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Section 1. Structural characterization 

Table S1. Crystallinity degree and relative content of electroactive phases in NBT-BT/PVDF 

composite films before and after poling. 

Sample Crystallinity 

degree (%) 

FEA 

(%) 

F(β) 

(%) 

F(γ) 

(%) 

FEA (%) 

After 

poling 

F(β) (%) 

After 

poling 

F(γ) (%) 

After 

poling 

NBT-BT/PVDF 

30 

49 63 0 63 69.4 27.4 42 

NBT-BT/PVDF 

35 

49 53 17 36 62.4 23.7 38.6 

NBT-BT/PVDF 

40 

50 53 13 40 55.5 25.5 30 

NBT-BT/PVDF 

50 

47 42 42 0 54.9 33.9 21 

 

Table S2. Results calculated by image analysis of the PVDF-BNBT composites for the arithmetic 

mean of all free-path spacing values, Xm, the standard deviation of the all free-path spacing values, 

s, and the homogeneity level, D. 

Sample Xm (μm) s (μm) D index 

NBT-BT/PVDF 30 8.112 2.638 0.325 

NBT-BT/PVDF 35 5.6891 1.5276 0.269 

NBT-BT/PVDF 40 3.6067 0.5706 0.158 

NBT-BT/PVDF 50 2.3172 0.3800 0.163 

 

 

 



Section S2. Measurement of piezoelectric resonance 

Complex impedance response of the samples in the frequency range of radial resonance (100-200 

kHz) are shown in Fig.S1 a) for composite samples with different NBT-BT content, as specified on 

the graphs. Thickness resonance curves (impedance modulus and phase) for the sample with 50 

vol.% content of ceramic filler are shown in Fig. S1 b). 

 

Figure S1. a) Impedance phase planar resonance spectra for composite samples with different 

NBT-BT content, as specified on the graphs; b) Thickness resonance (impedance modulus and 

phase) for the sample with 50 vol.% content of ceramic filler. 

 

The samples have the same radial dimension (about 5 mm) and slightly different thicknesses 

(around 100 m). The radial mode resonance varies between 140 kHz (for x = 30 vol.%.) to 175 

kHz (for x = 50 vol.%.). The thickness extension (TE) mode has a resonance at a frequency of 

11.86 MHz and it was evident only on the impedance spectra of the sample with x = 50 vol.%. 

Considering the sample thickness of about 110 μm, and by considering that the mechanically free 

sample has the thickness resonance at a frequency where the thickness is half of wavelength, a 

velocity of about 2630 m/s is found for the sample with x = 50 vol.%. For the same sample, the 

length extension (LE) velocity could be calculated from the radial resonance, however the 

procedure is much more complicated, because it requires consideration of the second harmonic of 



the radial resonance, which in our case could not be determined. However, we have used the 

Young’s modulus determined from flexural mechanical resonance measurements to calculate the 

length extension velocity, by using the formula V = (Y/ρ)1/2, where Y = 10.5 GPa and ρ = 3.8 103 

kg/m3. This gives a velocity of about 1660 m/s. The difference of the velocities for the LE and TE 

modes reflects the mechanical anisotropy of the films, which are much stiffer along the thickness 

than along the length.  

 

Section S3. Measurement of ferroelectric hysteresis loop 

For ferroelectric characterization a Precision Multiferroic Test System with High Voltage Interface-

Radiant Technologies, Inc. was employed up to 4000 V. The polarization curves were measured on 

virgin samples. 

P-E hysteresis loops of composites measured at room temperature, at 100 kV/cm and frequency of 

100 Hz, are presented in Figure S2.  

 

Figure S2. P-E hysteresis loops of composite NBT-BT/PVDF samples with different amount of 

ceramic filler. 

 

The hysteresis loops are not saturated, due to the difficulty to apply high electric fields, which 

ultimately lead to breakdown. Therefore the remnant polarization values of the films cannot be 



reliably obtained. However, it is evident that the increasing of the NBT-BT ferroelectric ceramic 

phase produces an increase of the remnant polarization. 

 

Section S4. Models for predicting the dielectric and piezoelectric properties of composites 

We recall here the main existent models for predicting the properties of random composites. 

