenia, and Marco), and
some of them are somewhere else (Alex, Filippo, Sfetano, Annuccia, Fosia). They
have always been like my family and I am pretty sure that without them I would not
have been able to stay focused and sane. A special mention goes to my two roommates,
Francesco (aka Fofino) and Ivan (aka Ivano), who gave me good times at home after the
grind at the office. I want to include into this also Miriam T. (aka Mirima). Spending
time with the three of you during the COVID lockdown has been one of the luckiest
things that ever happened in my life. I would like to express my gratitude also to the
“unKnown friend”, whose impact has been palpable even in their physical absence. I
would like to tell them Ευχαριστώ πολύ, Μου αρέσει το σουβλάκι, στρίψτε δεξιά,
στρίψτε αριστερά, χρόνια πολλά. Don’t worry if you don’t understand, neither do I.

Last but not least, many thanks to my family. They check in on me every day with

I



i
i

“output” — 2024/4/24 — 20:08 — page II — #6 i
i

i
i

i
i

their “how are you?” and regular concerns about meals, washing machines, and football
plans. Dad, Mom, brothers, sisters, nieces, nephews, you have always been important
for me even if I never told you. Of course, I consider part of my family also Alessandro
(aka Sale), as he is and has always been my friend for life and my reliable refuge in
times of need.

Looking back at my life, I recognize that I’ve never experienced loneliness. The
credit for this goes to the incredible squad I’ve been lucky to have – a team that selflessly
supported me without expecting anything in return.



i
i

“output” — 2024/4/24 — 20:08 — page III — #7 i
i

i
i

i
i

Summary

OPen Science, defined by its commitment to transparency, collaboration, open-
ness, and accessibility, has deeply affected scientific research. Following this
new paradigm, scientists produce and publish research data and software along-

side research publications to enable reproducibility, monitoring, and assessment of sci-
ence. In this context, Scholarly Knowledge Graphs (SKGs) are “big data” metadata
collections, playing a crucial role in research discovery and assessment by aggregating
bibliographic metadata records and semantic relationships describing research products
and their associations between them (e.g., citations, versions) and with other entities,
such as organizations, authors, funders, etc. Examples of SKGs are the OpenAIRE
Graph, Google Scholar, OpenAlex, Semantic Scholar, OpenCitations, and Research-
Graph.org. However, constructing and maintaining SKGs demands innovative solu-
tions to address the inherent scalability, heterogeneity, duplication, inconsistency, and
incompleteness challenges introduced by the metadata sources to be aggregated.

Motivated by the urge of Open Science and the challenges posed by SKG construc-
tion, this Ph.D. thesis makes pioneering contributions to the field of Author Name Dis-
ambiguation (AND). This perennial issue addresses the challenge of identifying and
removing duplicate author nodes representing the same author in the SKG. Acknowl-
edging the pivotal role of AND, the thesis discerns two main interwoven imperatives
in the duplicate resolution processes: mitigating the efficiency challenge derived by the
inherent quadratic complexity in comparing hundreds of millions of author nodes; and
the effectiveness challenge introduced by the efficiency optimization strategies, which
renounce parts of the matches, and affected by the poverty of metadata used to compare
author nodes, which is often limited to the name’s string.

To address the efficiency challenge, the thesis introduces FDup, a groundbreaking
framework meticulously designed to reimagine and enhance the traditional disambigua-
tion workflow. At its core, FDup prioritizes the optimization of the similarity match
phase. This optimization is achieved through the incorporation of a decision tree-based
comparison technique. This innovative approach ensures a customizable and efficient
disambiguation workflow and enables parallelization, a crucial aspect in handling the
substantial datasets inherent in Scholarly Knowledge Graphs.

To address the effectiveness challenge, the thesis leverages Graph Neural Networks

III



i
i

“output” — 2024/4/24 — 20:08 — page IV — #8 i
i

i
i

i
i

(GNNs), which have been recently successfully applied to perform innovative research
on node classification, graph classification, and link prediction. The proposed contri-
butions manifest in two dedicated GNN architectures to enhance the effectiveness of
Author Name Disambiguation via an evaluation of the outputs of a disambiguation al-
gorithm: the first technique evaluates similarity relationships with an attentive neural
network integrating GraphSAGE models; the second technique evaluates groups of du-
plicates with a combination of Graph Attention Network (GAT) and Long Short Term
Memory (LSTM) components.

In summary, this thesis is a responsive and forward-thinking contribution within
the landscape of Open Science and Scholarly Knowledge Graphs. By introducing
novel frameworks and harnessing advanced techniques like Graph Neural Networks,
the thesis not only addresses the current challenges but also lays the groundwork for
the continual evolution of Open Science practices and the optimal utilization of Schol-
arly Knowledge Graphs in the ever-expanding realm of scientific knowledge.

IV



i
i

“output” — 2024/4/24 — 20:08 — page V — #9 i
i

i
i

i
i

Sommario

LA Scienza Aperta, col suo impegno per la trasparenza, la collaborazione, e l’ac-
cessibilità, ha profondamente influenzato la ricerca scientifica. Seguendo questo
nuovo paradigma, gli scienziati producono e pubblicano articoli scientifici, dati

e software derivanti dalla loro ricerca con lo scopo di consentire la riproducibilità, il
monitoraggio e la valutazione della scienza. In questo contesto, i Grafi di Conoscen-
za Scientifici (SKG), sono collezioni di metadati che svolgono un ruolo cruciale nella
scoperta e nella valutazione della ricerca, aggregando record di metadati bibliografici
e relazioni semantiche che descrivono i prodotti di ricerca e le loro associazioni (e.g.
citazioni, versioni) con altre entità, come organizzazioni, autori, finanziatori, ecc. Al-
cuni esempi popolari di SKG sono l’OpenAIRE Graph, Google Scholar, OpenAlex,
Semantic Scholar, OpenCitations e ResearchGraph.org. Costruire e mantenere i SKG
richiede soluzioni innovative per affrontare sfide intrinseche di scalabilità, eterogenei-
tà, duplicazione, inconsistenza e incompletezza introdotte dalle fonti di metadati da
aggregare.

Questa tesi di dottorato si pone l’obiettivo di risolvere alcune delle sfide più comuni
che si presentano durante la costruzione di tali grafi e propone importanti contribu-
ti riguardanti il campo della disambiguazione degli autori (AND). Questa operazione
consiste nell’identificazione di nodi di tipo “autore” duplicati, ovvero che rappresen-
tano lo stesso autore all’interno del SKG. Dopo uno studio della letteratura nel campo
della disambiguazione degli autori, la tesi individua due strade per migliorare la qualità
dei risultati. La prima consiste nel migliorare l’efficienza del processo, afflitta dalla
complessità quadratica necessaria a confrontare tra loro centinaia di milioni di nodi di
tipo autore; la seconda consiste nel migliorare l’efficacia del processo, spesso mina-
ta proprio dai tentativi di migliorare l’efficienza, che spesso sono basati sulla rinuncia
ad alcuni confronti, e dalla scarsità dei metadati, spesso limitati al singolo nome e
cognome.

Per migliorare l’efficienza del processo di disambiguazione, la tesi presenta un fra-
mework innovativo in grado di ridefinire ed ottimizzare il tradizionale workflow della
disambiguazione: FDup. Tale framework pone l’accento sull’ottimizzazione della fase
di comparazione a coppie, ottenuta attraverso una tecnica di confronto basata su albe-
ri decisionali. Questo approccio innovativo assicura un workflow di disambiguazione

V



i
i

“output” — 2024/4/24 — 20:08 — page VI — #10 i
i

i
i

i
i

personalizzabile ed efficiente che consente anche la parallelizzazione, da sempre un
aspetto cruciale nella gestione dei dati nei SKG.

Per migliorare l’efficacia del processo di disambiguazione, la tesi presenta soluzioni
basate sulle Reti Neurali per Grafi (GNN), una tecnologia recentemente applicati con
successo per condurre ricerche innovative sulla classificazione dei nodi, la classifica-
zione dei grafi e la previsione dei collegamenti. I contributi proposti si manifestano
in due architetture dedicate di GNN per migliorare l’efficacia della AND attraverso la
valutazione degli output di un algoritmo di disambiguazione: la prima tecnica valuta le
relazioni di similarità con una rete neurale “attenta” che integra modelli GraphSAGE;
la seconda tecnica valuta gruppi di duplicati con una combinazione dei componenti
come Graph Attention Network (GAT) e Long Short-Term Memory (LSTM).

In sintesi, questa tesi rappresenta un contributo importante e innovativo nel panora-
ma della Scienza Aperta e dei SKG, perché affronta non solo le sfide attuali, ma getta
le basi per l’evoluzione continua delle pratiche della Scienza Aperta e per l’utilizzo dei
SKG.

VI



i
i

“output” — 2024/4/24 — 20:08 — page VII — #11 i
i

i
i

i
i

List of publications

International Journals

1. De Bonis, M., Manghi, P., and Atzori, C. (2022). FDup: a framework for general-
purpose and efficient entity deduplication of record collections. PeerJ Computer
Science, 8, e1058. https://doi.org/10.7717/peerj-cs.1058

2. De Bonis, M., Falchi, F., and Manghi, P. (2023). Graph-based methods for
Author Name Disambiguation: a survey. PeerJ Computer Science, 9, e1536.
https://doi.org/10.7717/peerj-cs.1536

International Conferences/Workshops with Peer Review

1. Minutella, F., Falchi, F., Manghi, P., De Bonis, M., and Messina, N. (2022). To-
wards Unsupervised Machine Learning Approaches for Knowledge Graphs. In
18th Italian Research Conference on Digital Libraries. https://ceur-ws.org/Vol-
3160/short12.pdf

2. Vichos, K., De Bonis, M., Kanellos, I., Chatzopoulos, S., Atzori, C., Manola, N.,
Manghi, P., and Vergoulis, T. (2022). A Preliminary Assessment of the Article
Deduplication Algorithm Used for the OpenAIRE Research Graph. In 18th Ital-
ian Research Conference on Digital Library Management Systems. https://ceur-
ws.org/Vol-3160/short16.pdf

3. De Bonis, M., Minutella, F., Falchi, F., and Manghi, P. (2023, September). A
Graph Neural Network Approach for Evaluating Correctness of Groups of Du-
plicates. In International Conference on Theory and Practice of Digital Libraries
(pp. 207-219). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-
3-031-43849-3_18

4. Baglioni, M., Mannocci, A., Pavone, G., De Bonis, M., and Manghi, P. (2023).
(Semi) automated disambiguation of scholarly repositories. In 19th Conference
on Information and Research science Connecting to Digital and Library science
2023. arXiv preprint arXiv:2307.02647. https://ceur-ws.org/Vol-3365/paper2.pdf

VII



i
i

“output” — 2024/4/24 — 20:08 — page VIII — #12 i
i

i
i

i
i

Others

1. Manghi, P., Atzori, C., Bardi, A., Baglioni, M., Schirrwagen, J., Dimitropou-
los, H., La Bruzzo, S., Foufoulas, I., Mannocci, A., Horst, M., Czerniak, A.,
Kiatropoulou, K., Kokogiannaki, A., De Bonis, M., Artini, M., Lempesis, A.,
Ioannidis, A., Vergoulis, T., Chatzopoulos, S., and Pierrakos, D. (2023). Ope-
nAIRE Graph: Dataset for research communities and initiatives (7.0.0). Zenodo.
https://doi.org/10.5281/zenodo.10521976

2. Bardi, A., Kuchma, I., Pavone, G., Artini, M., Atzori, C., Bäcker, A., Baglioni,
M., Czerniak, A., De Bonis, M., Dimitropoulos, H., Foufoulas, I., Horst, M.,
Iatropoulou, K., Kokogiannaki, A., La Bruzzo, S., Lazzeri, E., Manghi, P., Man-
nocci, A., Manola, N., De Bonis, M., et al. (2023). OpenAIRE Covid-19 publica-
tions, datasets, software and projects metadata (6.0.0). Zenodo.
https://doi.org/10.5281/zenodo.8221703

3. Manghi, P., Atzori, C., Bardi, A., Baglioni, M., Schirrwagen, J., Dimitropoulos,
H., La Bruzzo, S., De Bonis, M., et al. (2023). OpenAIRE Graph Dataset. Ope-
nAIRE. https://doi.org/10.5281/zenodo.8217359

4. Baglioni, M., Atzori, C., Bardi, A., Bloisi, G., La Bruzzo, S., Manghi, P., Dim-
itropoulos, H., De Bonis, M., et al. (2023). OpenAIRE Graph Beginner’s Kit
Dataset. OpenAIRE. https://doi.org/10.5281/zenodo.8223812

5. Baglioni, M., Atzori, C., Bardi, A., Manghi, P., Dimitropoulos, H., La Bruzzo,
S., Foufoulas, I., De Bonis, M., et al. (2022). OpenAIRE Graph Beginner’s Kit.
OpenAIRE Nexus. https://doi.org/10.5281/zenodo.7490192

6. Manghi, P., Atzori, C., Bardi, A., Baglioni, M., Schirrwagen, J., Dimitropoulos,
H., La Bruzzo, S., De Bonis, M., et al. (2022). OpenAIRE Research Graph Dump.
Bielefeld University. https://doi.org/10.5281/zenodo.7488618

7. Manghi, P., Atzori, C., Bardi, A., Baglioni, M., Schirrwagen, J., Dimitropoulos,
H., La Bruzzo, S., De Bonis, M., et al. (2022). OpenAIRE Research Graph:
Dumps for research communities and initiatives. Bielefeld University.
https://doi.org/10.5281/zenodo.6638478

VIII



i
i

“output” — 2024/4/24 — 20:08 — page IX — #13 i
i

i
i

i
i

List of Abbreviations

AI Artificial Intelligence.
AND Author Name Disambiguation.

BERT Bidirectional Encoder Representations
from Transformers.

DGL Deep Graph Library.

FDup Flat Collections Deduper.
FNR False Negative Rate.
FPR False Positive Rate.

GAT Graph Attention Network.
GDup Graph Deduper.
GNN Graph Neural Network.

HDFS Hadoop Distributed File System.

LDA Latent Dirichlet Allocation.
LNFI Last Name First Initial.
LSTM Long Short Term Memory.

ML Machine Learning.

NLP Natural Language Processing.

ORCID Open Researcher and Contributor ID.

RNN Recurrent Neural Network.

IX



i
i

“output” — 2024/4/24 — 20:08 — page X — #14 i
i

i
i

i
i

List of Abbreviations

SKG Scholarly Knowledge Graph.

TNR True Negative Rate.
TPR True Positive Rate.

X



i
i

“output” — 2024/4/24 — 20:08 — page XI — #15 i
i

i
i

i
i

Contents

List of Abbreviations IX

1 Introduction 1
1.1 Scholarly Knowledge Graphs as maps of Open Science . . . . . . . . . 2
1.2 Author Name Disambiguation challenges in SKGs . . . . . . . . . . . 3

1.2.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Disambiguation methods . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Disambiguation quality evaluation methods . . . . . . . . . . . . . . . 11
2.3 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Author Name Disambiguation methods . . . . . . . . . . . . . . . . . 15

2.4.1 Detailed review of graph-based AND methods . . . . . . . . . . 17
2.4.2 Taxonomy and general workflow of graph-based AND methods . 22
2.4.3 Main lacks of graph-based AND . . . . . . . . . . . . . . . . . 25

3 The motivating scenario 28
3.1 The OpenAIRE Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Graph data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Node types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Edge types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Graph provision workflow . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.4 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

XI



i
i

“output” — 2024/4/24 — 20:08 — page XII — #16 i
i

i
i

i
i

Contents

3.3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 AND in the OpenAIRE Graph . . . . . . . . . . . . . . . . . . . . . . 40

4 Enhancing efficiency via computational complexity reduction 42
4.1 FDup architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Collection import . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Candidate identification . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 Duplicate identification: T-match function . . . . . . . . . . . . 44
4.1.4 Duplicates Grouping . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 The configuration file . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Core modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 Disambiguation workflow . . . . . . . . . . . . . . . . . . . . . 52

4.3 Efficiency evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Experiment settings and methodology . . . . . . . . . . . . . . 54
4.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Enhancing effectiveness via Graph Neural Networks 58
5.1 Frameworks and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Benchmark preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Research publications collection . . . . . . . . . . . . . . . . . 60
5.2.2 Authors extraction: creation of raw author nodes . . . . . . . . . 61
5.2.3 Heterogeneous subgraph creation . . . . . . . . . . . . . . . . . 66
5.2.4 AND using the FDup framework . . . . . . . . . . . . . . . . . 67

5.3 Evaluation of similarity relationships . . . . . . . . . . . . . . . . . . 70
5.3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Evaluation of groups of duplicates . . . . . . . . . . . . . . . . . . . . 75
5.4.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Discussion and conclusions 83
6.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Enhancing efficiency via computational complexity reduction . . 84
6.2.2 Enhancing effectiveness via GNNs . . . . . . . . . . . . . . . . 86

6.3 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 92

XII



i
i

“output” — 2024/4/24 — 20:08 — page XIII — #17 i
i

i
i

i
i

List of Figures

1.1 Example of Scholarly Knowledge Graph . . . . . . . . . . . . . . . . . 2
1.2 Example of AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The traditional disambiguation workflow . . . . . . . . . . . . . . . . 4

2.1 Graph Neural Network example . . . . . . . . . . . . . . . . . . . . . 13
2.2 Node classification example . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Link prediction example . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Graph classification example . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Conceptual graph-based AND framework . . . . . . . . . . . . . . . . 22
2.6 Proposed taxonomy for graph-based AND methods. . . . . . . . . . . . 25

3.1 OpenAIRE Graph data model. . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The OpenAIRE Graph aggregation process. . . . . . . . . . . . . . . . 34
3.3 The re-distribution of edges in the OpenAIRE Graph. . . . . . . . . . . 36
3.4 Overview of disambiguation evaluation methodology . . . . . . . . . . 38
3.5 Results of disambiguation evaluation . . . . . . . . . . . . . . . . . . . 40

4.1 FDup disambiguation workflow. . . . . . . . . . . . . . . . . . . . . . 43
4.2 T-match’s decision tree for PublicationTreeMatch. . . . . . . . . . . 47
4.3 FDup software modules. . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 The transformation of an original JSON record into a flat record. . . . . 49
4.5 Disambiguation test on 10M records. . . . . . . . . . . . . . . . . . . 56
4.6 Disambiguation test on 230M records. . . . . . . . . . . . . . . . . . . 57

5.1 Benchmark preparation pipeline . . . . . . . . . . . . . . . . . . . . . 60
5.2 Author name encoding: bag of letters example . . . . . . . . . . . . . 63
5.3 Word cloud of the research publication abstracts . . . . . . . . . . . . . 64
5.4 LDA perplexity score varying the number of topics. . . . . . . . . . . . 65
5.5 Decision tree for the creation of evaluation benchmark for similarity re-

lationships and groups of duplicates. . . . . . . . . . . . . . . . . . . . 68
5.6 General setting of similarity relationship evaluation model. . . . . . . . 71

XIII



i
i

“output” — 2024/4/24 — 20:08 — page XIV — #18 i
i

i
i

i
i

List of Figures

5.7 Metapath approach example . . . . . . . . . . . . . . . . . . . . . . . 71
5.8 Architecture of the node embedding module. . . . . . . . . . . . . . . 73
5.9 Architecture of the edge scorer module. . . . . . . . . . . . . . . . . . 74
5.10 General setting of groups of duplicates evaluation model. . . . . . . . . 77
5.11 Example of wrong groups of duplicates . . . . . . . . . . . . . . . . . 80
5.12 Final architecture for the quality evaluation of a group of duplicates. . . 81

6.1 T-match’s decision tree for DatasetTreeMatch. . . . . . . . . . . . . 85
6.2 Example of correct similarity relationships as derived by the GNN. . . . 88
6.3 Example of wrong similarity relationships as derived by the GNN. . . . 89

XIV



i
i

“output” — 2024/4/24 — 20:08 — page XV — #19 i
i

i
i

i
i

List of Tables

2.1 Summary of existing surveys on AND methods. . . . . . . . . . . . . . 17
2.2 Recap of AND methods modules. . . . . . . . . . . . . . . . . . . . . 24
2.3 Recap of graph-based AND methods. . . . . . . . . . . . . . . . . . . 26

3.1 Approximate statistics for node types in the OpenAIRE Graph. . . . . . 31
3.2 Approximate statistics for edge types in the OpenAIRE Graph. . . . . . 32
3.3 Statistics for the various types of disambiguated entities. . . . . . . . . 39
3.4 Statistics for the various types of groups of duplicates. . . . . . . . . . 40

4.1 Definition of a clustering function. . . . . . . . . . . . . . . . . . . . . 50
4.2 Definition of a comparator. . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Definition of the tree node. . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 List of FDup comparators. . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 List of FDup clustering functions. . . . . . . . . . . . . . . . . . . . . 54
4.6 Average number of relations drawn by the disambiguation workflow on

10M and 230M publication records. . . . . . . . . . . . . . . . . . . . 57

5.1 Number of nodes for each type in the heterogeneous subgraph. . . . . . 67
5.2 Number of edges for each type in the heterogeneous subgraph. . . . . . 67
5.3 Statistics of benchmark for groups of duplicates evaluation. . . . . . . . 69
5.4 Statistics of benchmark for similarity relationships evaluation. . . . . . 69
5.5 Experimental results of the GNN architecture for similarity relationships

evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Experimental results of the preliminary experiments for groups of dupli-

cates evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7 Experiments on the final architecture. . . . . . . . . . . . . . . . . . . 82

XV



i
i

“output” — 2024/4/24 — 20:08 — page 1 — #20 i
i

i
i

i
i

CHAPTER1
Introduction

Open Science is a movement focused on openness, reproducibility, transparency, and
multi-disciplinarity of scientific results. It fosters the principle to make science “as
open as possible, as closed as necessary”1 to respect the limits of sensitive and indus-
trial data. It promotes collaboration and sharing of research methodologies, data, and
software to help prevent “scientific fraud”, i.e., the manipulation or misrepresentation
of scientific findings, and reduce the cost of science. By promoting inclusiveness, it
aims to embrace diversity in scientific contributions and foster interdisciplinary collab-
oration. Lastly, Open Science recognizes the need for an all-encompassing science as-
sessment, valuing contributions from various disciplines, methodologies, and research
outputs.

Open Science publishing principles include Open Access [1], FAIR Data [2, 3], and
Open Source [4] practices to ensure that all the outcomes of an experiment, e.g., article,
data, and software, are shared with the community. According to these practices, which
today become mandates for many funders, scientists are demanded to publish, in digi-
tal form, under an Open Access license their research products, providing the metadata
required to ensure the discovery, reuse, and assessment of their experiments. In prac-
tice, authors publish via cross-disciplinary (e.g., National, institutional) or disciplinary
repositories, archives, or databases, the metadata and files of their research publica-
tions (e.g., article, book chapter, thesis, report), research data (e.g., benchmarks used
for the experiments, set of images), and research software (e.g., code in programming
languages, methods, containers). Metadata properties represent scientific attribution
(e.g., authors, affiliations), and product access (e.g., persistent identifier, URL, license),
and product description (e.g., title, abstract); while metadata relationships describe the
semantic links to other related products (e.g., data and software “supplementing” the

1according to Guidelines on FAIR Data Management in Horizon 2020

1



i
i

“output” — 2024/4/24 — 20:08 — page 2 — #21 i
i

i
i

i
i

Chapter 1. Introduction

article, articles “citing” the data, documentation “describing” software).

1.1 Scholarly Knowledge Graphs as maps of Open Science

In the last decade, to support the demand for discovery and assessment of results under
the Open Science paradigm, research, and industry have invested resources in the de-
sign, implementation, and operation of so-called Scholarly Knowledge Graphs (SKGs)
[5], which are a specific class within the broader concept of Knowledge Graphs [6, 7].
With some meaningful exceptions [8, 9], SKGs (see Figure 1.1) are metadata graphs
modeling a map of the evolution of science in one or more disciplines, where nodes
represent the metadata records of research products and their scientific context (e.g.,
research organizations, scientific disciplines, funders, projects), and edges represent-
ing the semantic relationships between nodes (e.g., cites, fundedBy, producedBy, au-
thoredBy). SKGs are the result of a continuous and costly aggregation of metadata
records (and files to refine metadata with inference techniques) collected from thou-
sands of sources used by scientists to publish and share their products.

Figure 1.1: Example of Scholarly Knowledge Graph: a heterogeneous graph of research actors and
their semantic relationships.

Relevant examples of SKGs are Google Scholar2 [10], OpenAlex3 [11], Seman-
tic Scholar4 [12], OpenAIRE Graph5 [13], OpenCitations6 [14], SemOpenAlex [15],
AIDA-KG [16], CS-KG [17], Nanopublications [18], SoftwareKG [19], Aminer [20],
and CORE [21], etc. The consumers of these graphs include researchers, research
organizations, funders, and ministries, interested in discovering and reusing science,
monitoring research and Open Science trends, and assessing the impact of science in

2Google Scholar – http://scholar.google.com
3OpenAlex – http://openalex.org
4Semantic Scholar – http://semanticscholar.org
5OpenAIRE Graph – http://graph.openaire.eu
6OpenCitations – http://opencitations.net

2

http://scholar.google.com
http://openalex.org
http://semanticscholar.org
http://graph.openaire.eu
http://opencitations.net


i
i

“output” — 2024/4/24 — 20:08 — page 3 — #22 i
i

i
i

i
i

1.2. Author Name Disambiguation challenges in SKGs

society as a whole (research, industry, education). However, constructing consistent
and complete SKGs is far from trivial and presents a series of interesting scientific
challenges:

Heterogeneity: the metadata sources aggregated by SKGs describe their research prod-
ucts using different vocabularies, ontologies, exchange formats, etc.;

Duplication: the same research product is often published by co-authors in different
sources, in turn, aggregated by SKGs, leading to multiple nodes representing the
same product;

Inconsistency: metadata and relationships collected or inferred by the SKG may be
incorrect and introduce inconsistencies in the graph;

Incompleteness: sources may expose metadata of different quality and completeness,
in some cases lacking key properties.

Due to such reasons, creating an SKG is generally the result of a complex processing
phase aiming to address heterogeneity via harmonization (e.g., metadata crosswalks),
completeness, and inconsistencies via enrichment strategies (e.g., full-text mining, nat-
ural language processing, AI, anomaly detection), and duplication via disambiguation
(e.g., entity linking, data disambiguation).

1.2 Author Name Disambiguation challenges in SKGs

This thesis is focused on SKG disambiguation, which involves the identification and
consolidation of duplicate nodes into a single “representative” node. As previously
stated, metadata duplication occurs when numerous metadata records describing the
same real-world entity are present within the same collection. Duplicates in SKGs
cannot be tolerated, as ambiguity and redundancy compromise the graph’s utility for
discovery and research evaluation.

This phenomenon can arise with all node entities in SKGs, including research prod-
ucts, authors, organizations, and others. Due to its particularly challenging scenario,
this work focuses on the task of Author Name Disambiguation (AND). First, duplica-
tion rates are particularly high for author entities, which are created by the extraction of
the author’s name strings (referred to as author names in the following) from the meta-
data properties of the research product. Secondly, the name of the author is in most
cases the only metadata property available, definitely not enough to establish the equiv-
alence of two SKG author nodes. An example of author name duplication is depicted
in Figure 1.2.

AND is the process of identifying groups of equivalent author names and merging
them into a single node representing the actual real-life author. This process tradition-
ally comprises four main stages (depicted in Figure 1.3):

Characterization: Author nodes are enriched with information derived from their “neigh-
bor” that characterizes the identity of the author; for instance, metadata of the
related publication (e.g., ORCID persistent identifiers, co-author names, topics);

Blocking: Author nodes are grouped into “potentially equivalent” nodes to limit the
number of pair-wise comparisons;

3



i
i

“output” — 2024/4/24 — 20:08 — page 4 — #23 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.2: Example of AND: underlined authors represent the same person in multiple instances.

Similarity match: The metadata characterizations of author nodes in the same block
are pair-wise matched to check for equivalence and identify pairs of duplicates;
successful matches draw a similarity relationship between the two nodes;

Disambiguation: Identification of groups of duplicates by “closing the meshes” of
nodes linked by similarity relationships resulting from the previous phase.

Figure 1.3: The traditional disambiguation workflow: authors are pair-wise compared within blocks of
potentially equivalent to prepare a graph for the transitive closure aimed to create groups of duplicate
authors.

This process entails known issues, due to a trade-off between efficiency and effec-
tiveness. On the one hand, blocking is introduced to avoid the quadratic complexity of
“big data” SKGs, derived from the need for comparing every node with all the nodes
of the same entity in the graph. On the other hand, the accuracy of the process is af-
fected by false positives and false negatives, introduced by blocking itself and by the
intrinsic limits of the characterization and the similarity match phases. The former is
the common cause that mainly affects the precision, and the latter mainly affects the
recall.

4



i
i

“output” — 2024/4/24 — 20:08 — page 5 — #24 i
i

i
i

i
i

1.2. Author Name Disambiguation challenges in SKGs

1.2.1 Efficiency

The efficiency challenge is traditionally tackled in the blocking and in the similarity
match stage by adopting a combination of heuristics devised to limit the number of com-
parisons: block purging, block filtering, and sliding windows. Creating blocks of “po-
tentially equivalent” nodes aims to optimize time consumption by reducing the num-
ber of pair-wise comparisons and enabling parallel execution across different blocks.
This operation can be further enhanced by eliminating redundant blocks through block
purging and removing redundant pairs of nodes through block filtering. The sliding
window technique further optimizes the number of matches within individual blocks
by (i) sorting the records so that similar records are likely kept close to each other and
(ii) matching each record with the “k” following records (“K-length window”).

