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Abstract

Catamorphisms are functions that are recursively defined on list and trees and, in general, on
algebraic data types (ADTs), and are often used to compute suitable abstractions of programs
that manipulate ADTs. Examples of catamorphisms include functions that compute size of
lists, orderedness of lists, and height of trees. It is well known that program properties specified
through catamorphisms can be proved by showing the satisfiability of suitable sets of con-
strained Horn clauses (CHCs). We address the problem of checking the satisfiability of those
sets of CHCs, and we propose a method for transforming sets of CHCs into equisatisfiable sets
where catamorphisms are no longer present. As a consequence, clauses with catamorphisms
can be handled without extending the satisfiability algorithms used by existing CHC solvers.
Through an experimental evaluation on a nontrivial benchmark consisting of many list and tree
processing algorithms expressed as sets of CHCs, we show that our technique is indeed effective
and significantly enhances the performance of state-of-the-art CHC solvers.
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1 Introduction

Catamorphisms are functions that compute abstractions over algebraic data types

(ADTs), such as lists or trees. The definition of a catamorphism is based on a

simple recursion scheme, called a fold in the context of functional programming

(Meijer et al., 1991). Examples of catamorphisms on lists of integers include functions

that compute the orderedness of a list, the length of a list, and the sum of its elements.

Similarly, examples of catamorphisms on trees are functions that compute the size of a

tree, the height of a tree, and the minimum integer value at its nodes.

Through catamorphisms we can specify many useful program properties such as, for

instance, the property that the list computed by a program for sorting lists is indeed

sorted, or the property that the output list has the same length of the input list. For this

reason, program analysis tools based on abstract interpretation (Cousot and Cousot, 1977;

Hermenegildo et al., 2005) and program verifiers (Suter et al., 2011) have implemented

special purpose techniques that handle catamorphisms.

In recent years, it has been shown that verification problems that use catamorphisms

can be reduced to satisfiability problems for constrained Horn clauses (CHCs) by follow-

ing a general approach that is very well suited for automatic proofs (Bjørner et al., 2015;

De Angelis et al., 2022; Gurfinkel, 2022). A practical advantage of CHC-based verifica-

tion is that it is supported by several CHC solvers which can be used as back-end tools

(Blicha et al., 2022; De Angelis and Govind V. K., 2022; Komuravelli et al., 2016; Hojjat

and Rümmer, 2018).

Unfortunately, the direct translation of catamorphism-based verification problems into

CHCs is not always helpful, because CHC solvers often lack mechanisms for comput-

ing solutions by performing induction over ADTs. To overcome this difficulty, some

CHC solvers have been extended with special purpose satisfiability algorithms that han-

dle (some classes of) catamorphisms (Govind et al., 2022; Hojjat and Rümmer, 2018;

Kostyukov et al., 2021; Gurfinkel, 2022). For instance, the module of Eldarica for solv-

ing CHCs has been extended by allowing constraints that use the built-in size function

counting the number of function symbols in the ADTs (Hojjat and Rümmer, 2018).

In this paper, we consider a class of catamorphisms that is strictly larger than the ones

handled by the above mentioned satisfiability algorithms, and we follow an approach

based on the transformation of CHCs (De Angelis et al., 2022, 2023). In particular, given

a set P of CHCs that uses catamorphisms and includes one or more queries encoding

the properties of interest, we transform P into a new set P ′ such that: (i) P is satisfiable

if and only if P ′ is satisfiable, and (ii) no catamorphism is present in P ′. Thus, the
satisfiability of P ′ can be verified by a CHC solver that is not extended for handling

catamorphisms.

The main difference between the technique we present in this paper and the above

cited works (De Angelis et al., 2022, 2023) is that the algorithm we present here does

not require that we specify suitable properties of how the catamorphisms relate to every

predicate occurring in the given set P of CHCs. For instance, if we want to verify that

the output list S of the set of CHCs defining quicksort(L, S) has the same length of the

input list L, we need not specify that, for the auxiliary predicate partition(X,Xs,Ys, Zs)

that divides the list Xs into the two lists Ys and Zs, it is the case that the length of Xs is

the sum of the lengths of Ys and Zs. This property can automatically be derived by the
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Catamorphic abstractions for constrained Horn clause satisfiability 3

CHC solver when it looks for a model of the set of CHCs obtained by transformation. In

this sense, our technique may allow the discovery of some lemmas needed for the proof

of the property of interest.

We will show through a benchmark set of list and tree processing algorithms expressed

as sets of CHCs, that our transformation technique is indeed effective and is able to

drastically increase the performance of state-of-the-art CHC solvers such as Eldarica

(Hojjat and Rümmer, 2018) (with the built-in catamorphism size) and Z3 with the

SPACER engine (de Moura and Bjørner, 2008; Komuravelli et al., 2016).

