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A B S T R A C T

This paper presents a novel solution to automatically count vehicles in a parking lot using images captured by
smart cameras. Unlike most of the literature on this task, which focuses on the analysis of single images, this
paper proposes the use of multiple visual sources to monitor a wider parking area from different perspectives.
The proposed multi-camera system is capable of automatically estimating the number of cars present in the
entire parking lot directly on board the edge devices. It comprises an on-device deep learning-based detector
that locates and counts the vehicles from the captured images and a decentralized geometric-based approach
that can analyze the inter-camera shared areas and merge the data acquired by all the devices. We conducted
the experimental evaluation on an extended version of the CNRPark-EXT dataset, a collection of images taken
from the parking lot on the campus of the National Research Council (CNR) in Pisa, Italy. We show that
our system is robust and takes advantage of the redundant information deriving from the different cameras,
improving the overall performance without requiring any extra geometrical information of the monitored scene.
1. Introduction

Traffic-related issues are constantly increasing, and tomorrow’s
cities cannot be considered intelligent if they do not enable smart
mobility. Smart mobility applications, such as smart parking and road
traffic management, are nowadays widely employed worldwide, mak-
ing our cities more livable and bringing benefits to the cities and,
consequently, to our lives.

Images are perhaps the best sensing modality to perceive and assess
the flow of vehicles in large areas. Like no other sensing mechanism,
city camera networks can monitor large areas while simultaneously
providing visual data to AI systems to extract relevant information from
this deluge of data. However, this application is often hampered by the
massive flow of data that must be sent to central servers or the cloud
for processing. On the other hand, edge computing is a recent paradigm
that promotes the decentralization of data processing to the border,
i.e., where the data are generated, thus reducing the traffic on the net-
work and the pressure on central servers. No wonder that combination
of recent Computer Vision deep learning-based techniques and the edge
computing paradigm is an emerging trend, as witnessed, for example,
by Khan et al. (2019) that tackles the face recognition task or by Amato,
Ciampi, Falchi, Gennaro, Messina (2019) and Ciampi, Messina et al.
(2020) that instead can detect people directly onboard surveillance
cameras. Nonetheless, this promising paradigm brings along with it also
some new challenges related to the limited computational resources

∗ Corresponding author.
E-mail addresses: luca.ciampi@isti.cnr.it (L. Ciampi), claudio.gennaro@isti.cnr.it (C. Gennaro), fabio.carrara@isti.cnr.it (F. Carrara),

fabrizio.falchi@isti.cnr.it (F. Falchi), claudio.vairo@isti.cnr.it (C. Vairo), giuseppe.amato@isti.cnr.it (G. Amato).

on the disposable edge devices and also concerning security inside IoT
networks (Ujjan et al., 2020).

In this work, we tackle the problem of estimating the number of ve-
hicles present in a parking lot using images captured by smart cameras.
Whereas classic car counting solutions are sensor-based (e.g., entrance-
level photocells, per-space ground sensors), vision-based solutions pro-
vide several advantages, such as (a) flexibility, as cameras can adapt to
more challenging configurations of parking spaces (e.g., undelimited
parking lots with non-fixed spaces), (b) lower hardware and mainte-
nance cost, as smart cameras can cost few tens of dollars while each
monitoring multiple parking spaces, and (c) being multi-purpose, as the
same hardware can be used to perform additional tasks (e.g., surveil-
lance). However, this vision-based counting task is challenging as the
process of understanding the captured images faces many problems,
such as shadows, light variation, weather conditions, and inter-object
occlusions. Although most of the existing works concerning the vehicle
counting task focus on the analysis of single images, in many real-world
scenarios, one can benefit from using multiple cameras to monitor
the same parking lot from different perspectives and viewpoints. Fur-
thermore, multiple neighboring cameras can also help cover a wider
area. At the same time, such an approach introduces issues related to
merging the knowledge extracted from the single cameras with partially
overlapping fields of views (FOVs), as shown in Fig. 1.

In this paper, we propose a novel solution to improve car counting
when scaled up with multi-camera setups. Specifically, we introduce a
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Fig. 1. An example of two cameras monitoring the same parking area with partially
overlapping fields of view. This redundancy provides robustness and fault-tolerance
but also raises the problem of aggregating knowledge extracted from the individual
cameras.

multi-camera system that estimates the number of cars present in the
entire parking lot by combining a state-of-the-art Convolutional Neural
Network (CNN), which can locate and count vehicles present in images
belonging to individual cameras, along with a decentralized geometry-
based approach that is responsible for aggregating the data gathered
from all the devices. Our solution performs the task directly on the
edge devices (i.e., the smart cameras) without using a central server or
cloud, consequently reducing the communication overhead. The total
count is built exploiting the partial results computed in parallel by the
single cameras and propagated through messages. Hence, our system
scales better when the number of monitored parking spaces increases.
Moreover, our solution does not require any manual intervention or
any extra information about the monitored parking area, such as the
location of the parking spaces, nor any geometric information about
the camera positions in the parking lot. In short, it is a flexible and
ready-to-use solution that allows a simple ‘‘plug-and-play’’ insertion of
new cameras into the system.

To validate our multi-camera solution, we employed the CNRPark-
EXT dataset (Amato et al., 2017), a collection of images taken from
the parking lot on the campus of the National Research Council (CNR)
in Pisa, Italy. The pictures are acquired by multiple cameras having
partially overlapping fields of view and describing challenging scenar-
ios with different perspectives, illuminations, weather conditions, and
many occlusions. Since the annotations of this dataset concern single
images, we extended it by manually labeling a part of it to be consistent
with our algorithm that instead considers the entire parking area. We
conducted extensive experiments testing the generalization capabilities
of the CNN-based technique responsible for detecting vehicles in single
images and the effectiveness of our multi-camera algorithm, demon-
strating that our system is robust and benefits from the redundant
information deriving from the different cameras improving the overall
performance.