These heuristics guarantee optimized computation time but may introduce errors due
to the maximum block size, chosen to optimize memory usage, or the sliding window
size, empirically determined to limit the number of comparisons within each block.
Such limitations, combined with the blocking stage, may likely fail in comparing all
potential duplicates and can therefore lead to false negatives, i.e., duplicate nodes are
mistakenly identified as non-duplicates.

In this context, the research question to which the thesis aims to respond is:

“How can disambiguation efficiency be enhanced without losing precision
and recall?”

1.2.2 Effectiveness

The main issue with the effectiveness of the disambiguation result mostly occurs be-
cause author names are simple strings provided as properties of bibliographic metadata.
The disambiguation based on such basic information may cause the following:

Homonymy: different real-life persons sharing the same author name;

Synonymy: the same real-life person having different author names in bibliographic
records, hence hard to detect by similarity matching (e.g., pseudonyms, language,
string differences).

Typically, the characterization stage of the disambiguation process addresses the
issue of scarcity of information by enriching author nodes with contextual information
extracted or inferred from the bibliographic metadata records where the name originally
occurred, e.g., identifiers, titles, co-authors, abstracts, subjects, dates, topics. Other
techniques enrich author nodes with information from nodes in the neighborhood by
taking advantage of SKG relationships. Nonetheless, the characterization of author
nodes is still prone to errors due to the unbalanced topology of SKGs, which gives rise
to nodes with different degrees of richness:

Over-description: authors that published a high number of research products are de-
scribed by a variety of properties that tend to over-match many other under-
described authors;

Under-description: authors that published a low number of research products are en-
coded with low-descriptive characteristics, which endanger the veridicity of simi-
larity matches against other under-described and over-described authors.

5



i
i

“output” — 2024/4/24 — 20:08 — page 6 — #25 i
i

i
i

i
i

Chapter 1. Introduction

The consequences of undetected synonyms and homonyms can be dramatic in terms
of disambiguation. A similarity relationship between two homonym nodes will most
likely create a false positive, hence a “bridge” between otherwise distinct groups of du-
plicate author nodes. Consequently, the disambiguation phase will erroneously merge
the two groups, causing the SKG to mix the outcome of two real-life persons into one.
On the contrary, it would be difficult to draw a similarity relationship between two
synonym nodes, because the traditional disambiguation workflow may not be able to
capture the equivalence, therefore resulting in a false negative. On the other side, an
over-described author may also lead to false positives as it could match with too many
other under-described authors. In contrast, an under-described author may lead to false
negatives as it could not match with others due to the impossibility of capturing any
equivalence due to the scarce amount of information describing it.

With recent advancements in Artificial Intelligence (AI) and, in particular, Machine
Learning (ML) [22], characterization challenges took advantage of deep learning solu-
tions, where metadata properties were replaced by embeddings. In particular, the graph
structure of SKGs suggests that using Graph Neural Network (GNN) may empower
traditional techniques to overcome their limitations. For example, GNN architectures
can bypass both the homonymy/synonymy problem and the under-description/over-
description problem as they can take advantage of the relationships in the graph. Such
architectures use nodes in the neighborhood by properly weighing them to find a better
description of the data not affected by the aforementioned problems. This feature of
the GNNs makes every node comparable, decreasing the chances of false negatives.

In this context, the research question to which the thesis aims to respond is:

“How can disambiguation effectiveness be enhanced using novel Graph
Neural Networks?”

1.3 Research contributions

This thesis defines and tests novel solutions to the issues of efficiency and effectiveness
in AND by extending traditional blocking-similarity matching solutions and advancing
AI-based techniques in the domain.

In particular, traditional approaches address efficiency optimization by reducing the
number of pair-wise comparisons in the blocking and similarity match phases using
clustering and sliding window techniques. Given the big data scenario, this thesis pro-
poses a complementary approach where an extra optimization step is introduced in the
similarity match phase by limiting the number of similarity checks to be performed.

Concerning effectiveness, the thesis proposes a GNN approach that takes advan-
tage of the graph structure of a SKG. Firstly, a general framework describing AND
approaches adopting GNN has been derived; secondly, two solutions to improve preci-
sion and recall and evaluate the quality of the latter have been developed by empowering
state-of-the-art approaches.

1.3.1 Efficiency

The approach to reducing time consumption and optimizing efficiency was never ex-
plored in existing state-of-the-art methods and involves optimizing the similarity match
phase by fragmenting the pair-wise comparison process between two nodes into a set

6



i
i

“output” — 2024/4/24 — 20:08 — page 7 — #26 i
i

i
i

i
i

1.3. Research contributions

of interrelated smaller predicates. More specifically, the thesis introduces a novel ap-
proach to improve computation time, beyond the known techniques of “blocking” and
“sliding window” by introducing a smart similarity matching function T-match engi-
neered as a decision tree that drives the comparisons of the fields of two records as
branches of predicates and allows for successful or unsuccessful early-exit strategies.
The approach significantly enhances performance in big data scenarios by purging a
considerable number of useless checks.

As a result of this investigation, the framework FDup (Flat Collections Deduper)
[23] has been engineered to provide a general-purpose open-source software frame-
work supporting a complete disambiguation workflow over big data record collections
based on the Apache Spark Hadoop framework. FDup supports a customizable data
model, adaptable to any node characterizations, tools for the configuration of blocking,
and a highly configurable similarity match function. FDup delivers a full traditional
disambiguation framework in a single easy-to-use software package, where developers
can customize the optimal and parallel workflow steps of blocking, sliding windows,
and the similarity matching function T-match via an intuitive configuration file.

1.3.2 Effectiveness

The approach to improving effectiveness relies on GNNs, as a growing interest in those
kinds of solutions to the task of AND has been observed. As a first contribution to the
field, to understand trends and open challenges in the domain, and to compare results
in this area, the thesis presents a review of the state-of-the-art GNN-based workflows
for AND. The exercise resulted in a general framework and ontology that models the
methods applied in the literature in terms of a sequence of processing steps [24]. In-
specting solutions via the framework, two areas of exploration have been identified,
leading to two main contributions to improving the effectiveness. First, traditional pair-
wise similarity matching is not effective in bypassing homonymy/synonymy and under-
description/over-description problems. Second, traditional disambiguation workflows
do not include a post-processing phase to correct errors generated by the various work-
flow stages. In general, solutions are missing to perform a quality evaluation of the
results of the various disambiguation stages to purge out similarity relationships and
groups of duplicates.

The analysis made in this thesis has shown that disambiguation may benefit from
GNN solutions to solve those open challenges, which are the primary cause of false
positives and false negatives, hence lower accuracy of the disambiguation result. As a
contribution in this direction, two dedicated GNN architectures have been proposed:

Evaluation of similarity relationships This contribution consists of a novel approach
to entity disambiguation, focused on the enhancement of the accuracy of the dis-
ambiguation using a GNN with 4 GraphSAGE and a metapath attention mecha-
nism. The architecture can assign a quality score to each similarity relationship,
giving the possibility to inspect potentially wrong results of the similarity match
stage. Such evaluation may be subsequently used to prune the similarity relation-
ships to fine-tune the number of groups of duplicates.

Evaluation of groups of duplicates This contribution consists of a novel approach to
entity disambiguation, focused on the enhancement of the accuracy of “groups

7



i
i

“output” — 2024/4/24 — 20:08 — page 8 — #27 i
i

i
i

i
i

Chapter 1. Introduction

of duplicates” using a GNN with a Graph Attention Network (GAT) and a Long
Short-Term Memory (LSTM) [25]. The architecture can assign a quality score
to each group of duplicates, giving the possibility to evaluate the reliability of
the information produced by the disambiguation stage. Such evaluation may be
subsequently used to fine-tune the result of the whole disambiguation process by
intervening in potentially wrong groups of duplicates.

1.4 Thesis outline

The remainder of this thesis is organized as follows. Chapter 2 presents a review of
the literature to highlight how the challenges faced in the thesis have been treated by
the research community. The chapter also presents a conceptual framework designed
after a wide literature review of graph-based Author Name Disambiguation methods.
Chapter 3 introduces the OpenAIRE Graph, the real-case Scholarly Knowledge Graph
used as a reference benchmark in the rest of the thesis to discuss efficiency challenges
and classes of metadata anomalies that undermined the effectiveness of the AND pro-
cess. Chapter 4 describes the solution adopted to address efficiency issues in AND
by presenting FDup, a general-purpose framework and tool developed to perform and
optimize the whole traditional disambiguation workflow, with a special focus on the
pair-wise comparisons in the similarity match stage. Chapter 5 describes the method-
ology adopted to face the challenges of enhancing the effectiveness in Author Name
Disambiguation. This is done through the so-called quality evaluation by presenting
specialized GNN architectures to enable the evaluation of similarity relationships and
groups of duplicates to fine-tune the disambiguation result. Finally, Chapter 6 summa-
rizes and discusses the contributions of the thesis and presents possible future research
directions of the work.

8



i
i

“output” — 2024/4/24 — 20:08 — page 9 — #28 i
i

i
i

i
i

CHAPTER2
Background

This chapter analyzes the state-of-the-art methods and approaches to face the AND
efficiency and effectiveness challenges identified in this thesis. On the topic of effi-
ciency, the analysis focuses on existing solutions to improve performance in a trade-off
between recall and precision, identifies gaps and open challenges in the literature, and
eventually advocates for the innovation brought by the solution proposed in this thesis.
On effectiveness, to motivate and justify the adoption of GNN for the AND evaluation,
the analysis first delves into possible solutions to this task, then digs into graph-based
AND solutions.

The chapter is organized as follows: Section 2.1 highlights how disambiguation
efficiency issues have been faced in the literature by analyzing the state-of-the-art; con-
cerning disambiguation effectiveness, the state-of-the-art touches upon three main ar-
eas of investigation: Section 2.2 presents the literature methods and approaches used
for the disambiguation evaluation that could possibly be used for the effectiveness en-
hancement; Section 2.3 presents the theoretical aspects of Graph Neural Networks by
providing a brief description of their most common applications; Section 2.4 focuses on
the AND topic by presenting a deep study of the literature surveys, describes the most
recent AND graph-based methods, and identifies a generic workflow and taxonomy for
such methods;

2.1 Disambiguation methods

Many tools and frameworks contributed in different ways to the general task of “entity
linking” of which disambiguation is a specific application. Complete surveys of such
approaches can be found in [26] and [27]. This class of problems has been deeply
studied in the literature, and many solutions were proposed to specifically tackle the

9



i
i

“output” — 2024/4/24 — 20:08 — page 10 — #29 i
i

i
i

i
i

Chapter 2. Background

usability and efficiency of the approaches. Solutions focus mainly on the optimization
of the quadratic complexity by accurately selecting (e.g., heuristics) the pairs of entities
to be matched and by parallelizing the actual match operations [28]. Interestingly, the
survey also analyzes the approaches used for similarity matching of a pair of records.
Record matching is in general driven by similarity measures that are computed atomi-
cally but never mentioned as a phase where further optimization of the overall process
can take place.

The work in [29] proposes a clustering algorithm that tolerates errors and catalogs
variations by using a search engine and an approximate string-matching algorithm. The
approach proved to be effective as it identifies more than 90 percent of the related
records and includes incorrect records in less than 1 percent of the clusters.

In the research presented in [30], authors describe a solution based on a graph par-
titioning formulation that improves the accuracy of entity resolution by incrementally
revising results whenever new information about the input entities is provided. The
approach improves accuracy and optimizes the process by reducing the number of
comparisons required in subsequent rounds of disambiguation. The GDup framework
described in [31], offers an out-of-the-box solution to a complete workflow of dis-
ambiguation for SKG. The framework includes ground truth management, candidate
identification via blocking and sliding windows, identification and merging of dupli-
cates, and graph topology consolidation. The Spark-based implementation drives the
parallelization process, further boosting the performance introduced by clustering. The
similarity match function can be flexibly configured but does not support any opti-
mization option. A novel contribution to performance optimization is offered by [32],
where “block purging” and “block filtering” techniques are adopted to further reduce
the number of records in a block, hence the number of matches. These techniques
take advantage of the frequency to which a pair of entities appear in the same group to
avoid redundant and rare comparisons. The approach shows better performance than
traditional blocking/sliding window techniques, but it is not recommended when a high
recall is required.

In most approaches, the similarity match phase is performed via a similarity func-
tion provided as a weighted mean of the sum of comparators applied to the pair of
records without performing any optimization process. For example, in [33], the authors
present a six-step disambiguation process in which the comparison between two entities
is driven by a similarity vector. Such vector is represented as an aggregation of single
similarity scores between attributes and it is subsequently used to apply rules defining
threshold-based conditions for the equivalence of the entities. Similarly, in the context
of data association, the research in [34] proposed a solution to link criminal records that
possibly refer to the same suspect. This method is based on the calculation of a total
similarity measure as a weighted sum of the similarity measures of all corresponding
feature values. Moreover, [35] proposes a record linkage algorithm for detecting decep-
tive identities by combining personal attribute scores into an overall similarity score.
To conclude, it establishes a threshold for match decisions using a set of identity pairs
labeled by an expert.

In summary, existing approaches tackle efficiency enhancement by optimizing the
disambiguation workflow stages that precede the similarity match, in some cases re-
nouncing precision due to low recall. The FDup contribution of this thesis (see Chap-

10



i
i

“output” — 2024/4/24 — 20:08 — page 11 — #30 i
i

i
i

i
i

2.2. Disambiguation quality evaluation methods

ter 4) follows the same approach by providing an easy-to-use Apache Spark-based
framework for disambiguation but further improves performance by introducing a simi-
larity function T-match, capable of further reducing execution time without renouncing
recall.

2.2 Disambiguation quality evaluation methods

The existing literature falls short in addressing the issue of evaluating the quality of
“groups of duplicates” created by a disambiguation process. These groups essentially
correspond to clusters of equivalent data. To bridge this gap, researchers turn to clus-
tering evaluation metrics, which emerge as a promising solution. These metrics fall
into two categories: “extrinsic measures”, which necessitate a ground truth label, and
“intrinsic measures”, which operate without relying on a ground truth label.

In the realm of intrinsic measures, popular metrics include the Rand Index, the
Mutual Information, the V-measure, and the Fowlkes-Mallow score. The Rand Index
quantifies the similarity between the pairs of data points in the true clustering and the
clustering obtained from the algorithm. The Mutual Information measures the mutual
dependence between the true and predicted cluster assignments, offering insights into
the information shared between them. The V-measure combines precision and recall,
providing a balanced evaluation of the clustering’s completeness and homogeneity. The
Fowlkes-Mallow score calculates the geometric mean of precision and recall, offering
a measure of the algorithm’s accuracy in identifying true positive pairs.

On the extrinsic side, metrics such as the Silhouette Coefficient, the Calinski-Harabasz
Index, and the Davies-Bouldin Index are commonly employed, requiring a ground truth
label for evaluation. The Silhouette Coefficient measures how well-defined the clusters
are within the data. It is calculated as the difference between the average intra-cluster
distance and the nearest-cluster distance, normalized by the maximum of the two.
The Calinski-Harabasz Index assesses the ratio of between-cluster variance to within-
cluster variance, providing a measure of cluster compactness. The Davies-Bouldin In-
dex quantifies the average similarity between each cluster and its most similar cluster,
aiding in the evaluation of cluster separation.

To apply these metrics effectively, conceptualizing the group of duplicates as a set
of points in an n-dimensional space becomes crucial. In some instances, defining a
measure of distance between these points is essential for accurate assessment. However,
a notable limitation arises in that the evaluation of deduplication using these metrics
does not permit the independent evaluation of each group. The final score generated
by the formulas of these metrics is either impractical to compute or provides a holistic
view of the entire disambiguation result.

Alternative approaches included as a contribution in this thesis (see Section 3.3.5), is
based on evaluating a disambiguation result and involve leveraging persistent identifiers
of entities, such as Digital Object Identifiers (DOIs) [36, 37]. While this method is
reliable when persistent identifiers are available for all entities in a real-case scenario,
the lack of universal identifier coverage may compromise the trustworthiness of the
evaluation measure.

The literature on the graph classification problem offers insights into potential solu-
tions [38, 39]. Existing surveys summarize various methods, particularly in the context
of classifying molecules and proteins using supervised techniques with acceptable ac-

11



i
i

“output” — 2024/4/24 — 20:08 — page 12 — #31 i
i

i
i

i
i

Chapter 2. Background

curacy ranges. However, these methods are not directly applicable to groups of dupli-
cates due to the unique and diverse nature of such groups. The distribution of relations
within these groups can be either dense or sparse, and this distribution is not necessarily
indicative of the correctness of the group.

One notable approach for graph classification is Graphormer [40], which introduces
the transformer concept into Graph Neural Networks (GNN). The authors claim that
Graphormer represents the state-of-the-art in graph classification. However, the practi-
cality of Graphormer is hindered by the inherent characteristics of transformers, making
both training and inference processes slow and feasible only with substantial computa-
tional power—a resource often lacking in typical scenarios.

In conclusion, while various metrics and approaches exist for assessing the quality
of groups of duplicate entities, each comes with its set of challenges and limitations. As
the field progresses, addressing these challenges and exploring alternative methods will
be pivotal for advancing the effectiveness of deduplication processes and enhancing the
reliability of evaluation metrics.

2.3 Graph Neural Networks

Since this thesis focuses on the AND task for Scholarly Knowledge Graphs, the ef-
fectiveness enhancement through disambiguation quality evaluation can unleash its full
power by using AI architectures to process such kind of data structures: the GNNs. As
described in [41], one of the recent advancements in AI technologies led to the adap-
tation of Neural Networks to leverage the structure and properties of a graph, able to
represent relationships (i.e., edges) between collections of entities (i.e., nodes). To de-
scribe each node, edge, or the entire graph, information can be stored in each of the
pieces forming it. Such information (i.e., the embedding) is in the form of a scalar or
vector and it is used to encode the information of the entities in a machine-friendly
format. A GNN is an optimizable transformation on the attributes of the graph that
preserves graph symmetries. The purpose is to learn embeddings in a way that they
are aware of the graph connectivity information. To do this, a GNN implements the
message-passing protocol: nodes in the neighbors exchange information and influence
each other’s updated embeddings. The general idea of the message-passing can be
summarized in three steps (see Figure 2.1 for a reference). In particular, each node in
the graph:

• collects all the node embeddings in the neighborhood;

• aggregates all the node embeddings it received via an aggregation function (e.g.,
mean, sum, max, min);

• updates the aggregation via a learned neural network.

This sequence of operations is key for leveraging the connectivity of graphs and,
when applied once, is the simplest type of message-passing GNN layer. This is no more
than a standard convolution on images: both the message-passing and the convolution
operation are operations used to aggregate and process the information of an element’s
neighbors to update the element’s value, as described in [42]. In graphs, the element
is the node, and in images, the element is a pixel. By stacking multiple GNN layers

12



i
i

“output” — 2024/4/24 — 20:08 — page 13 — #32 i
i

i
i

i
i

2.3. Graph Neural Networks

Figure 2.1: Example of Graph Neural Network: the message passing protocol enriches every node of
the network with information about the topology of the graph. In each layer of the GNN a node sends
its features to the neighbors and aggregates the features it received.

together, a node becomes able to include information from even further nodes (i.e., with
4 layers, a node collects information about nodes that are four steps away from it). As
all the other AI networks, GNN may be trained in a supervised, semi-supervised, and
unsupervised way based on the availability of labeled data. In the supervised training,
the network is trained with a set of labeled data and it learns how to classify unseen
nodes based on what is in the training set. In the semi-supervised training, the base
network model is trained with available labeled data, such a model is consequently
used to predict labels for unlabeled data and this new data is subsequently used to train
again the network. In unsupervised training, the network discovers hidden patterns or
data groupings without the need for human intervention. The information encoded in
the node embedding depends on the type of training and on the computation of the loss
function, which calculates the error between the actual result and the expected result
to backpropagate the error and adjust the network weights accordingly. In this thesis,
the GNN have been used by configuring the challenges presented in Chapter 1 into
one of the three most popular operations in the literature: the link prediction (i.e., the
operation of predicting the existence of a link between two nodes of the graph), the node
classification (i.e., the operation of classifying each node of a graph in a predefined set
of classes), and the graph classification (i.e., the operation of classify a whole graph
based on its typology and its nodes).

Node classification The purpose of models for node classification is to predict non-
existing node properties (e.g., the class) based on other existing node properties and the
relationships with the neighbors in the graph. The learned node embedding is meant
to be closer to nodes belonging to the same class and further from nodes belonging to
a different class. An example of a node classification task is presented in [43], where
the dataset is composed of people and their relationships in a Karate Club, and the pur-
pose is to classify whether a given person becomes loyal to one or the other master
after their feud. In this case, the distance between a node and the master is crucial. In
images, those problems are analogous to image segmentation (i.e., predict the role of
each pixel). In texts, those problems are analogous to the prediction of the role of each
word in a line (e.g., noun, subject, verb, adverb). The research in [44] presents a survey
and an evaluation of existing GNNs for node classification in the literature. Figure 2.2
presents a visualization of this task.

13



i
i

“output” — 2024/4/24 — 20:08 — page 14 — #33 i
i

i
i

i
i

Chapter 2. Background

Figure 2.2: Example of node classification: the node embedding is used to predict the class of the node
based on the classes of similar nodes.

Link prediction The purpose of models for link prediction is to infer which links are
most likely to be added or missing based on the observed connections and the structure
of the network. Therefore, giving a partially observed network, link prediction models
may be useful to increase the completeness of a graph. In this scenario, the training
is often performed by providing a set of positive and negative links, obtained with
negative sampling (i.e., creating a graph with non-existent links). An example of a
link prediction task is in image scene understanding: given nodes that represent the
objects in an image, the purpose is to predict which of these nodes shares an edge with
one other. It is possible also to predict the meaning of that edge for those two nodes.
Prominent examples in the literature are presented in [45] and [46], with the research
in [47] specifically focused on SKGs. Figure 2.3 presents a visualization of this task.

Figure 2.3: Example of link prediction: the node embedding is used to predict the existence of a link
based on other links in the graph.

Graph classification The purpose of models for graph classification is to classify the
whole graph into different categories. In such an architecture, the node embeddings are
computed in the traditional method and the graph embedding is obtained with an ag-
gregation of all the node embeddings of the graph performed by the readout operation,
properly configured depending on the activity needs. An example of a graph classifica-
tion task is molecule prediction: given a graph representing a molecule (i.e., nodes as
atoms and edges as bonds), the purpose is to predict what the molecule smells like or
whether it will bind to a receptor implicated in a disease. In images, those problems are

14



i
i

“output” — 2024/4/24 — 20:08 — page 15 — #34 i
i

i
i

i
i

2.4. Author Name Disambiguation methods

analogous to image classification problems where the objective is to associate a label to
a full image. In texts, a similar problem is sentiment analysis, where the objective is to
identify the mood of a full text. The research in [48] presents a fair comparison of exist-
ing GNNs for graph classification in the literature. Figure 2.4 presents a visualization
of this task.

Figure 2.4: Example of graph classification: the node embeddings of each graph are aggregated to
create a graph embedding to be used to predict the class of the graph based on the classes of similar
graphs.

2.4 Author Name Disambiguation methods

The AND task has been faced in several different ways in the literature. To highlight
the most popular types, it may be useful to study how such approaches have been cate-
gorized in the existing surveys on the topic.

The survey in [49] presents a list of methods for the AND created between 2004
and the beginning of 2010. The authors highlight a list of challenges that an AND
approach has to face (i.e., homonymy, name changes for marriage, spelling variations,
incomplete metadata, and the impossibility of manually tagging all the authors) and
classify methods in two subcategories: manual and automatic disambiguation. The two
classes engage in a trade-off between precision and scalability: manual approaches are
more precise but not scalable, while automatic ones show a higher error rate but can be
applied to very large data collections. The reported automatic disambiguation methods
are based on clustering and supervised learning. Clustering methods use publication at-
tributes to create embeddings and cluster them to identify the work of a specific author;
supervised learning methods can be categorized as naive Bayes models to calculate
the probability of a pair of authors being the same person, and SVM models trained
to discriminate authors. Since the survey is one of the first on this topic, graph-based
methods have not been deeply studied, and no specific method has been developed in
that direction.

The survey in [50] proposes a taxonomy for characterizing the current AND meth-
ods described in the literature. The survey categorizes automatic methods based on two
features: the evidence explored in the disambiguation task (web information, citation
relationships, etc.) and the main type of exploited approach (author grouping methods,
and author assignment methods). Author grouping methods aim at identifying groups of
author names in a set of references based on properties of the publication nodes and po-
tential relations with other nodes. They are based on similarity functions that compare

15



i
i

“output” — 2024/4/24 — 20:08 — page 16 — #35 i
i

i
i

i
i

Chapter 2. Background

two author names by using predefined techniques (Levenshtein, Jaccard, etc), learned
from ground truth data (providing pairs of equivalent/different authors), or graph-based
techniques (similarity degree of two authors based on co-authors or properties of the
related publications). From the resulting equivalent name pairs, such methods identify
the groups of equivalent author names. Author assignment methods are instead based
on the assumption that a set of references with disambiguated author names exist, i.e.,
classification strategies, and/or a mathematical representation of the authors exist, i.e.,
clustering strategies. Classification strategies, given a set of references, predict the au-
thor of the references among a set of predefined authors. Clustering strategies attempt
to directly assign references to authors’ work by optimizing the fit between a set of
references to an author and mathematical models used to represent that author. The
survey touches on graph-based methods but only from the point of view of graph-based
similarity functions.

The survey in [51] divides AND methods into five categories: supervised, unsu-
pervised, semi-supervised, graph-based, and heuristic-based. Supervised techniques in
this domain are based on labeled training data that associates the corresponding author
record class to the author representations (e.g., embeddings, vectors). Unsupervised
techniques are those adopted when labeled data is not available, but the idea is similar
to the supervised methods because the method has to classify authors into a pre-defined
set of classes. Heuristic-based AND techniques are used when scalability issues occur.
Such methods approximate the solution giving a result that is as close as possible to
reality. As for the Graph-based AND techniques, the focus is on methods relying on
graphs in which author names are nodes, and edges identify the co-authors’ relations
(when two author names occur in the same publication). Similarity measures or deep
learning are then applied to such graphs to identify groups of equivalent author names.

The survey in [52] provides a generic five-step framework to handle AND issues.
Such steps are (i) dataset preparation, (ii) publication attributes selection, (iii) similar-
ity metrics selection, (iv) model selection, and (v) clustering performance evaluation.
An important contribution of this survey is the definition of a set of common challenges
in AND to be faced when developing a framework. The methods in this survey are cat-
egorized into supervised, unsupervised, semi-supervised, graph-based, and ontology-
based. Classes defined in the taxonomy resulting from this survey have already been
described by other surveys reviewed in this paragraph. As for ontology-based classifi-
cation, the survey defines ontology as the knowledge of concepts and their relationships
within a domain, i.e., the knowledge representation of a domain. Methods included in
this category use such representation to identify groups of equivalent author names.

The survey in [53] focuses on AND challenges in PubMed1, the publication repos-
itory of the Life Science community. This work surveys a set of solutions considering
as input data the citation graph formed by PubMed where the author set is not known a
priori. The outcome is a general framework composed of four stages: (i) citation extrac-
tion, (ii) LN-FI blocks creation, (iii) similarity profile creation (creation of similarity
for each pair of citations), and (iv) author-individual clusters creation based on similar-
ity profiles. The survey proposes a taxonomy that classifies methods based on evidence
explored (only co-authorship information or multiple metadata), and techniques used
to generate similarity profiles (supervised, graph-based, and heuristic-based). Only one

1PubMed – https://pubmed.ncbi.nlm.nih.gov

16

https://pubmed.ncbi.nlm.nih.gov


i
i

“output” — 2024/4/24 — 20:08 — page 17 — #36 i
i

i
i

i
i

2.4. Author Name Disambiguation methods

graph-based method is described in this review, named GHOST (GrapHical framewOrk
for name diSambiguaTion), also included in [51] above, which implements a similarity
measure based on the graph composed of co-authors’ relations and applies a clustering
method to create groups of equivalent author names.

A recap of the characteristics of each survey described in this section is depicted in
Section 2.4. Clearly, in recent years, graph-based approaches are regarded as relevant
but only as one of the potential classes of AND solutions; no specific investigation digs
into the features of this class of problems and methods.

Survey Taxonomy
[49] manual and automatic disambiguation

[50]

evidence explored (web information,
citation information, and implicit

evidence) or exploited approach (author
grouping methods, and author assignment

methods).

[51]
supervised, unsupervised,

semi-supervised, graph-based, and
heuristic-based

[52]
supervised, unsupervised,

semi-supervised, graph-based, and
ontology-based

[53]
based on evidence explored or techniques

used to generate similarity profiles
(graph-based, heuristic-based, supervised)

Table 2.1: Summary of existing surveys on AND methods.

2.4.1 Detailed review of graph-based AND methods

Graph-based AND methods have been proven to be very effective and are becoming
the most popular in this topic, as SKGs semantic relationships have the power to boost
the performances of every graph-related task. For this reason, it becomes crucial to
provide an exhaustive review of the methods in the literature. The articles included in
the review have been identified by searching Google Scholar for the keywords “graph
based author name disambiguation”. To prioritize the latest research trends in the
domain, the candidates have been limited to work published after 1/1/2021. Since it
became clear that after 100 search results, topics tended to diverge from the focus, the
investigation has been interrupted there.