The rest of the paper is organized as follows. In Section 2, we recall some preliminary

notions on CHCs and catamorphisms. In Section 3 we show an introductory example

to motivate our technique. In Section 4 we present our transformation algorithm and

prove that it guarantees the equisatisfiability of the initial sets of CHCs and the trans-

formed sets of CHCs. In Section 5 we present the implementation of our technique in

the VeriCaTabs tool, and through an experimental evaluation, we show the beneficial

effect of the transformation on both Eldarica and Z3 CHC solvers. We will consider

several abstractions based on catamorphisms relative to lists and trees, such as size,

minimum element, orderedness, element membership, element multiplicity, and combi-

nations thereof. Finally, in Section 6, we discuss related work and we outline future

research directions.

2 Basic notions

The programs and the properties we consider in this paper are expressed as sets of con-

strained Horn clauses written in a many-sorted first-order language L with equality (=).

Constraints are expressions of the linear integer arithmetic (LIA) and the boolean alge-

bra (Bool). The theories of LIA and Bool will be collectively denoted by LIA∪Bool . The
equality symbol = will be used both for integers and booleans. In particular, a constraint

is a quantifier-free formula c, where LIA constraints may occur as subexpressions of

boolean constraints, according to the SMT approach (Barrett et al., 2009). The syntaxes

of a constraint c and an elementary LIA constraint d are as follows:

c ::= d | B | true | false | ∼c | c1 & c2 | c1∨ c2 | c1⇒c2 | c1=c2 |
ite(c, c1, c2) | t=ite(c, t1, t2)

d ::= t1 < t2 | t1 ≤ t2 | t1 = t2 | t1 ≥ t2 | t1 > t2

where:(i) B is a boolean variable, (ii) ∼, &, ∨, and ⇒ denote negation, conjunction,

disjunction, and implication, respectively, (iii) the ternary function ite denotes the if-

then-else operator (i.e. ite(c, c1, c2) has the following semantics: if c then c1 else c2), and

(iv) t, possibly with subscripts, t, t1 and t2 is a LIA term of the form a0 + a1X1 + . . .+

anXn with integer coefficients a0, . . . , an and integer variables X1, . . . , Xn.

The integer and boolean sorts are said to be basic sorts . A recursively defined sort

(such as the sort of lists and trees) is said to be an algebraic data type (ADT, for short).

An atom is a formula of the form p(t1, . . . , tm), where p is a predicate symbol not

occurring in LIA∪Bool, and t1, . . . , tm are first-order terms in L. A constrained Horn

clause (CHC), or simply, a clause, is an implication of the form H← c, G. The conclusion
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H, called the head , is either an atom or false, and the premise, called the body , is the

conjunction of a constraint c and a conjunction G of zero or more atoms. G is said to be

a goal . A clause is said to be a query if its head is false, and a definite clause, otherwise.

Without loss of generality, at the expense of introducing suitable equalities, we assume

that every atom of the body of a clause has distinct variables (of any sort) as arguments.

Given an expression e, by vars(e) we denote the set of all variables occurring in e. By

bvars(e) (or adt-vars(e)) we denote the set of variables in e whose sort is a basic sort (or

an ADT sort, respectively). The universal closure of a formula ϕ is denoted by ∀(ϕ).
A D-interpretation for a set S of CHCs is an interpretation where the symbols of

LIA∪Bool are interpreted as usual. A D-interpretation I is said to be a D-model of S if

all clauses of S are true in I. A set S of CHCs is said to be D-satisfiable (or satisfiable,

for short) if it has a D-model, and it is said to be D-unsatisfiable (or unsatisfiable, for

short), otherwise.

Given a set P of definite clauses, there exists a least D-model of P , denoted M(P )

(Jaffar and Maher, 1994). Let P be a set of definite clauses and for i= 1, . . . , n, Qi be a

query. Then P ∪ {Q1, . . . , Qn} is satisfiable if and only if, for i= 1, . . . , n, M(P ) |=Qi.

The catamorphisms we consider in this paper are defined by first-order, relational

recursive schemata as we now indicate. Similar definitions are introduced also in (higher-

order) functional programming (Meijer et al., 1991; Hinze et al., 2013).