To summarize, the main contributions of this work are the follow-
ings:

• We introduce a novel multi-camera system able to automatically
estimate the number of cars present in the entire monitored park-
ing area. It runs directly on the edge devices and combines a deep
learning-based detector together with a decentralized technique
that exploits the geometry of the captured images.

• We specifically extend the CNRPark-EXT dataset (Amato et al.,
2017), a collection of images acquired by multiple cameras hav-
ing partially overlapping fields of views and describing various
2

parking lots. We manually label a subset of it, making it suitable
for our considered scenario in which we consider the whole
parking area.

• We conduct an experimental evaluation showing that our system
is robust, flexible, and can benefit from redundant information
from different cameras while improving overall performance.

We organize the rest of the paper as follows. Section 2 reports other
works present in the literature related to our topic. Section 3 describes
our multi-camera counting algorithm. Section 4 states the experimental
setup, describing the dataset, the metrics, and the implementation de-
tails. Section 5 presents and discusses the experiments and the obtained
results. Finally, Section 6 concludes the paper with some insights on
future directions.

2. Related work

This section overviews some works related to our, organizing them
into two categories. The first one concerns the counting task, while the
second regards multi-camera parking lot monitoring systems.

2.1. The counting task

The counting task estimates the number of object instances in still
images or video frames (Lempitsky & Zisserman, 2010). This topic
has recently attracted much attention due to its inter-disciplinary and
widespread applicability and paramount importance for many real-
world applications. Examples include counting bacterial cells from
microscopic images (Ciampi et al., 2022; Xie et al., 2016), estimating
the number of people present at an event (Benedetto et al., 2022; Boom-
inathan et al., 2016), counting animals in ecological surveys to monitor
the population of a specific region (Arteta et al., 2016) and evaluating
the number of vehicles on a highway or in a car park (Amato, Ciampi,
Falchi, Gennaro, 2019).

Several machine learning-based solutions (especially supervised)
have been suggested in the last years. Following the taxonomy adopted
in Sindagi and Patel (2018), we can broadly classify existing counting
approaches into two categories: counting by regression and counting
by detection. Counting by regression is a supervised method that tries
to establish a direct mapping (linear or not) from the image features
to the number of objects present in the scene or a corresponding
density map (i.e., a continuous-valued function), skipping the chal-
lenging task of detecting instances of the objects (Ciampi, Santiago
et al., 2020; Ciampi et al., 2021; Oñoro-Rubio & López-Sastre, 2016;
Zhang et al., 2017, 2016). Counting by detection is, instead, a supervised
approach where we localize instances of the objects, and then we count
them (Amato et al., 2018; Ciampi et al., 2018). While regression-based
techniques work very well in very crowded scenarios where the single
object instances are not well defined due to inter-class and intra-class
occlusions, they perform poorly in images with a large perspective
and oversized objects. Another remarkable drawback of the regression-
based approaches is that they cannot precisely localize the objects
present in the scene, eventually providing only a coarse position of the
area in which they are distributed.

In this work, we estimate the number of vehicles present in a park
area from images collected by smart cameras having large perspectives.
The cars close to the cameras are much larger than those far away
from them. Therefore, we employ a detection-based method. Further-
more, another reason which led us to discard counting by regression
approaches is that we need to know the precise localization (with
boundaries) of the detected vehicles. Most of the existing counting
solutions do not directly deal with edge computing devices and the con-
sequent constraints due to the limited available computing resources.
They use deep learning-based approaches that typically require the
use of a GPU and that are computationally expensive. Moreover, they
consider the images as single entities. They do not account for the
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possible benefits of monitoring the same lots from different perspectives
or covering a wider parking area with multiple cameras. Instead, our
solution runs directly on the edge devices and can estimate the number
of vehicles present in the entire parking lot.

2.2. Multi-camera parking lot monitoring

Only a few works addressed parking lot monitoring considering a
multi-camera scenario. In Nieto et al. (2019), the authors applied a
homography to project the detected vehicles from the plane of each
camera to a common plane, where they performed a perspective correc-
tion to correct matching between the vehicle detections and the parking
spots. Also, the authors in Vítek and Melničuk (2017) proposed a multi-
camera system to classify parking spaces as vacant or occupied. In
this solution, the acquired images are processed onboard Raspberry Pi
devices. The extracted information about the status of parking spaces is
then transmitted to a central server, which evaluates the parking spaces
in the overlapping areas. Their algorithm is based on the histogram
of oriented gradients (HOG) (Dalal & Triggs, 2005) feature descriptor
and support vector machine (SVM) classifier. Since the HOG feature
descriptor cannot adequately describe rotated vehicles, the authors
have provided a descriptor with additional information about rotation
to increase the system accuracy.

However, these solutions rely on prior knowledge of the monitored
scene, such as the position of the parking spaces or some geometric
information concerning the parking area. For instance, the proposed
system in Nieto et al. (2019) requires manually annotating the corners
of the parking area and the number of spots. In essence, a preliminary
annotation of the new areas and a new training phase of the algorithm
are often mandatory operations. Consequently, these techniques are not
very flexible. On the other hand, we propose a simple yet effective
solution that does not need any extra information about the monitored
scene. The smart cameras can automatically localize and count the
vehicles present in their field of view, propagating the single results to
the other edge devices through messages. A decentralized technique,
again running directly on the edge devices, is instead in charge of
analyzing and merging these results, exploiting the captured images
geometry, and automatically outputs the number of cars present in the
entire parking area.