To ease the investigation process (and for the reproducibility of the Google Scholar
search), the search was performed using a Python script2 from [54] with the following
command:
$ py thon s o r t g s . py −−kw " graph based a u t h o r name d i s a m b i g u a t i o n " −− s t a r t y e a r 2021

The command returns a CSV file that contains the first 94 publications matching the
query (articles with corrupted metadata have been excluded), each with metadata about
Title, Number of Citations, and Rank; by default, the script sorts the list by number of
citations. The CSV has been explored to identify work relevant to the survey: papers

2Python script to query Google Scholar – https://github.com/WittmannF/sort-google-scholar

17

https://github.com/WittmannF/sort-google-scholar


i
i

“output” — 2024/4/24 — 20:08 — page 18 — #37 i
i

i
i

i
i

Chapter 2. Background

were downloaded, first selected based on the relevance of the abstract, and then studied;
the number of citations and the query rank were used as an indicator of quality but not
as selection criteria; the reference list of selected articles was also analyzed to identify
further relevant titles published before 2021. The full list of articles returned by the
query on the 1st of July 2023 is available as a CSV in [55]. The CSV includes a
column to show the ones selected for this survey (including 1 article published in 2019
identified exploring the bibliographies); note that three articles are marked as “N.A.”,
as they matched the relevance criteria defined above but are written in Chinese, and no
English version could be found.

The methods included in the review are listed below:

LAND [56] proposes a framework called Literally AND (LAND), a representation
learning method without training data. Such framework utilizes multimodal literal in-
formation generated from the Scholarly Knowledge Graphto create node embeddings
for the graph (so-called Knowledge Graph Embeddings KGEs). LAND is based on
three components:

• Multimodal embeddings: learn representative features of entities and relations in
the graph by using a multimodal extension of a semantic matching model called
DistMult. The extension is based on literals of publication attributes (e.g., publica-
tion title encoded with SPECTER - a pre-trained BERT model, and date encoded
as described in LiteralE) which are used to modify the scoring function to max-
imize the score for existing triples and minimizing the scores for non-existing
triples;

• A blocking procedure: divides authors into groups with LNFI blocking to reduce
the number of pairwise comparisons required by the AND task;

• Clustering: Hierarchical Agglomerative Clustering (HAC) presented in [57], used
to split embeddings in the same block into k-clusters that identify each unique
author.

HGCN [58] proposes a novel, efficient, re-trainable, and incremental AND framework
based on unsupervised learning since it does not need labeled data. The idea is to
construct a publication heterogeneous network for each ambiguous name using the
meta-path approach. Such publication network is consequently processed by a custom
heterogeneous graph convolutional network (so-called HGCN) that calculates the em-
beddings for each node encoding both graph structure and node attribute information.
Once all publication embeddings have been computed, authors use a graph-enhanced
clustering method for name disambiguation that can significantly accelerate the cluster-
ing process without the specification of the number of distinct authors. The proposed
method is based on two components:

• Publication Heterogeneous Network (PHNet) Embedding: each publication is
vectorized using Doc2Vec, subsequently the HGCN aggregates the publication
vectors to create the publication final embedding. The research tests different
GCNs to perform the aggregation (i.e., DeepWalk, LINE, meta-path2Vec, Hin2Vec,
and GraphSAGE);

18



i
i

“output” — 2024/4/24 — 20:08 — page 19 — #38 i
i

i
i

i
i

2.4. Author Name Disambiguation methods

• Clustering: uses Graph-enhanced HAC (GHAC) over the publication graph for the
ambiguous name.

AE [59] proposes an unsupervised representation learning framework based on 4 mod-
ules to bridge the gap between semantic and relational embeddings. The goal of the
research is to jointly encode both semantic and relations information into a common
low-dimensional space for AND task. The 4 modules of the framework are:

• Semantic embedding module: publications are processed with Word2Vec using
TF-IDF weighting to represent content;

• Relationship embedding module: the framework constructs the homogeneous net-
work applying three meta-paths (the result is a unique homogeneous network
where the weight of each relationship between two publications is given by the
number of meta-paths connecting those publications). Each node is embedded
with a MultiLayer Perceptron (MLP) which uses triplet loss to train;

• Semantic and relationship joint embedding module: a variational autoencoder is
used to learn the joint embedding by minimizing reconstruction loss;

• Clustering: HAC to create publications clusters inside a group of ambiguous au-
thors.

jGAT [60] presents a solution that considers both content and relational information
to disambiguate. In the research, authors construct a heterogeneous graph based on
meta-information of publications (e.g. collaborators, institutions, and venues). The
heterogeneous graph is subsequently transformed into 3 homogeneous graphs using
3 meta-paths (co-author, co-organization, and co-venue meta-path). Graph Attention
Networks (GAT) is used to jointly learn content (abstract information and title) and
relational information by optimizing an embedding vector: each node (publication) of
the graph is vectorized (using Word2Vec), subsequently, an embedding is computed
for each meta-path, and a concatenation of the 3 embeddings is inputted to a fully
connected network to create the k-dimensional vector representing the final embedding
of the publication. Finally, a clustering algorithm is presented to gather author names
most likely representing the same person (spectral clustering algorithm to learn the
embedding vectors which have been learned by GAT).

RF-LRC [61] develops a robust supervised machine learning approach in combina-
tion with graph community detection methods to disambiguate author names in the
Web of Science publication database. The framework uses publication pairs to train a
Random Forest and a Logistic Regression Classifier. The labeled data is given by the
ResearcherID, through which a pair can be identified as equal or not, and the features
are properties of the pair (i.e., the result of the comparisons of publication fields). The
classifier is used to create a graph which is consequently inputted to the infomap graph
community detection algorithm to identify all publications belonging to the same au-
thor. The distinction is always performed in a subset of publications with ambiguous
authors, obtained using the LNFI blocking strategy.

19



i
i

“output” — 2024/4/24 — 20:08 — page 20 — #39 i
i

i
i

i
i

Chapter 2. Background

sGCN [62] provides a disambiguation model based on GCN that combines both at-
tribute features and linkage information. The first step consists of computing the em-
beddings of the publications using Word2Vec. Then 3 different graphs are built:

• a paper-to-paper graph: nodes of the graph are publications and an edge is drawn
whenever the similarity of the attributes exceeds a threshold;

• a co-author graph: all authors are represented as nodes and an edge indicates that
there is a cooperative relationship between the authors;

• a paper-to-author graph: publications and authors represented as nodes and edges
representing relations between publication and author.

Each graph is fed to a specialized GCN and the final output is a hybrid feature computed
following the following steps: (i) embeddings of publications and authors are obtained
respectively from AuthorGCN and PaperGCN, (ii) triples samples from the paper-to-
paper graph to minimize the error, (iii) triples sample from the co-author graph to
minimize the error, and (iv) triple samples from paper-to-author graph to minimize
the error and update network weights at the same time. The PaperGCN output is the
final embedding of the publication. Finally, the HAC algorithm is applied to divide
publications into disjoint clusters of authors.

LP [63] presents a semi-supervised algorithm to disambiguate authorship pairs: the
method consists of various nonlinear tree-based classifiers trained to classify pairs of
authors to construct a graph, which is subsequently processed with label propagation
to cluster group of authors. The LNFI blocking strategy is applied to create groups of
publications with ambiguous authors, subsequently, a probabilistic classification model
is trained to decide whether two publications within a given block belong to the same
author. The classifier resulting from the training is used to create authorship graphs
as follows: publications are represented as nodes, while an edge is drawn between two
nodes if the classifier predicts that both are authored by the same person. The classifier’s
class probabilities are used as edge weights to obtain a labeled graph. Finally, a clus-
tering algorithm based on the label propagation algorithm is applied to the constructed
graph. The label propagation algorithm works as follows: each node of the graph is
initialized with a random unique label, then the process starts and each node is labeled
iteratively with the label shared by the majority of its neighbors until an equilibrium is
reached. Experiments have been performed over a dataset for author disambiguation
taken from ADS.

DND [64] presents a supervised Distributed Framework for Name Disambiguation (so-
called DND), developed as a linkage prediction task to overcome the limitations of
knowing the number of clusters a priori. Authors of the framework train a robust func-
tion to measure similarities between publications to determine whether they belong to
the same author. Publications features are transformed into vectors using Word2Vec,
such publications are subsequently used as nodes in a fully connected publication net-
work where dashed lines denote ambiguity relationships between two authors in a pub-
lication pair. Each pair of publications that have an ambiguity relation is processed by
a classification task, which returns 1 if the same author writes the pair and 0 otherwise.

20



i
i

“output” — 2024/4/24 — 20:08 — page 21 — #40 i
i

i
i

i
i

2.4. Author Name Disambiguation methods

Finally, DND merges initial partitions by a rule-based algorithm to get the disambigua-
tion result.

MFAND [65] presents a framework called Multiple Features Driven Author Name Dis-
ambiguation (so-called MFAND). The authors construct six similarity graphs (using the
raw document and fusion feature) for each ambiguous author name. The structural
information (global and local) extracted from these graphs is inputted into a novel en-
coder called R3JG, which integrates and reconstructs the information for an author.
An author is therefore associated with four types of information: the raw document
feature, the publication embedding based on the raw feature, the local structural infor-
mation from the neighborhood, and the global structural information of the graph. Each
node is embedded by using the Random Walk on the fusion feature graph. The goal
of the framework is to learn the latent information to enhance the generalization ability
of the MFAND. Then, the integrated and reconstructed information is fed into a binary
classification model for disambiguation.

DHGN [66] proposes a Dual-Channel Heterogeneous Graph Network (DHGN) to solve
the name disambiguation task. In the research, authors use the heterogeneous graph net-
work to capture various node information to ensure the learning of more accurate data
structure information. FastText is used to extract the semantic information of the data
through the textual information, which generates a vector representing each publica-
tion. Then the semantic similarity matrix of the publications is obtained, by computing
the cosine similarity between such vectors. On the other side, the meta-path Random
Walk algorithm is used to extract the features from the publications, especially from
the relationships, by computing their feature vectors, and their similarity matrix. Once
both the semantic and the relationship features have been exploited, the similarity ma-
trixes are merged to compute the similarity matrix fusion. Such matrix is clustered
using DBSCAN, an unsupervised clustering algorithm.

SA [67] proposes an approach that uses attention-based graph convolution over a
multi-hop neighborhood of a heterogeneous graph of the documents for learning repre-
sentations of the nodes. The approach consists of an AutoEncoder-based representation
learning method divided into an encoder and a decoder. The encoder performs the fol-
lowing operations:

• generates the initial vectors representing the nodes;

• generates node representations based on attention over neighbor types;

• fine-tunes the node representations based on attention over different relation types.

The decoder takes the output of the encoder to generate a homogeneous graph without
considering relation types. Finally, vectors coming from the decoder are clustered by
using HAC.

SSP [68] proposes a method based on representation learning for heterogeneous net-
works and clustering, and exploits the self-attention technology. The method can cap-
ture both structural and semantic features of a publication and uses the weighted sum

21



i
i

“output” — 2024/4/24 — 20:08 — page 22 — #41 i
i

i
i

i
i

Chapter 2. Background

of those two embeddings to cluster publications written by the same author with HAC.
The structural features of a publication are extracted by using meta-paths (in partic-
ular Paper-Author-Paper, Paper-Organization-Paper, Paper-Venue-Paper, Paper-Year-
Paper, and Paper-Word-Paper). The representations of publications are subsequently
learned by a skip-gram model. The semantic features of a publication are extracted
from the title, the abstract, and the keywords by using Doc2Vec.

2.4.2 Taxonomy and general workflow of graph-based AND methods

The literature analysis revealed that graph-based AND methods could be represented
employing the framework depicted in Figure 2.5. The framework describes different
methods as instances of the same workflow template, featuring some or all of the iden-
tified steps.

Figure 2.5: General framework for graph-based AND methods in this survey.

SKG are characterized by semantic features, i.e., a set of publication nodes with
title, abstract, author names, venue, and publishing date, and by semantic features, i.e.,
the set of relationships between publication and authors, citation relationships, or other
contextual information, such as relationships of publications to organizations, topics,
etc. As shown in Figure 2.5, the SKG is the source of information necessary to produce
homogeneous node representations that will be in turn input to a node clustering mod-
ule that will identify the groups of equivalent author names. Node representations are
generated by the node representation module, exploiting the semantic and relational
features extracted from the input Scholarly Knowledge Graph: via the node seman-
tic module, i.e., extracting semantic information from publication metadata, and the
relation semantic module, i.e., generating homogeneous graphs to capture semantic in-
formation from the topology of several graph views to provide some context to the next
module. Node representations can be in the form of embeddings, generated via graph-
based methods, or similarity vectors, in turn forming node similarity matrices; in other
words, the essence of nodes are captured via node neighborhood strategies, with the
number of hops determined by the number of layers of the network for the computa-
tion, or via similarity degrees of the node with all the nodes in the same cluster. Finally,
once the node representations have been computed, they are fed to a node clustering
module whose purpose is to group equivalent author names using strategies that depend
on the node representation nature, e.g., embeddings distance, similarity matrix, graph
cliques. Typically, clustering is limited to a set of candidate author names, identified by
a blocking method that groups all publications related with names of potentially equiv-
alent authors; the majority of methods adopt an LN-FI strategy, e.g., “John Smith”
generates a key “smithj”.

22



i
i

“output” — 2024/4/24 — 20:08 — page 23 — #42 i
i

i
i

i
i

2.4. Author Name Disambiguation methods

In a more detailed view, the modules can be summarized into:

• The node semantic module processes the input SKG to compute vector representa-
tions for publications in the SKG to be provided as input to the node representation
module. This module produces the so-called “raw embeddings”, calculated using
the node attributes without considering relations. Algorithms applied within the
module could be used to simply clean the data to prepare them for the pair-wise
comparison or to convert string attributes to vectors easily comparable with rather
simple mathematical operations;

• The relation semantic module processes the input SKG to extract homogeneous
graphs capturing a specific relational interpretation of authors or publications in
the graph. A known approach is the one of “meta-paths” (exploited in [56], [58],
[59], [60], [62], [65], [66], and [68]) which creates homogeneous graphs from the
input SKG from which meaningful embeddings can be subsequently computed;
for example, the application of the “co-author” meta-path or the “co-venue” meta-
path approach generates respectively a graph where authors are nodes linked by
relationships if they co-authored one publication or a graph where publications are
related if they share the same venue. Such graphs can be used to generate different
author representations, capturing relational features of the graph and the authors
therein. The module can be used to generate one or more graphs and potentially
these can be merged to produce compound views;

• The node representation module is the core of the framework as it processes the in-
put of the node semantic and relation semantic modules (i.e., homogeneous graphs
and/or the publication vector representations) to generate node representations to
support the subsequent clustering of publications written by the same authors; a
node representation captures the semantic features of an individual publication
and in some cases include features of a given author; node representations can be:
(i) similarity vectors obtained by similarity comparisons between pairs of publi-
cations potentially written by the same author, identified via LN-FI pre-clustering
strategies on author names; (ii) node embeddings obtained via networks applied
to nodes in the neighborhood of the graphs resulting by merging node and relation
semantic information;

• The node clustering module applies a clustering method to blocks of publications
potentially written by the same author, identified via LN-FI pre-clustering strate-
gies on author names. Clustering algorithms differ depending on the nature of
node representations, i.e., clustering functions acting on graphs for similarity vec-
tors or clustering functions on an embedding vector space.

Section 2.4.2 sums up the results of the analysis to better highlight the differences
between the methods reviewed in this survey. The table indicates how each module
specifically fulfills the workflow modules described above for each method in the re-
view.

Following the comparison of the different methods, Figure 2.6 identifies a taxonomy
that classifies AND approaches in three macro features. A method can be characterized
concerning the learning strategy, the evidence explored, i.e., the type of information
used to create the author representations, and the node representation strategy. A recap

23



i
i

“output” — 2024/4/24 — 20:08 — page 24 — #43 i
i

i
i

i
i

Chapter 2. Background

method article semantic
module

relation
module

node
representation

module

clustering
module

LAND [56] SPECTER,
LiteralE

N.A.
DistMult

multimodel
extension

HAC

HGCN [58] Doc2Vec meta-path HGCN Graph-enhanced
HAC

AE [59] Word2Vec meta-path Variational
AutoEncoder HAC

jGAT [60] Word2Vec meta-path GAT spectral
clustering

RF-LRC [61] N.A. N.A
Random Forest &

Logistic Regression
Classifier

infomap
algorithm

sGCN [62] Word2Vec meta-path specialized GCNs HAC

LP [63] N.A. N.A. tree-based
classifier

label
propagation

DND [64] Word2Vec N.A. N.A. rule-based
algorithm

MFAND [65] Random
Walk N.A. R3JG binary

classification
DHGN [66] FastText N.A. Random Walk DBSCAN

SA [67] Word2Vec N.A. Spectral GCN &
Dense Network HAC

SSP [68] Doc2Vec meta-path skip-gram HAC

Table 2.2: Recap of AND methods modules.

of the surveyed graph-based AND methods concerning this taxonomy is depicted in
Section 2.4.2.

The first and most common feature in deep learning surveys is the learning strat-
egy, which defines the approach used to train the graph-based network. Depending
on the training methodology, a method may be supervised [61, 64], unsupervised [56,
58–60, 62, 65–68] and semi-supervised [63]. Usually, unsupervised methods include
a preliminary blocking stage and subsequently an approach based on Graph Convolu-
tional Networks (GCN) and/or AutoEncoders to vectorize graph elements by creating
an embedding of the publication node. In GCN methods the embedding of a node is
usually created by aggregating information from the node and its related neighbors,
while AutoEncoders exploit an artificial neural network to generate efficient encodings
of nodes. Supervised methods sometimes include a preliminary stage of blocking, fol-
lowed by pair-wise comparisons exploiting either a network or a classifier trained to
recognize whether a pair of author names is equivalent. Semi-supervised approaches
tend to be a mixture of the above-mentioned methods. A known challenge of such non-
unsupervised approaches is the cost of producing a well-defined training set of data.

Graph-based AND approaches can be classified according to the explored evidence,
intended as the type of information used to generate the embeddings. In the case of
a method based on publication features, the procedure relies on publication attributes
such as title, date, and abstract to represent a node. Instead, a method based on relations
and publication features takes advantage of the relations between publications and,

24



i
i

“output” — 2024/4/24 — 20:08 — page 25 — #44 i
i

i
i

i
i

2.4. Author Name Disambiguation methods

Figure 2.6: Proposed taxonomy for graph-based AND methods.

in general, nodes of the SKG. As highlighted in many AND surveys, such methods,
capturing both topological and semantic representations of a node, turn out to be the
most promising in the literature.

The node representation strategy feature describes the strategy used to compute
node representations. Learning methods compute embeddings of the nodes by aggre-
gating information from their neighborhood. They are typically applied on homoge-
neous graphs as returned from the graph processing module (e.g., the meta-path ap-
proach described above). Pairwise comparison methods [61, 63, 64] compare nodes of
the graph with others to generate similarity vectors in which each element indicates the
similarity degree between the target node and the others. Depending on the method, the
vector may contain 0 (different author) or 1 (same author), or a similarity degree. Such
representations can be used to create a similarity graph (in some cases called “ambigu-
ity graph”) in which clustering algorithms can identify “cliques” of nodes, e.g., groups
of equivalent author names.

2.4.3 Main lacks of graph-based AND

Graph-based methods have not only demonstrated their effectiveness in comparison to
traditional approaches within the existing literature but have also shown to be the most
important trend in contemporary research on AND. Since the accuracies of the methods
presented in this brief survey were comparable, the selection of a specific approach
depends on the context to which the AND is applied. An important consideration is
made over the use case scenario: the SKG. In these contexts, users have access to a wide
range of information collected from the various relationships (e.g., cites, fundedBy,
producedBy). The increasing availability of such kind of information suggests that
using techniques that take advantage of them is often essential for achieving optimal
outcomes.

25



i
i

“output” — 2024/4/24 — 20:08 — page 26 — #45 i
i

i
i

i
i

Chapter 2. Background

method article learning
strategy

node
representation

strategy

explored
evidence

LAND [56] unsupervised learning
joint relation and

publication
feature

HGCN [58] unsupervised learning
joint relation and

publication
feature

AE [59] unsupervised learning
joint relation and

publication
feature

jGAT [60] unsupervised learning
joint relation and

publication
feature

RF-LRC [61] supervised pairwise
comparisons

publication
features

sGCN [62] unsupervised learning
joint relation and

publication
feature

LP [63] semi-
supervised

pairwise
comparisons

publication
features

DND [64] supervised pairwise
comparisons

publication
features

MFAND [65] unsupervised learning
joint relation and

publication
feature

DHGN [66] unsupervised learning
joint relation and

publication
feature

SA [67] unsupervised learning
joint relation and

publication
feature

SSP [68] unsupervised learning
joint relation and

publication
feature

Table 2.3: Recap of graph-based AND methods.

On the other hand, when dealing with flat entity collections (i.e., when relationships
between entities are not available), the construction of a graph formed by edges repre-
senting similarity relationships between nodes emerges as the most viable strategy. This
consideration clearly shows the importance of taking advantage of the graph structure,
because it can provide more flexibility and adaptability to every scenario.

In these types of approaches, unsupervised learning methods have high popularity
in the literature because they can imitate the complexities of real-world AND scenar-
ios where authors are frequently scarcely described. Nonetheless, a semi-supervised
approach is still a viable solution as it can mitigate the challenges of unsupervised
learning by taking advantage of the known information available.

The synthesis of insights learned from an exhaustive literature review and a com-
prehensive study of graph-based AND methodologies lead to several observations. The

26



i
i

“output” — 2024/4/24 — 20:08 — page 27 — #46 i
i

i
i

i
i

2.4. Author Name Disambiguation methods

framework depicted in Figure 2.5 can correctly encapsulate the characteristics of state-
of-the-art disambiguation approaches, grouping stages under common blocks that de-
scribe the activities of different methods. Nonetheless, some critical aspects remain
unsolved. For example, those concerning the evaluation of disambiguation results.

To enhance the effectiveness of the disambiguation process, the integration of tradi-
tional techniques with AI-based solutions, particularly those grounded in GNN, takes
center stage. A GNN-based approach is aligned with the requirements of AND tasks,
exhibiting the capacity to address challenges stemming from incomplete attribute in-
formation and elevating the overall quality of disambiguation outcomes. A hybrid
model, fusing the strengths of traditional methods and AI-based solutions, emerges
as a promising strategy to face the AND tasks.

27



i
i

“output” — 2024/4/24 — 20:08 — page 28 — #47 i
i

i
i

i
i

CHAPTER3
The motivating scenario

This chapter presents the real-case scenario of the OpenAIRE Graph, which has been
used to test and validate the frameworks and the AI architectures that are contribu-
tions of this thesis. The OpenAIRE Graph is a production service, co-funded by the
European Commission, which ensures the operation and maintenance of an extensive
Scholarly Knowledge Graph modeling scientific publications, research data, research
software, authors, and other related entities in support of several worldwide discovery
and research monitoring services. The provisioning workflow guaranteeing the Ope-
nAIRE Graph is currently operated by the Institute of Information Science and Tech-
nologies of the Italian National Research Council (CNR), where many of the underlying
technologies and solutions have been devised and engineered. In particular, its AND
challenges inspired the solutions discussed in the thesis whose results have been inte-
grated as part of the service (FDup framework) or are being experimented with within
its BETA environment.

The chapter is organized as follows: Section 3.1 describes the OpenAIRE Graph,
which will be used as a benchmark for all the contributions of the thesis; Section 3.2
presents the OpenAIRE data model, i.e., the entities and relationships populating the
OpenAIRE Graph; Section 3.3 details the process engineered to create the OpenAIRE
Graph; Section 3.4 discusses about the current techniques to perform the AND task in
the OpenAIRE Graph.

3.1 The OpenAIRE Graph

The OpenAIRE AMKE1 is a not-for-profit legal entity co-funded by the European Com-
mission to foster and support Open Science publishing workflows in Europe and glob-

1OpenAIRE – http://www.openaire.eu

28

http://www.openaire.eu


i
i

“output” — 2024/4/24 — 20:08 — page 29 — #48 i
i

i
i

i
i

3.2. Graph data model

ally. Its members, more than 50 research organizations in Europe, establish collabo-
rations via a strong network of Open Science stakeholders to align policies, practices,
guidelines, and tools at the global level, across countries and disciplines. To this aim,
it supports and operates a rich portfolio of services in support of Open Science pub-
lishing, discovery, and monitoring 2. The core service of its portfolio is the OpenAIRE
Graph, one of the largest SKGs worldwide, representing the overall publishing record,
including research products (publications, data, software), authors, funders, projects,
and organizations. The Graph aggregates millions of metadata records from thousands
of scholarly data sources, including Open Access journals (from DOAJ registry), insti-
tutional and thematic repositories (from OpenDOAR, re3data, FAIRSharing registries,
e.g., UKPubMed [69], ArXiv [70], HAL, Zenodo, Figshare [71], Dryad, and Repec),
national or disciplinary aggregators, but also large persistent identifiers databases such
as Crossref [72], ORCID, ROR.org, and Datacite [73].

After metadata cleaning, disambiguation, enrichment, and full-text mining processes,
the Graph is made available to all, via dumps and APIs3, for research purposes or the op-
eration of discovery and monitoring services. For example, the OpenAIRE EXPLORE4

and the OpenAIRE CONNECT5 offer discovery gateways over the OpenAIRE Graph
APIs; the OpenAIRE MONITOR6 and the Open Science Observatory7 offer access to
statistics and numbers regarding Open Science trends.

3.2 Graph data model

The OpenAIRE Graph comprises several types of nodes and relationships among them.
Their structure and semantics are illustrated in Figure 3.1.

3.2.1 Node types

The main node types are described in brief as follows:

Results represent the outcome (or products) of research activities and include research
publications, research data, research software, and other kinds of products;

Data Sources are the sources from which the metadata of graph objects are collected;

Organizations correspond to companies or research institutions involved in projects,
responsible for operating data sources or consisting of the affiliations of product
creators;

Projects are research grants awarded by a funding agency, such as a National or inter-
national funder or a foundation;

Authors are authors of research products with an ORCID identifier.
2OpenAIRE Catalogue – http://catalogue.openaire.eu
3OpenAIRE Public APIs – https://develop.openaire.eu
4OpenAIRE EXPLORE, https://explore.openaire.eu
5OpenAIRE CONNECT, https://connect.openaire.eu
6OpenAIRE MONITOR, https://monitor.openaire.eu/
7Open Science Observatory, https://osobservatory.openaire.eu/home

29

http://catalogue.openaire.eu
https://develop.openaire.eu
https://explore.openaire.eu
https://connect.openaire.eu
https://monitor.openaire.eu/
https://osobservatory.openaire.eu/home


i
i

“output” — 2024/4/24 — 20:08 — page 30 — #49 i
i

i
i

i
i

Chapter 3. The motivating scenario

Figure 3.1: OpenAIRE Graph data model.

Results

Results are intended as digital objects, described by metadata, resulting from a scientific
process. They are described by a common set of attributes that includes the OpenAIRE
identifier (i.e., that identifies the node univocally in the OpenAIRE context), the main
title, the authors’ list, the description (i.e., the abstract or in general a brief description
of the resource and the context in which the resource was created), and the persistent
identifiers (i.e., original identifiers for the result such as DOIs). The list of authors is
provided as a set of strings, each representing an author’s name. As explained below,
an edge between the Result and the Author is provided when the author is also a node
in the graph (i.e., it has an ORCID identifier). Results are further categorized into
four sub-types, which inherit all their properties and extend them when needed. Sub-
types include Publications (i.e., the research literature, including articles, presentations,
books, thesis), Dataset (i.e., the research data, including images, sounds, datasets),
Software (i.e., the research software), and Other Research Products (i.e., the research
products that cannot be classified as research literature, data or software, including
lectures, annotations, collections).

Data Sources

Data sources export information packages (e.g., XML records, HTTP responses, RDF
data, JSON) that may contain information on one or more of the graph nodes. Ope-
nAIRE Graph nodes are created from data collected from various data sources, such as
publication repositories, dataset archives, CRIS systems, funder databases, etc.

For example, a metadata record about a project carries information for the creation
of a Project node and its participants (as Organization nodes). It is important, once each

30



i
i

“output” — 2024/4/24 — 20:08 — page 31 — #50 i
i

i
i

i
i

3.2. Graph data model

piece of information is extracted from such packages and inserted into the OpenAIRE
Graph as a node, to keep provenance information relative to the originating data source.
This is to give visibility to the data source, but also to enable the reconstruction of the
very same piece of information if problems arise. The attributes of a Data Source
include the OpenAIRE identifier and the original name of the data source.

Organizations

Organizations include companies, research centers, or institutions involved as project
partners or as responsible for operating data sources. Information about organizations
is collected from funder databases like CORDA, registries of data sources like Open-
DOAR and re3Data, and CRIS systems, as being related to projects or data sources.
The attributes of an Organization include the OpenAIRE identifier and the legal name
of the organization.

Projects

Projects are characterized by a list of funding streams (e.g., FP7, H2020 for the EC),
which identify the strands of funding since the identification of such pieces of informa-
tion is of crucial interest to OpenAIRE. Funding streams can be nested to form a tree of
sub-funding streams. The attributes of a Project include the OpenAIRE identifier, the
title and the funding information.

