
Applying theQuARS tool to detect variability
Alessandro Fantechi

Dipartimento di Ingegneria
dell’Informazione,

Università di Firenze
Firenze, Italy

alessandro.fantechi@unifi.it

Stefania Gnesi
Istituto di Scienza e Tecnologie
dell’Informazione “A.Faedo",

Consiglio Nazionale delle Ricerche,
ISTI-CNR
Pisa, Italy

stefania.gnesi@isti.cnr.it

Laura Semini
Dipartimento di Informatica,

Università di Pisa
Pisa, Italy

semini@di.unipi.it

ABSTRACT
In this demo paper we present how to use the QuARS tool to extract
variability information from requirements documents. The main
functionality of QuARS is to detect ambiguity by means of a Natural
Language (NL) analysis in requirements. In fact, ambiguity defects
that are found in a requirement document may be due to intentional
or unintentional references to issues that may be solved in different
ways, so making possible to envision a family of different products
starting from an ambiguous requirement document.
ACM Reference format:
Alessandro Fantechi, Stefania Gnesi, and Laura Semini. 2019. Applying the
QuARS tool to detect variability. In Proceedings of 23rd International Systems
and Software Product Line Conference, Paris, France, 9–13 September, 2019
(SPLC’19), 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
QuARS is a tool able to perform an analysis of Natural Language
(NL) requirements in a systematic and automatic way by means
of natural language processing techniques: the focus is on the de-
tection of ambiguity defects, according to the process depicted in
Figure 1, by identifying candidate defective words stored in dictio-
naries.

Figure 1: QuARS Process

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC’19, 9–13 September, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In [1–3] we have shown that ambiguity defects in requirements
can in some cases give an indication of possible variability, either in
design or in implementation choices or configurability aspects. In
fact the ambiguity defects that are found in a requirement document
may be due to intentional or unintentional references made in the
requirements to issues that may be solved in different ways: the
different implementations may give rise to a family of different
products, instead of just a single product. In [3] we proposed a first
classification of the forms of linguistic defects that indicate variation
points, and we described a possible mapping from ambiguity or
under-specification defects to fragments of feature models.

We therefore have used the analysis ability of QuARS to elicit
the potential variability hidden in a requirement document. The
process followed by QuARS for detecting potential variabilities is
described below:

• A NL requirement document is given in input to QuARS to
be analyzed according to its lexical and syntactical analysis
engines, in order for identifying ambiguities.

• The detected ambiguities are analyzed in order to distinguish
among false positives, real ambiguities, and variation points.

In this paper we illustrate as a demo how the above process is
applied to detect variability in NL requirements using a simple case
study.

2 RUNNING EXAMPLE
The case study used as running example is a (simplified) e-shop,
for which we consider the following requirements:

R1 The system shall enable a user to enter the search text on
the screen.

R2 The system shall display all the matching products based
on the search.

R3 The system possibly notifies with a pop-up the user when
no matching product is found on the search.

R4 The system shall allow a user to create his profile and set
his credentials.

R5 The system shall authenticate user credentials to enter the
profile.

R6 The system shall display the list of active and/or the list of
completed orders in the customer profile.

R7 The system shall maintain customer email information as
a required part of customer profile.

R8 The system shall send an order confirmation to the user
through email.

R9 The system shall allow a user to add and remove products
in the shopping cart.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SPLC’19, 9–13 September, 2019, Paris, France Alessandro Fantechi, Stefania Gnesi, and Laura Semini

R10 The system shall display various shipping methods.
R11 The order shall be shipped to the client address or, if the

“collect in-store” service is available, to an associated store.
R12 The system shall enable the user to select the shipping

method.
R13 The system may display the current tracking information

about the order.
R14 The system shall display the available payment methods.
R15 The system shall allow the user to select the payment

method for order.
R16 After delivery, the system may enable the users to enter

their reviews or ratings.
R17 In order to publish the feedback on the purchases, the

system needs to collect both reviews and ratings.
R18 The “collect in-store” service excludes the tracking infor-

mation service.

3 USING QUARS TO EXTRACT VARIABILITY
Looking at the set of requirements given in Sec.2 we can notice
that there are a number of ambiguity defects, that are related to
some words (the underlined ones) that introduce a possibility of
different interpretation. In the remaining part of the section we
will show the results of applying QuArs to this set of requirements
to automatically detect ambiguity, and how these defects relate to
variability and can be used to indicate variation points.

3.1 Vagueness
Vagueness means that the requirement contains words having no
uniquely quantifiable meaning and therefore admits borderline
cases, e.g., cases in which the truth value of the sentence cannot
be decided. As an example: the C code shall be clearly commented.
The QuARS Vagueness dictionary contains words like: adequate,
bad, clear, close, easy, far, fast, good, in front, near, recent, various,
significant, slow, strong, suitable, useful,

Running QuARS we find one vague requirement:

“Various” is a vague term, here indicating a variability about the
different shipping methods that can be implemented.