Generally, random ceramic/PVDF composites can be approximated by an ensemble of spherical 

ceramic dielectric particles (with dielectric constant c) which are homogeneously distributed in the 

PVDF polymer matrix (with dielectric constant p). The volume fractions of the two components 

are xc and xp, respectively (xp + xc = 1). A model extensively used for calculating the permittivity of 

the mixture was proposed by Kerner [1]. In this approach the composite permittivity  is given by 

the relation: 
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where Ec and Ep are the average electric fields in ceramic and polymer components in the direction 

of the applied electric field, E0. Furthermore, in this expression Ep is taken to be E0 (approximation 

valid for c >>p). Ec, the field in a spherical ceramic particle, has been calculated to be [2] 

0)2/(3 EE cppc += . The relation obtained by substituting this expression in Eq. (1) has been 

widely used to calculate the composite permittivity, however it gives underestimated values. This 

comes from the following reason: in the model of dielectric filler particles dispersed in a continuous 

medium, when an electric field is applied to the composite, the dielectric particles are polarized by 

the applied electric field and every single particle can be seen as a dipole moment. This dipole 

influences the field locally in the surrounding medium. However, this is not relevant for very small 

volume fraction of filler. In this case the Kerner model would give results close to the experimental 

values. However, as xc is increased, interaction effects between the neighboring particles cannot be 

neglected. The model proposed in Ref. [3] by Jayasundere and Smith (J-S model) includes these 



interacting effects as variation of the dipole moment and, ultimately, to the particle internal field. It 

is thus shown that the interacting field inside the ceramic particle is  
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As can be seen from Eq. (2), the interacting field in a ceramic particle depends on the dielectric 

permittivities of the ceramic and the polymer surrounding medium, as well as on the ceramic 

volume fraction and the applied electric field.  

This interacting component adds to the field Ec to give the the total field inside the sphere 

0
int ),,(

2

3
ExEEE cpc

cp

p
cc

t
c 

+


=+=                 (3) 

where )2/()(31),,( cppcccpc xx +−+=  is a function of the ceramic and polymer 

dielectric permittivities, and of the ceramic volume fraction.  

By substituting the total field Ec
t for Ec in Kerner’s formula and using Ep = E0 for c >>p, 

Jayasundere and Smith obtain 

),,()]2/(3[

),,()]2/(3[
),,(

cpccppcp

cpccppccpp
cpc xxx

xxx
x

++

++
=                      (4) 

This equation converges to the correct values of the permittivity limits of the composite, that is 

p=  for xc = 0 and c=  for xp = 0. 

By considering the same model as for the dielectric permittivity of a composite with 0-3 

connectivity, an analytic expression has been developed in Ref. [4] for the calculation of the 

piezoelectric coefficient d33, with the assumptions that there is no applied electric field and the 

piezoelectric constant of the polymer is negligible. We briefly outline here the peculiar features of 

this model. When a stress  is applied to the composite film in the thickness direction (3), which is 

the polarization direction, the local average stress on the piezoelectric particle, c, generates, by 

piezoelectric effect, a polarization Pc on the ceramic particle surface given by c
c

c dP = 33 , where 

d33
c is the piezoelectric coefficient of the ceramic. This produces an electric field inside the ceramic 



particle cc
c

ccc dPE == // 33 . By using the interactive model between the polarized ceramic 

particles, as previously done for evaluating the dielectric constant of the composite, it is found that 

there is an interactive field inside the ceramic particle given by the expression 
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Thus the total field Ect inside the ceramic particle (due to piezoelectric effect and interactions) is 
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This is used to calculate the dielectric displacement D in the composite due to the applied stress , 

in the absence of an applied electric field, == 33dED , where E is the average electric field 

produced in the composite,  is the dielectric constant and d33 is the piezoelectric constant of the 

composite. By taking into account that there is no applied electric field, we have E = xc Ect, and 

using the Eq. (6) for Ect it is found that 
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Thus the piezoelectric constant d33 of the composite is found as 
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The local average stress c on the ceramic particles has been evaluated in Ref. [5] with the 

simplified assumptions on the properties of the constituent materials, which are considered isotropic 

and incompressible media. With these assumptions the factor c/ has been found to be: 
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and by introducing it in the expression above, the dependence of piezoelectric constant of the 

composite on the volume fraction of the ceramic phase is found to be 
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