Authors

Authors are characterized by an ORCID identifier, a name, a surname, and a full name.
It should be noticed that authors appear in the graph both as strings, hence properties
of Results (e.g., the author name of an article), and graph nodes, hence author entities
with ORCID identifiers. In many cases, metadata records of Results feature hybrid
scenarios, with part of their authors provided as nodes and part as strings. This is
because bibliographic metadata is often provided with partial information about the
authors.

Table 3.1 presents statistics on the number of node types in the latest version of
the OpenAIRE Graph. Such information is kept up to date and made available in the
OpenAIRE Graph website8.

Node type Node subtype Number of nodes

Result

Publication 175M
Dataset 60M

Software 364K
Other 21M

Data Source - 130K
Organization - 312K

Project - 3.5M
Author - 2.1B

Table 3.1: Approximate statistics for node types in the OpenAIRE Graph.

8OpenAIRE Graph statistics – https://graph.openaire.eu/statistics

31

https://graph.openaire.eu/statistics


i
i

“output” — 2024/4/24 — 20:08 — page 32 — #51 i
i

i
i

i
i

Chapter 3. The motivating scenario

3.2.2 Edge types

The semantic relationships between nodes in the graph, are modeled by several edge
types, described in brief as follows:

Project to Result edges indicate that a Result has been co-funded by a given research
grant or Project and that a Project co-funded a list of Results (i.e., produces/isPro-
ducedBy relationships);

Project to Organization edges indicate the Organizations participating in a Project
and the list of Projects an Organization has participated in (i.e., hasParticipant/is-
Participant relationships);

Result to Result edges are the most common edges in the graph, describing semantic
relationships such as citations, similarity, versioning, and supplementary material;

Result to Author edges link a Result to its authors when these provide an ORCID
identifier;

Result to Organization edges relate Results and Organizations when an author of the
Result is affiliated to the Organization (i.e., hasAuthorInstitution/isAuthorInstitu-
tionOf relationships);

Result to Data Source edges indicate the provenance of the metadata record of the
Result (i.e., isProvidedBy/provides relationships);

Data Source to Organization edges indicate when a data source is operated by an
Organization (i.e., isProvidedBy/provides relationships).

Table 3.2 presents statistics on the number of edge types in the latest version of the
OpenAIRE Graph.

Edge type Edge subtype Number of edges

Result edges
Publication to other nodes 150M

Dataset to other nodes 150M
Software to other nodes 413K

Affiliation

Publication 153M
Dataset 1.2M

Software 15K
Other 5M

Table 3.2: Approximate statistics for edge types in the OpenAIRE Graph.

3.3 Graph provision workflow

The OpenAIRE Graph is the result of collecting and aggregating metadata records from
more than 100, 000 scholarly communication sources from all over the world, includ-
ing open-access institutional repositories, data archives, journals, and entity registries
for people, data sources, organizations, projects, and funders. Dedicated harmoniza-
tion methods are applied to the records, to generate a uniform SKG, which is further
enriched by inferring metadata properties and links via full-text mining of the PDFs of
22Mi (and growing) Open Access publications. Enrichments complete the resulting

32



i
i

“output” — 2024/4/24 — 20:08 — page 33 — #52 i
i

i
i

i
i

3.3. Graph provision workflow

SKG with links between results and projects, author affiliations, subject classification,
and links to entries of domain-specific scientific databases (e.g., ProtDB). Finally, the
resulting Graph is disambiguated, to group information about equivalent Results, Or-
ganizations, and Data Sources. Equivalent nodes for such entities are identified and
merged to obtain an open, trusted, public SKG enabling unprecedented explorations
and analysis of the scholarly communication landscape.

3.3.1 Aggregation

The OpenAIRE Graph is materialized as an open knowledge graph where products of
the research life-cycle are semantically linked to each other, carry information about
their access rights (i.e., if they are Open Access, Restricted, Embargoed, or Closed),
and are associated with the sources in which they are hosted. This is done via a set
of autonomic, orchestrated workflows operating in a regimen of continuous data ag-
gregation and integration [74, 75]. Such workflows harvest “raw” metadata records via
standard protocols (e.g., OAI-PMH, REST APIs, FTP) from thousands of data sources
and harmonize them to converge to the OpenAIRE data model structure and semantics.
Such mapping effort is far from trivial and requires ad-hoc conversions from data source
metadata exchange formats to the OpenAIRE Graph model. Such process is facilitated
by the fact that many of the data sources comply with interoperability standards defined
by the OpenAIRE Graph, called OpenAIRE Guidelines for Content Providerds9. On
the other hand, dedicated workflows must be defined for key data sources such as Cross-
ref and DataCite registries, the ORCID registry of scientists, the ROR.org registry for
research organizations, the DOAJ, OpenDOAR, re3data, and FAIRSharing registries
for data sources.

The initial aggregation graph, shown in Figure 3.2, ensures that nodes obey common
structure and vocabularies. However, this process cannot ensure the completeness and
correctness of the data, whose accuracy depends on the data acquisition at the local
data source sites. For example, the OpenAIRE Graph collects 450 million records, of
which the 30% does not provide an abstract for products and the 45% does not include
an ORCID identifier.

3.3.2 Enrichment

The OpenAIRE Graph exploits information inference to compensate for the lack or
incompleteness of information in the “aggregation graph”. In particular, two kinds of
inference processes are applied: via full-text and metadata.

In the first case, the aggregation workflows collect, when the license and the proper
URLs are provided, the full texts of the publications, to apply text mining algorithms.
Such algorithms are intended to extract properties and relationships and inject them into
the graph. The PDF Aggregation Service, based on the publications’ URLs found in
the metadata, crawls the web to locate and download the full texts of the Open Access
publications; as of today, more than 22M PDFs/XMLs are downloaded and their full-
texts extracted and provided as input for mining.

Several mining modules are applied:

9OpenAIRE Guidelines – http://guidelines.openaire.eu

33

http://guidelines.openaire.eu


i
i

“output” — 2024/4/24 — 20:08 — page 34 — #53 i
i

i
i

i
i

Chapter 3. The motivating scenario

Figure 3.2: The OpenAIRE Graph aggregation process.

• the Affiliation matching module has the goal of matching affiliations (Result-
Organization edges) extracted from the PDF and XML documents with organi-
zations from the OpenAIRE organization database;

• the Citation matching module has the goal of discovering links between docu-
ments to create citation edges;

• the Document classification module has the goal of assigning a scientific text to
one or more predefined topics from known vocabularies, such as Sustainable De-
velopment Goals, Fields of Science, Mesh classification, etc.;

• the Documents similarity module has the goal of finding similar documents among
the ones available in the OpenAIRE Graph and produces similarity edges;

• the Acknowledgement extraction module has the goal of scanning the plain text of
the document to extract grant identifiers of funders to link a research product to a
research community;

• the Metadata extraction module aims to extract metadata information such as ab-
stracts, titles, keywords, etc..

In the second case of inference, the OpenAIRE Graph is enriched by deduction and
propagation processes.

34



i
i

“output” — 2024/4/24 — 20:08 — page 35 — #54 i
i

i
i

i
i

3.3. Graph provision workflow

The deduction process (also known as “bulk tagging”) enriches each record with
new information that can be derived from the existing property values. For example,
the deduction can be used to assign a Result to a given disciplinary vocabulary term
starting from existing keywords or other subjects.

The propagation process is instead used to migrate information from one node to
another node, thanks to the existence of an edge whose semantics strongly relate to
the two nodes. For example, when a node A isSupplementOf a node B, the semantics
claims that A comes as a supplementary product of B; e.g., research data or software
that comes as a supplement of a scientific article. In such a case, the semantics allows,
if B is funded by a given project, to propagate the link to A, adding an edge producedBy
between A and the project.

3.3.3 Disambiguation

The graph resulting from the aggregation and enrichment phases still suffers from a
high duplication rate. Indeed, the OpenAIRE Graph is populated by aggregating meta-
data records from distinct data sources whose content typically overlaps. For exam-
ple, the collection of article metadata records from the publisher’ archives (e.g., Fron-
tiers, Elsevier, Copernicus) and from pre-print platforms (e.g., ArXiv.org, UKPubMed,
BioarXiv.org). To support the monitoring of science, the OpenAIRE Graph implements
record deduplication and merge strategies so that scientific production can be consis-
tently statistically represented. Such strategies reflect the following intuition behind
OpenAIRE monitoring: “Two metadata records are equivalent when they describe the
same research product, they feature compatible resource types, have the same title, the
same authors, or the same PID”. Finally, groups of duplicates can be whitelisted or
blacklisted, to manually refine the quality of this strategy.

It should be noted that publication dates do not make a difference, as different ver-
sions of the same product can be published at different times; e.g., the pre-print and
a published version of a scientific article, which should be counted as one object; ab-
stracts, subjects, and other possible related fields, are not used to strengthen similarity,
due to their heterogeneity or absence across different data sources. Moreover, when a
product is indicated as a new version of the other (same title, same abstract, etc.), the
presence of different authors will not bring them into the same group to avoid the unfair
distribution of scientific rewards.

Groups of duplicates are finally merged into a new record that embeds all properties
of the merged records and carries provenance information about the data sources and
the relative “instances” (i.e., manifestations of the products, together with their resource
type, access rights, and publishing date). The disambiguation of the various nodes in
the graph is already implemented employing the FDup framework, whose description
is left to Chapter 4.

It is important to mention that edges involved in nodes identified as duplicated are
eventually marked as virtually deleted and used as a template for creating a new re-
lation pointing to the new representative record, as shown in Figure 3.3. Nodes and
relationships marked as virtually deleted are not exported via APIs or data dumps.

35



i
i

“output” — 2024/4/24 — 20:08 — page 36 — #55 i
i

i
i

i
i

Chapter 3. The motivating scenario

Figure 3.3: The re-distribution of edges in the OpenAIRE Graph.

3.3.4 Indexing

The last step of the graph provision workflow is to finalize the graph by ensuring an
overall minimal quality degree. Bibliographic records that do not meet the minimal
completeness and consistency requirements for being part of the OpenAIRE Graph are
purged during this phase. Such requirements can vary over time and currently include
the mandatory presence of title, date, and authors for Result nodes.

The resulting final version of the OpenAIRE Graph is indexed on a high-throughput
Solr server whose APIs are used by the OpenAIRE portals EXPLORE10 and CON-
NECT11. The APIs are also heavily used by several third-party applications and orga-
nizations, such as:

• The OpenAIRE Graph APIs and Portals offer to the EOSC (European Open Sci-
ence Cloud) an Open Science Resource Catalogue, keeping an up-to-date map
of all research results (publications, datasets, software), services, organizations,
projects, funders in Europe and beyond.

• EC participant portal (Sygma - System for Grant Management) uses the Ope-
nAIRE API in the “Continuous Reporting” section. Sygma automatically fetches
from the OpenAIRE Search API the list of publications and datasets in the Ope-
nAIRE Graph that are linked to the project. The user can select the research prod-
ucts from the list and easily compile the continuous reporting data of the project.

• ScholExplorer is used by different players of the scholarly communication ecosys-
tem. For example, Elsevier uses its API to make the links between publications
and datasets automatically appear on ScienceDirect.

10OpenAIRE EXPLORE – http://explore.openaire.eu
11OpenAIRE CONNECT – http://connect.openaire.eu

36

http://explore.openaire.eu
http://connect.openaire.eu


i
i

“output” — 2024/4/24 — 20:08 — page 37 — #56 i
i

i
i

i
i

3.3. Graph provision workflow

• DSpace & EPrints repositories can install the OpenAIRE plugin to expose meta-
data records in compliance with OpenAIRE via their OAI-PMH endpoint and of-
fer researchers the possibility to link their depositions to the funding project, by
selecting it from the list of projects provided by OpenAIRE.

The OpenAIRE Graph is also processed by a pipeline for extracting the statistics and
producing the charts for funders, research initiatives, research infrastructures, and pol-
icymakers available via the OpenAIRE MONITOR12. Based on the information avail-
able on the graph, OpenAIRE MONITOR provides a set of indicators for monitoring
the funding and research impact and the uptake of Open Science publishing practices,
such as FAIRness indicators, Open Access publishing of publications and datasets,
availability of interlinks between research products, availability of post-print versions
in institutional or thematic Open Access repositories, etc.

3.3.5 Evaluation

The operations leading to the creation of the OpenAIRE Graph are evaluated by em-
ploying persistent identifiers. Those are used to establish whether the disambiguation
process produced a correct result and to verify the duplication of the repositories from
which the data to form the OpenAIRE Graph has been collected.

Evaluation of the repositories duplication

Scholarly repositories are pivotal to Open Science, as they serve as the main source
for accessing research products and ensure their preservation. Such repositories are
collected from data registries, which are authoritative sources including information
about them. However, the existence of multiple registries may lead to the duplication of
scholarly repositories, resulting in an undesired adversary for the disambiguation task.
Therefore, evaluating the overlapping of the repositories inside the registries becomes
crucial to lighten the disambiguation complexity. This task has been studied as a lateral
contribution in this thesis [76], and it focuses on the investigation of four prominent
scholarly registries: FAIRsharing13, re3data14, OpenDOAR15, and ROAR16.

The methodology used for this aim incorporates registry claims, such as “same-as”
equivalences among repository profiles registered across different registries, to gener-
ate initial duplicate sets. These sets are subsequently expanded by integrating them
with the groups obtained via the FDup framework to enrich the information to be used
for the understanding of the repository landscape. For a visual representation of the
methodology, refer to Figure 3.4.

Evaluation of the publication disambiguation

Similarly, evaluating the accuracy of the entity disambiguation becomes crucial to un-
derstanding the reliability of the result produced by the disambiguation algorithm. This
task has been studied as a lateral contribution of this thesis as well [77], and it focuses

12OpenAIRE MONITOR – http://monitor.openaire.eu
13FAIRsharing – https://fairsharing.org
14re3data registry – https://re3data.org
15OpenDOAR registry – https://v2.sherpa.ac.uk/opendoar
16ROAR registry – http://roar.eprints.org/information.html

37

http://monitor.openaire.eu
https://fairsharing.org
https://re3data.org
https://v2.sherpa.ac.uk/opendoar
http://roar.eprints.org/information.html


i
i

“output” — 2024/4/24 — 20:08 — page 38 — #57 i
i

i
i

i
i

Chapter 3. The motivating scenario

Figure 3.4: Overview of the methodology. Firstly, the claims provided by the registries are conflated to
derive duplicate sets; then, the identified duplicate sets are extended with the groups of duplicates
provided by the FDup framework running against the content of the registries. In this example, FDup
discovers an equivalence between repository profiles A and A∗, and this triggers a merger between
the two duplicate sets represented above.

on the evaluation of the research publication disambiguation. In this context, exper-
iments can be divided into two groups: first, the comparison of the disambiguation
results to sets of known DOI aliases, and then the investigation of equivalent objects
that do not correspond to known aliases.

Quantifying disambiguation false negatives using DOI aliases To perform a preliminary anal-
ysis on the quality of the disambiguation result, information from doi.org’s API regard-
ing DOI aliases has been used. Reporting aliases is the default mechanism for regis-
trants of DOIs to report duplicate DOIs. Since not all duplicates are reported by the
respective registrants, DOI aliases cannot be used to quantify the false positives that
DOI disambiguation algorithms produce. However, any DOIs that have been reported
as aliases are guaranteed to refer to equivalent objects, hence they can be used as a
ground truth to quantify false negatives and this is how we leveraged them in this ex-
periment. Since gathering the aliases for all distinct DOIs is a time-consuming process
(especially, if the implemented process makes responsible usage of the API respecting
request limits), the analysis has been restricted only to those DOIs that are reported to
have at least one equivalent DOI according to the disambiguation strategy used for the
OpenAIRE Graph. The snapshot of the graph (produced on October 26th, 2021) con-
tained 112, 216, 333 distinct disambiguated entities in total, 5, 885, 861 of which con-
tained at least two equivalent DOIs. Using doi.org’s API, aliases of respective distinct
DOIs have been gathered (14, 427, 982 in total) and used to generate the corresponding
groups of DOI aliases. Subsequently, these sets of aliases have been compared with

38



i
i

“output” — 2024/4/24 — 20:08 — page 39 — #58 i
i

i
i

i
i

3.3. Graph provision workflow

the sets of equivalent entities provided by the disambiguation algorithm. During this
comparison, all unresolvable DOIs have been ignored (i.e., the analysis was performed
using the rest). A summarization of the results of this phase is depicted in Table 3.3.

Types of duplicated entities Number of entities
Completely matching sets of aliases (true positives) 32,476

Involving unreported aliases (false negatives) 1,100
Not compliant to aliases (false positives or missing aliases) 5,852,174

Containing only unresolvable DOIs 111

Table 3.3: Statistics for the various types of disambiguated entities.

In particular, it may be worth noticing that a lot of groups of duplicates found by the
FDup framework (32, 476) were completely compliant with the list of known aliases
(i.e., confirmed true positives). Also, 1, 100 of the entries could be considered false
negatives since they did not contain even one known alias. However, the vast major-
ity of the groups of duplicates contained groups of known aliases (hence, implying
missing aliases or false positives). Finally, only a negligible number of groups of du-
plicates contained only unresolvable DOIs. After this analysis, it is evident that the
OpenAIRE disambiguation produced a very small number of confirmed false negatives
(they account for less than 0.02% of the examined entities). In addition, it seems that
the algorithm identifies many equivalent DOIs that are not reported as aliases in doi.org.

Investigating reported equivalent objects with no DOI aliases The second step of the analysis
consists of the determination of whether the result can be mainly attributed to a large
number of false positives, or if a huge number of equivalent DOIs are not reported as
aliases. The main objective was to get insights into the scale of false positives in the
disambiguation result. The only way to fulfill this objective is to have expert judgments
on the sets of equivalent objects that the deduplication algorithm produces. The experts
use DOI-related metadata and the corresponding content (e.g., the manuscript in case
of publication) and provide judgments regarding the correctness of the disambiguation
result (i.e., if the reported DOIs correspond to equivalent objects or not). To this aim,
the respective tasks have been assigned to 4 experts (computer engineers, two of them
PhDs). However, since the manual inspection is time-consuming and the data to be
examined is immense (more than 5.8M entries), a sample of 300 randomly selected
entries per expert has been assigned, resulting in a dataset of 1, 200 entries. Each expert
was given the task of assigning each set of equivalent DOIs with one of 8 predetermined
class labels (Table 3.4).

Each of the classes has particular semantics, explained in the “Interpretation” col-
umn. These semantics determine whether the objects in the respective group are equiv-
alent or not (“Judgement” column). Figure 3.5 illustrates the proportion of the groups
of duplicates that have been annotated with each of the classes, and summarises the pro-
portion of true and false positives; due to the existence of the “Ambiguous” class, there
were also a lot of entries for which it was not possible to provide a judgment (denoted
by “N/A”). It is evident that the majority of the groups of duplicates (64.9%) produced
by the algorithm are correct; most of them contain different versions of the same object
and extensions of older works. The false positives, on the other hand, correspond to a
significantly smaller percentage (23%).

39



i
i

“output” — 2024/4/24 — 20:08 — page 40 — #59 i
i

i
i

i
i

Chapter 3. The motivating scenario

Name Interpretation Judgment
Ambiguous At least one DOI is invalid N/A

(no metadata are available)
Deleted duplicates DOIs once pointing to the same research object, True

currently deleted
Multi-published Publication published in more than one location True

(full or abstract)
Versions Multiple versions of the same research object True

(e.g., pre-prints, post-prints)
Erroneous Unrelated set of objects False

Paper-extensions Extended version of a conference paper in a journal False
Part-of-a-group Multiple parts of the same research object False

(e.g., photos of the same collection)
Supplementary Publication and its supplementary material False

(including errata)

Table 3.4: Statistics for the various types of groups of duplicates.

Figure 3.5: Expert evaluation results.

3.4 AND in the OpenAIRE Graph

AND in the OpenAIRE Graph is applied by exploiting the presence of ORCID identi-
fiers. This means that whenever a Result record provides the ORCID associated with
one of its authors, the OpenAIRE Graph will feature the corresponding Author node
and Result node with an hasAuthor edge between the two. This policy ensures that
all records that refer to the same ORCID identifier will be linked with an edge to the
same Author node independently from the original Data Source. This configuration of
the data provides a “safe” AND because it is sufficient to use the edges between the
Author and the Result to immediately derive the list of research products written by the
same author. In case an Author has multiple ORCIDs because they are associated to its
instance in different institutions, the OpenAIRE Graph will feature only one ORCID to
discourage duplication. Having said that, multiple ORCIDs are not popular in the data
collected in the graph. It is important to mention that the ORCID-based disambiguation
also guarantees a precision close to 100% because ORCID can be considered to be a
trusted source of information with an extremely low error rate, however dependent on
the correctness of information inserted in the ORCID profile. On the other hand, this
way of disambiguating authors suffers from a low recall because it is not guaranteed
that ORCID identifiers are provided for each Author node in the Graph.

40



i
i

“output” — 2024/4/24 — 20:08 — page 41 — #60 i
i

i
i

i
i

3.4. AND in the OpenAIRE Graph

As things stand in the OpenAIRE Graph approach, no methods are implemented
to identify duplicate authors across author names (i.e., extracted from the Results) and
authors with ORCID identifiers. In the state-of-the-art, author names are not fully
represented in the Graph with a unique node unless the authors keep an extremely
clean and up-to-date ORCID profile; in this case, since the OpenAIRE Graph includes
the whole ORCID dataset of Authors and related Results, the disambiguation of Results
will deliver a consistent and potentially richer Author record in the Graph because all
the duplicate Results can inherit the hasAuthor edges of a richer Result.

The reason behind the adoption of an ORCID-based approach is twofold. On the
one hand, the computational complexity of the problem is brought by the fact that
OpenAIRE Graph counts more than 2B author names. On the other hand, the precision
and recall trade-off is complicated by the lack of author name characterization. As
mentioned above, high precision is guaranteed by the ORCIDs while the recall can
be possibly improved by implementing a way of linking author names with ORCID
authors. The problems in this context are those already described in 1.2.

The outcomes of this thesis are intended to mitigate the challenges of performance,
precision, and recall opening the way to implementing a full AND strategy for the Ope-
nAIRE Graph. In particular, this thesis faces efficiency and effectiveness by providing
the following methods:

Efficiency A general-purpose framework and tool developed to perform and optimize
the whole traditional disambiguation workflow (see Chapter 4);

Effectiveness Two GNN-based architectures leveraging evaluation of disambiguation
outcomes as a tool to fine-tune disambiguation methods (see Chapter 5).

41



i
i

“output” — 2024/4/24 — 20:08 — page 42 — #61 i
i

i
i

i
i

CHAPTER4
Enhancing efficiency via computational

complexity reduction

This chapter presents a novel solution to the enhancement of the efficiency of the dis-
ambiguation process. FDup (Flat Collections Deduper) is a software framework based
on the Apache Spark Framework that was conceived as an enhancement of the GDup
framework (Graph Deduper) [78]. GDup implements a full disambiguation process that
identifies duplicates and delivers strategies to resolve duplication while preserving the
topology of the graph. In particular, efficiency is tackled in the initial stages of disam-
biguation via techniques such as parallel blocking and sliding windows. FDup further
enhances the efficiency of the process by extending the framework with the T-match
function, which pioneers an approach to efficiency optimization focusing on the final
stage of similarity match. The framework can disambiguate node collections regardless
of their structure and can be easily used to disambiguate authors. The resulting soft-
ware modules have been published as a stand-alone software package [79], which is
today in use in the production system of the OpenAIRE infrastructure to disambiguate
the entities of the OpenAIRE Graph1 [80].
The chapter is organized as follows: Section 4.1 formally presents the functional archi-
tecture of FDup; Section 4.2 focuses on the model requirements, the model adopted,
and the technical implementation of the framework providing an example of its usage
in the OpenAIRE infrastructure; Section 4.3 provides experimental results highlighting
how FDup overcomes traditional approaches in terms of time consumption.

1OpenAIRE Graph – http://graph.openaire.eu

42

http://graph.openaire.eu


i
i

“output” — 2024/4/24 — 20:08 — page 43 — #62 i
i

i
i

i
i

4.1. FDup architecture

4.1 FDup architecture

FDup realizes the disambiguation workflow shown in Figure 4.1, which mainly in-
cludes the stages already described in Section 1.2. The workflow is intended to dis-
ambiguate very large collections of nodes (i.e., research publications, research data,
research software, authors), processing them in four sequential stages:

Collection import: to set the node collection ready to process by defining the attributes
to be used by the disambiguation (i.e., the characterization stage);

Candidate identification: to cluster the nodes to be matched into blocks of potentially
equivalent (i.e., the blocking stage);

Duplicates identification: to efficiently identify pairs of equivalent nodes via the T-
match function, which draws “similarity relationships” (i.e., the similarity match
stage);

Duplicates grouping: to identify groups of equivalent nodes via transitive closure,
which creates “groups of duplicates” (i.e., the disambiguation stage).

Figure 4.1: FDup disambiguation workflow.

4.1.1 Collection import

FDup operates over SKGs nodes presented as a set of “flat” records, whose structure
consists of a set of labels (custom name) and values (extracted by the original record).
Therefore, the first step of the workflow consists of mapping the target collection of
records, which may not be flat, onto an FDup flat collection of records with labels
[l1, . . . , lk], which will be used as the template for the configuration of the disambigua-
tion stages.

To better highlight the effects of the framework, experiments have been conducted
over a collection of bibliographic records for research publications as provided by the
OpenAIRE Graph, featuring the following flat structure:

• PIDs: a sequence of values denoting persistent identifiers of the records, i.e.,
unique identifiers; each record may have more than one PID, released by different
agencies at the moment of depositing the article, such as DOIs in Crossref, ArXiv
identifiers, PubMed identifiers, etc.;

• title: the title of the article;

• abstract: the abstract of the article;

• authors: the list of authors and contributors of the article, provided as a list of
strings typically following different formats, e.g., “J. Smith”, “Smith, J.”, “Smith,
John H.”, “J.H. Smith”;

43



i
i

“output” — 2024/4/24 — 20:08 — page 44 — #63 i
i

i
i

i
i

Chapter 4. Enhancing efficiency via computational complexity reduction

• date: the date of publication of the article, harmonized to a common format dd/m-
m/yyyy;

• venue: the venue of publication, such as the conference or a journal, typically
comes as a string of free text.

4.1.2 Candidate identification

The ideal similarity-matching process, where every pair of records is confronted to
yield an equivalence score, features quadratic complexity and known performance is-
sues. As mentioned in Chapter 1, two common solutions are the techniques of blocking
and sliding windows. Both methods apply heuristics to identify, before record match-
ing, a selection of record pairs in the collection that are candidates for equivalence.

Blocking functions (referred to as clustering functions in the following) are of the
form clusteringKey([l1, . . . , lk]) and are applied to all records in the initial collection
to produce one or more “keys” per record. Functions should be smart enough to ensure
that potentially equivalent records likely return the same key. Records are then grouped
by key into “blocks”, and pair-wise comparisons are executed within such blocks. For
the scientific publication records above, a reasonable clustering function generates n-
grams (fragments of n characters of a string) from the title words or one that generates
the PIDs (especially the DOI) when these are available.

Sliding window methods introduce a further optimization of the number of compar-
isons. Records in one block are sorted by a key (typically obtained from a value of the
record’s field) (orderF ield) to obtain an array that is visited from the first element to
the last. At every iteration, the pivot record is matched with the subsequent ones in a
limited K interval (window). The key used for the sorting should be generated so that
similar records are likely closer in the ordering, possibly within the window range K.

FDup offers the possibility to easily configure every single stage previously de-
scribed via a single configuration profile, including a pre-defined and extendable set
of clusteringKey functions, the orderF ield, and the length K of the sliding window.

4.1.3 Duplicate identification: T-match function

Duplicate identification consists of a similarity function that matches the equivalence
conditions between two records in a block. As such, it is defined by matching the values
of the records fields so that domain-specific conditions of equivalence are met.

For research publication records, OpenAIRE defines two records as equivalent when
they describe the same scientific work, hence one object to measure impact. For ex-
ample, different depositions of the same article in distinct repositories (e.g., ArXiv,
Zenodo) are to be considered equivalent, i.e., cannot be counted as two independent
scientific results. For the same reason, two different versions of a document have to
be considered different, as they denote different efforts. For example, version 1 and
version 2 of a project deliverable.

In real case scenarios, like the one of OpenAIRE, where metadata is harvested from
highly heterogeneous data sources, many of the field values in the records are not and
cannot be sufficiently harmonized to the degree of uniformity required to make them
reliable in the process of equivalence check. This is the case for abstract, for which
establishing a distance and weight for it is not trivial, and venue whose values can

44



i
i

“output” — 2024/4/24 — 20:08 — page 45 — #64 i
i

i
i

i
i

4.1. FDup architecture

hardly be harmonized into comparable values. Moreover, the date field cannot be used
as a discriminator, as different versions of the article, published at different times, may
indeed be regarded as equivalent.

Record equivalence is assessed by relying on three fields, PID, title, and authors,
when matching the following considerations:

• Equivalence by identity: when two records have one PID in common, they are
equivalent;

• Equivalence by value: when PIDs are not matching, the records may still be
equivalent (e.g., deposited in different repositories), hence a field value equiva-
lence matching is required.

While equivalence by identity is rather straightforward, equivalence by value re-
quires context-driven rules, which in the case of publication match in OpenAIRE are:
(i) a rather high title equivalence confidence of 99%, as indeed typos may occur; (ii)
ensuring that the 0, 01% of difference in the titles is not due to a number or a Ro-
man number denoting different versions of the publication; and, (iii) making sure the
records have corresponding authors, by checking their names.