In general, a vague word abstracts from a set of instances, that
are considered as the “various” ones, and the process of require-
ment refinement will make these instances explicit. In terms of
features, vagueness results in the introduction of an abstract fea-
ture (Fig. 2(a)). Once instances will be made explicit, they will be
represented by sub-features, one for each instance.

(a) (b)

Figure 2: (a)-(b) Feature diagrams for vagueness and option-
ality

3.2 Optionality
Optionality occurswhen a requirement contains an optional part, i.e.
a part that can be considered or not: the system shall be.., possibly
without... Example of Optionality-revealing words are: possibly,
eventually, in case, if possible, if appropriate, if needed,

In our e-shop we find one requirements containing a term be-
longing to the optionality dictionary:

Optionality of a requirement is naturally expressed in a fea-
ture diagram with an optional feature. In the example, it has been
recognized that the pop-up notification is an optional feature, as
expressed by the fragment shown in Fig. 2(b).

3.3 Multiplicity
Lexical multiplicity means that the requirements does not refer
to a single object, but addresses a list of objects, typically using
disjunctions or conjunctions (or, and, and/or), like in .. opens doors
and windows...

In particular, a requirement with an or is not precise, since it
leaves several possibilities open, and hence different products com-
pliant to such requirement:

• implicitly exclusive or: the alternatives are mutually ex-
clusive. In this case, the corresponding features are declared
as “alternative”, with a partial diagram as the one used for
vagueness.

• weak or: all the alternatives are optional.
• logical ∨: at least one of the alternatives should be present,
but it is irrelevant which one.

Construct and/or is basically equivalent to the third interpreta-
tion of or, i.e. it requires that at least one of the alternatives should

Applying theQuARS tool to detect variability SPLC’19, 9–13 September, 2019, Paris, France

be present. The manual analysis can refine the interpretation to say
which one of the alternatives is mandatory, and the other optional.

An and, although recognized as a multiplicity, simply shows that
all alternatives are mandatory: hence it is not really a variability
indication, although it can be modelled with a feature diagram as
well.

Requirement R4, matches exactly the case described above, con-
junction of customer profile and credentials is represented by the
fragment in Fig. 3(c). On the contrary, R9 is a false positive. Includ-
ing and in the multiplicity dictionary or not is a debatable issue: on
the one side, it defines possible fragments of the feature diagram
–a feature with two or more mandatory subfeatures–, on the other
side, the analysis with QuARS may return many false positives.
However, since adding or removing a word from a dictionary takes
few seconds, the analyst can switch from one solution to the other.

The disjunction “rating or review” in R16 is represented by the
fragment in Fig. 3(b) in this case we used a weak or because of the
weakness “may" (see section 3.4).

In the case of R6, the analyst has resolved the variability telling
that the list of active orders should be mandatory, while the list of
completed orders can be considered optional (see Fig. 3(a)).

Finally, R11 defines the instances, “homeAddress” and “store”
needed to make concrete the abstract feature “shipping” in Sect. 3.1:
Their variability information is discussed in section 3.5. Require-
ment R17 is dealt with in section 3.6.

3.4 Weakness
Weakness occurs when the sentence contains a “weak” verb. A verb
that makes the sentence not imperative is considered weak (i.e.
can, could, may, ..). For instance “the initialization checksmay be
reported . . . ” is a weak sentence.

(a) (b)

(c)

Figure 3: (a)-(c) Feature diagrams for multiplicity

These two defective sentences clearly introduce an optionality,
represented in Fig. 4(a) and 3(b), respectively.

(a)

Figure 4: (a) Feature diagram for weakness

3.5 Variability
In [2], we also exploited the capability of QuARS to add dictionar-
ies for new indicators, namely variability related terms (if, where,
whether, when, choose, choice, implement, provide, available, feature,
range, select, configurable, configurate) and constraints identifiers
(see Sect. 3.6).

SPLC’19, 9–13 September, 2019, Paris, France Alessandro Fantechi, Stefania Gnesi, and Laura Semini

Figure 5: Feature model for eshop

R3 is a false positive. R11 and R14 are actual variabilities. R11
says that “ship to store” depends on the optional service “collect-to-
store”. Feature shipping is mandatory: at least a concrete subfeature
must be present in each product. The choice, in this case, is to define
“clientAddress” feature as mandatory, and “ship to store” optional,
as expressed in the fragment of Fig. 6(a).

R14 is recognized to be a variability, that can be expressed by
an or of the different payment methods that can be adopted for
the system (see Fig.6(b)). Different payment methods were not
specified in the original requirements, and have been expanded in
this example as payment by card or payment by cash.

Notice that in both cases above the word “available” indicates a
variability, but the nature of the variability is different because in
the first case it is found inside an “if” context.