Let f be a predicate symbol with m+ n arguments (for m≥0 and n≥0) with sorts

α1, . . . , αm, β1, . . . , βn, respectively. We say that f is a functional predicate from sort

α1×. . .×αm to sort β1×. . .×βn, with respect to a given set P of definite clauses that

define f , if M(P )|=∀X,Y,Z. f(X,Y )∧ f(X,Z)→ Y=Z, where X is an m-tuple of distinct

variables, and Y and Z are n-tuples of distinct variables. In this case, when we write the

atom f(X, Y ), we mean that X and Y are the tuples of the input and output variables

of f , respectively. We say that f is a total predicate if M(P ) |= ∀X∃Y. f(X, Y ). In what

follows, a ‘total, functional predicate’ f from a tuple α of sorts to a tuple β of sorts is

said to be a ‘total function’ in [α→ β], and it is denoted by f ∈ [α→ β].

Now we introduce the notions of a list catamorphism and a binary tree catamorphism.

We leave to the reader the task of introducing, the definitions of similar catamorphisms for

recursively defined algebraic data types that may be needed for expressing the properties

of interest. Let α, β, γ, and δ be (products of) basic sorts. Let list(β) be the sort of lists

with elements of sort β, and btree(β) be the sort of binary trees with values of sort β.

Definition 1 (List and Binary Tree Catamorphisms).

A list catamorphism � is a total function in [α×list(β)→ γ] defined as follows:

L1. �(X, [ ], Y )← �--basis(X, Y )

L2. �(X, [H|T ], Y )← f(X, T,Rf ), �(X, T, R), �--combine(X,H, R,Rf , Y )

where : (i) �--basis ∈ [α→γ], (ii) �--combine ∈ [α×β×γ×δ→ γ], and (iii) f is itself a list

catamorphism in [α×list(β)→ δ].

A binary tree catamorphism bt is a total function in [α×btree(β)→ γ] defined as follows:

BT1. bt(X, leaf , Y )← bt--basis(X, Y )

BT2. bt(X, node(L, N, R), Y )← g(X, L,RLg), g(X,R,RRg),

bt(X, L,RL), bt(X,R,RR), bt--combine(X,N,RL,RR,RLg ,RRg , Y )
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Fig. 1. The initial set of CHCs (clauses 1–6) and query 7 that specifies that the number of
occurrences of an element X in the list Zs is even.

where : (i) bt--basis ∈ [α→ γ], (ii) bt--combine ∈ [α×β×γ×γ×δ×δ→ γ], and (iii) g is itself

a binary tree catamorphism in [α×btree(β)→ δ].

Instances of the schemas of the list catamorphisms and the binary tree catamorphisms

(see Definition 1 above) may lack some components, such as the parameter X of basic

sort α, or the catamorphisms f or g. The possible presence of these components makes

the class of catamorphisms considered in this paper strictly larger than the ones used

by other CHC-based approaches (Govind V. K. et al., 2022; Hojjat and Rümmer, 2018;

Kostyukov et al., 2021; Gurfinkel, 2022).

3 An introductory example

Let us consider a set of CHCs for doubling lists of integers (see clauses 1–4 in Figure 1).

We have that: (i) double(Xs , Zs) holds if and only if list Zs is the concatenation of

two copies of the same list Xs of integers, (ii) eq(Xs ,Ys) holds if and only if list Xs is

equal to list Ys, and (iii) append(Xs ,Ys , Zs) holds if and only if list Zs is the result of

concatenating list Ys to the right of list Xs .

Let us assume that we want to verify the following Even property: if double(Xs , Zs)

holds, then for any integer X, the number of occurrences of X in Zs is an even number.

In order to do so, we use the list catamorphism listcount(X , Zs ,M ) (see clauses 5–6 in

Figure 1) that holds if and only if M is the number of occurrences of X in list Zs. Note

that listcount(X , Zs ,M ) is indeed a list catamorphism because clauses 5–6 are instances

of clauses L1–L2 in Definition 1, when: (i) � is listcount , (ii) Y is N , (iii) �--basis(X, Y ) is

the LIA constraint N=0, (iv) f(X, T,Rf ) is absent, and (v) �--combine(X,H, R,Rf , Y )

is the LIA constraint N= ite(X=H,NT+1,NT ).

Our verification task can be expressed as query 7 in Figure 1, whereby we derive false

if the number M of occurrences of X in Zs is odd (recall that we assume that M=2N+1

is a LIA constraint).