The majority of disambiguation frameworks in the literature encode record similar-
ity match conditions via a similarity function of the form:

f([v1, . . . , vk], [v
′
1, . . . , v

′
k]) =

∑
i:0...k

fi(vi, v
′
i)× wi

where the vi’s are the values of field li, fi(vi, v′i) are comparators, functions measur-
ing the “distance” of vi and v′i for the field li, and wi’s are the weights assigned to the
comparators fi’s, such that

∑
i:0...k wi = 1.

As a result, f returns a value in a given range, e.g., [0 . . . 1], scoring the “distance”
between two records. The records are regarded as equivalent if the distance measure is
greater than a given threshold.

For the example above, the similarity function PublicationWeightedMatch, cre-
ated using the GDup framework in OpenAIRE, encodes both equivalence by identity
and by value as follows:

PublicationWeightedMatch(r, r′) = jsonListMatch(r.PIDs, r′.P IDs)× 0.5+

TitleV ersionMatch(r.title, r′.title)× 0.1+

AuthorsMatch(r.authors, r′.authors)× 0.2+

LevenshteinT itle(r.title, r′.title)× 0.2

where jsonListMatch, applied to the field PID, returns 1 if there is at least one
PID in common in the two records; TitleV ersionMatch, applied to the titles, returns
1 if the two titles contain identical numbers or Roman numbers; LevenshteinT itle re-
turns 1 if the two (normalized) titles have a Levenshtein distance greater than 90%, and
AuthorsMatch performs a “smart” matching of two lists of author name strings and
returns 1 if they are 90% similar. The threshold has been computed by manually vali-
dating a set of equivalent records, hence measuring the minimal distance value between
the authors’ lists of two equivalent records. All comparators return 0 if their condition

45



i
i

“output” — 2024/4/24 — 20:08 — page 46 — #65 i
i

i
i

i
i

Chapter 4. Enhancing efficiency via computational complexity reduction

is not met. The minimal threshold for two records to be equivalent is 0.5, the threshold
that can be reached by jsonListMatch alone or by combining the positive results of
the three functions TitleV ersionMatch, AuthorsMatch, and LevenshteinT itle.

All fi’s in PublicationWeightedMatch are computed at the same time and aver-
agely require a constant execution time, despite the successful or unsuccessful match
that those may feature. Motivated by such observation, FDup introduces a similarity
match function T-match that returns an equivalence match exploiting a decision tree,
nesting the comparator functions. Each tree node verifies a condition, which can be the
result of combining one or more comparators, and introduces a positive (MATCH) or
negative (NO_MATCH) exit strategy. If the exit strategy is not fired, T-match heads to
the next node. An early exit skips the full traversal of the tree and can turn the result
into a MATCH, i.e., a simRel relationship between the two records is drawn, or into a
NO_MATCH, i.e., no similarity relationship is drawn.

A T-match decision is formed by a tree of named nodes with outgoing edges. The
core elements of a T-match node are the aggregation function, the list of comparators,
and a threshold value. The aggregation function collects the output of the comparators
and delivers an “aggregated” result based on one of the following functions: maximum,
minimum, average, and weighted mean. Each comparator in a node accepts two values
of the input records for a given field and returns a value in the range 0 . . . 1. Notably,
different comparators in an aggregation can refer to different fields, giving a high degree
of customization to end-users (in the following, one node will encode a weighted mean
function as the one described above). The execution of a T-match node must end with
a decision, which may be:

• positive if the result of the aggregation function is greater than or equal to the
threshold value;

• negative if the result of the aggregation function is lower than the threshold;

• undefined, if one of the comparators cannot be computed (e.g., absence of values);
a node also bears a flag ignoreUndefined that ignores the undefined edge even if
one of the values is absent.

For each decision, the node provides the name of the next node to be executed. By
default, T-match provides two nodes MATCH and NO_MATCH to be used to force a
successful or unsuccessful early exit from the tree.

The example in Figure 4.2 shows the function PublicationTreeMatch, which uses
the same comparators but exploits a T-match decision tree, therefore implementing
early-exit conditions. The individual matches are lined up by introducing MATCH con-
ditions early in the process, i.e., equivalence by identity via PIDMatch, and then or-
dering NO_MATCH conditions by ascendant execution time, i.e., equivalence by value
via versionMatch, titleMatch, and authorsMatch.

Independently of the domain, smart identification of exit strategies becomes a means
for developers to reduce the overall disambiguation time. Moreover, T-match allows
for the definition of multiple paths, hence the simultaneous application of alternative
similarity match strategies in one single function. The experiments described in later
sections will show that when the number of records is very large, T-match significantly
improves the overall performance of the whole disambiguation process.

46



i
i

“output” — 2024/4/24 — 20:08 — page 47 — #66 i
i

i
i

i
i

4.2. Software implementation

Figure 4.2: T-match’s decision tree for PublicationTreeMatch.

4.1.4 Duplicates Grouping

The outcome of the duplicate identification stage is the graph resulting from combining
the input collection of records with the set of simRel relationships between them. The
duplicate grouping stage first finds the sets of equivalent records by calculating the con-
nected components in the graph via the transitive closure of the simRel relationships;
for example, A simRel B and B simRel C identify the group A,B,C. Secondly, it
generates a new graph, where the groups of equivalent records are all linked with a
mergeRel relationship to a representative record, created by the process to identify the
groups; for example, the group of nodes A,B,C will deliver the graph of four nodes
A,B,C,R with the relationships A mergeRel R, B mergeRel R, C mergeRel R.

4.2 Software implementation

FDup’s software2 [79] has three modules, Pace_Core, Dedup_Workflow, and
Configuration file depicted in Figure 4.3. The framework is implemented
in Java and Scala, and grounds on the Apache Spark Framework, an open-source dis-
tributed general-purpose cluster-computing framework. FDup exploits Apache Spark
to define record collection parallel processing strategies that distribute the computation
workload and reduce the execution time of the entire workflow. Scala is instead re-
quired to exploit the out-of-the-box library for the calculation of a “closed mesh” in
GraphX3.

2GitHub project – https://github.com/miconis/fdup
3Apache Spark GraphX – https://spark.apache.org/graphx/

47

https://github.com/miconis/fdup
https://spark.apache.org/graphx/


i
i

“output” — 2024/4/24 — 20:08 — page 48 — #67 i
i

i
i

i
i

Chapter 4. Enhancing efficiency via computational complexity reduction

The three modules implement the following aspects of FDup’s architecture:

• Pace_Core includes the functions implementing the candidate identification
stage (blocking and sliding window) and the T-match function, as well as the
(extensible) libraries of comparators and clustering functions.

• Dedup_Workflow is the code required to build a disambiguation workflow in
the Apache Spark Framework by assembling the functions in Pace_core ac-
cording to the comparators, clustering functions, and parameters specified in the
Configuration file.

• Configuration file sets the parameters to configure the disambiguation
workflow stages, including record data model, blocking and clustering conditions,
and T-match function strategy.

In the following sections, the three modules are described in detail.

Figure 4.3: FDup software modules.

4.2.1 The configuration file

The FDup’s configuration file is expressed in JSON format and consists of two differ-
ent sections: pace, which defines the T-match function parameters; and workflow,
which defines the disambiguation workflow parameters.

Pace section

The section specifies the configuration for the pair-wise comparisons, including the
data model, the record pairs’ blacklist, the synonyms, and the decision tree of the T-
match function.

FDup operates on a collection of flat records with the same structure. As the original
collection of JSON records may not be flat, FDup introduces the mechanism of the data
model. The data model subsection of the configuration drives the transformation of the
original JSON records onto a flat record with labels and values as depicted in Figure 4.4.
The mapping is defined employing JSON paths, whose result is implicitly assigned to a
given field of the FDup’s record data model. Additional parameters such as length and
size can be used to limit the value to take from the original JSON entity.

The clustering subsection includes the list of clustering functions (more than one
can be used) to be used for the key extraction. Each clustering function specifies the
list of record fields to which the function should be applied. The user can also specify

48



i
i

“output” — 2024/4/24 — 20:08 — page 49 — #68 i
i

i
i

i
i

4.2. Software implementation

Figure 4.4: The transformation of an original JSON record into a flat record.

parameters for the clustering function such as key length, maximum number of keys to
extract, and other configurations. The structure of a clustering function is depicted in
Section 4.2.1.

The blacklist is a list of field values to be excluded from the computation. The mech-
anism is useful to exclude false positives from subsequent rounds of disambiguation. It
is expressed as a map in which the key is the field name while the value is the list of
strings to exclude. When the process is running, entities with one of those values for
the specified field will be ruled out of the comparisons.

The synonyms are lists of equivalent terms. They are typically used to encode se-
mantic equivalence across different vocabularies (e.g., replacing terms with a common
code). For example, synonyms are exploited to address translations of terms across
different languages and therefore capture their equivalence.

The decisionTree section sets the configuration of T-match’s pair-wise comparison
algorithm. T-match’s tree can be shaped by creating different nodes, each composed of
one or more comparators. Each comparator acts on a pair of records and over a given
pair of fields, to return a number that reflects the similarity of two fields. The results of
the comparators in one node are then aggregated to return an overall similarity score.
The user can define the aggregation function to be used (e.g., weighted mean, average,
maximum, minimum). The structure of a comparator and a tree node are depicted in
Section 4.2.1 and Section 4.2.1.

49



i
i

“output” — 2024/4/24 — 20:08 — page 50 — #69 i
i

i
i

i
i

Chapter 4. Enhancing efficiency via computational complexity reduction

Workflow section

The section specifies parameters for the whole disambiguation workflow. Such param-
eters are groupMaxSize (i.e., the limit for the block size), slidingWindowSize (i.e.,
the size of the sliding window), orderF ield (i.e., the field to be used when sorting the
sliding window in a block), and maxIterations (i.e., the maximum number of itera-
tions when the connected components are computed via the close mesh operation).

Field Description
name the name of the clustering function
fields the list of fields to which the clustering function should be ap-

plied
params the list of parameters to configure the clustering function. Ev-

ery parameter has a name and can assume a number as a value.
Those parameters are accessible from the clustering function.

Table 4.1: Definition of a clustering function.

Field Description
field the field to compare (it must be defined in the model)

comparator the comparator to use for the comparison
weight the weight of the score for the comparator. The value is used

when the comparator’s scores are aggregated to give weight to
the comparator.

countIfUndefined boolean value that specifies if the score should be considered in
the aggregation also when the result of the comparison is unde-
fined (i.e., missing field)

params the list of parameters for the comparator. Every parameter has a
name and can assume a string as a value. Those parameters are
accessible from the comparator.

Table 4.2: Definition of a comparator.

4.2.2 Core modules

The BlockProcessor is the Java class that provides functionalities to process a
block (e.g., entity sorting), it implements the sliding window mechanism and it invokes
the T-match Processor to perform the record pair-wise comparisons. The core of
this class is the function that implements queue management when blocks of records
are sorted. Records in a block are queued in alphabetical order (of the orderF ield) and
subsequently, the queue is processed and pair-wise comparisons are computed.

The T-match Processor is the Java class that navigates the decision tree by
calculating the result for every node according to the configuration provided in the
Configuration file. Such class is invoked by the BlockProcessor and in-
vokes each comparator involved in the node to collect and aggregate their scores (as
specified by the user). At the end of the aggregation, a threshold is applied to the final
score, and the next tree node to process is chosen.

For the example in Figure 4.2, when the T-match Processor is computing
the score of the second node of the tree, it firstly calculates the scores for the two

50



i
i

“output” — 2024/4/24 — 20:08 — page 51 — #70 i
i

i
i

i
i

4.2. Software implementation

Field Description
fields the list of comparators contributing to the computation of the

final score
threshold the threshold for the final score of the node. If the final score is

greater than the threshold, the execution will follow the positive
edge; otherwise, it will follow the negative edge. The execution
will follow the undefined edge when the ignoreUndefined is not
enabled and one of the comparators returned an undefined result.

aggregation the aggregation function to use for the computation of the final
score (e.g., maximum, minimum, average, weighted mean, etc.)

positive the name of the next node to compute if the final score of this
node is greater than or equal to the threshold.

negative the name of the next node to compute if the final score of this
node is lower than the threshold.

undefined the name of the next node to compute if the result of the node is
undefined.

ignoreUndefined boolean value that specifies if the undefined tree edge should be
ignored or not.

Table 4.3: Definition of the tree node.

comparators (i.e., titleV ersionMatch and sizeMatch) and then aggregates them with
an AND operation (i.e., both conditions must be verified).

4.2.3 Libraries

As stated before, FDup offers a set of predefined and extendable libraries of compara-
tors and clustering functions. They are implemented as Java classes inside the frame-
work package.

The user can customize the framework by implementing new components depending
on its needs. To implement a new comparator, it is sufficient to implement a Java class
that extends the proper interface defined in the package.

Comparators

In the context of the pair-wise comparison, the comparator specifies the logic that com-
putes the score measuring the similarity degree of two fields of the pair, one for each
record. Such a score is then aggregated with others in the same tree node to compute
the overall similarity score of the node.

Comparators are Java classes that implement the comparison between two fields a
and b of a record, whose Java interface is:

public interface Comparator {
public double compare(Field a, Field b, Config conf);

}

The only method to be implemented within the interface is compare. The method
has three parameters: the two fields to be compared and the Configuration file,
which drives the disambiguation and may include comparators’ parameters. compare
yields a double value in the range 0, . . . , 1 (0 different, 1 identical) indicating the
similarity between the two field values. In particular, it returns 0 when the comparator

51



i
i

“output” — 2024/4/24 — 20:08 — page 52 — #71 i
i

i
i

i
i

Chapter 4. Enhancing efficiency via computational complexity reduction

cannot produce a result (e.g., because one of the two labels is empty or missing) and a
value in the range 0, . . . , 1 otherwise.
Section 4.2.3 describes the set of pre-defined comparators available in FDup today,
which can be extended to address new application needs. In general, such a comparator
relies on the assumption that values are available via record fields. Hence, specific
comparators can for example accept as input fields whose values are the result of smart
pre-processing of the record collection, e.g., machine learning embeddings, full-text
extraction, and topic modeling.

Clustering functions

Clustering functions are Java classes that implement the key extraction from a flat
record. In the context of blocking, the clustering function specifies the logic that ex-
tracts the keys from the value of a certain label, e.g., by computing ngrams, extracting
the domain from an URL, etc. Such keys are subsequently used to group similar records
into the same cluster and therefore limit the number of pair-wise comparisons.

To create a new clustering function, the following Java interface must be imple-
mented:

public interface ClusteringFunction {
public Collection<String> apply(Config c, List<Field> f);
public Map<String, Integer> getParams();

}

The interface provides two methods:

• getParams: to access the list of parameters of the clustering function indicated
in the configuration;

• apply: to produce the list of string keys extracted from the labels (e.g., ngrams).
The config parameter gives the user the possibility to implement comparators
with access to the Configuration file.

FDup offers a list of pre-defined clustering functions, listed in Section 4.2.3. Such a
list can be extended to introduce new approaches and strategies.

4.2.4 Disambiguation workflow

This module implements the workflow depicted in Figure 4.1 by building on the Apache
Spark Framework, which allows defining and configuring applications with high per-
formance for batch and streaming data. The framework can be used with different pro-
gramming languages (Java and Scala in FDup) and offers over 80 high-level operators
to realize parallel applications.

The disambiguation workflow is implemented as an Oozie workflow that incapsu-
lates jobs executing the three steps depicted in Figure 4.3, to compute: (i) the similarity
relations (SparkCreateSimRels), (ii) the merge relations (SparkCreateMergeRels),
and (iii) the groups of duplicates (SparkCreateDedupEntity). More specifically:

• SparkCreateSimRels: uses classes in the Pace_Core module to divide en-
tities into blocks (clusters) and subsequently computes simRels (i.e., similarity
relationships) according to the Configuration file settings for T-match;

52



i
i

“output” — 2024/4/24 — 20:08 — page 53 — #72 i
i

i
i

i
i

4.2. Software implementation

name description
AuthorsMatch performs a "smart" comparison between two lists of authors;

author names are matched by considering a custom similarity
threshold and the result is the percentage of common elements
between the two lists

CityMatch extracts city names from the field and returns the percentage of
names in common; city names are matched by considering trans-
lations in different languages of the most important cities in the
world

ContainsMatch searches for a given string in the input fields; logic operators
(i.e., AND, OR, XOR) can be used

ExactMatch returns 1 if the two fields are exactly the same. There are also
other implementations of exact matches specific for a particu-
lar scope (i.e., DoiExactMatch specific for DOIs, DomainEx-
actMatch specific for URLs, and ExactMatchIgnoreCase to per-
form a case insensitive comparison)

JaroWinkler computes the JaroWinkler similarity function between two
fields; the comparator can be specialized to address spe-
cial cases, e.g., JaroWinklerNormalizedName to compare two
fields after removing city names and keywords, JaroWin-
klerTitle to compare fields containing titles, SortedJaroWin-
kler to a sorted version of the algorithm), Level2JaroWinkler,
Level2JaroWinklerTitle and SortedLevel2JaroWinkler

JsonListMatch returns the common element percentage between two JSON lists
extracted from the input fields

KeywordMatch extracts keywords from string fields and returns the common el-
ement percentage; the keywords are compared by considering
translations in different languages provided via an input CSV;
the list of keywords is customizable and located in the classpath

Levenshtein computes the Levenshtein distance measures between the two
strings in the fields; possible specializations are LevenshteinTi-
tle to compare specific title fields, LevenshteinTitleIgnoreVersion
to compare titles and removing versions, and SubStringLeven-
shtein to compute the distance on substrings of the field, and
Level2Levenshtein

MustBeDifferent returns 1 if the two fields are different
NumbersMatch extracts numbers from the input fields and returns 1 if they are

equal
RomansMatch extracts Roman numbers from the input fields and returns 1 if

they are equal
SizeMatch specific for lists, returns 1 if the size of two lists is equal

StringListMatch returns the percentage of common elements in two lists of strings
TitleVersionMatch specific for title fields, performs a normalization and returns 1 if

numbers in the title are equal
UrlMatcher specific for URLs, performs a normalization of the URLs and

returns 1 if they are equal
YearMatch extracts the year from the input fields and returns 1 if they are

equal

Table 4.4: List of FDup comparators.

• SparkCreateMergeRels: uses GraphX library to process the simRels and close
meshes they form; for each connected component, a master record ID is chosen

53



i
i

“output” — 2024/4/24 — 20:08 — page 54 — #73 i
i

i
i

i
i

Chapter 4. Enhancing efficiency via computational complexity reduction

name description
Acronyms creates a number of acronyms out of the words in the input field

KeywordsClustering creates keys by extracting keywords, out of a customizable list
provided in the classpath, from the field’s value

LowercaseClustering creates keys by lowercasing the field’s value
Ngrams creates ngrams from the field’s value; the number of ngrams and

the length is indicated via parameters
PersonClustering specific for Person names, uses name and surname to create keys

PersonHash creates an hash of the Person name
RandomClusteringFunction creates random keys from the field’s value

SortedNgramPairs creates ngrams from the field’s value and then combines them in
pairs

SpaceTrimmingFieldValue creates keys by trimming spaces in the field’s value
SuffixPrefix creates keys by concatenating suffixes and prefixes from words

in the field’s value
UrlClustering creates keys for a URL field by extracting the domain

WordsStatsSuffixPrefixChain creates keys containing concatenated statistics of the field, i.e.,
number of words, number of letters, and a chain of suffixes and
prefixes of the words

Table 4.5: List of FDup clustering functions.

and mergeRels relationships are drawn between the master record and the con-
nected records;

• SparkCreateDedupEntity: uses mergeRels to group connected records and cre-
ate representative objects (i.e., groups of duplicates).

4.3 Efficiency evaluation

This section describes the methods employed to assess the efficiency of FDup when
T-match can implement exit strategies, compared to a traditional approach where this
technique is not exploited. The evaluation has been carried out using the metadata
record collections used to populate the OpenAIRE Graph, where FDup is used as the
core disambiguation component.

The evaluation aims to assess the efficiency, not the effectiveness of the disambigua-
tion results, which instead depends on the clustering functions, sliding windows, com-
parators, similarity thresholds, quality of metadata, and ultimately AI techniques (see
Chapter 5). Therefore, the analysis is aimed to verify if FDup can obtain the same
disambiguation result by taking less execution time.

4.3.1 Experiment settings and methodology

The experiment aims to show the time gain yielded by the proper configuration of
T-match in a disambiguation workflow for the publication similarity match example
presented in Figure 4.2. To this aim, the experiment sets two disambiguation workflows
with identical blocking and sliding window settings but distinct T-match configurations.
Both configurations address the similarity criteria but in opposite ways:

• PublicationTreeMatch configuration: a configuration that implements the de-
cision tree illustrated in Figure 4.2, taking advantage of early exits;

54



i
i

“output” — 2024/4/24 — 20:08 — page 55 — #74 i
i

i
i

i
i

4.3. Efficiency evaluation

• PublicationWeightedMatch configuration: a configuration that implements
the similarity match as the GDup (average mean) function described in Section 4.1
by combining all comparators in one node, whose final result is a MATCH or
NO_MATCH decision.

Both configurations are based on the same settings for candidate identification and
duplicate identification. In particular:

• the clustering functions used to extract keys from publication records are the
LowercaseClustering on the DOI (e.g., a record produces a key equal to the
lowercase DOI, the result is a set of clusters composed by publications with the
same DOI) and the SuffixPrefix on the publication title (e.g., a record entitled
"Framework for general-purpose disambiguation" produces the key "orkgen", the
result is a set of clusters composed by publications with potentially equivalent
titles); both functions are described in Section 4.2.3

• the groupMaxSize is set to 200 (empirically) to avoid the creation of big clusters
requiring long execution time;

• the slidingWindowSize to limit the number of comparisons inside a block is set
to 100 (empirically).

Both the PublicationTreeMatch and the PublicationWeightedMatch configura-
tions were performed over the research publication record collection4 published in [81].
The collection contains a set of 10M publications5 represented in JSON records ex-
tracted from the OpenAIRE Graph Dump [80]. In particular, publications have been
selected from the Dump to form a dataset with a real-case duplication ratio of around
30% and a size that is appropriate to prove the substantial performance improvement
yielded by the early exit approach.

I performed two different tests, comparing the performance of the configurations
described above over the 10M and the 230M collections respectively. The tests are
intended to measure the added value of T-match in terms of performance gain, i.e.,
PublicationTreeMatch vs PublicationWeightedMatch execution times.

The tests were performed with a driver memory set to 4 Gb, the number of executors
to 32, the executor cores to 4, and the executor memory to 12 Gb. The Spark dynamic
allocation has been disabled to ensure a fixed amount of executors in the Spark en-
vironment, to avoid aleatory behavior. Moreover, since Spark’s parallelization shows
different execution times, depending on both the distribution of the records in the ex-
ecutors and the cutting operations on the blocking phase, each test has been executed
10 times and the average time has been calculated.

The execution time has been measured in terms of processing time required by
the SparkCreateSimRels, where the pair-wise comparisons are performed, and by
the SparkCreateMergeRels, where groups of duplicates are generated. It was ob-
served that the SparkCreateSimRels is dominant taking 70% of the overall process-
ing time. As a consequence, for the sake of experiment evaluation, it has been: (i)
reported and confronted the time consumed by the SparkCreateSimRels under dif-
ferent tests to showcase the performance gain of T-match, and (ii) reported the results

4OpenAIRE publications sample collection – https://doi.org/10.5281/zenodo.5347803
5OpenAIRE Graph Dump – https://doi.org/10.5281/zenodo.4707307

55

https://doi.org/10.5281/zenodo.5347803
https://doi.org/10.5281/zenodo.4707307


i
i

“output” — 2024/4/24 — 20:08 — page 56 — #75 i
i

i
i

i
i

Chapter 4. Enhancing efficiency via computational complexity reduction

of the SparkCreateMergeRels to ensure that the tests are sound, i.e., yield the same
number of groups.

4.3.2 Experimental results

The results of the tests on the 10M publication records dataset and the 230M full publi-
cation datasets are depicted in Figure 4.5 and Figure 4.6, respectively. The graphs show
the average time consumption of the SparkCreateSimRels phase for each execution
of the test.

Figure 4.5: Disambiguation test on 10M records.

The average time of the SparkCreateSimRels stage in the test performed over
10M records dataset with the PublicationTreeMatch configuration is 750 seconds,
while the PublicationWeightedMatch configuration consumes 1, 536.4 seconds. The
SparkCreateSimRels test on the 230M records dataset features an average time of
9, 637.6 seconds for PublicationTreeMatch and an average time of 15, 224.5 seconds
for PublicationWeightedMatch .
The results reported in Section 4.3.2 show that the two scenarios produced a comparable
but not identical amount of simRels, mergeRels, and connectedComponent. Differences
are due to two main aspects: the size of the datasets, which required us to impose a limit
to the block size to avoid uncontrolled execution time, and the Apache Spark behavior,
which introduces a non-deterministic degree in the way blocks are formed (i.e., keys
are randomly distributed in parallel across blocks). These factors may introduce slight
differences between the blocks resulting from different runs over the same input set.
However, for both input datasets, the differences of simRels and mergeRels across dif-
ferent runs are limited to a range of 1, 000 . . . 2, 000 and are therefore not influential to
the validation of the experiment. The differences between the two configurations are
measured using the relative change, e.g., the variation between the number of relations

56



i
i

“output” — 2024/4/24 — 20:08 — page 57 — #76 i
i

i
i

i
i

4.3. Efficiency evaluation

Figure 4.6: Disambiguation test on 230M records.

size relation type TreeMatch WeightedMatch relative change (%)

10M

simRels 13,865,552 13,866,320 0.000055
mergeRels 5,247,252 5,247,585 0.000063

connectedComponents 1,890,012 1,890,148 0.000071
pairwiseComparisons 255,772,628 255,772,628 0.0

230M

simRels 172,510,072 172,511,772 0.0000098
mergeRels 69,974,139 69,974,155 0.00000022

connectedComponents 25,250,036 25,250,143 0.0000042
pairwiseComparisons 3,650,733,202 3,650,733,202 0.0

Table 4.6: Average number of relations drawn by the disambiguation workflow on 10M and 230M
publication records.

in terms of percentage.
Based on such results, it can be stated that the PublicationTreeMatch configura-

tion overtakes the PublicationWeightedMatch configuration in terms of time con-
sumption, by improving performance up to 50% in the first test and up to 37% in the
second test. The tests show a significant performance improvement, which suggests
that the performance gain does not depend on the size of the dataset but improves with
the number of early exits. It is also important to mention that the time measured in
our tests includes the blocking stage. This may suggest that the key generation process
consumes a notable amount of time, especially when the input dataset is larger.

57



i
i

“output” — 2024/4/24 — 20:08 — page 58 — #77 i
i

i
i

i
i

CHAPTER5
Enhancing effectiveness via Graph Neural

Networks

This chapter presents novel solutions to the enhancement of the effectiveness of the dis-
ambiguation process. Firstly, it describes the research methodology adopted to create
the benchmarks used to train the models and conduct the experiments. Secondly, after
providing some information about theoretical aspects and the employed frameworks
and tools, it presents two Graph Neural Networks architectures for the evaluation of
similarity relationships and groups of duplicates. The former employs the use of four
different GraphSAGE models to compute node embeddings from different homoge-
neous graphs, which are subsequently aggregated via a “metapath attention” mecha-
nism. The latter exploits and combines the concept of Graph Attention and Long Short
Term Memory (LSTM). Both models have been trained in a supervised way and their
overall accuracy resulted in about 90%.

The chapter is organized as follows: Section 5.1 presents the set of frameworks and
tools utilized to conduct the research; Section 5.2 describes the process leading to the
creation of the benchmark used for the training and testing of the architectures and
the validation of the findings, providing information on the creation of author nodes;
Section 5.3 presents the novel GNN architecture for the evaluation of similarity rela-
tionships; Section 5.4 presents the novel GNN architecture for the evaluation of groups
of duplicates.

5.1 Frameworks and Tools

The work in this thesis has been developed by relying on multiple frameworks and
tools. The contributions combine both Java and Python code, relying on tools and
frameworks provided by user-developed libraries. Given the “Big Data” nature of the

58



i
i

“output” — 2024/4/24 — 20:08 — page 59 — #78 i
i

i
i

i
i

5.2. Benchmark preparation

graph used to conduct the experiments (i.e., the OpenAIRE Graph described in Chap-
ter 3), the processing of the data has been conducted using the Hadoop Distributed File
System (HDFS), one of the major components of Apache Hadoop which can handle
large data sets optimizing the memory consumption. HDFS is used to scale a single
Apache Hadoop cluster to thousands of nodes. All the data used for the research in
this thesis is stored in different records organized in JSON lines. The data has been
processed by using the Apache Spark1 framework, an open-source distributed general-
purpose cluster-computing framework that implements and optimizes the MapReduce
paradigm. This framework allows us to shorten the computation time by providing a set
of tools for feature extraction and text processing. To what concerns the GNN models
presented as contributes of this thesis, the training, testing, and validation have been
made by utilizing the Deep Graph Library2 (DGL), a framework agnostic library that
allows the implementation of fast and memory-efficient message passing primitives for
training Graph Neural Network. The library can scale to giant graphs via multi-GPU
acceleration and distributed training infrastructure. The whole library provides a big
set of implemented models and functionality that immediately mirrors the best state-
of-the-art models allowing the users to test every model with no effort and by allow-
ing them to customize the network layers. DGL also empowers a variety of domain-
specific projects including DGL-KE for learning large-scale knowledge graph embed-
dings, DGL-LifeSci for bioinformatics and cheminformatics, and many others. All the
GNN models presented in the thesis have been trained using an NVIDIA GeForce RTX
3060 Laptop GPU. The evaluation of the models and the computations of the statistics
have been made by utilizing the Scikit Learn Library3, an open-source set of simple
and efficient tools for predictive data analysis, accessible to everybody and reusable in
various contexts.