3. Proposed approach

3.1. Overview

In this section, we describe our multi-camera counting algorithm.
We based our system on the parallel processing of each of the smart
cameras followed by the fusion of their results to estimate the number
of vehicles present in the entire parking area.

Fig. 2 shows an example of our multi-camera counting system,
together with its graphical representation. We model our system as
a graph 𝐺, comprised of 𝑛 nodes 𝜈𝑖 and one Sink node 𝑆, 𝑉 =
{𝜈1, 𝜈2,… , 𝜈𝑛, 𝑆}. Each node 𝜈𝑖 represents an independent edge device,
i.e., a smart camera in our case. Two nodes 𝜈𝑖 and 𝜈𝑗 are considered
neighbors if their FOVs overlap. In this case, a directed edge of the
graph connects them. Each edge device 𝜈𝑖 can capture images, localize
and count the vehicles present in its FOV exploiting a deep learning-
based detector, and communicate with its neighboring nodes through
messages 𝑚𝑖 containing the cars detections. Furthermore, each node 𝜈𝑖
can also run a local counting algorithm in charge of computing partial
counting results concerning the estimation of the number of vehicles
present in overlapped areas between its FOV and the ones belonging to
its neighbors.

The fusion of the partial results is performed by the Sink node
𝑆, which is also in charge of providing the final result and synchro-
nizing all the algorithm steps through synchronization signals headed
towards the other nodes 𝜈 . On the other hand, the nodes 𝜈 can also
3

𝑖 𝑖
communicate through messages with the Sink node. Messages can be
of two types: (i) messages 𝜂𝑖 containing the number of cars captured
y the node 𝜈𝑖 in its FOV, and (ii) messages 𝜇𝑗,𝑖 representing the

partial counting estimation related to the overlapping area between two
neighboring nodes 𝜈𝑖 and 𝜈𝑗 .

In the following sections, we describe all the steps of our algorithm
in detail. First, in Section 3.2, we outline the automatic system ini-
tialization performed by the smart cameras themselves, in which they
compute the homographic transformations between the scene they are
monitoring and the scene observed by the neighboring cameras. Then,
in Section 3.3, we describe the CNN-based local counting algorithm that
runs on each of the smart cameras and the geometric-based technique
helpful for the overlapped areas. Finally, in Section 3.4, we depict the
global counting algorithm responsible for the fusion of these individual
and partial results, and that finally outputs the number of cars present
in the entire parking area.

3.2. Initialization

This step is aimed at automatically initializing the system, estimating
the geometric relationship between each node (i.e., each scene moni-
tored by a smart camera) and its neighbors. The only hypotheses we
impose are (i) each smart camera is aware of the IP addresses of its
neighbors, i.e., the cameras having the field of view overlapped with
its own; (ii) the Sink node 𝑆 is aware of the IP addresses of all the smart
cameras belonging to the system.

The Sink node 𝑆 starts the initialization phase, sending a synchro-
nization signal to the other nodes. Once received, each smart camera
captures an image of the scene it monitors and sends it to all its
neighbors. Once a smart camera 𝑖 receives an image from a neighboring
amera 𝑗, it computes a homographic transformation 𝐻𝑗,𝑖 between the

image 𝑗 and the image 𝑖 describing its monitored scene. This allows us
to establish a correspondence between the points belonging to the pair
of images taken by the two cameras, which will be used subsequently
in the algorithm. We formalized the system initialization for a generic
node 𝜈𝑖 in the Algorithm 1.

However, finding this homography can be challenging because
neighboring cameras can have different angles of view, leading to a
perspective distortion between the images captured by them. Given
a pair of neighboring nodes 𝜈𝑖, 𝜈𝑗 , we employ a procedure that starts
with finding the SIFT (Lowe, 2004) key-points and feature descriptors
of the images 𝑖, 𝑗 captured by the two nodes. Then, we match the two
sets of feature descriptors by performing David Lowe’s ratio test (Lowe,
2004), and we further filter the matched feature descriptors by keeping
only the pairs whose euclidean distance is below a given threshold.
Finally, we obtain the homographic transformation by applying the
random sample consensus (RANSAC Fischler & Bolles, 1981) algorithm
to the filtered feature descriptors. All these computations are performed
automatically without the need of any extra geometric information
about the monitored scene, and no manual intervention is needed.
Fig. 3 shows the concatenation of two neighboring images 𝑖 and 𝑗 in
which we apply the found homographic matrix to the image 𝑖, to have
the same perspective as the image 𝑗.