Now, neither the CHC solver Eldarica nor Z3 is able to prove the satisfiability of

clauses 1–7 and thus, those solvers are not able to show the Even property. By the

transformation technique we will propose in this paper, we get a new set of clauses

whose satisfiability can be shown by Z3 and thus, the Even property is proved.
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To perform this transformation, we use the information that the property to be veri-

fied is expressed through the catamorphism listcount . However, in contrast to previous

approaches (De Angelis et al., 2022, 2023), we need not specify any property of the

catamorphism listcount when it acts upon the predicates double, eq , and append . For

instance, we need not specify that if Zs is the concatenation of Xs and Ys , then for any

X, the number of occurrences of X in Zs is the sum of the numbers of occurrences of

X in Xs and Ys . Indeed, in the approach we propose in this paper, we have only to

specify the association of every ADT sort with a suitable catamorphism or, in general,

a conjunction of catamorphisms. In particular, in our double example, we associate the

sort of integer lists, denoted list(int), with the catamorphism listcount . Then, we rely

on the CHC solver for the discovery, after the transformation described in the follow-

ing sections, of suitable relations between the variables that represent the output of the

listcount catamorphism atoms. Thus, by applying the technique proposed in this paper,

much less ingenuity is required on the part of the programmer for verifying program

correctness with respect to the previously proposed approaches.

Our transformation technique introduces, for each predicate p occurring in the initial

set of CHCs, a new predicate newp defined by the conjunction of a p atom and, for

each argument of p with ADT sort τ , the catamorphism atom(s) with which τ has been

associated. In particular, in the case of our double example, for the predicate double we

introduce the new predicate new1 (for simplicity, we call it new1, instead of newdouble)

whose definition is clause D1 in Figure 2. The body of that clause is the conjunction

of the atom double(B, E) and two listcount catamorphism atoms, one for each of the

integer lists B and E, as listcount is the catamorphism with which the sort of integer

lists has been associated. Similarly, for the predicates append and eq whose definitions

are respectively clauses D2 and D3 listed in Figure 2.

Thus, we derive a new version of the initial CHCs where each predicate p has been

replaced by the corresponding newp. Then, by applying variants of the fold/unfold trans-

formation rules, we derive a final, transformed set of CHCs. When the CHC solver

looks for a model of this final set of CHCs, it is guided by the fact that suitable con-

straints, inferred from the query, must hold among the arguments of the newly introduced

predicates, such as newp, and thus, the solver can often be more effective.

In our transformation we also introduce, for each predicate newp, a predicate called

newp--woADTs whose definition is obtained by removing the ADT arguments from

the definition of newp. For the CHC solvers, it is often easier to find a model for

newp--woADTs, rather than for newp, because the solvers need not handle ADTs at

all. However, since each newp--woADTs is an overapproximation of newp, by using the

clauses with the ADTs removed, one could wrongly infer unsatisfiability in cases when,

on the contrary, the initial set of CHCs is satisfiable.

Now, in order to make it easier for the solvers to show satisfiability of sets of CHCs

and, at the same time, to guarantee the equisatisfiability of the derived set of clauses with

respect to the initial set, we add to every atom in the body of every derived clause for

newp the corresponding atom without ADT arguments (see Theorem 1 for the correct-

ness of these atom additions). By performing these transformation steps starting from

clauses 1–6 and query 7 (listed in Figure 1) together with the specification that every

variable of sort list(int) should be associated with a listcount atom, we derive using our
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Fig. 2. Clauses D1–D4 are the predicate definitions introduced during transformation.
Clauses 11–23 are the clauses derived after transformation from clauses 1–6 and query 7 of

Figure 1.

transformation algorithm Tabs (see Section 4) clauses 11–23 listed in Figure 2. These

derived clauses are indeed shown to be satisfiable by the Z3 solver, and thus the Even

property is proved.

4 CHC transformation via catamorphic abstractions

In this section we present our transformation algorithm, called Tabs , whose input is:

(i) a set P of definite clauses, (ii) a query Q expressing the property to be verified, and

(iii) for each ADT sort, a conjunction of catamorphisms whose definitions are included

in P . Algorithm Tabs introduces a set of new predicates, which incorporate as extra

arguments some information coming from the catamorphisms, and transforms P ∪ {Q}
into a new set P ′ ∪ {Q′} such that P ∪ {Q} is satisfiable if and only if so is P ′ ∪ {Q′}.

The transformation is effective when the catamorphisms used in the new predicate

definitions establish relations that are useful to solve the query. In particular, it is often

helpful to use in the new definitions catamorphisms that include the ones occurring in the

query, such as the catamorphism listcount of our introductory double example. However,
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as we will see later, there are cases in which it is important to consider catamorphisms not

present in the query (see Example 2). The choice of the suitable catamorphisms to be used

in the transformation rests upon the programmer’s ingenuity and on her/his understand-

ing of the program behavior. The problem of chosing the most suitable catamorphisms

in a fully automatic way is left for future research.