5.2 Benchmark preparation

To perform the training and the testing of the GNN architectures presented in this chap-
ter, and subsequently evaluate the quality of the findings, a graph benchmark has been
created to highlight the main benefits of the architectures. The benchmark aims to re-
produce the real-case scenario of the OpenAIRE Graph (see Chapter 3) and includes
a small portion of it. The idea of using only a subset of the entire OpenAIRE Graph
comes after this intuition: to make the operations feasible, distributed training based
on node sampling is necessary to fit with the size of the input data. This will require a
high computation time which can be shortened by having the training process running
on multiple GPUs. Since GNN makes only neighboring nodes exchange information,
it is meaningful to apply the approach to a small portion of the graph to evaluate its be-
havior when the training set is larger. When the set of publications to be used has been
obtained, their semantic relationships are collected. Subsequently, raw author names
are extracted to form author nodes, and a new heterogeneous sub-graph with publica-
tions and authors have been obtained introducing noised nodes to imitate the real-case
scenario. Finally, a disambiguation using the FDup framework (see Chapter 4) has been
made on the author set to draw similarity relationships and create groups of duplicates.

1Apache Spark – https://spark.apache.org/
2Deep Graph Library – https://www.dgl.ai/
3Scikit-Learn Library – https://scikit-learn.org/

59

https://spark.apache.org/
https://www.dgl.ai/
https://scikit-learn.org/


i
i

“output” — 2024/4/24 — 20:08 — page 60 — #79 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

Figure 5.1 depicts the various stages of the benchmark preparation pipeline.

Figure 5.1: Benchmark preparation pipeline: (i) filtering of publications and their semantic relation-
ships from the OpenAIRE Graph, (ii) extraction of authors with ORCID identifiers from publications,
(iii) creation of a heterogeneous sub-graph with publications and authors adding noise to imitate
real-case scenarios, and (iv) AND using the FDup framework.

5.2.1 Research publications collection

The research publications used to create this benchmark have been filtered from the
OpenAIRE Graph following two criteria. In particular, to be included in the benchmark,
a research publication must:

• be collected from PubMed4, to include records of the same research topic in order
to have a higher chance of duplicate authors;

• include at least one author with an ORCID identifier in their authors’ list.

The choice of such publications is necessary because the ORCID identifier is a good
ally when the purpose is to create a ground truth aimed at defining the correctness of
the AND task.

To build the subgraph, it is important to collect also semantic information. Those
are in the form of relationships to be filtered from the OpenAIRE Graph as well. In par-
ticular, all the relationships in the graph involving one of the research publications col-
lected by the previous filtering have been included. To this aim, not only relationships
between two publications have been collected. Also, relationships between a publica-
tion and a different node type have been taken into account. In this way, the additional
node type will be considered as a “bridge” between two publications and considered
as a direct relationship between them. More precisely, the following relationships have
been included:

• cites relationships, i.e., all those relationships between two publications indicating
when a publication cites another;

4PubMed – https://pubmed.ncbi.nlm.nih.gov/

60

https://pubmed.ncbi.nlm.nih.gov/


i
i

“output” — 2024/4/24 — 20:08 — page 61 — #80 i
i

i
i

i
i

5.2. Benchmark preparation

• co-produced relationships, i.e., relationships between two publications indicating
when they are produced by the same research project.

5.2.2 Authors extraction: creation of raw author nodes

The purpose of the AND in the OpenAIRE context can be formulated as the disam-
biguation of raw author names indicated as properties of research publications. Having
said that, it becomes a mandate to extract those names from the original research pub-
lication to create separate nodes describing the authors. To do this, it is necessary to
describe each author with a set of attributes that may be used by the disambiguation
algorithm for blocking, similarity matching, and finally disambiguation (in this case
of study, the FDup framework described in Chapter 4). Usually, each author inher-
its attributes from the research publication from which it has been extracted. Those
attributes are:

• the ORCID5 identifier: a persistent identifier that a researcher owns and controls,
and that distinguishes him from every other researcher. This identifier is funda-
mental to create ground truth and to evaluate the quality of the approaches, as it
acts as a unique ID with no duplicates;

• the author name: a string that indicates information about the name of an author,
which can be well-formed (i.e., it provides a name and a surname, possibly divided
by a comma) or not, e.g., “Surname, Name” or “Surname, N.”;

• the co-authors list: a list of names indicating the authors belonging to the same
research publication;

• the research publication abstract: the text describing the topic and the field of
study of the research publication itself.

Since the Graph Neural Networks involve mathematical operations, a preliminary
process on the nodes and the edges of the graph is necessary to convert their attributes
into machine-friendly vectors. Therefore, a preliminary feature extraction operation is
needed to make the data compliant with the architectures. Feature extraction is a pro-
cess of transforming raw data into numerical features preserving the information in the
original data set. This process yields better results than applying machine learning tech-
niques directly to the raw data. This operation can be performed manually (i.e., identify
and describe the relevant features for a given problem) or automatically (i.e., use a spe-
cialized algorithm or deep networks to extract features without human intervention).
Vectors resulting from a feature extraction operation (the initial node embedding, also
called node feature) must encode all the information of the original attributes by encap-
sulating all the characteristics that make two attributes similar. In other words, the idea
behind the feature extraction is to plot node attributes in a n-dimensional space where
vectors close to each other represent similar attributes based on some of their character-
istics. In the use case of this thesis (the Scholarly Knowledge Graphs), nodes and edges
describe research products and their semantic relationships in the scientific community,
therefore their attributes are in the form of text (i.e., author names, titles, publication
abstracts). The processing and the transformation of such type of node attributes lie

5Open Researcher and Contributor ID – https://orcid.org/

61

https://orcid.org/


i
i

“output” — 2024/4/24 — 20:08 — page 62 — #81 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

in the concept of text mining and Natural Language Processing (NLP), where machine
learning is used to reveal the structure and the meaning of a text [82–84]. With those
types of algorithms, attributes of a research product are easily analyzable and their
equivalences may also be caught when they are not directly comparable in their origi-
nal form. For every contribution of this thesis, features have been extracted manually
and automatically. For manually extracted features, a 55-dimensional vector has been
extracted from author names and acts as an encoding of the letters inspired by the “bag
of words” model [85]. For automatically extracted features, have been used two popu-
lar algorithms in the literature for the topic modeling: a short encoding made by using
the Latent Dirichlet Allocation (LDA) [86], and a long encoding made by using the
BERT sentence embedding [87].

Author Name encoding: the “bag of letters” model

The author name is the first attribute that describes an author node in a Scholarly
Knowledge Graph, therefore it is the first hint of the disambiguation as its value de-
termines the preliminary blocking stage of the whole disambiguation process. Having
said that, it is important to provide an effective encoding of it to give the GNN the pos-
sibility to learn from its representation. The purpose of the encoding of this attribute is
to have an n-dimensional vector that puts “close” to each other similar author names in
a typo-tolerant setting. To this aim, it becomes crucial to encode each letter in order not
to lose information when the author’s name is translated into a machine-friendly for-
mat. The intuition behind the encoding used for author names is inspired by the most
popular “bag of words” model, early described in a linguistic context in [88]. Such a
model uses a representation of text that is based on an unordered collection (or “bag”)
of words, and it is widely used in NLP and information retrieval. The main charac-
teristic of the “bag of words” lies in the fact that it disregards word order (and thus
any non-trivial notion of grammar) but captures multiplicity. In particular, in the “bag
of words” model, every word is a token and the encoding of a document is a vector
counting the number of occurrences of each word in it. Similarly, in the “bag of letters”
model, letters are tokens and the encoding of a name is a vector counting the number
of occurrences of each letter in it. Therefore, after this analysis, every author name
is firstly transliterated to the English alphabet (including accents when necessary) and
secondly encoded in a 55-dimensional feature vector in which each element indicates
the frequency of a specific letter in the name (the size of 55 indicates the number of
characters in the alphabet used as a dictionary, which includes punctuation marks and
letters of the alphabet with different accents). Such kind of encoding is sufficient to
achieve good results since it guarantees a good representation of typos, which may be
present in author names but are still coded in similar vectors (in case of typing errors
leading to letters swapped in positions, the process results exactly in the same encod-
ing). An example of how an author name is encoded with the “bag of letters” model is
shown in Figure 5.2.

Research publication abstract encoding: exploring topic modeling techniques

The research publication abstract is a good ally in disambiguation, as it can add infor-
mation to an under-described author which provides few attributes (e.g., no co-authors,
no identifiers) and is therefore prone to disambiguation errors. For the AND, compar-

62



i
i

“output” — 2024/4/24 — 20:08 — page 63 — #82 i
i

i
i

i
i

5.2. Benchmark preparation

Figure 5.2: Simplified example of the encoding computed with the “bag of letters” model (in this case
the dictionary includes only letters of the alphabet for better visualization).

ing the authors based on their “field of study” is proved to be effective as researchers
tend to work on the same research topic in their academic careers. Nonetheless, it is
unfeasible to directly compare abstracts because string similarity measures are not ef-
fective for long strings. Therefore, the encoding of research publication abstracts is
fundamental to (i) make the fields “comparable”, and (ii) mitigate both homonymy and
synonymy, as it may group or split similar authors based on their research topic. To
this aim, 2 different encodings for the research publication abstract have been created.
The first is a short encoding, to be used by FDup, and therefore aimed to save further
computation time; the second is a long encoding, to be used by the GNN, and therefore
aimed to provide as much information as possible.

Latent Dirichlet Allocation (LDA) [86] is a generative statistical model (in the form of
a Bayesian Network) for Natural Language Processing that models automatically ex-
tracted topics in textual corpora. In this context, words are grouped into research pub-
lication abstracts (i.e., the documents), and the presence of each word is attributable
to one of the topics of the document. The intuition behind this algorithm is that each
document contains only a small number of topics and can be therefore encoded in a
relatively small N-dimensional vector where each element indicates the degree of be-
longing to that specific topic. Because of its nature, this encoding is widely used in
machine learning, specifically for topic modeling, whose purpose is to discover topics
in a collection of documents, and then automatically classify any individual document
within the collection in terms of how “relevant” it is to each of the discovered topics.
For example, in the document collections of this use case (i.e., research publication ab-
stracts), the terms “informatics”, “computer”, and “processor” would suggest a topic
related to the discipline of informatics, while terms like “mathematics”, “algorithm”,
and “multiplication” would suggest a topic related to the discipline of mathematics. If
the document collection is sufficiently large, LDA will discover such topics based on
the co-occurrences of individual terms, but the task of assigning a meaningful label to
each topic is left to another activity and it is not trivial. The LDA approach works on
the following assumptions:

• The semantic content of a document is composed by combining one or more terms
from one or more topics;

• Ambiguous terms may belong to more than one topic with different probability,
e.g., the term “algorithm” may be applied to both “informatic” and “mathematics”,
but is more likely to refer to mathematics;

• Most documents contain a small number of topics;

• Certain terms may be used much more frequently than others.

63



i
i

“output” — 2024/4/24 — 20:08 — page 64 — #83 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

The last two assumptions may be controlled with two parameters: the document-topic
density and topic-word density. A high value for the former (also known as “alpha”)
means that documents are composed of more topics, while a higher value for the latter
(also known as “beta”) indicates that topics are composed of a large number of words
in the corpus.

To train the LDA model for topic modeling, a pre-processing of the research pub-
lication abstracts has been applied. This process consists of the following sequential
operations:

• Tokenization: abstract split in tokens, e.g., the words;

• Stop-words removal: tokens cleaned up by removing the stop-words to reduce the
noise, e.g., terms as “the”, “or”, etc.

• Preliminary vectorization: cleaned tokens transformed into vectors using the pre-
viously described “bag of words” model with the Dewey Decimal Classifica-
tion [89] as a dictionary.

Figure 5.3 depicts a visual representation of the words in the research publication
abstracts. As the picture suggests, it is immediately notable how the removal of the stop
words is fundamental to getting rid of the noise in the data.

Figure 5.3: Word cloud of the research publication abstracts: the bigger a word is, the more present it
is in the texts.

Once the preliminary operations have been completed and the “bag of words” vec-
tors have been obtained, the document collection has been divided into training and
testing sets, by taking 50% of the documents for each set. The LDA models have been
consequently trained on the training set by varying the number of topics (also indicated
as “k”) and evaluated over the testing set to choose the best model in terms of the best
perplexity score, a standard that evaluates how well a probability model can predict
a sample. Such evaluation metric represents the exponentiated average negative log-
likelihood of a sequence, therefore a lower perplexity score suggests that the model has
a higher certainty in its predictions. The alpha and beta parameters of the LDA model
have been optimized by the algorithm implementation provided by the Apache Spark

64



i
i

“output” — 2024/4/24 — 20:08 — page 65 — #84 i
i

i
i

i
i

5.2. Benchmark preparation

framework. A new model for “k” varying from 5 to 100 has been trained and their
perplexity scores are depicted in Figure 5.4.

Figure 5.4: LDA perplexity score varying the number of topics.

As it is immediately noticeable from the graph, the best model in terms of perplexity
for the chosen document collection suggests that 15 topics are sufficient to properly
describe each research publication abstract. Once the optimal LDA model in terms of
perplexity is obtained, every abstract has been processed to produce a 15-dimensional
topic vector.

Bidirectional Encoder Representation from Transformers (BERT) [90] is a family of lan-
guage models introduced by researchers at Google. BERT has become a ubiquitous
baseline in NLP as it counts over 150 research publications analyzing and improving
the model. BERT is engineered as an “encoder-only” transformer architecture consist-
ing of three modules: (i) the embedding module, to convert an array of one-hot en-
coded tokens into an array of vectors representing the tokens, (ii) a stack of encoders,
to perform transformations over the array of representation vectors, and (iii) the un-
embedding module, to convert the final representation vectors into one-hot encoded to-
kens again. The last module is necessary only for pre-training as the embeddings of the
processed text are taken by the penultimate layer of the architecture. The pre-trained
architecture used to encode the publication abstract is a BERT Sentence Embedding
model called bert-base-multilingual-cased [91]. The training data has been collected
based on the top 104 languages with the largest Wikipedia using a masked language
modeling objective. In particular, the model was pre-trained on the raw texts only, with
no human labeling and an automatic process to generate inputs and labels from the
texts. To be more precise, the pre-training had the following objectives:

• Masked Language Modeling (MLM): having a sentence, the model trains itself by

65



i
i

“output” — 2024/4/24 — 20:08 — page 66 — #85 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

randomly masking 15% of the words in the input. The entire masked sentence is
processed by the model which has the objective of predicting the masked words.
Note that this method allows the model to learn a bidirectional representation of
the sentence;

• Next Sentence Prediction (NSP): having two masked sentences as inputs during
pre-training, the model trains itself intending to predict whether the two sentences
were following each other in the original text or not;

This way, the model learns an inner representation of the languages in the training
set that can then be used to extract features useful for downstream tasks. In the case
of this thesis, it will be useful to process the research publication abstract by capturing
differences in the language used and possibly the style of the writer. Once the research
publication abstracts have been processed by the aforementioned transformer, every
abstract becomes a 768-dimensional embedding vector describing it.

5.2.3 Heterogeneous subgraph creation

In order to provide additional information to the graph, more semantic relationships
have been computed and included. The purpose of these newly created relationships is
to link author nodes and publication nodes which, as things stand, are still separated in
the heterogeneous graph. In particular, those relationships are:

• writes relationships, i.e., relationships between authors and publications indicat-
ing the writer of the publication;

• collaborates relationships, i.e., relationships between two authors indicating when
they collaborated in the writing of a publication;

• potentially equates relationships, i.e., relationships between two authors having
the same LNFI key to link author sharing the surname and the first letter of the
name;

• equates relationships, i.e., relationships between two authors having the same OR-
CID identifier to capture their equivalence.

The objective of the benchmark is to imitate as much as possible a real-case sce-
nario, which is often characterized by noise and typos in the node attributes since the
information is collected from various sources. To this aim, a random noise has been
added in author nodes by including a set of common errors to the 45% of the entities.
In particular, errors leading to the impossibility of the creation of “potentially equates”
relationships have been included since those types of errors are the most important in-
formation to derive the similarity between two nodes. More precisely, the set of errors
is the following:

• missing name and surname (i.e., author nodes with no name and surname), to
imitate the common case where authors are not well-formed and their names are
not immediately comparable;

• typo (i.e., author nodes attributes with errors in the letters), to imitate the common
case where an author name is misspelled;

66



i
i

“output” — 2024/4/24 — 20:08 — page 67 — #86 i
i

i
i

i
i

5.2. Benchmark preparation

• transliteration (i.e., author nodes with names written in different alphabets), to
imitate the common case where authors are collected from various sources which
can have different languages and alphabets.

Table 5.1 reports some statistics about the number of nodes for each type included
in the subgraph to be used as a benchmark. Note that the number of author nodes is
significantly higher than the number of publications, and this is coherent with the fact
there is at least one author for each one of them. The ratio between authors per publica-
tion is about 2, meaning that each publication has a sufficient amount of relationships
to be defined in the subgraph.

node type number
author 714,880

publication 358,432

Table 5.1: Number of nodes for each type in the heterogeneous subgraph.

Table 5.2 reports some statistics about the number of edges, including both inferred
and filtered ones. Note that the number of edges between authors almost equates to the
number of edges between publications making the scenario well-balanced and suitable
to the training process, which requires information to be not skewed.

edge type source node type target node type number
collaborates author author 6,150,040

equates author author 1,909,878
potentially equates author author 11,496,638

writes author publication 714,931
isWrittenBy publication author 714,931

cites publication publication 39,037
co-produced publication publication 17,973,875

Table 5.2: Number of edges for each type in the heterogeneous subgraph.

5.2.4 AND using the FDup framework

Once the subset of author nodes has been extracted from the publications, the next
step is to create similarity relationships and groups of duplicates as the benchmark is
meant to be used as the base dataset to which train and test GNN models. The FDup
framework has been used to reach this purpose and to perform the full disambiguation
process. In particular, the disambiguation has been configured to perform:

• a preliminary Last Name First Initial (LNFI) blocking stage to identify potentially
equivalent authors as authors sharing the surname and the first letter of the first
name; in particular, authors having the same surname and the same initial letter
of the name are considered potentially equivalent and therefore processed by the
similarity matching function (i.e., “Sandra Smith” and “Steven Smith” will end
up in the same block as they share the same blocking key - “smiths”);

• a pair-wise similarity matching based on comparing the co-authors’ lists and LDA
topic vectors. The similarity on the co-authors’ lists is measured by counting

67



i
i

“output” — 2024/4/24 — 20:08 — page 68 — #87 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

the number of common names among the lists (i.e., number of similar names),
while the cosine similarity measures the similarity on the topic vectors. Note that
the threshold of the co-authors similarity has been set empirically to 2, while the
threshold of the topic vectors similarity has been set to 0.5 after a False Positive
- False Negative analysis varying the threshold on all the possible comparisons.
The aforementioned decision tree is depicted in Figure 5.5.

Figure 5.5: Decision tree for the creation of evaluation benchmark for similarity relationships and
groups of duplicates.

The full disambiguation process configured with FDup in the aforementioned method
creates groups of authors sharing at least 2 co-authors and/or having a cosine similarity
of their topic vectors greater than 0.5. The idea behind this configuration is that authors
tend to work with the same colleagues, therefore whenever two author instances have at
least 2 co-authors it is more likely those two authors describe the same real person, con-
sidering that only authors with the same first letter of the name and the same surname
are compared. On the contrary, when the list of co-authors is not provided, or it cannot
determine a match due to a publication written by less than 2 people, the comparison
takes advantage of the topic vector. The last assumption considers that authors tend to
work in the same research field, therefore two raw authors having a similar topic vec-
tor are more likely to represent the same real-world person. The configuration utilized
to process the subset of authors guarantees the creation of common errors in a dis-
ambiguation algorithm because the use of a topic similarity whenever other attributes
are not available is prone to errors. Once the FDup disambiguation has produced a
result, the dataset has been processed to become the proper training set for the Graph
Neural Networks. To this aim, a manual labeling of the groups of duplicates has been
performed. The labeling is meant to tag the groups in two classes, in particular:

• positive groups, i.e., when all the authors in the group have the same ORCID
identifier;

68



i
i

“output” — 2024/4/24 — 20:08 — page 69 — #88 i
i

i
i

i
i

5.2. Benchmark preparation

• negative groups, i.e., when at least one author in the group has a different ORCID
identifier;

Subsequently, groups of duplicates with less than 2 authors have been removed as they
are not meant to be considered as groups (but pairs), and the dataset has been balanced
to have the same number of positive and negative samples. Statistics on the groups are
reported in Table 5.3. The dataset is available on Zenodo.org [92]. Note that the total
number of positive and negative groups has been balanced, but the dataset reflects the
common situation in real-case scenarios where the number of wrong groups increases
with the size of the groups.

positive negative
global 25,450 25,450

groups of 3 12,291 6,699
groups of 4 to 10 11,882 12,107

groups of more than 10 1,277 6,644
total 50,900

Table 5.3: Statistics of benchmark for groups of duplicates evaluation.

In addition, also similarity relationships produced by the FDup framework have been
collected and manually labeled. In this case, the labeling is meant to tag the similarity
relationships in two classes, in particular:

• positive similarity relationship, i.e., when the source node and the target node have
the same ORCID identifiers;

• negative similarity relationship, i.e., when the source node and the target node
have different ORCID identifiers.

Statistics on the similarity relationships are reported in Table 5.4. The dataset is
available on Zenodo.org [93]. In this case, none of the similarity relationships has been
excluded as they have the same relevance.

number
positive 271,805
negative 324,752

total 596,557

Table 5.4: Statistics of benchmark for similarity relationships evaluation.

It is important to mention that the FDup configuration employed to create the bench-
mark does not reflect a “final” disambiguation configuration that would be used in a
real-case scenario because it does not take into account ORCID identifiers. The effi-
ciency of the FDup approach has already been demonstrated in the previous chapter,
and it becomes more evident when the configuration is more complex and provides
many early exits. In this case, the purpose of the disambiguation is to imitate a sce-
nario where ORCID identifiers are not available, therefore the disambiguation is prone
to errors. Whenever ORCID identifiers are available, they can be used for both training
and drawing similarity relationships and the final result can be further optimized by the
application of GNN based methods trained over labeled data.

69



i
i

“output” — 2024/4/24 — 20:08 — page 70 — #89 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

5.3 Evaluation of similarity relationships

The first method applicable to enhance the effectiveness of the AND consists of the
evaluation of similarity relationships produced by the disambiguation algorithm to
identify potentially wrong links. This operation can be used to give each similarity re-
lationship a “quality score” which indicates its likelihood to be a “bridge”, i.e., wrong
connection between two different authors. One possible way to perform such an eval-
uation is to use persistent identifiers (see Section 3.3.5), e.g., ORCID identifiers when
the scenario is AND). Nonetheless, such identifiers are not always provided and, when
provided, they can measure only an exact equivalence, therefore a similarity relation-
ship can be marked as True or False with no fuzziness in the outcome. A possible way
to introduce fuzziness in the quality score is in the use of similarity metrics to measure
the distance between the topic vectors (e.g., cosine similarity, euclidean distance, dot
product) but these methods are not able to capture information in the graph, which have
been proved to be fundamental in this scenario. The approach described in this section
is based on a novel Graph Neural Network that takes advantage of ORCID identifiers
when available to train the model and subsequently uses the model to give a “quality
score” even to similarity relationships where the ORCID identifier is not provided. The
quality score computed by the model can measure the correctness of a similarity re-
lationship by giving a percentage degree where 0% stands for completely wrong and
100% stands for perfectly correct.

The idea behind this novel approach is to configure the task as a link prediction,
therefore computing node embeddings using labeled similarity relationships drawn by
the disambiguation algorithm to train the network in a supervised way. Once the node
embeddings have been computed, they are concatenated to form the edge embedding
which is subsequently classified by a standard Neural Network that computes the score
based on the label.

In particular, the general setting of the problem is depicted in Figure 5.6 and includes
the following components:

• the Metapath module: responsible for the extraction of several homogeneous
graphs from the heterogeneous input graph. The objective of the module is to pre-
pare author-centric homogeneous graphs to be inputted to the Node Embedding
module. This operation is fundamental to capturing different topologies based on
different semantic relationships;

• the Node Embedding module: responsible for the implementation of the message
passing and the computation of the node embeddings for the nodes in the inputted
homogeneous graphs. With this operation, every node has several embeddings
which are subsequently aggregated via a “metapath attention” mechanism aimed
to compute a weighted mean between the node embeddings;

• the Edge Scorer module: responsible for the computation of the quality score
given to the inputted edges, whose embedding is a concatenation of source and
target node embeddings. The last layer of this module consists of a sigmoid func-
tion that normalizes the score to fit in the interval between 0 and 1, where 0 stands
for a completely wrong similarity relation while 1 stands for a perfect similarity
relation.

70



i
i

“output” — 2024/4/24 — 20:08 — page 71 — #90 i
i

i
i

i
i

5.3. Evaluation of similarity relationships

Figure 5.6: General setting of similarity relationship evaluation model.

The whole architecture has been trained with a loss function that forces the classi-
fier to give the correct similarity relationships a score as close as possible to 1, while to
the wrong similarity relationships a score as close as possible to 0. Such loss value is
consequently back propagated to the previous network layers which adapt their weights
accordingly. The training process was stopped when the overfitting condition was ver-
ified (i.e., the loss on the validation set failed to decrease for more than 20 epochs).
The code is available on GitHub6. The following sections describe each module of the
architecture in detail.

Metapath Module

The extraction of several homogeneous graphs from the inputted heterogeneous graph
(i.e., the SKG, or the subgraph prepared in Section 5.2) has been made by exploiting
the so-called “metapath approach”. This approach consists of replacing the link chain
between two entities of the same type with a direct link. For example, in a graph with
Authors and Results as nodes in which an edge between the nodes indicates that the
Result is written by the Author (i.e., writtenBy relationship), the Author-Result-Author
metapath extracts the homogeneous form that contains only Author nodes, with edges
encoding they collaborated in the writing of a Result. An example of how the metapath
approach extracts a homogeneous graph from a heterogeneous graph is depicted in
Figure 5.7.

Figure 5.7: Metapath example: the heterogeneous graph with publications and authors has been trans-
formed into a homogeneous graph with only author node types.

In the use case of this thesis, consisting of the benchmark presented in Section 5.2.3,
two node types can have different types of relationships, e.g., two research publications

6GitHub project – https://github.com/miconis/gnn-simrels-evaluator

71

https://github.com/miconis/gnn-simrels-evaluator


i
i

“output” — 2024/4/24 — 20:08 — page 72 — #91 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

can be linked via a co-produced or a cites relationship. For this reason, the metapath
applied indicates the edge types they cross, rather than node types. Having said that,
the Metapath module extracts 4 different homogeneous graphs from the input hetero-
geneous graph. Those homogeneous graphs are meant to provide meaningful informa-
tion, in terms of semantic relationships, to the Node Embedding module, which has
to compute node embeddings to be inputted to the classifier which has to derive the
correctness of the edge. This way, the Node Embedding module can take advantage of
the neighborhood of each node in each homogeneous graph, with the result of encoding
different flavors of the community an Author belongs to. In particular, the following
author-centric homogeneous graphs have been extracted:

• The collaboration graph: obtained with the application of the writes-isWrittenBy
metapath. The graph links two Author nodes when they collaborated in the writing
of a research publication;

• The citation graph: obtained with the application of the writes-cites-isWrittenBy
metapath. The graph links two Author nodes when one of them wrote a research
publication that cites a research publication written by the other;

• The colleague graph: obtained with the application of the writes-coproduced-
isWrittenBy metapath. The graph links two Author nodes when they wrote a re-
search publication produced by the same research project;

• The potentially equivalent graph: obtained with the application of the potentially
equates metapath. The graph links two Author nodes when they share the same
LNFI key;

Node Embeddings module

The computation of the node embeddings has been made by processing the 4 homoge-
neous graphs extracted by the Metapath module. This operation consists of two steps,
described as follows:

• computation of node embeddings for each homogeneous graph. After this step,
each node will have 4 embeddings, each one of them encapsulating the informa-
tion of the specific homogeneous graph;

• aggregation of node embeddings. After this step, each node will have only one
embedding which aggregates the embeddings of each homogeneous graph.

In particular, the computation of the node embeddings is performed via 4 different
GraphSAGE [94] architectures with 2 layers of SAGE convolution implementing the
message passing. The operation produces a set of 4 100-dimensional node embeddings
for each author node. The GraphSAGE architecture is a popular method for inductive
representation learning on large graphs that can be used to generate low-dimensional
vector representations for nodes. The patterns learned by the model have a stronger
ability to generalize on unseen data, therefore the architecture is often referred to as
leveraging inductive learning as opposed to transductive learning. To do this, the ar-
chitecture performs a sampling of the node embeddings in the neighborhood of each
node in the graph and learns how to aggregate the information each node receives in a

72



i
i

“output” — 2024/4/24 — 20:08 — page 73 — #92 i
i

i
i

i
i

5.3. Evaluation of similarity relationships

permutation-invariant setting. For this reason, the resulting node embeddings are more
transferable than transductive modeling approaches.