Algorithm 1 : Initialization
At each Initialization Signal by 𝑆, each node 𝜈𝑖 performs the following
steps:
1: ReceiveInitSignal() ⊳ waits the initialization signal from 𝑆
2: image𝑖 ← CameraCapture()
3: for each 𝑗 ∈ 𝐽 do ⊳ 𝐽 is the set of neighboring nodes of node 𝜈𝑖
4: SendImage(image𝑖,𝜈𝑗) ⊳ sends image𝑖 to node 𝜈𝑗
5: image𝑗 ← ReceiveImage() ⊳ receives image𝑗 from node 𝜈𝑗
6: 𝐻𝑗,𝑖 = ComputeHomography(image𝑗 , image𝑖)
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Fig. 2. An example of our multi-camera counting system, with 𝑛 = 5 smart cameras. We model it as a graph 𝐺, comprised of 𝑛 nodes 𝜈𝑖 (one for each camera) and one Sink node
𝑆, 𝑉 = {𝜈1 , 𝜈2 ,… , 𝜈𝑛 , 𝑆}. Each node 𝜈𝑖 can capture images, localize and count the vehicles present in its FOV, and communicate with its neighboring nodes through messages 𝑚𝑖
containing these detections. Moreover, each node 𝜈𝑖 can run a local counting algorithm in charge of computing partial counting results concerning the overlapped areas between
its FOV and the ones belonging to its neighbors, exploiting images geometry. These partial results are sent through messages to the Sink node 𝑆, which is responsible for their
fusion and provides the final result. Messages to 𝑆 can be of two types: (i) 𝜂𝑖 containing the number of cars captured by the node 𝜈𝑖 in its FOV, and (ii) 𝜇𝑗,𝑖 representing the
partial counting estimation related to the overlapping area between two neighboring nodes 𝜈𝑖 and 𝜈𝑗 .
Fig. 3. Example of concatenation of two images using a homographic transformation,
where it is also visible the overlapping area between them.

3.3. Local counting algorithm

This section describes the local counting algorithm that runs directly
onboard the edge devices. It combines a CNN-based counting technique
in charge of the localization and the estimation of the number of
vehicles present in the acquired single images, i.e., the contents of
the messages 𝑚𝑖 and the quantities 𝜂𝑖 shown in Fig. 2, together with
a geometric-based approach responsible of estimating the number of
vehicles present in the overlapping areas between the nodes and their
neighbors, i.e., the quantities 𝜇𝑗,𝑖.

A vehicle counting CNN on the edge. Each smart camera needs to in-
dependently detect and count vehicles from its captured frame. For
this step, every approach providing precise localization of the detected
vehicles in the pixel space is suitable, and the choice of a particular
approach should be guided by resource constraints, e.g., available
memory, prediction frequency, or energy consumption, if any. Here, we
base our vehicle counting technique on Mask R-CNN (He et al., 2017), a
popular deep CNN for instance segmentation that operates within the
‘recognition using regions paradigm‘ (Gu et al., 2009). In particular,
it extends the Faster R-CNN detector (Ren et al., 2017) by adding a
branch that outputs a binary mask saying whether or not a given pixel
is part of an object. Briefly, a CNN acts as a backbone in the first stage,
extracting the input image features. Starting from this feature space,
another CNN named Region Proposal Network (RPN) generates region
proposals that might contain objects. RPN slices pre-defined region
boxes (called anchors) over this space and ranks them, suggesting those
most likely containing objects. Once RPN produces the Regions Of
Interests (ROIs), they might be of different sizes. Since it is hard to work
on features having different sizes, RPN reduces them into the same
dimension using the Region of Interest Pooling algorithm. Finally, these
fixed-size proposals are processed by two parallel CNN-based branches:
one is responsible for classifying and localizing the objects inside them
with bounding boxes; the second produces a binary mask that says
whether or not a given pixel is part of an object. In the end, given
an input image, the network produces per-pixel masks localizing the
detected objects together with the associated labels classifying them.
4

To make our counting solution able to run efficiently directly on
the edge devices, we employ, as a backbone, the ResNet50 architecture,
a lighter version of the popular ResNet101 (He et al., 2016). This
simplification is also justified because the more powerful version of
Mask R-CNN based on the ResNet101 model was designed for more
complicated visual detection tasks than ours. Originally, Mask R-CNN
was trained on the COCO dataset (Lin et al., 2014) to detect and
recognize 80 different classes of everyday objects. In our case, we
have to localize and identify objects belonging to just one category
(i.e., the vehicle category). To this end, we further simplify the model by
reducing the number of the final fully convolutional layers responsible
for the classification of the detected objects, making the model lighter.
Once we have localized the instances of the objects, we count them
estimating the number of vehicles present in the scene.

Local counting. The Sink node 𝑆 starts this phase, sending a synchro-
nization signal to all the smart cameras belonging to the system. Once
received the synchronization signal, each node 𝜈𝑖 captures an image
belonging to its underlying FOV and feeds it to the previously described
CNN-based counting technique obtaining a set of masks masks𝑖 local-
izing the vehicles present in the scene. The cardinality of this set of
masks corresponds to the number of cars present in the image, i.e., the
quantity 𝜂𝑖, that is sent with a message to the Sink node 𝑆. Then, the
node 𝜈𝑖 packs this set of masks masks𝑖 in a message 𝑚𝑖, sends it to all its
neighboring nodes 𝜈𝑗 , and receives from them their corresponding set
of masks masks𝑗 packed in a message 𝑚𝑗 . Once received a message 𝑚𝑗 ,
the node 𝜈𝑖 is responsible for analyzing the potential vehicles present in
the overlapped area between its FOV and the one of the node 𝜈𝑗 . To this
end, it employs the homographic transformation 𝐻𝑗,𝑖 computed during
the system initialization, as described in Section 3.2. Specifically, it
projects the masks belonging to the set masks𝑗 into its image plane,
filtering them and discarding the ones that overlap with the masks
belonging to the set masks𝑖 having a value of Intersection over Union
(IoU) greater than a threshold that we empirically found to be optimal
at 0.2. These masks indeed localize vehicles already detected, which
should not be considered a second time. On the other hand, the cars
left after this filtering are vehicles that were not detected in the FOV
underlying the node 𝜈𝑖, but instead found by the node 𝜈𝑗 , probably
because of having a better view of this object. Referring to our graph
modeling the system and reported in Fig. 2, the number of the discarded
cars after this filtering operation corresponds to the message 𝜇𝑗,𝑖, that
is sent to the Sink node 𝑆. We detail all the described steps in the
Algorithm 2 and in Procedure 3.