4.1 Catamorphic abstraction specifications

The predicates in P different from catamorphisms are called program predicates . An

atom whose predicate is a program predicate is called a program atom and an atom

whose predicate is a catamorphism predicate is called a catamorphism atom. Without

loss of generality, we assume that no clause in P has occurrences of both program atoms

and catamorphism atoms. The query Q given in input to Tabs is of the form:

false ← c, cata1(X, T1, Y1), . . . , catan(X, Tn, Yn), p(Z)

where: (i) p(Z) is a program atom and Z is a tuple of distinct variables; (ii) cata1,

. . . , catan are catamorphism predicates; (iii) c is a constraint; (iv) X is a tuple of

distinct variables of basic sort; (v) T1, . . . , Tn are ADT variables occurring in Z; and

(vi) Y1, . . . , Yn are pairwise disjoint tuples of distinct variables of basic sort not occur-

ring in vars({X, Z}). Without loss of generality, we assume that the catai’s over the

same ADT variable are all distinct (this assumption is trivially satisfied by query 7 of

Figure 1). For each ADT sort τ , a catamorphic abstraction for τ is a conjunction of

catamorphisms defined as follows:

cataτ (X, T, Y1, . . . , Yn) =def cata1(X, T, Y1), . . . , catan(X, T, Yn)

where: (i) T is a variable of ADT sort τ , (ii) X, Y1, . . . , Yn are tuples of variables of basic

sort, (iii) the variables in {X, Y1, . . . , Yn} are all distinct, and (iv) the catai predicates

are all distinct.

Given catamorphic abstractions for the ADT sorts τ1, . . . , τk, a catamorphic abstrac-

tion specification for the set P of CHCs is a set of expressions, one expression for each

program predicate p in P that has at least one argument of ADT sort. The expression

for the predicate p is called the catamorphic abstraction specification for p and it is of

the form:

p(Z) =⇒ cataτ1(X, T1, V1), . . . , cataτk(X, Tk, Vk)

where: (i) Z is a tuple of distinct variables, (ii) T1, . . . , Tk are the distinct variables

in Z of (not necessarily distinct) ADT sorts τ1, . . . , τk, respectively, (iii) V1, . . . , Vk are

pairwise disjoint tuples of distinct variables of basic sort not occurring in vars({X, Z});
and (iv) vars(X)∩ vars(Z)=∅.

Example 1.

Let us consider our introductory double example (see Figure 1) and the catamorphic

abstraction for the sort list(int):

cata list(int)(X, L, N) =def listcount(X, L, N)
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This abstraction determines the following catamorphic abstraction specifications for the

predicates double, eq , and append (and thus, for the set {1, . . . , 6} of clauses):

double(Xs , Zs) =⇒ listcount(X,Xs, N1), listcount(X, Zs , N2)

eq(Xs , Zs) =⇒ listcount(X,Xs , N1), listcount(X, Zs, N2)

append(Xs,Ys ,Zs) =⇒ listcount(X,Xs ,N1), listcount(X,Ys ,N2), listcount(X,Zs ,N3)

Note that no relationships among the variables N1, N2, and N3 are stated by the

specifications. Those relationships will be discovered by the solver after transformation.

Example 2.

Let us consider: (i) a set Quicksort of clauses where predicate quicksort(L, S) holds if S

is obtained from list L by the quicksort algorithm and (ii) the following query:

false ← BS=false, is--asorted(S ,BS ), quicksort(L, S) (Ord)

where is--asorted(S ,BS ) returns BS=true if the elements of S are ordered in weakly

ascending order, and BS=false, otherwise. The catamorphism is--asorted is defined in

term of the catamorphism hd , as follows:

is--asorted([ ],B)←B=true

is--asorted([H|T ],B)←B=(IsDef ⇒ (H≤HdT & BT )),

hd(T, IsDef ,HdT ), is--asorted(T,BT )

hd([ ], IsDef ,Hd)← IsDef=false, Hd=0

hd([H|T ], IsDef ,Hd)← IsDef=true, Hd=H .

hd(L, IsDef ,Hd) holds if either L is the empty list (IsDef=false) and Hd is 0 or L is a

nonempty list (IsDef=true) and Hd is its head. Thus, hd is a total function. Note that

the arbitrary value 0 is not used in the clauses for is--asorted .