3.6 Constraints
Additional cross-tree constraints that is requires, indicating that
the presence of one feature implies the presence of the other, and
excludes, indicating that no system may contain the two features
at the same time, may be detected looking at the occurrence of
constraint-revealing terms such as: expect, need, request, require,
excludes

In R17 the term “needs” appears to indicate that a “publishFeed-
back” is an optional feature and that a requires cross-constraint has
to be included in the model:

f eedback ⇒ review ∧ ratinдs

Requirement R18 adds another cross-constraint to the model due
to term “exclutes”:

store ⇒ ¬trackinд

(a) (b)

Figure 6: (a)-(b) Feature diagrams for variability indicators

Gluing together all the fragments extracted so far, we have built
the feature diagram in Figure 5.

REFERENCES
[1] A. Fantechi, A. Ferrari, S. Gnesi, and L. Semini. Hacking an ambiguity detection

tool to extract variation points: an experience report. In R. Capilla, M. Lochau, and
L. Fuentes, editors, Proceedings of the 12th International Workshop on Variability
Modelling of Software-Intensive Systems, VAMOS 2018, Madrid, Spain, February 7-9,
2018, pages 43–50. ACM, 2018.

[2] A. Fantechi, A. Ferrari, S. Gnesi, and L. Semini. Requirement engineering of
software product lines: Extracting variability using NLP. In G. Ruhe, W. Maalej,
and D. Amyot, editors, 26th IEEE International Requirements Engineering Conference,
RE 2018, Banff, AB, Canada, August 20-24, 2018, pages 418–423. IEEE Computer
Society, 2018.

[3] A. Fantechi, S. Gnesi, and L. Semini. Ambiguity defects as variation points in
requirements. In Proc. of the Eleventh International Workshop on Variability Mod-
elling of Software-intensive Systems, VAMOS ’17, pages 13–19, New York, NY, USA,
2017. ACM.

Applying theQuARS tool to detect variability SPLC’19, 9–13 September, 2019, Paris, France

A APPENDIX PART 1: HOW THE TOOLWILL
BE PRESENTED AS PART OF A MAIN
CONFERENCE SESSION

During the main conference session we will use slides, with the
following outline:

(1) we first present the tool, QuARS;
(2) we motivate the use of QuARS for eliciting variation points;
(3) we present the e-shop use case;
(4) we use the screenshots used in this paper to illustrate how

QuARS is used in practice.

B APPENDIX PART 2: HOW THE TOOLWILL
BE PRESENTED AT A DEMO BOOTH

During the demo we will run QuARS on the running example or on
any requirement document provided by the conference participants.
Documents must be:

• written in english;
• in .txt format.

Moreover, we can use other requirement documents, we have
experience with:

European Integrated Railway Radio Enhanced Network
The “Eirene” document has been issued by the GSM-R Func-
tional Group and it specifies the functional requirements
for a digital radio standard for the European railways. The
document includes 475 requirements.

Library The second document, “Library”, was prepared by the
Galecia Group, a company specialised in libraries and orga-
nizations supporting libraries. It describes the functional and
nonfunctional requirements for the System Administration
Module of the Integrated Library System of a urban library
system. It includes 94 requirements.

Blit which is a draft of the functional specification of the re-
quirements of a business project management tool, required
by a company for re-writing its core Laboratory Information
System to improve the performance. It includes 55 require-
ments.

ERTMS: train control system This document defines the func-
tional requirements for ERTMS/ETCS (European Rail Traffic
Management System / European Train Control System), is-
sued by the European Railway Agency in June 2007. The
document includes 96 requirements of a control system that
supports the driver of a train: it provides the driver with
information needed for the safe driving of the train, and it is
able to supervise train and shunting movements.

People by Temperament: social web application This doc-
ument comes from Plat_Forms, an international academic-
industrial programming contest. It specifies a community
portal wheremembers can find others withwhom theymight
like to get in contact: people register to become members,
take a personality test, and then search for others based
on criteria such as personality types, likes/dislikes etc. The
documents includes 325 requirements.

DigitalHome: home automation system This requirements
document specifies a Smart House, called DigitalHome (DH).

The case study, including 151 requirements, has been de-
veloped and used by a team of 5 students of a computing
curriculum, as part of a US National Science Foundation
grant. The DH system allows a home resident to manage
devices that control the environment of a home. The user
communicates through a web page on a web server. The
DH web server communicates, through a wireless gateway
device, with the sensor and controller devices in the home.

C VIDEO
The video demonstrating the core features of the tool is at:

https://fmt.isti.cnr.it/video.avi

	Abstract
	1 Introduction
	2 Running example
	3 Using QuARS to extract variability
	3.1 Vagueness
	3.2 Optionality
	3.3 Multiplicity
	3.4 Weakness
	3.5 Variability
	3.6 Constraints

	References
	A Appendix Part 1: how the tool will be presented as part of a main conference session
	B Appendix part 2: how the tool will be presented at a demo booth
	C Video