3.4. Global counting algorithm

In this section, we describe the global counting algorithm that runs
on the Sink node 𝑆, responsible for the fusion of the partial results
coming from all the other nodes, and that finally outputs the number
of cars present in the entire monitored parking area.

This phase starts when 𝑆 receives all the 𝜂𝑖 and the 𝜇𝑗,𝑖 messages,
i.e., the number of vehicles estimated in the single FOVs and the
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Algorithm 2 : Local Counting
At each Computational Signal by 𝑆, each node 𝜈𝑖 performs the following
steps:
1: ReceiveComputSignal() ⊳ waits the computational signal from 𝑆
2: image𝑖 ← CameraCapture()
3: masks𝑖 ← MaskRCNN(image𝑖)
4: 𝜂𝑖 ← |

|

masks𝑖||
5: SendMessage(𝜂𝑖, 𝑆) ⊳ sends 𝜂𝑖 to Sink node 𝑆
6: 𝑚𝑖 ← PackMessage(masks𝑖) ⊳ builds message 𝑚𝑖 containing masks𝑖
7: for each 𝑗 ∈ 𝐽 do ⊳ 𝐽 is the set of neighboring nodes of node 𝜈𝑖
8: SendMessage(𝑚𝑖, 𝜈𝑗) ⊳ sends 𝑚𝑖 to node 𝜈𝑗
9: 𝑚𝑗 ← ReceiveMessage() ⊳ receives message 𝑚𝑗 from node 𝜈𝑗

10: masks𝑗 ← UnpackMessage(𝑚𝑗) ⊳ unpacks 𝑚𝑗 containing masks𝑗
11: 𝜇𝑗,𝑖 ← compute_𝜇(masks𝑖, masks𝑗 , 𝐻𝑗,𝑖)
12: SendMessage(𝜇𝑗,𝑖, 𝑆) ⊳ sends 𝜇𝑗,𝑖 to Sink node 𝑆

Algorithm 3 : Computation of 𝜇
represents the num of cars detected by 𝜈𝑗 and already detected by 𝜈𝑖

ach node 𝜈𝑖 performs the following procedure:
1: procedure compute_𝜇(masks𝑖, masks𝑗 , 𝐻𝑗,𝑖)
2: n_cars_already_detected ← 0
3: for each mask ∈ masks𝑗 do
4: maskℎ ← Project(𝐻𝑗,𝑖, mask) ⊳ projects mask points on

plane 𝑖
5: if maskℎ falls within image𝑖 then
6: maskmax ← argmax𝑚∈masks𝑖 IoU(maskℎ, 𝑚)
7: if IoU(maskℎ,maskmax) > 𝜏 then
8: n_cars_already_detected ++
9: return n_cars_already_detected

estimation of the number of cars already considered in the overlapping
areas between neighboring cameras, from all the nodes belonging to
the system. Specifically, for each overlapped area shared between a
pair of nodes 𝜈𝑖, 𝜈𝑗 , the node 𝑆 receives two messages 𝜇𝑗,𝑖 and 𝜇𝑖,𝑗 ,
the contents of which are computed by the two nodes employing two
homographic transformations 𝐻𝑗,𝑖 and 𝐻𝑖,𝑗 , respectively. These two
quantities can be potentially different. We choose the best value by
aggregating them, choosing between three different functions—max,
min and mean, finding that the latter is the best one. Finally, the node
𝑆 builds the final result, i.e., the estimation of the number of vehicles
present in the entire parking lot, by summing up the content of all the
𝜂𝑖 messages and subtracting the computed aggregated values. We detail
all these steps in the Algorithm 4.

Algorithm 4 : Global Counting
The Sink node 𝑆 performs the following steps:
1: for each (𝜇𝑖,𝑗 , 𝜇𝑗,𝑖) do
2: 𝜇𝑘 ← Aggregate(𝜇𝑖,𝑗 , 𝜇𝑗,𝑖)
3: global_cars_count ← ∑𝑁

𝑛=1 𝜂𝑛 −
∑𝐾

𝑘=1 𝜇𝑘
⊳ 𝑁 is the set of nodes, 𝐾 is the set of aggregations

4. Experimental setup

In this section, we describe the simulated scenario that we ex-
ploited for our experiments. In particular, we extended the CNRPark-
EXT dataset (Amato et al., 2017), adapting it to be suitable for the
counting task so that it was usable for training the vehicles counting
CNN running on the smart cameras and applicable to validate our
multi-camera algorithm. Furthermore, we briefly describe the PKLot
dataset (de Almeida et al., 2015), a public dataset comprising parking
lot scenes that we exploited for further assessing the generalization
5

capabilities of the local vehicles counting network. Then, we illus-
trate the employed evaluation metrics, and, finally, we report some
implementation details.

4.1. The CNRPark-EXT dataset

In this work, we exploit the CNRPark-EXT public dataset introduced
n Amato et al. (2017), a collection of annotated images of vacant and
ccupied parking spaces on the campus of the National Research Coun-
il (CNR) in Pisa, Italy. This dataset represents most of the challenging
ituations that can be found in a real scenario: nine different cameras
apture the images under various weather conditions, angles of view,
ight conditions, and many occlusions. Furthermore, the cameras have
heir fields of view partially overlapped. Since this dataset is specifically
esigned for parking lot occupancy detection, it is not directly usable
or the counting task. Indeed, each image, called patch, contains one
arking space labeled according to its occupancy status - 0 for vacant
nd 1 for occupied. Since this work aims at counting the cars present
n the parking area, we extended it by considering the full images and
dapting the ground truth to our purposes.