Let us consider a catamorphic abstraction catalist(int) for the sort list(int), which is

the sort of the variables L and S in quicksort(L, S). That abstraction, consisting of the

conjunction of three list catamorphisms listmin, listmax , and is--asorted , is defined as

follows:

catalist(int)(L,BMinL,MinL,BMaxL,MaxL,BL) =def

listmin(L,BMinL,MinL), listmax (L,BMaxL,MaxL), is--asorted(L,BL)

where: (i) if L is not empty, listmin(L,BMinL,MinL) holds if BMinL=true and MinL

is the minimum integer in L, and (ii) otherwise, if L is empty, listmin(L,BMinL,MinL)

holds if BMinL=false and MinL=0. If BMinL=false, then MinL should not be used

elsewhere in the clause where listmin(L,BMinL,MinL) occurs. Analogously for listmax ,

instead of listmin. Then, the catamorphic abstraction specification for quicksort is as

follows:

quicksort(L, S ) =⇒
listmin(L,BMinL,MinL), listmax (L,BMaxL,MaxL), is--asorted(L,BL),

listmin(S ,BMinS ,MinS ), listmax (S ,BMaxS ,MaxS ), is--asorted(S ,BS )

Now, let us assume that in the set of clauses defining quicksort(L, S), we have the atom

partition(V,L,A,B) that, given the integer V and the list L, holds if A is the list made
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out of the elements of L not larger than V , and B is the list made out of the remaining

elements of L larger than V . We have that the catamorphic abstraction specification for

partition which has the list arguments L, A, and B, is as follows:

partition(V,L,A,B) =⇒
listmin(L,BMinL,MinL), listmax (L,BMaxL,MaxL), is--asorted(L,BL),

listmin(A,BMinA,MinA), listmax (A,BMaxA,MaxA), is--asorted(A,BA),

listmin(B ,BMinB ,MinB), listmax (B ,BMaxB ,MaxB), is--asorted(B ,BB)

Note that the catamorphisms listmin and listmax are not present in the query

Ord . However, they are needed for stating the property that, if partition(V,L,A,B) holds,

then the maximum element of the list A is less than or equal to the minimum element

of the list B. This is a key property useful for proving the orderedness of the list S con-

structed by quicksort(L, S). The fact that the catamorphisms listmin and listmax are

helpful in the proof of the orderedness of S rests upon programmer’s intuition. However,

in our approach the programmer need not explicitly state all the properties of listmin

and listmax which are needed for the proof. Indeed, the relationships among the output

variables of listmin and listmax are automatically inferred by the CHC solver.

4.2 Transformation rules

The rules for transforming CHCs that use catamorphisms are variants of the usual

fold/unfold rules for CHCs (De Angelis et al., 2022).

A transformation sequence from an initial set S0 of CHCs to a final set Sn of CHCs

is a sequence S0 �⇒ S1 �⇒ . . . �⇒ Sn of sets of CHCs such that, for i=0, . . . , n−1, Si+1 is

derived from Si, denoted Si �⇒ Si+1, by performing a transformation step consisting in

applying one of the following transformation Rules R1–R5.

The objective of a transformation sequence constructed by algorithm Tabs is to derive

from a given set S0 a new, equisatisfiable set Sn in which for each program predicate p

in S0, there is a new predicate newp whose definition is given by the conjunction of an

atom for p with some catamorphism atoms. With respect to p, the predicate newp has

extra arguments that hold the values of the catamorphisms for the arguments of p with

ADT sort.

(R1) Definition Rule. Let D be a clause of the form newp(X1, . . . , Xk)←Catas, A,

where: (1) newp is a predicate symbol not occurring in the sequence S0 �⇒ S1 �⇒ . . . �⇒ Si

constructed so far, (2) {X1, . . . , Xk}= vars({Catas, A}), (3) Catas is a conjunction

of catamorphism atoms, with adt-vars(Catas)⊆ adt-vars(A), and (4) A is a program

atom. By the definition introduction rule we add D to Si and we get the new set

Si+1 = Si ∪ {D}.
We will say that D is a definition for A.

For any i≥0, by Defsi we denote the set of clauses, called definitions , introduced by

Rule R1 during the construction of the sequence S0 �⇒ S1 �⇒ . . . �⇒ Si.

Example 3.

In our double example, by applying the definition rule we may introduce the following

clause, whose variables of sort list(int) are B and E (the underlining of the list variables

B and E has been omitted here):
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D1. new1(A,B,C,E,F )← listcount(A,B,C), listcount(A,E,F ), double(B,E)

Thus, S1 = S0 ∪ {D1}, where S0 consists of clauses 1–7 of Figure 1.

By making use of the Unf function (see Definition 2), we introduce the unfolding rule

(see Rule R2), which consists of some unfolding steps followed by the application of the

functionality property, which was presented in previous work (De Angelis et al., 2022).

Recall that list and binary tree catamorphisms and, in general, all catamorphisms are

assumed to be total functions (see Definition 1).

Definition 2 (One-step Unfolding).

Let D: H← c, L, A, R be a clause, where A is an atom, and let P be a set of definite

clauses with vars(D)∩ vars(P ) = ∅. Let K1← c1, B1, . . . , Km← cm, Bm, with m≥0, be
the clauses in P , such that, for j = 1, . . . , m: (i) there exists a most general unifier ϑj of

A and Kj , and (ii) the conjunction of constraints (c, cj)ϑj is satisfiable.