Once the node embeddings have been computed for each input homogeneous graph,
they are aggregated with a mechanism called “metapath attention”. This is a submodule
of the Node Embeddings module which is composed of a set of Linear layers (i.e., fully
connected, FC) returning an attentive value for each of the examined node embeddings
resulting from different homogeneous graphs. In other words, the metapath attention
submodule gives each node embedding a degree of relevance with respect to other node
embeddings computed for the same node. To this aim, the attentive values computed
by the Linear layers are processed by a softmax function, which makes sure that their
sum is equal to 1. This value will be consequently used as the weight in the weighted
mean of the vectors, resulting in the aggregation of the embeddings that determines
the final node embedding. It is important to mention that the insertion of the metapath
attention submodule can be used for explainability in the context of explainable AI. It
is sufficient to process the weights calculated by the submodule to have information
on which homogeneous graph contributes the most to the evaluation of the correctness
of the similarity relationship. This could also overcome the limitations due to nodes
poorly described in a specific context because the submodule would weigh less than
the node embedding coming from that homogeneous graph to give more importance to
the others. The architecture of the node embedding module is depicted in Figure 5.8.

Figure 5.8: Architecture of the node embedding module.

73



i
i

“output” — 2024/4/24 — 20:08 — page 74 — #93 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

Edge Scorer module

Once the node embeddings have been computed, the information is processed by the
Edge Scorer module. Such a module performs the following operations:

• concatenates the source and target node embeddings, i.e., it creates the edge em-
bedding to be used for the classification;

• classifies the edge embedding, i.e., it assigns a quality score to each edge.

The module architecture is depicted in Figure 5.9. In particular, it is composed
of 2 stacked Linear layers that process the edge embeddings and derive their class,
being able to separate them also when the separation is not linear. Note that a sigmoid
function is attached to the last layer to squeeze the value between 0 (i.e., completely
wrong similarity relationship) and 1 (i.e., perfectly correct similarity relationship).

Figure 5.9: Architecture of the edge scorer module.

5.3.1 Experimental results

Once the training of the architecture has been performed over the input benchmark
for the reach of the overfitting condition, the architecture has been saved and used to
perform inference on unseen data and measure accuracy. Several metrics have been
computed, each one of them meant to measure a different flavor of the outcome. In
particular, the metrics used are:

• The accuracy (A), calculated as the ratio between the correct predictions and the
total number of predictions. It measures the overall quality of the result;

74



i
i

“output” — 2024/4/24 — 20:08 — page 75 — #94 i
i

i
i

i
i

5.4. Evaluation of groups of duplicates

• The balanced accuracy (BA), it balances the accuracy over classes with different
sizes;

• The True Positive Rate (TPR), calculated as the ratio between the correct positive
predictions and the total number of positives. It measures the probability that an
actual positive will test positive in the prediction;

• The True Negative Rate (TNR), calculated as the ratio between the correct nega-
tive predictions and the total number of negatives. It measures the probability that
an actual negative will test negative in the prediction;

• The False Positive Rate (FPR), calculated as the ratio between the wrong positive
prediction and the total number of negatives. It measures the probability that an
actual negative will test positive in the prediction;

• The False Negative Rate (FNR), calculated as the ratio between the wrong nega-
tive prediction and the total number of positives. It measures the probability that
an actual positive will test negative in the prediction;

• The precision (P), calculated as the ratio between the true positives and the total
number of positive predictions. It measures the quality of the positive predictions;

• The F1-score (F1), calculated as a harmonic mean between the precision and the
recall. It measures the ability of the model to effectively identify positive cases
while minimizing false positives and false negatives.

The results obtained by the architecture are reported in the Table 5.5.

%
Accuracy 88.44

Balanced Accuracy 88.28
True Positive Rate (TPR) 86.44

True Negative Rate (TNR) 90.12
False Positive Rate (FPR) 9.88

False Negative Rate (FNR) 13.56
Precision 87.99
F1-Score 87.20

Table 5.5: Experimental results of the GNN architecture for similarity relationships evaluation.

The experiments made on the architecture have shown an accuracy of the GNN
architecture to be around 88%. This means that the model can be successfully used
to correct wrong similarity relationships drawn by the disambiguation algorithm and
possibly draw new similarity relationships when the disambiguation algorithm fails to
identify them. It is important to note that the False Positive Rate is lower than 10%.
This means that the model identifies the majority of the wrong similarity relationships,
resulting in an increment of the overall precision of the disambiguation result.

5.4 Evaluation of groups of duplicates

The second method applicable to enhance the effectiveness of the AND relies on a
twofold intuition based on some considerations made on the disambiguation workflow
described in Figure 1.3:

75



i
i

“output” — 2024/4/24 — 20:08 — page 76 — #95 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

• the similarity match stage generates a graph where nodes represent the entities and
relationships indicate the equivalence between two nodes;

• the disambiguation stage generates a set of distinct graphs, whose nodes have no
relationships with nodes of other graphs.

The idea consists of the evaluation of groups of duplicates produced by the disam-
biguation algorithm to identify potentially wrong groups. Similarly to the process for
the evaluation of similarity relationships, the evaluation of groups of duplicates can be
used to give each group a “quality score” which indicates its likelihood to be wrong
hence a false positive, i.e., it includes different authors grouped after the transitive clo-
sure. Also in this case, the evaluation of groups of duplicates can be performed employ-
ing persistent identifiers but again they do not guarantee a sufficient degree of fuzziness
in the score. An additional issue with the evaluation of groups lies in the fact that the
score cannot take advantage of similarity metrics to measure the distance between au-
thors in the same group. Since groups are composed of multiple authors, it becomes
costly and time-consuming to compute similarities for each pair and aggregate them
to compute a unique score, with the result that it could still be inaccurate. In light of
these observations, this section proposes a custom model capable of processing groups
of duplicates as independent graphs and classifying them by evaluating their correct-
ness regarding a percentage indicator. The approach is based on a novel Graph Neural
Network that takes advantage of ORCID identifiers when available to train the model
and subsequently uses the model to give a “quality score” to groups of duplicates where
the ORCID identifier is not provided. Also in this case, the quality score computed by
the model can measure the correctness of a group of duplicates by giving a percentage
degree where 0% stands for completely wrong and 100% stands for perfectly correct.
The idea behind this novel approach is to configure the task as a graph classification,
therefore computing node embeddings of each group of duplicates using labeled groups
created by the disambiguation algorithm to train the network in a supervised way. Once
the node embeddings have been computed, they are aggregated into a unique embed-
ding to compute the graph embedding which is subsequently classified by a standard
Neural Network that computes the score based on the label. Once the model is trained,
it can be used over unlabeled data (i.e., the majority of those resulting from a real-case
scenario) as the nature of groups of duplicates depends on the algorithm used for the
disambiguation and therefore remains the same. The general setting of the problem is
depicted in Figure 5.10 and includes the following components:

• the GNN model: responsible for the computation of the node embeddings for
the inputted group of duplicates. Note that this module can be seen as a layer
that processes each group of duplicates separately but in practice it processes the
whole graph with authors and similarity relationships, as different groups are not
linked by any relations;

• the Readout layer: responsible for the computation of the graph embedding by
aggregating the node embeddings computed by the GNN model;

• the Linear classifier: responsible for the computation of the quality score given to
the inputted graph embedding. Note that the output of this layer is followed by a
sigmoid function which normalizes the score to fit in the interval between 0 and

76



i
i

“output” — 2024/4/24 — 20:08 — page 77 — #96 i
i

i
i

i
i

5.4. Evaluation of groups of duplicates

1, where 0 stands for a completely wrong group while 1 stands for a perfect group
of duplicates, similar to the final layer of the architectures for the evaluation of
similarity relationships.

Figure 5.10: General setting of groups of duplicates evaluation model.

The training of the architecture is performed by computing a loss function that forces
the classifier to give the correct groups a score as close as possible to 1, while to the
wrong groups a score as close as possible to 0. Such loss value is subsequently back-
propagated to the network which adapts its weights accordingly. In every case, the
training process was stopped when the overfitting condition was verified. The code is
available on GitHub7.

5.4.1 Experimental results

The process to realize this contribution goes through two consequential steps, described
as follows:

• performing preliminary experiments on basic GNN architectures to highlight the
advantages and the disadvantages of each model and choose the most promising
approach. In these experiments, only the GNN model changes. The Readout layer
and the Linear classifier remain the same: the former consists of a mean operation
of the node embeddings, and the latter consists of a single Linear layer.

• fine-tuning and optimization of the model to define the final architecture to be
used for the evaluation of groups of duplicates.

The following sections describe each step in detail.

Preliminary experiments

To proceed with the identification of the best GNN model, some preliminary experi-
ments have been performed over the benchmark presented in Section 5.2.4 by dividing
the dataset into training, validation, and testing sets with ratios of 60%, 20%, and 20%.
To keep the preliminary experiments simple, initial node embeddings include only the
BERT sentence embedding of the research publication abstract. The base architectures
exploited, use three of the most popular GNN layers: the Graph Convolution, the Graph
Attention Convolution, and the Graphormer.

Graph Convolution Layer [95] implements the message-passing protocol by weighing
the graph edges based on their relevance and aggregates the node embeddings coming
from the neighborhood into a single embedding meant to represent each node. To do

7GitHub project – https://github.com/miconis/gnn-dup-groups-evaluator

77

https://github.com/miconis/gnn-dup-groups-evaluator


i
i

“output” — 2024/4/24 — 20:08 — page 78 — #97 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

this, the node embeddings received from each node in the neighborhood are normalized
accordingly to their degree (i.e., embeddings of nodes with only 1 edge remain the
same, while embeddings of nodes with more than 1 edge tend to be lowered). The final
node embeddings learned by this convolution operation tend to include information
coming from the node itself and the neighborhood. The math formula is expressed as
follows:

h
(l+1)
i = σ(b(l) +

∑
j∈N (i)

1

cji
h
(l)
j W (l))

where N(i) is the set of neighbors of the node i, cji is the product of the square root
of node degrees, and σ is an activation function.

Graph Attention Convolution Layer [96] implements the message-passing protocol sim-
ilarly to the Graph Convolution Layer, but with the addition of the attention mecha-
nism [97], which operates by assigning weights to input elements based on their rele-
vance to a specific context or query. The process involves calculating attention scores
by comparing query and key vectors, applying a softmax function for normalization,
and obtaining a weighted sum of input elements. The math formula is expressed as
follows:

h
(l+1)
i =

∑
j∈N (i)

αi,jW
(l)h

(l)
j

where αij is the attention score between node i and node j:

αl
ij = softmaxi(e

l
ij)

elij = LeakyReLU
(
a⃗T [Whi∥Whj]

)
Graphormer Layer [40] Implements the concepts of a transformer in the graph context,
and consists of a multi-head self-attention mechanism and a position-wise feed-forward
neural network. The self-attention mechanism enables the model to weigh the impor-
tance of different tokens within the sequence. It focuses on relevant parts of the input
when making predictions.

The list of basic architectures exploited in the preliminary experiments is the fol-
lowing:

• GCN3, a GNN with 3 Graph Convolution layers;

• GAT3, a GNN with 3 Graph Attention Convolution layers;

• SmallGraphormer, a GNN with 6 Graphormer layers that includes:

– a spacial encoder, which encodes the shortest distance between each node
pair to implement the attention bias;

– a degree encoder, which gives every node a degree of relevance based on the
number of outgoing and incoming edges.

78



i
i

“output” — 2024/4/24 — 20:08 — page 79 — #98 i
i

i
i

i
i

5.4. Evaluation of groups of duplicates

The GNN architectures described above have been trained until the overfitting con-
dition was verified and then validated and tested. Similarly to the GNN for the eval-
uation of similarity relationships (described in the previous section), the models have
been evaluated by measuring their accuracy metrics.

Results depicted in Table 5.6 showed the GAT3 model to be the most promising ap-
proach for the group of duplicate evaluations, confirming the outcomes of the literature
claiming that putting attention on neighborhoods’ features brings better results.

model Acc TPR TNR FPR FNR Precision F1-Score
SmallGraphormer 75.91 85.02 66.56 33.43 14.97 72.29 78.14

GCN3 78.76 81.63 75.81 24.18 18.36 77.59 79.59
GAT3 81.73 87.16 76.17 23.82 12.83 78.96 82.86

Table 5.6: Experimental results of the preliminary experiments for groups of duplicates evaluation.

Fine-tuning and optimizations of the GNN model

Once the most promising basic architecture has been identified by evaluating the accu-
racy, the process of starting the development of the final GNN architecture to be used
for the groups of duplicates evaluation can take place. To this aim, some considerations
about the intrinsic characteristics of a group of duplicates have been made. The most
common sources of errors in a disambiguation algorithm can lie in different aspects,
each one related to a different stage of the disambiguation workflow:

• blocking errors, i.e., when the author attribute used for the extrapolation of the
clustering key to be used to group potentially equivalent authors does not capture
relevant information. This type of error has the effect that authors sharing the
same attribute can be put in the same block of potentially equivalent authors even
if they are different. This may result in a similarity match between the authors,
leading to a potentially wrong outcome;

• similarity matching errors, i.e., when the pair-wise comparison produced a wrong
similarity relationship (note that this has been partially faced in the previous sec-
tion);

• disambiguation errors, i.e., when the final transitive closure computes the groups
of duplicates. This type of error has the effect of spreading the wrong similarity
relationships all over the data, leading to the creation of a “bridge”, an undesired
link between two different groups of duplicate authors.

In the case of AND performed employing the FDup framework, the clustering key
that defines the initial blocks of potentially equivalent authors to limit the number of
comparisons is computed by using the Last Name First Initial (LNFI). Since the author
attribute to which the function is applied is the full name, the intuition suggests includ-
ing to the initial node embeddings an encoding for that field. The encoding used has
been already presented and visually described in Section 5.2.2.

For what concerns the similarity matching errors, to better describe the differences
between the authors, a good ally for the GNN would be the edge weight. Such weights
measure the naive similarity score between the most important attributes of the author.

79



i
i

“output” — 2024/4/24 — 20:08 — page 80 — #99 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

Figure 5.11: Example of bridges in groups of duplicates: the “red” author is poorly described and
matches with authors from different groups.

In this case, each edge has been weighted with the Jaro-Winkler distance between the
two full names [98]. This way each edge is normalized with the degree of similarity of
the names of its nodes.

Finally, the errors in the disambiguation stage have been faced by helping the GNN
to give more importance to authors linked with a “bridge”. Such authors are usually
poorly described nodes (with a missing first name, and missing co-authors) matching
with nodes belonging to different groups for their intrinsic characteristics. Examples
of this particular error, which is the most important as it is in the last stage responsible
for the creation of groups of duplicates, are depicted in Figure 5.11, where authors
with missing first names matched with authors with two different names resulting in
the creation of a big wrong group of duplicates after the closure of the meshes.

To emphasize the relevance of such nodes, a centrality encoder that gives a higher
weight to nodes which can be potentially the cause of a bridge has been developed.
Nodes with these characteristics, tend to be crossed multiple times when the purpose is
to reach every node in the graph starting from everyone else. This is done by employing
the betweenness centrality measure, which detects the influence a node has over the
flow of information in a graph. It is often used to find nodes that serve as a bridge from
one part of a graph to another because it measures how many times, in proportion, the
path needs to pass from a specific node to reach another.

Now that the features to pass to the GNN have been boosted, some considerations
on the GNN model itself have been made. The intuition is the following: groups of
duplicates are not of the same length, and a smaller group may be flattened by passing
through a high number of convolutional layers. On the contrary, bigger groups are not
sufficiently described when they pass through a small number of convolutional layers.
To this aim, it is necessary to collect node embeddings after each layer of the GNN to
better describe each graph and consequently use that representation based on its rele-
vance. For this reason, the outcome of every Graph Convolution layer is concatenated
and inputted to a 2-layered Long Short Term Memory (LSTM) [99]. This architecture
is a Recurrent Neural Network (RNN) aimed to provide a short-term memory for RNN
that can last thousands of timesteps. An LSTM unit is usually composed of a cell, an in-
put gate, an output gate, and a forget gate. Each component of the network is described
as follows:

• the cell remembers values over arbitrary time intervals with the regulation of the

80



i
i

“output” — 2024/4/24 — 20:08 — page 81 — #100 i
i

i
i

i
i

5.4. Evaluation of groups of duplicates

Figure 5.12: Final architecture for the quality evaluation of a group of duplicates.

three gates controlling the input and the output;

• the forget gates decides what information to discard from a previous state by as-
signing a previous state, compared to a current input, a value between 0 and 1,
where 1 means to keep the information and 0 means to discard it;

• the input gates decide which pieces of the new information to store in the current
state, in a way similar to forget gates;

• the output gates control which pieces of information in the current state to output
by assigning a value from 0 to 1 to the information, considering the previous and
current states.

Due to its characteristics, such architecture can learn to which extent to consider
other results of the first layers of the network (meaningful for small groups) combining
them with results of the last layers of the network (meaningful for big groups). The final
GNN architecture for the evaluation of groups of duplicates is depicted in Figure 5.12
following the previous description.

Table 5.7 reports the results obtained for the testing set using the newly created
model, dividing them on the nature of the block to better describe how the model be-
haves. It is shown that the model has an accuracy of about 90% on each class of groups.
It is important to mention that the accuracies when the groups are formed by more than
10 authors, the values tend to be higher. This, together with the high true negative rate,

81



i
i

“output” — 2024/4/24 — 20:08 — page 82 — #101 i
i

i
i

i
i

Chapter 5. Enhancing effectiveness via Graph Neural Networks

ensures good efficiency when the purpose is to correct and highlight potentially wrong
groups.

model Acc TPR TNR FPR FNR Precision F1-Score
GAT3NamesEdgesCentrality 89.87 93.03 86.62 13.37 6.96 87.71 90.29

(in groups of 3) 88.56 95.05 76.75 23.24 4.94 88.14 91.46
(in groups of 4 to 10) 88.77 91.48 85.98 14.01 8.59 87.08 89.22

(in groups of more than 10) 96.25 88.64 97.81 2.18 11.35 89.29 88.97

Table 5.7: Experiments on the final architecture.

82



i
i

“output” — 2024/4/24 — 20:08 — page 83 — #102 i
i

i
i

i
i

CHAPTER6
Discussion and conclusions

This chapter concludes and summarizes the work and the contributions of this thesis,
highlighting the innovative findings and providing direction for future research in these
fields.

The chapter is organized as follows: Section 6.1 summarizes the findings and the
contributions of the thesis; Section 6.2 discusses the outcomes of the experiments and
the potential of the proposed solutions; Section 6.3 gives hints on possible future direc-
tions shedding a light on possible effectiveness optimizations in other disambiguation
stages.

6.1 Summary of findings

The research presented in this thesis addresses the challenge of AND through the inte-
gration of heuristic and AI-based methodologies, with the primary goal of improving
the efficiency and effectiveness of the disambiguation process.

Efficiency is tackled with a general-purpose framework that optimizes all the stages
of a traditional disambiguation workflow: the blocking stage, the similarity matching
stage, and the disambiguation stage.

Effectiveness is tackled with the application of novel Graph Neural Network archi-
tectures aimed to fine-tune the disambiguation result by evaluating similarity relation-
ships and groups of duplicates. The state-of-the-art analysis in this context resulted in
a further important contribution to this thesis, a conceptual general framework of the
most popular literature AND methods, which defines the modules usually forming a
graph-based disambiguation workflow. The analysis pointed out that AND graph-based
techniques can be described with a common set of modules which can be possibly im-
plemented in different ways based on the use case.

83



i
i

“output” — 2024/4/24 — 20:08 — page 84 — #103 i
i

i
i

i
i

Chapter 6. Discussion and conclusions

Finally, it is worth noticing that the innovations presented in the thesis can be easily
generalized to other types of node entities, beyond authors’. For example, the FDup
framework’s configuration provides an efficient JSON encoding that can extract mean-
ingful attributes from every entity type by using a J-path expression, i.e., a query to
efficiently take fields from a JSON file. Similarly, the GNN architectures for the evalu-
ation of similarity relationships and groups of duplicates are agnostic of the node types
and edges they deal with. In the first case, the Metapath module can be easily adapted
to extract different homogeneous graphs from the heterogeneous input graph based on
the node type. In the second case, the architecture focus is on identifying the “bridges”,
independently of the types of the nodes they are connecting; while node types drive
the characterization of nodes via a proper set of features. For example, in the disam-
biguation of research publications, it may be sufficient to include an encoding for the
publication title rather than the encoding for the author’s full name. Also, when the
blocking stage is performed via multiple clustering functions, it may be necessary to
include encodings for all the attributes involved.

6.2 Discussion

The results obtained by the contributions of this thesis showed an enhancement of mul-
tiple efficiency and effectiveness aspects of data disambiguation. The improvement in
the AND efficiency has been made through a novel approach for the computational
complexity reduction, which enables the definition of a custom decision tree for pair-
wise comparisons able to save computation time via early exits and an easy-to-use
JSON configuration. The improvement in the AND effectiveness has been made pos-
sible by the previous study of existing graph-based techniques in the literature. Those
methods lead to the definition of a general conceptual framework which has been fun-
damental to establish which could be the stage that may benefit of a further processing.
Such a processing has been consequently identified in the GNN architectures for qual-
ity evaluation, that allows to correct potentially wrong disambiguation outcome and
significantly decrease the number of false positives.

6.2.1 Enhancing efficiency via computational complexity reduction

The FDup framework can save computation time by making it two times faster than
the traditional method. The approach has been shown to increase efficiency when (i)
T-match decision trees capture fine-grained factorization of similarly match predicates,
capable of anticipating as early as possible exit strategies; and (ii) the input dataset
size is large enough and provides meaningful attributes to be used to fire the early exit
conditions. It is worth noticing that the time saved due to higher efficiency can buy
time to perform higher numbers of pair-wise comparisons by the definition of loosened
clustering functions. The results of the experiments have shown that FDup improves
the current state-of-the-art approaches in two ways:

• Customization and flexibility of configuration: users can flexibly and easily cus-
tomize the various stages of the framework via a single configuration file: block-
ing, sliding window, and similarity functions; it offers a set of predefined com-
parators which can be used to configure a disambiguation process without being
proficient in programming languages;

84



i
i

“output” — 2024/4/24 — 20:08 — page 85 — #104 i
i

i
i

i
i

6.2. Discussion

• Efficient Similarity Matching: users can configure a similarity function T-match,
defined as a PublicationTreeMatch which drives the comparisons of the fields
of the records and allows to configure early-exit strategies to further reduce the
overall performance.

Flexibility and customization

The framework allows the customization of a full disambiguation workflow employing
a configuration file and a rich set of available libraries for comparators and clustering
functions. The record collection data model can be adapted to any specific context and
the T-match function allows for the definition of smart and efficient similarity functions,
which may combine multiple and complementary similarity strategies. For example,
Figure 6.1 shows a decision tree DatasetTreeMatch used to disambiguate research
dataset records in the OpenAIRE Research Graph. The function mirrors the one used
for publication records but includes an extra path as the equivalence by identity requires
stronger criteria in the case of datasets. In this case, the field PID may include values
that are not related to the dataset but rather to the PID of the article that is related to the
dataset (e.g., supplementedBy relationship in DataCite’s schema). Hence, an extra test
on the title is performed in order not to “merge” datasets and articles.

Encoding functions of this kind employing weighted means similarity functions is in
general not possible. Furthermore, the readability and therefore reusability of a decision
tree, with node names, edges, and MATCH and NO_MATCH nodes, are by far better
than the ones of a mathematical function.

Figure 6.1: T-match’s decision tree for DatasetTreeMatch.

Execution time optimization

The implementation of the entire FDup workflow by using Spark contributes to the
optimization of the computation time because of the parallelization of the tasks in the

85



i
i

“output” — 2024/4/24 — 20:08 — page 86 — #105 i
i

i
i

i
i

Chapter 6. Discussion and conclusions

blocking and similarity-matching stage. T-match gains further execution time by antic-
ipating the execution of no-match decisions and postponing time-consuming decisions,
such as the AuthorsMatch in the example. As proven by the reported experiments
the hypothesis is not only intuitively correct but brings in some scenarios substantial
performance gains. When used to analyze big data collections, time-saving is key for
many reasons: the execution of experiments to improve a configuration, speeding up
the generation of quality data in production systems, or saving time that can be “spent”
to improve the recall and the precision by relaxing blocking and sliding window ap-
proaches, i.e., large numbers of blocks and increased window size.

On the other hand, time-saving depends on the nature of the input records and the
ability to identify smart exit strategies applicable to a considerable percentage of the
pair-wise comparisons. For example, if the publication record collection used for the
experiments featured correct and corresponding PIDs for all records, the execution time
of the PublicationTreeMatch configuration would be further improved; on the con-
trary, if no PIDs were provided the execution time would increase, and get closer to the
one of PublicationWeightedMatch . The two functions would perform identically
if, for all pair-wise comparisons, the records would always feature no difference in the
versions and no difference in the title, making the AuthorsMatch title determinant for
the final decision.

Having said that, it is important to mention that the optimization of the time con-
sumption is fundamental for the AND task, as author nodes are the most popular in an
Scholarly Knowledge Graph and therefore have the highest duplication rates among all
the nodes.

6.2.2 Enhancing effectiveness via GNNs

The experience in the disambiguation area led to the conclusion that the overall ac-
curacy of the result produced by a disambiguation algorithm strongly depends on the
number of wrong similarity relationships. This intuition may sound naive, but it is fun-
damental because a wrong similarity relationship may spread over the whole graph after
the transitive closure happening in the final disambiguation phase. Wrong similarity re-
lationships may be a potentially source of error and are referred as “bridges”, as they
may have the side effect of linking two distinct groups of duplicates, forming a unique
wrong group. Starting from this intuition, the application of GNN-based method had
the objective of intervening on the correction of the “bridges” intervening in two dif-
ferent stages: (i) when they are drawn because the disambiguation algorithm caught an
equivalence between two authors, and (ii) when they were not caught by the first stage
and have been used by the transitive closure for the creation of groups of duplicates.

Both GNN architectures feature a similar overall accuracy of around 90%. Their
outcome can be used to mark similarity relationships and groups of duplicates with a
“quality score” which helps in two ways:

• It can be used by the users to immediately establish the reliability of the informa-
tion, e.g., when the data produced is indexed and shown in a web portal;

• It can be used by the developers to immediately point out wrong results produced
by the disambiguation algorithm to optimize the decision tree and to correct and
fine-tune the result.

86



i
i

“output” — 2024/4/24 — 20:08 — page 87 — #106 i
i

i
i

i
i

6.2. Discussion

In both cases, the quality score can be used to establish an in/out condition em-
ploying an acceptance threshold. For the sake of the experiments in this thesis, such a
threshold has been set to 0.5 for both GNN architectures (i.e., similarity relationships
and groups of duplicates are labeled as “wrong” when their score is lower than 0.5,
while are labeled as “correct” when their score is greater than 0.5). A deeper analy-
sis can be done by varying such threshold to obtain different results based on the use
case, i.e., it could be possible to set a higher threshold when the disambiguation aims
to have high precision and a low recall, while a lower threshold when the disambigua-
tion aims to have a high recall and a low precision. As for the GNN architectures, in
one case the approach identifies low-quality similarity relationships to be regarded as
“bridges”, which can be pruned off to avoid the fusion of otherwise distinct groups of
nodes. In the other case, the approach identifies low-quality groups of duplicates that
can be invalidated and removed from the disambiguated graph.

The two approaches guarantee an increment in precision, to be appropriately traded
off with recall based on the scenario at hand. On this matter, the effect of “fixing”
the outcome via post-disambiguation evaluation, allows for less strict disambiguation
configurations and therefore increases the potential of recall.

The performances of the GNN architectures are not directly comparable to any other
architecture of the literature as emerged that the use case of the thesis was not studied
in other research. To measure the benefits that such architectures may bring to the Ope-
nAIRE use case, a custom dataset has been created by using the FDup framework. In
this context, it is important to make some considerations on the dataset. Usually, a dis-
ambiguation process ends up with a series of groups of different sizes: smaller groups
are the most probable while bigger groups are less likely. Conversely, the number of
wrong groups among bigger groups is higher because finding bridges on a more exten-
sive set of nodes is easier. The dataset created for this research perfectly reflects the
environment described above, as the numbers of groups of duplicates suggest a coher-
ent distribution among wrong and correct groups. In fact, when the groups are small
(i.e., 3 authors) the number of correct groups almost doubles the number of wrong
groups (i.e., 12, 292 vs 6, 699). On the other side, when the groups are big (i.e., more
than 10 authors) the number of wrong groups is significantly higher than the number
of correct groups (1, 277 vs 6, 644). It is important to mention that the GNN architec-
tures presented in this thesis have been trained on a small portion of the graph, but they
are still applicable when the input dataset is larger. This is because in Graph Neural
Networks only neighboring nodes are exchanging information in the message-passing.
Therefore, it is sufficient to parallelize the training phase on different GPUs to train the
Neural Network over the whole graph to achieve the same results. In this context, it
is sufficient to apply graph partitioning techniques to properly divide the whole graph
into a set of independent smaller graphs to be distributed among different machines to
make the training process feasible and faster.