Specifically, we created a suitable label set to train and evaluate
he local vehicles counting based on Mask R-CNN. In this case, labels
orrespond to binary masks, i.e., binary images identifying the poly-
ons surrounding the vehicles we want to detect. Since mask creation
s a very time-consuming operation, differently from our previous
ork (Ciampi et al., 2018), we considered the raw masks obtained di-

ectly from the bounding boxes localizing the occupied parking spaces.
he idea is that we do not need precise polygons that identify the
ehicles we want to detect. Still, we can use the region within the
elimiters that identify the occupied parking spaces and the underlying
art of the car.

On the other hand, to validate our multi-camera algorithm, we built
simulated scenario considering some sequences of images belonging

o different cameras captured simultaneously. In other words, a se-
uence is defined as the set of images captured by the different smart
ameras that are monitoring the parking area at the same moment.
ence, a sequence represents a snapshot of the entire parking lot at
given timestamp, and it takes into account all the spaces from the

vailable different views. We manually annotated these sequences to
btain the ground truth car counts. Specifically, we considered the sin-
le images composing a sequence, counting the vehicles present in the
cenes, but taking care of accounting for them just once if they appear
n more than one view, i.e., discarding the cars from the global count
f they were located in the overlapping areas. We labeled six different
equences, two for each weather condition, considering the images
elonging from camera2 to camera9. We did not consider camera1 since
t has small and particularly skewed field-of-view overlaps with the
ther cameras, hindering the automatic homography estimation and
he subsequent projections.

.2. The PKLot dataset

To further validate the generalization capabilities of the CNN-based
ocal vehicles counting algorithm, we exploited an additional public
ataset, named PKLot (de Almeida et al., 2015). In particular, this
ataset is composed by three different scenarios describing three differ-
nt parking lot scenes - UFPR04, UFPR05 and PUC. We considered only
he first two subsets since the third one contains images captured from a
ixed camera located at the height of the 10th floor of a building, which
rovides a slanted view of the parking lot and results in a different
etting without intra-vehicle occlusions. Since also the PKLot dataset,
ike the CNRPark-EXT one, is specifically designed for the parking lot
ccupancy detection task, we manually re-labeled the ground truth for
ur purposes as already described in Section 4.1, obtaining a simulation
cenario suitable for measure the performance of our solution for the
ounting task.
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𝑀

Table 1
Local counting: Left-side: results obtained using our counting solution on the edge
compared with other state-of-the-art approaches; we get the best results on all the three
considered counting metrics. Right-side: evaluation of the generalization capabilities on
the PKLot dataset (de Almeida et al., 2015), using the model trained on the CNRPark-
EXT dataset; we achieved an error that is approximately four times lower than the one
obtained with the COCO pre-trained model.

CNRPark-EXT PKLot

Method MAE MSE MRE MAE MSE MRE

Amato et al. (2017) 1.34 8.00 0.04 –
Ciampi et al. (2018) 1.05 4.41 0.03 –
ResNet50 Mask R-CNN 11.20 247.40 0.30 16.90 522.40 0.48
Our solution 0.49 1.04 0.01 4.56 33.88 0.13

4.3. Evaluation metrics

Following other counting benchmarks, we exploited Mean Abso-
lute Error (MAE), Mean Square Error (MSE), and Mean Relative Er-
or (MRE) as the metrics for the performance evaluation, defined as
ollows:

𝐴𝐸 = 1
𝑁

𝑁
∑

𝑛=1
|𝑐𝑔𝑡𝑛 − 𝑐𝑝𝑟𝑒𝑑𝑛 |, (1)

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑛=1
(𝑐𝑔𝑡𝑛 − 𝑐𝑝𝑟𝑒𝑑𝑛 )2, (2)

𝑀𝑅𝐸 = 1
𝑁

𝑁
∑

𝑛=1

|𝑐𝑔𝑡𝑛 − 𝑐𝑝𝑟𝑒𝑑𝑛 |

num_spaces𝑛
, (3)

where 𝑁 is the total number of the images, 𝑐𝑔𝑡, 𝑐𝑝𝑟𝑒𝑑 and 𝑛𝑢𝑚_𝑠𝑝𝑎𝑐𝑒𝑠𝑛
are the actual count, the predicted count, and the total number of
parking spaces of the 𝑛th image, respectively. Note that as a result of
the squaring of each difference, MSE effectively penalizes large errors
more heavily than small ones and thus should be more useful when
large errors are particularly undesirable. On the other hand, MRE also
considers the relation between the error and the total number of objects
present in the image.

4.4. Implementation details

We report in this section some implementation details concerning
the Mask R-CNN-based algorithm responsible for the prediction of the
number of vehicles in the single images. In particular, we trained
the modified Mask R-CNN initializing the weights of the ResNet50
backbone with the ones of a pre-trained model on ImageNet (Deng et al.,
2009), a popular dataset for classification tasks, and the remaining ones
at random. We froze the backbone for the first 10 epochs, and then we
trained the whole network for 20 additional epochs. We used Stochas-
tic Gradient Descent (SGD) to perform the CNN parameters update.
Concerning the Region Proposal Network, explained in Section 3.3,
we exploited a set of five anchors of sizes 16, 32, 64, 128, and 256
pixels. To prevent overfitting, we applied some standard augmentation
techniques to the training data: images are horizontally flipped with
a 0.5 probability, then their pixels are multiplied by a random value
between 0.8 and 1.5, and finally, they are blurred using a Gaussian
kernel with a standard deviation of a random value between 0 and
5. Then, to support training multiple images per batch, we resized all
pictures to the same size. If an image was not square, we padded it
with zeros to preserve the aspect ratio. In the end, we obtained images
of size 1024 × 1024. At inference time, images were resized and padded
with zeros to get a square picture of size 1024 × 1024, and no other
augmentations took place.
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5. Experiments and results

In this section, we report the experiments and the obtained re-
sults. First, we evaluate the performance against other state-of-the-art
solutions of the CNN-based technique responsible for estimating the
vehicles in the single images directly onboard the smart cameras, also
stressing its generalization capabilities. Then, we validate the effec-
tiveness of our multi-camera algorithm by testing it in the simulated
scenario previously described. We demonstrate that our system can
benefit from the redundant information deriving from the different
cameras, obtaining performance improvements in all the considered
counting metrics.