One-step unfolding produces the following set of CHCs:

Unf (D, A, P ) = {(H← c, cj , L, Bj , R)ϑj | j = 1, . . . , m}.

In the sequel, Catas denotes a conjunction of catamorphism atoms.

(R2) Unfolding Rule. Let D: newp(U)←Catas, A be a definition in Si ∩Defsi, where A

is a program atom, and P be the set of definite clauses in Si. We derive a new set UnfD

of clauses by the following three steps.

Step 1. (One-step unfolding of program atom) UnfD :=Unf (D, A, P );

Step 2. (Unfolding of the catamorphism atoms)
while there exists a clause E: H← d, L, C, R in UnfD , for some conjunctions L

and R of atoms, such that C is a catamorphism atom whose argument of ADT

sort is not a variable do

UnfD := (UnfD \ {E})∪Unf (E ,C ,P);

Step 3. (Applying Functionality on catamorphism atoms)
while there exists a clause E:H← d, L, cata(X, T, Y 1), cata(X, T, Y 2), R in UnfD ,

for some catamorphism cata do

UnfD := (UnfD − {E})∪ {H← d, Y 1=Y 2, L, cata(X, T, Y 1), R}.

Then, by unfolding clause D, we get the new set of clauses Si+1 = (Si \ {D})∪UnfD.

Example 4.

For instance, in our double example, by unfolding clause D1 we get:

E1. new1(A,B,C,E,F )←listcount(A,B,C), listcount(A,E,F ), eq(B,G), append(B,G,E)

Thus, S2 = S0 ∪ {E1}.

By the following catamorphism addition rule, we use the catamorphic abstraction

specifications for adding catamorphism atoms to the bodies of clauses. Here and in what

follows, for any two conjunctions G1 and G2 of atoms, we say that G1 is a subconjunction

of G2 if every atom of G1 is an atom of G2.

(R3) Catamorphism Addition Rule. Let C: H← c,Catas, A1, . . . , Am be a clause in Si,

where H is either false or a program atom, and A1, . . . , Am are program atoms. Let E

be the clause derived from C as follows:
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for k= 1, . . . , m do
- let Catask be the conjunction of every catamorphism atom F in Catas such that

adt-vars(Ak)∩ adt-vars(F ) �= ∅;
- let Ak =⇒ cata1(X, T1, Y1), . . . , catan(X, Tn, Yn) be a catamorphic abstraction

specification for the predicate of Ak, where the variables in Y1, . . . , Yn do not occur

in C, and the conjunction cata1(X, T1, Y1), . . . , catan(X, Tn, Yn) can be split into

two subconjunctions B1 and B2 such that:

(i) a variant B1ϑ of B1, for a substitution ϑ acting on vars(B1), is a subconjunction

of Catask, and

(ii) for every catamorphism atom cataj(X, Tj , Yj) in B2ϑ, there is no catamorphism

atom in Catask of the form cataj(V, Tj , W ) (i.e., there is no catamorphism atom

with the same predicate acting on the same ADT variable Tj);

- add the conjunction B2ϑ to the body of C.

Then, by the catamorphism addition rule, we get the new set Si+1 = (Si \ {C})∪ {E}.

Example 5.

In our double example, by applying the catamorphism addition rule to clause E1, we add

the catamorphism listcount(A,H,I), and we get:

E2. new1(A,B,C,E,F )← listcount(A,B,C), listcount(A,E,F ), listcount(A,H,I),

eq(B,H), append(B,H,E)

Thus, we get the new set of clauses S3 = S0 ∪ {E2}.

The following folding rule allows us to replace conjunctions of catamorphism atoms

and program atoms by new program atoms whose predicates has been introduced in

previous applications of the definition rule.

(R4) Folding Rule. Let C: H← c,CatasC , A1, . . . , Am be a clause in Si, where either H

is false or C has been obtained by the unfolding rule, possibly followed by the applica-

tion of the catamorphism addition rule. CatasC is a conjunction of catamorphisms and

A1, . . . , Am are program atoms. For k= 1, . . . , m,

- let CatasCk be the conjunction of every catamorphism atom F in CatasC such that

adt-vars(Ak)∩ adt-vars(F ) �= ∅;
- let Dk: Hk←CatasDk , Ak be a clause in Defsi (modulo variable renaming) such

that CatasCk is a subconjunction of CatasDk .

Then, by folding C using D1, . . . , Dm, we derive clause E: H← c, H1, . . . , Hm, and we

get the new set of clauses Si+1 = (Si \ {C})∪ {E}.