Evaluation of similarity relationships

The analysis of the performances of the GNN architecture for the evaluation of simi-
larity relationships has been made by measuring the most popular metrics for a binary
classification problem. The overall accuracy of 88.44% guarantees a good performance
in identifying potentially wrong similarity relationships, while the balanced accuracy

87



i
i

“output” — 2024/4/24 — 20:08 — page 88 — #107 i
i

i
i

i
i

Chapter 6. Discussion and conclusions

of 88.28% almost equating the standard accuracy suggests that the GNN is able to eval-
uate both classes of prediction. The relatively low values for False Positive Rate and
False Negative Rate (i.e., 9.88% and 13.56% respectively), suggests that the risk of
pruning correct similarity relationships is not high, as well as the risk of not pruning
“bridges”. In order to show the potential of the approach, it may be useful to present
some examples of similarity relationships and how they have been evaluated by the
GNN architecture. Figure 6.2 reports some examples of similarity relationships drawn
by the disambiguation algorithm and positively evaluated by the GNN. The pairs of
authors have the same ORCID and the same full name, and the disambiguation algo-
rithm correctly identified them as equals because the two author instances have a high
number of co-authors and have been extracted from a paper of the same research field.

Figure 6.2: Example of correct similarity relationships as derived by the GNN.

On the other hand, Figure 6.3 reports some examples of similarity relationships
drawn by the disambiguation algorithm which have been negatively evaluated by the
GNN. As the name of the author may suggest, it is immediately notable that the two
instances have been wrongly identified as equal for the same reasons as the case above.

This result becomes of fundamental importance when the authors do have not a well-
formed full name (i.e., with name and surname) and the correctness of the similarity
relationships is not immediately derivable by checking on the similarity of the names.
Negatively evaluated similarity relationships are very likely to be “bridges” between
two distinct groups of duplicates, therefore they can be cut out before the transitive
closure in order to increase the quality of the disambiguation result.

In the end, it is important to mention that such an approach may be used also when
the entities to be disambiguated are not author, it is sufficient to create meaningful
homogeneous graphs to be given as input to the GNN in the training process. For
example, to turn the approach into a publication similarity relationships evaluation it is
possible to provide homogeneous graphs describing when the publications are produced
by an author in the same organization, when publications share topics keywords, and

88



i
i

“output” — 2024/4/24 — 20:08 — page 89 — #108 i
i

i
i

i
i

6.2. Discussion

Figure 6.3: Example of wrong similarity relationships as derived by the GNN.

when publications have been funded by the same project.

Evaluation of groups of duplicates

Similarly to the previous architecture, the analysis of the performances of the GNN
architecture for the evaluation of groups of duplicates has been made by measuring
the most popular metrics for a binary classification problem. The metrics measured in
the preliminary experiments for each tested model architecture showed that the main
lack of base approach was the misalignment of the accuracies on groups of different
sizes. In the case of the accuracy, there was a difference of approximately 15% between
smaller and bigger groups. Smaller groups tend to bring down the whole accuracy
because the information of the first layers is lost as the other layers of the network
process the input. Adding the LSTM at the end of the network allows for overcoming
this limitation as it considers meaningful information coming from previous processing
steps when needed. The results of the final model with the LSTM show a balanced
accuracy between smaller groups, leading to a higher average accuracy among all the
groups in the dataset. The addition of such a component decreased the difference of
the accuracies among small and big groups to less than 8%, remaining stable between
groups with 3 authors and groups with 4 to 10 authors.

It is important to notice that the accuracy of 96.25% of groups with more than 10
entities is very promising, as such groups are the most difficult to be individuated. The
percentages of True Positives, True Negatives, False Positives, and False Negatives fit
with the use case, as in this kind of activities is important not to have False Negatives
which tend to bring the quality of the data to a lower level. For the case of False Positive
Rate (FPR) and False Negative Rate (FNR) it may be worthy to provide some additional
considerations. The FNR ranging from 4.94% for smaller groups to 11.35% for bigger
groups suggests that the number of invalidated correct groups of duplicates is under
control in the final disambiguation result, therefore the outcome would not lose an high

89



i
i

“output” — 2024/4/24 — 20:08 — page 90 — #109 i
i

i
i

i
i

Chapter 6. Discussion and conclusions

number of correct information. On the other side, the FPR of 2.18% for big groups
suggests that the number of wrong groups of duplicates in the final disambiguation
result is very close to 0, as they are mostly invalidated. For what concerns smaller
groups, the high values of 14.01% and 23.24% of FPR is destined to decrease in the real
case scenario, where such groups of duplicates are rare. Nonetheless, the evaluation of
similarity relationships and their subsequent pruning before the transitive closure would
further mitigate this number.

In the end, it is important to mention that the approach is meant to work also for
other types of entities since the correctness of a group depends on attributes of the
same nature (e.g., titles when the deduplication is performed over publications, legal
names when the deduplication is performed over organizations). The “bridge” problem
does not depend on the entity type being disambiguated but on the structure of the
traditional disambiguation workflow formed by entity blocking, similarity matches, and
disambiguation stages. To turn the approach into a general purpose, it is sufficient to
act on the feature type used to feed the GNN in a way that describes the entity attribute
responsible for the equivalence of a pair of entities. The initial ground truth to train the
GNN can be created by performing the deduplication on entities with identifiers (e.g.,
ORCID) to be used for the labeling of groups. Once the network has been trained over
the ground truth, it can be used to evaluate the correctness of groups even when they do
not contain entities with an identifier.

Accuracy can be further increased by including in the encodings entity attributes
used by the deduplication algorithm in charge of performing the pair-wise comparisons,
as experiments suggested that the source of errors lies in poorly described fields.

6.3 Future works

Many additional improvements are still possible in the scenario of the AND in Schol-
arly Knowledge Graphs to further enhance both efficiency and effectiveness.

The FDup framework can be further extended to provide support for the persistent
identification of groups of duplicates, which tend to have a different identifier every
time the disambiguation process is executed. This is because the generation of the
identifier of the group is always done from scratch, and it does not take into account
the results of past disambiguation runs. To enhance this aspect, an incremental disam-
biguation that uses correct results from previous runs to feed new disambiguation runs
may be used to provide additional similarity relationships making the groups of dupli-
cates more stable. The same objective can be achieved by relying on user interaction,
which can include their suggestions to catch equivalences impossible to be captured by
an automatic process.

Also, GNN techniques can be further explored to empower the other stages of the
disambiguation process. For example, the Last Name First Initial method to extract
clustering keys from author nodes is effective but still has some drawbacks which are
not able to guarantee that all the problems will be solved. When author names are not
well-formed and contain typos or transliterations, the LNFI key would not put them
in the same block and the disambiguation process would never identify them as du-
plicates since they will never be compared. To this aim, techniques of representation
learning can be exploited to learn how to encode authors in N-dimensional vectors to

90



i
i

“output” — 2024/4/24 — 20:08 — page 91 — #110 i
i

i
i

i
i

6.3. Future works

be used as clustering keys after an indexing operation. The idea behind this approach is
the optimization of the blocking stage by getting rid of sliding windows and blocks in
favor of a “sliding sphere”, which scans the vector space and identifies groups of poten-
tially equivalent authors by collecting the “k” nearest neighbors of each author. Such
neighbors will be consequently pair-wise compared to draw similarity relationships to
be used for the identification of groups of duplicates. This process may give benefits to
the recall of the disambiguation results because it can capture equivalences even when
the clustering key used for the blocking is not the same. One fundamental aspect that
will be explored in the future is the scalability of the GNNs. The architectures pre-
sented in the thesis have only been tested on a small portion of the graph in order to
have a better efficiency in performing the experiment and to check the quality of the
approaches in a controlled environment, where nodes are labelled and models can be
trained in a supervised way. Nonetheless, GNN characteristics allow to define a model
also for the full graph, that requires an higher computational power and the definition
of techniques involving node sampling and graph partitioning. The former is necessary
to optimize memory consumption by choosing which node in the neighborhood has to
be part of the message-passing; the latter is necessary to parallelize the training process
making it feasible and saving its computation time.

The analysis of the performances of the GNN architectures misses an important
point: the comparison with the accuracies of the methods in the literature. As already
said, the methods presented in the thesis are not directly comparable to any of the meth-
ods in the literature, as the approach of evaluating the quality of similarity relationships
and of groups of duplicates has not been explored. The solution to have a measure
on how the work of the thesis performs with respect to the state-of-the-art is to apply
the methods in the thesis by using a popular benchmark dataset for AND of the liter-
ature. Therefore, one of the future directions of the research in the thesis will consist
in performing AND using the FDup framework on a benchmark dataset to compare
the accuracy of the state-of-the-art with the FDup accuracy. The outcome of FDup is
intended to be consequently processed by the GNN for the evaluation of similarity re-
lationships and the evaluation of groups of duplicates to measure the gain in terms of
precision and recall when wrong relationships and groups identified by the GNN are
pruned. The analysis can go deeper if this measure is evaluated varying the threshold
on the final score.

91



i
i

“output” — 2024/4/24 — 20:08 — page 92 — #111 i
i

i
i

i
i

Bibliography

[1] Peter Suber. Open access. The MIT Press, 2012.

[2] Matthias Scheffler, Martin Aeschlimann, Martin Albrecht, Tristan Bereau, Hans-Joachim Bungartz, Claudia
Felser, Mark Greiner, Axel Groß, Christoph T Koch, Kurt Kremer, et al. Fair data enabling new horizons for
materials research. Nature, 604(7907):635–642, 2022.

[3] Alastair Dunning, Madeleine De Smaele, and Jasmin Böhmer. Are the fair data principles fair? International
Journal of digital curation, 12(2):177–195, 1970.

[4] Bruce Perens et al. The open source definition. Open sources: voices from the open source revolution, 1:171–
188, 1999.

[5] Shilpa Verma, Rajesh Bhatia, Sandeep Harit, and Sanjay Batish. Scholarly knowledge graphs through struc-
turing scholarly communication: a review. Complex & Intelligent Systems, 9(1):1059–1095, 2023.

[6] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’amato, Gerard De Melo, Claudio Gutierrez, Sab-
rina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo,
Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, and Antoine
Zimmermann. Knowledge graphs. ACM Comput. Surv., 54(4), jul 2021.

[7] Ciyuan Peng, Feng Xia, Mehdi Naseriparsa, and Francesco Osborne. Knowledge graphs: Opportunities and
challenges, 2023.

[8] Mohamad Yaser Jaradeh, Allard Oelen, Kheir Eddine Farfar, Manuel Prinz, Jennifer D’Souza, Gábor Kismi-
hók, Markus Stocker, and Sören Auer. Open research knowledge graph: Next generation infrastructure for
semantic scholarly knowledge. In Proceedings of the 10th International Conference on Knowledge Capture,
K-CAP ’19, page 243–246, New York, NY, USA, 2019. Association for Computing Machinery.

[9] Danilo Dessì, Francesco Osborne, Diego Reforgiato Recupero, Davide Buscaldi, Enrico Motta, and Harald
Sack. Ai-kg: An automatically generated knowledge graph of artificial intelligence. In The Semantic Web –
ISWC 2020: 19th International Semantic Web Conference, Athens, Greece, November 2–6, 2020, Proceedings,
Part II, page 127–143, Berlin, Heidelberg, 2020. Springer-Verlag.

[10] Rita Vine. Google scholar. Journal of the Medical Library Association, 94(1):97, 2006.

[11] Jason Priem, Heather Piwowar, and Richard Orr. Openalex: A fully-open index of scholarly works, authors,
venues, institutions, and concepts, 2022.

[12] Semantic Scholar. A free, ai-powered research tool for scientific literature. Retrieved September, 3:2021, 2015.

[13] Paolo Manghi, Claudio Atzori, Alessia Bardi, Jochen Schirrwagen, Harry Dimitropoulos, Sandro La Bruzzo,
Yannis Foufoulas, Aenne Löhden, Amelie Bäcker, Andrea Mannocci, Marek Horst, Miriam Baglioni, Andreas
Czerniak, Katerina Kiatropoulou, Argiro Kokogiannaki, Michele Bonis, Michele Artini, Enrico Ottonello,
Antonis Lempesis, and Friedrich Summann. Openaire research graph dump, 12 2019.

[14] Silvio Peroni and David Shotton. OpenCitations, an infrastructure organization for open scholarship.
Quantitative Science Studies, 1(1):428–444, February 2020. _eprint: https://direct.mit.edu/qss/article-
pdf/1/1/428/1760920/qss_a_00023.pdf.

92



i
i

“output” — 2024/4/24 — 20:08 — page 93 — #112 i
i

i
i

i
i

Bibliography

[15] Michael Färber, David Lamprecht, Johan Krause, Linn Aung, and Peter Haase. Semopenalex: The scientific
landscape in 26 billion rdf triples. In Terry R. Payne, Valentina Presutti, Guilin Qi, María Poveda-Villalón,
Giorgos Stoilos, Laura Hollink, Zoi Kaoudi, Gong Cheng, and Juanzi Li, editors, The Semantic Web – ISWC
2023, pages 94–112, Cham, 2023. Springer Nature Switzerland.

[16] Simone Angioni, Angelo Salatino, Francesco Osborne, Diego Reforgiato Recupero, and Enrico Motta. AIDA:
A knowledge graph about research dynamics in academia and industry. Quantitative Science Studies,
2(4):1356–1398, 12 2021.

[17] Danilo Dessí, Francesco Osborne, Diego Reforgiato Recupero, Davide Buscaldi, and Enrico Motta. Cs-kg:
A large-scale knowledge graph ofnbsp;research entities andnbsp;claims innbsp;computer science. In The Se-
mantic Web – ISWC 2022: 21st International Semantic Web Conference, Virtual Event, October 23–27, 2022,
Proceedings, page 678–696, Berlin, Heidelberg, 2022. Springer-Verlag.

[18] Tobias Kuhn, Albert Meroño-Peñuela, Alexander Malic, Jorrit H. Poelen, Allen H. Hurlbert, Emilio Cen-
teno, Laura I. Furlong, Núria Queralt-Rosinach, Christine Chichester, Juan M. Banda, Egon L. Willighagen,
Friederike Ehrhart, Chris T. A. Evelo, Tareq B. Malas, and Michel Dumontier. Nanopublications: A growing
resource of provenance-centric scientific linked data. CoRR, abs/1809.06532, 2018.

[19] David Schindler, Benjamin Zapilko, and Frank Krüger. Investigating software usage in the social sciences: A
knowledge graph approach. CoRR, abs/2003.10715, 2020.

[20] Huaiyu Wan, Yutao Zhang, Jing Zhang, and Jie Tang. AMiner: Search and Mining of Academic Social
Networks. Data Intelligence, 1(1):58–76, 03 2019.

[21] Petr Knoth and Zdenek Zdrahal. Core: three access levels to underpin open access. D-Lib Magazine, 18(11/12),
2012.

[22] Zhi-Hua Zhou. Machine learning. Springer Nature, 2021.

[23] Michele De Bonis, Paolo Manghi, and Claudio Atzori. Fdup: a framework for general-purpose and efficient
entity deduplication of record collections. PeerJ Computer Science, 8:e1058, 09 2022.

[24] Michele De Bonis, Fabrizio Falchi, and Paolo Manghi. Graph-based methods for author name disambiguation:
a survey. PeerJ Computer Science, 9:e1536, 2023.

[25] Michele De Bonis, Filippo Minutella, Fabrizio Falchi, and Paolo Manghi. A graph neural network approach
for evaluating correctness of groups of duplicates. In International Conference on Theory and Practice of
Digital Libraries, pages 207–219. Springer, 2023.

[26] Markus Nentwig, Michael Hartung, Axel-Cyrille Ngonga Ngomo, and Erhard Rahm. A survey of current link
discovery frameworks. Semantic Web, 8(3):419–436, 2017.

[27] Anestis Sitas and Sarantos Kapidakis. Duplicate detection algorithms of bibliographic descriptions. Library
Hi Tech, 26, 06 2008.

[28] Erhard Rahm and Eric Peukert. Large scale entity resolution. In Sherif Sakr and Albert Y. Zomaya, editors,
Encyclopedia of Big Data Technologies. Springer, 2019.

[29] Jerome Saltzer and Jeremy Hylton. Identifying and merging related bibliographic records. 08 2002.

[30] Gregory Tauer, Ketan Date, Rakesh Nagi, and Moises Sudit. An incremental graph-partitioning algorithm for
entity resolution. Information Fusion, 46:171–183, 2019.

[31] C. Atzori, P. Manghi, and A. Bardi. Gdup: De-duplication of scholarly communication big graphs. In 2018
IEEE/ACM 5th International Conference on Big Data Computing Applications and Technologies (BDCAT),
pages 142–151, Dec 2018.

[32] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas. Blocking and filtering tech-
niques for entity resolution: A survey, 2019.

[33] Otmane Azeroual, Meena Jha, Anastasija Nikiforova, Kewei Sha, Mohammad Alsmirat, and Sanjay Jha. A
record linkage-based data deduplication framework with datacleaner extension. Multimodal Technologies and
Interaction, 6(4), 2022.

[34] Donald E. Brown and Stephen Hagen. Data association methods with applications to law enforcement. Deci-
sion Support Systems, 34(4):369–378, 2003.

[35] Gang Wang, Hsinchun Chen, and Homa Atabakhsh. Automatically detecting deceptive criminal identities.
Commun. ACM, 47(3):70–76, mar 2004.

[36] Kleanthis Vichos, Michele De Bonis, Ilias Kanellos, Serafeim Chatzopoulos, Claudio Atzori, Natalia Manola,
Paolo Manghi, and Thanasis Vergoulis. A preliminary assessment of the article deduplication algorithm used
for the openaire research graph, 2022.

93



i
i

“output” — 2024/4/24 — 20:08 — page 94 — #113 i
i

i
i

i
i

Bibliography

[37] Miriam Baglioni, Andrea Mannocci, Gina Pavone, Michele De Bonis, and Paolo Manghi. (semi)automated
disambiguation of scholarly repositories, 2023.

[38] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural net-
works for graph classification. CoRR, abs/1912.09893, 2019.

[39] Koji Tsuda and Hiroto Saigo. Graph Classification, pages 337–363. Springer US, Boston, MA, 2010.

[40] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu.
Do transformers really perform badly for graph representation? Advances in Neural Information Processing
Systems, 34:28877–28888, 2021.

[41] Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and Alexander B Wiltschko. A gentle introduction
to graph neural networks. Distill, 6(9):e33, 2021.

[42] Ameya Daigavane, Balaraman Ravindran, and Gaurav Aggarwal. Understanding convolutions on graphs.
Distill, 6(9):e32, 2021.

[43] Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal of anthropo-
logical research, 33(4):452–473, 1977.

[44] Shunxin Xiao, Shiping Wang, Yuanfei Dai, and Wenzhong Guo. Graph neural networks in node classification:
survey and evaluation. Machine Vision and Applications, 33(1):4, 2022.

[45] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translating
embeddings for modeling multi-relational data. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013.

[46] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex embed-
dings for simple link prediction. CoRR, abs/1606.06357, 2016.

[47] Mojtaba Nayyeri, Gokce Muge Cil, Sahar Vahdati, Francesco Osborne, Mahfuzur Rahman, Simone An-
gioni, Angelo Salatino, Diego Reforgiato Recupero, Nadezhda Vassilyeva, Enrico Motta, and Jens Lehmann.
Trans4e: Link prediction on scholarly knowledge graphs. Neurocomputing, 461:530–542, 2021.

[48] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural net-
works for graph classification, 2022.

[49] S. Elliott. Survey of author name disambiguation: 2004 to 2010. Library Philosophy and Practice, 2010,
2010, 11 2010.

[50] Anderson A. Ferreira, Marcos André Gonçalves, and Alberto H.F. Laender. A brief survey of automatic
methods for author name disambiguation. 41(2), 2012.

[51] Ijaz Hussain and Sohail Asghar. A survey of author name disambiguation techniques: 2010–2016. The
Knowledge Engineering Review, 32:e22, 2017.

[52] Muhammad Shoaib, Ali Daud, and Tehmina Amjad. Author name disambiguation in bibliographic databases:
A survey, 2020.

[53] Debarshi Kumar Sanyal, Plaban Kumar Bhowmick, and Partha Pratim Das. A review of author name disam-
biguation techniques for the pubmed bibliographic database. Journal of Information Science, 47(2):227–254,
2021.

[54] Fernando Marcos Wittmann. Optimization applied to residential non-intrusive load monitoring= Otimização
aplicada ao monitoramento não intrusivo de cargas elétricas residenciais. PhD thesis, [sn], 2017.

[55] Michele De Bonis. List of articles resulting from the Google Scholar search "graph based author name disam-
biguation" published after 1/1/2021, July 2023.

[56] Cristian Santini, Genet Asefa Gesese, Silvio Peroni, Aldo Gangemi, Harald Sack, and Mehwish Alam. A
knowledge graph embeddings based approach for author name disambiguation using literals, 2022.

[57] Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms, 2011.

[58] Ziyue Qiao, Yi Du, Yanjie Fu, Pengfei Wang, and Yuanchun Zhou. Unsupervised author disambiguation using
heterogeneous graph convolutional network embedding. In IEEE International Conference on Big Data, 2019,
pages 910–919, 12 2019.

[59] Bo Xiong, Peng Bao, and Yilin Wu. Learning semantic and relationship joint embedding for author name
disambiguation. Neural Computing and Applications, 33, 03 2021.

94



i
i

“output” — 2024/4/24 — 20:08 — page 95 — #114 i
i

i
i

i
i

Bibliography

[60] Zhiqiang Zhang, Chunqi Wu, Zhao Li, Juanjuan Peng, Haiyan Wu, Haiyu Song, Shengchun Deng, and Biao
Wang. Author name disambiguation using multiple graph attention networks. In 2021 International Joint
Conference on Neural Networks (IJCNN), pages 1–8, 2021.

[61] Andreas Rehs. A supervised machine learning approach to author disambiguation in the web of science. J.
Informetrics, 15:101166, 2021.

[62] Ya Chen, Hongliang Yuan, Tingting Liu, and Nan Ding. Name disambiguation based on graph convolutional
network. Scientific Programming, 2021:1–11, 05 2021.

[63] Helena Mihaljević and Lucía Santamaría. Disambiguation of author entities in ADS using supervised learning
and graph theory methods. Scientometrics, 126(5):3893–3917, May 2021.

[64] Yibo Chen, Zhiyi Jiang, Jianliang Gao, Hongliang Du, Liping Gao, and Zhao Li. A supervised and distributed
framework for cold-start author disambiguation in large-scale publications. Neural Computing and Applica-
tions, pages 1–16, 03 2021.

[65] Qian Zhou, Wei Chen, Weiqing Wang, Jiajie Xu, and Lei Zhao. Multiple features driven author name disam-
biguation. In 2021 IEEE International Conference on Web Services (ICWS), pages 506–515, 2021.

[66] Xin Zheng, Pengyu Zhang, Yanjie Cui, Rong Du, and Yong Zhang. Dual-channel heterogeneous graph network
for author name disambiguation. Information, 12(9):383, Sep 2021.

[67] Km Pooja, Samrat Mondal, and Joydeep Chandra. Exploiting higher order multi-dimensional relationships
with self-attention for author name disambiguation. ACM Trans. Knowl. Discov. Data, 16(5), mar 2022.

[68] Wenjin Xie, Siyuan Liu, Xiaomeng Wang, and Tao Jia. Author name disambiguation via heterogeneous net-
work embedding from structural and semantic perspectives. In 2022 IEEE 34th International Conference on
Tools with Artificial Intelligence (ICTAI), pages 245–250, 2022.

[69] Johanna McEntyre and David Lipman. Pubmed: bridging the information gap. Cmaj, 164(9):1317–1319,
2001.

[70] Gerry McKiernan. arxiv. org: the los alamos national laboratory e-print server. International Journal on Grey
Literature, 1(3):127–138, 2000.

[71] Jatinder Singh. Figshare. Journal of Pharmacology and Pharmacotherapeutics, 2(2):138–138, 2011.

[72] Ginny Hendricks, Dominika Tkaczyk, Jennifer Lin, and Patricia Feeney. Crossref: The sustainable source of
community-owned scholarly metadata. Quantitative Science Studies, 1(1):414–427, 2020.

[73] Jan Brase. Datacite-a global registration agency for research data. In 2009 fourth international conference on
cooperation and promotion of information resources in science and technology, pages 257–261. IEEE, 2009.

[74] Paolo Manghi, Michele Artini, Claudio Atzori, Alessia Bardi, Andrea Mannocci, Sandro La Bruzzo, Leonardo
Candela, Donatella Castelli, and Pasquale Pagano. The d-net software toolkit: A framework for the realization,
maintenance, and operation of aggregative infrastructures. Program, 48:null, 08 2014.

[75] Claudio Atzori, Alessia Bardi, Paolo Manghi, and Andrea Mannocci. The openaire workflows for data man-
agement. In Costantino Grana and Lorenzo Baraldi, editors, Digital Libraries and Archives, pages 95–107,
Cham, 2017. Springer International Publishing.

[76] Miriam Baglioni, Andrea Mannocci, Gina Pavone, Michele De Bonis, and Paolo Manghi. (semi)automated
disambiguation of scholarly repositories, 2023.

[77] Kleanthis Vichos, Michele De Bonis, Ilias Kanellos, Serafeim Chatzopoulos, Claudio Atzori, Natalia Manola,
Paolo Manghi, and Thanasis Vergoulis. A preliminary assessment of the article deduplication algorithm used
for the openaire research graph. In Italian Research Conference on Digital Library Management Systems,
2022.

[78] Paolo Manghi, Claudio Atzori, Michele De Bonis, and Alessia Bardi. Entity deduplication in big data graphs
for scholarly communication. Data Technologies and Applications, ahead-of-print, 06 2020.

[79] M. De Bonis, C. Atzori, and S. La Bruzzo. miconis/fdup: Fdup v4.1.10, 10.5281/zenodo.6011544, February
2022.

[80] Paolo Manghi, Claudio Atzori, Alessia Bardi, Miriam Baglioni, Jochen Schirrwagen, Harry Dimitropoulos,
Sandro La Bruzzo, Ioannis Foufoulas, Aenne Löhden, Amelie Bäcker, Andrea Mannocci, Marek Horst,
Przemyslaw Jacewicz, Andreas Czerniak, Katerina Kiatropoulou, Argiro Kokogiannaki, Michele De Bo-
nis, Michele Artini, Enrico Ottonello, Antonis Lempesis, Alexandros Ioannidis, Natalia Manola, and Pedro
Principe. Openaire research graph dump, 10.5281/zenodo.4707307, April 2021.

[81] Michele De Bonis. 10mi openaire publications dump, 10.5281/zenodo.5347803, August 2021.

95



i
i

“output” — 2024/4/24 — 20:08 — page 96 — #115 i
i

i
i

i
i

Bibliography

[82] KR1442 Chowdhary and KR Chowdhary. Natural language processing. Fundamentals of artificial intelligence,
pages 603–649, 2020.

[83] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chapman. Natural language processing: an
introduction. Journal of the American Medical Informatics Association, 18(5):544–551, 2011.

[84] Karen Sparck Jones. Natural language processing: a historical review. Current issues in computational lin-
guistics: in honour of Don Walker, pages 3–16, 1994.

[85] Wisam A Qader, Musa M Ameen, and Bilal I Ahmed. An overview of bag of words; importance, implementa-
tion, applications, and challenges. In 2019 international engineering conference (IEC), pages 200–204. IEEE,
2019.

[86] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine Learning
research, 3(Jan):993–1022, 2003.

[87] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019.

[88] Zellig S. Harris. Distributional structure. WORD, 10(2-3):146–162, 1954.

[89] Mona L Scott and MONA L SCOTT. Dewey decimal classification. Libraries Unlimited, 1998.

[90] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805, 2018.

[91] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR, abs/1810.04805, 2018.

[92] Michele De Bonis. Deduplication groups evaluator data benchmark, 10.5281/zenodo.7997279, June 2023.

[93] Michele De Bonis. Similarity relationships evaluator data benchmark, January 2024.

[94] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. CoRR,
abs/1706.02216, 2017.

[95] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[96] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[97] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

[98] Yaoshu Wang, Jianbin Qin, and Wei Wang. Efficient approximate entity matching using jaro-winkler distance.
In International conference on web information systems engineering, pages 231–239. Springer, 2017.

[99] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:1735–80, 12
1997.

96


	List of Abbreviations
	Introduction
	Scholarly Knowledge Graphs as maps of Open Science
	and challenges in skgs
	Efficiency
	Effectiveness

	Research contributions
	Efficiency
	Effectiveness

	Thesis outline

	Background
	Disambiguation methods
	Disambiguation quality evaluation methods
	gnns
	and methods
	Detailed review of graph-based and methods
	Taxonomy and general workflow of graph-based and methods
	Main lacks of graph-based and


	The motivating scenario
	The OpenAIRE Graph
	Graph data model
	Node types
	Edge types

	Graph provision workflow
	Aggregation
	Enrichment
	Disambiguation
	Indexing
	Evaluation

	and in the OpenAIRE Graph

	Enhancing efficiency via computational complexity reduction
	fdup architecture
	Collection import
	Candidate identification
	Duplicate identification: T-match function
	Duplicates Grouping

	Software implementation
	The configuration file
	Core modules
	Libraries
	Disambiguation workflow

	Efficiency evaluation
	Experiment settings and methodology
	Experimental results


	Enhancing effectiveness via gnns
	Frameworks and Tools
	Benchmark preparation
	Research publications collection
	Authors extraction: creation of raw author nodes
	Heterogeneous subgraph creation
	and using the FDup framework

	Evaluation of similarity relationships
	Experimental results

	Evaluation of groups of duplicates
	Experimental results


	Discussion and conclusions
	Summary of findings
	Discussion
	Enhancing efficiency via computational complexity reduction
	Enhancing effectiveness via gnns

	Future works

	Bibliography