5.1. Experiments on the CNN-based counting solution on the edge

5.1.1. State-of-the-art comparison
We compared our solution with the results obtained in our previous

work (Ciampi et al., 2018), where we presented a centralized counting
approach based on the original version of Mask R-CNN having the
ResNet101 model as a features extractor, which has been fine-tuned on
a very small manually annotated subset of the CNRPark-EXT dataset,
starting from the model pre-trained on the COCO dataset (Lin et al.,
2014). We filtered the detections considering only the predictions
related to the car class, and we counted them. Although this solution is
very computationally expensive and unsuitable for edge devices, it rep-
resents a direct comparison in terms of counting on the same dataset.
We also compared our technique against the method proposed in Amato
et al. (2017), an approach for car parking occupancy detection based
on mAlexNet, a deep CNN designed explicitly for smart cameras. This
work represents an indirect method for counting cars in a parking lot,
as the counting problem is cast as a classification problem: if a parking
space is occupied, we increment the total number of cars; otherwise,
we do not. We illustrate the results in Table 1, where we also report
the performance obtained using the Mask R-CNN network without
a preliminary fine-tuning on the CNRPark-EXT dataset. Our solution
performs better than the other considered methods, considering all
three counting metrics. In particular, our approach outperforms the
solution introduced in Ciampi et al. (2018), despite the latter employing
a more deep and powerful CNN, and it is designed to be used as a
centralized-server solution. This is explained by the fact that in Ciampi
et al. (2018) the authors fine-tuned the CNN using a tiny dataset.
Consequently, the algorithm overfits on the training data, and it cannot
generalize over the test subset. It is also worthy of notice that our CNN
also outperforms the mAlexNet network, even though the latter knows
the exact location of the parking spaces. Fig. 4 shows some examples of
images belonging to different cameras and different weather conditions
together with the masks localizing them computed by our counting
solution.

5.1.2. Generalization capabilities
Errors in vehicle detection and counting are due to many rea-

sons, but critical points are different light conditions and diverse per-
spectives. Weather conditions might produce significant illumination
changes since puddles and wet floors create a textural pattern that
may lead to an error, and sunbeams can create reflections on the
car windscreen, covering the majority of the images with saturated
patterns. When a CNN does not generalize well, it works well only in
the conditions where it was trained.

To measure the robustness of our approach to these scenarios,
we performed two types of experiments exploiting the CNRPark-EXT
dataset: (i) inter-weather and (ii) inter-camera experiments. In the for-
mer, we trained our CNN with images taken in one particular weather
condition, and we computed the performance metrics obtained on im-
ages having different weather conditions. In particular, we performed
three experiments, training respectively on the Sunny, Overcast and

Rainy subsets of the CNRPark-EXT dataset. In the latter, we trained our
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Fig. 4. Two examples of the output of our counting method. Images are taken from the CNRPark-EXT dataset. We report the predictions and the estimate of the number of
vehicles present in the scene.
Table 2
CNRPark-EXT: Results of inter-weather experiments in terms of counting metrics
obtained when training on sunny, overcast, or rainy weather.

Train set Sunny Overcast Rainy

MAE MSE MRE MAE MSE MRE MAE MSE MRE

Sunny – – – 0.29 0.34 0.009 0.96 2.78 0.02
Overcast 0.62 1.09 0.02 – – – 0.56 1.26 0.01
Rainy 0.84 1.65 0.02 0.49 0.65 0.01 – – –

Table 3
CNRPark-EXT: Results of inter-camera experiments in terms of counting metrics
obtained when training on camera 1 and camera 8.

Train set Test set

Metric C1 C2 C3 C4 C5 C6 C7 C8 C9

MAE C1 – 0.77 1.21 2.53 3.26 2.57 2.88 2.88 1.54
C8 3.87 0.85 0.76 0.45 0.48 0.71 1.07 – 0.41

MRE C1 – 0.08 0.05 0.06 0.07 0.05 0.06 0.05 0.05
C8 0.11 0.09 0.03 0.01 0.01 0.01 0.02 – 0.01

MSE C1 – 1.48 2.91 10.61 20.24 13.50 19.82 17.30 7.19
C8 22.60 1.78 1.36 0.57 0.74 0.95 4.97 – 2.13

algorithm employing images from one camera, and then we computed
the performance metrics on pictures captured by another camera.
In particular, we performed two experiments, training with images
coming respectively from camera1 and camera8. We chose these two
cameras because they are particularly representative since one has a
side view of the parking lot while the other has a pure front view.

We report the results of the two experiments in Tables 2 and 3,
respectively. We achieve a good generalization in both the considered
scenarios. We experienced a larger amount of error when the CNN was
trained and tested on two opposite weather conditions, for instance,
Sunny and Rainy, while the more accurate model was the one trained
on Overcast weather conditions. However, the performance difference is
quite small. On the other hand, in inter-camera experiments, the model
trained on camera8 is the best, and it has a slight drop in performance
only when tested on the camera1 subset. The model trained on the
camera1 dataset performs in general worse. This is probably due to a
bias in the CNRPark-EXT dataset, where the majority of the images are
captured from a frontal viewpoint.

Moreover, to further validate the generalization capabilities of our
approach, we considered our counting network trained on the entire
training set of the CNRPark-EXT dataset, and we tested it over a
different dataset, the PKLot dataset (de Almeida et al., 2015). Results
are shown in Table 1 where we also report the performance obtained
using the Mask R-CNN network without a preliminary fine-tuning on
the CNRPark-EXT dataset. As we can see, using our solution, we achieve
an error that is approximately four times lower than the one obtained
with the COCO pre-trained model.
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5.2. Experiments on the multi-camera scenario

To the best of our knowledge, there are no annotated datasets in
the literature suitable for evaluating counting algorithms operating on
multiple FOV-overlapping cameras. The most relevant work in this
context is Nieto et al. (2019), in which there are only two overlapping
cameras facing each other with an extreme perspective transformation
between the two; this makes any automatic perspective computation
nearly impossible without manual intervention, and this is a mandatory
assumption for our proposed method. Hence, we performed our exper-
iments on the extended version of the CNRPark-EXT dataset created on
purpose in this work, which we hope will become a new benchmark for
this task. Furthermore, to demonstrate that our algorithm can benefit
from the redundant information deriving from the different cameras,
we compared the obtained results against a baseline and a simplified
version of our algorithm.

Specifically, we compared our solution against a system that is not
aware of the other cameras’ overlapped areas, and so it just sums up all
the vehicles detected by all the cameras belonging to a sequence (Naïve
Counting N). Then, we considered a more conservative approach,
where the nodes employ the homographic transformations only with
the purpose of black-masking the overlapped areas (Overlap Masking
M). This latter baseline then loses the ability to take advantage of
monitoring the same lots from different views. However, it is still aware
of the locations of the overlapping areas, and it considers the vehicles
inside them only once.

Results are shown in Table 4. Our solution obtains the best results
compared to the considered baselines in all the three counting metrics
and all the employed scenarios. We report the errors concerning the
considered six sequences of the CNRPark-EXT dataset, together with
the MAE, MSE, and MRE, which summarize the mean results regarding
all the scenarios. As an example, in Fig. 5 we also report the output
of our multi-camera algorithm for a pair of images belonging to two
different cameras having a shared area in their field of view, where we
highlight in red and blue the masks projected from one camera to the
other, using the previously computed homographic transformations.

6. Conclusion

This paper presented a distributed artificial intelligence-based sys-
tem that automatically counts the vehicles present in a parking lot
using images taken by multiple smart cameras. Unlike most of the
works in literature, we introduced a multi-camera approach that can
estimate the number of cars present in the entire parking area and
not only in the single captured images. The main peculiarities of this
approach are that all the computation is performed in a distributed
manner at the edge of the network and that there is no need for
any extra information about the monitored parking area, such as the

location of the parking spaces, nor any geometric information about
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Table 4
Results using our multi-camera counting algorithm, considering the entire parking lot. We compare our solution against a baseline and a
simplified version of our algorithm. We report the errors obtained on the six considered sequences (two for each weather condition) of the
CNRPark-EXT dataset that we extend on purpose.

Error Absolute Err. Squared Err. Relative Err. (%)

N M O N M O N M O N M O

Overcast-1 124 −33 2 124 33 2 15,376 1089 4 71.6 19.0 1.2
Overcast-2 131 −26 1 131 26 1 17,161 676 1 76.1 15.1 0.6
Rainy-1 80 −39 −5 80 39 5 6400 1521 25 47.6 23.2 2.9
Rainy-2 105 −44 −5 105 44 5 11,025 1936 25 54.4 22.8 2.6
Sunny-1 117 −38 2 117 38 2 13,689 1444 4 68.0 22.1 1.2
Sunny-2 113 −37 2 113 38 2 12,769 1444 4 66.1 22.2 1.2

Mean 111.6 −36.1 −0.5 111.6 36.3 2.8 12,736.6 1351.6 10.5 63.9 20.7 1.6

N: Naïve Counting; M: Overlap Masking; O: Ours (mean aggr., IoU Threshold 𝜏 = 0.2).
ig. 5. Example of the output of our multi-camera algorithm for a pair of images belonging to two different cameras 𝑖, 𝑗 having a shared area in their FOV. We report in green
he masks localizing the vehicles detected by a camera in its own FOV, while in red and blue, the masks projected from camera j to camera i and vice-versa, employing the
omographic transformations pre-computed during the system initialization.
D
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he position of the cameras in the parking lot. We modeled our system
s a graph. The nodes, i.e., the smart cameras, are responsible for
stimating the number of cars present in their view and merging data
rom nearby devices with an overlapping field of view. Our solution
s simple but effective, combining a deep-learning technique with a
istributed geometry-based approach. We evaluated our algorithm on
he CNRPark-EXT dataset, which we specifically extended and which
e hope will become a new benchmark for counting vehicles in multi-

amera parking area scenarios. Through an experimental evaluation,
e showed how we benefit from redundant information from different

ameras while improving overall performance.
There are multiple lines of future development that can help im-

rove the proposed system. Although our multi-camera algorithm is
lexible, one limitation relies on computing the homographic matrix
etween images captured by cameras placed in completely different
ocations, such as facing each other. In such cases, the two perspectives
re totally different, and manual intervention is required to avoid the
eneration of an inaccurate geometric transformation.
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