Example 6.

In order to fold clause E2 (see Example 5) according to the folding rule R4, we introduce

for the program atoms append(B,H, E) and eq(B,H) that occur in the body of E2, the

new definitions D2 and D3, respectively. Those new definitions are shown in Figure 2.

Then, by folding clause E2 using D2 and D3, we get:

E3. new1(A,B,C,E,F )← new2(A,M,K,E,F,B,C), new3(A,M,K,B,C).
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Also, query 7 (see Figure 1) can be folded using definition D1, and we get:

E4. false←C=2D+1, new1(A,E,F,G,C)

Thus, S4 = (S0 \ {7})∪ {E3, E4, D2, D3}. Then, we will continue by transforming the

newly introduced definitions D2 and D3.

The following Rule R5 is a new transformation rule that allows us: (i) to introduce new

predicates by erasing ADT arguments from existing predicates, and (ii) to add atoms

with these new predicates to the body of a clause.

(R5) Erasure Addition Rule. Let A be the atom p(t1, . . . , tk, u1, . . . , um), where t1, . . . , tk
have (possibly distinct) basic sorts and u1, . . . , um have (possibly distinct) ADT sorts.

We define the ADT-erasure of A, denoted χwo(A), to be the atom p woADTs(t1, . . . , tk),

where p woADTs is a new predicate symbol. Let C: H← c, A1, . . . , An be a clause in Si.

Then, by the erasure addition rule, from C we derive the two new clauses:

χwo(H)←c, χwo(A1), . . . , χwo(An), denoted χwo(C), and

H←c, A1, χwo(A1), . . . , An, χwo(An), denoted χw&wo(C),

and we get the new set of clauses

Si+1 = {χw&wo(C) |C ∈ Si} ∪ {χwo(C) |C is a clause in Si whose head is not false}.

Example 7.

Let us consider clause E3 of Example 6. We have that:

χwo(new1(A, B, C, E, F )) = new1--woADTs(A, C, F ),

χwo(new2(A,M,K, E, F, B, C)) = new2--woADTs(A,K, F, C),

χwo(new3(A,M,K, B, C)) = new3--woADTs(A,K, C).

Thus, from clause E3, by erasure addition we get clauses 12 and 18 of Figure 2.

The following theorem is a consequence of well-known results for CHC transformations

(see, for instance, the papers cited in a recent survey (De Angelis et al., 2022)).

Theorem 1 (Correctness of the Rules).

Let S0 �⇒ S1 �⇒ . . . �⇒ Sn be a transformation sequence using Rules R1–R5. Then, S0 is

satisfiable if and only if Sn is satisfiable.

Proof.

The proof consists in showing that Rules R1–R5 presented earlier in this section can be

derived from the transformation rules considered in previous work (De Angelis et al.,

2022) and proved correct based on results by Tamaki and Sato (Tamaki and Sato, 1986)

for logic programs and Etalle and Gabbrielli (Etalle and Gabbrielli, 1996) for constraint

logic programs. Below we will recall these transformation rules.

Let us first introduce the notion of stratification for a set of clauses (Lloyd, 1987). Let

N be the set of the natural numbers and Pred be the set of the predicate names. A level

mapping is a function λ:Pred→N. For every predicate p, the natural number λ(p) is said

to be the level of p. Level mappings are extended to atoms by stating that the level λ(A)

of an atom A is the level of its predicate symbol. A clause H← c, A1, . . . , An is stratified
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with respect to λ if either H is false or, for i=1, . . . , n, λ(H)≥ λ(Ai). A set P of CHCs

is stratified with respect to λ if all clauses of P are stratified with respect to λ.

A DUFR-transformation sequence from S0 to Sn is a sequence S0 �⇒ S1 �⇒ . . . �⇒ Sn of

sets of CHCs such that, for i=0, . . . , n−1, Si+1 is derived from Si, denoted Si �⇒ Si+1, by

applying one of the following rules: (i) Rule D, (ii) Rule U, (iii) Rule F, and (iv) Rule G.

(To avoid confusion with Rules R1–R5 presented earlier in this section, in this proof

we use the letters D, U, F, and G to identify the rules presented in previous work (De

Angelis et al., 2022).) We assume that the initial set S0 is stratified with respect to a

given level mapping λ.

(Rule D) Let D be the clause newp(X1, . . . , Xk)← c, A1, . . . , Am, where: (1) newp is

a predicate symbol not occurring in the sequence S0 �⇒ S1 �⇒ . . . �⇒ Si constructed so

far, (2) c is a constraint, (3) the predicate symbols of A1, . . . , Am occur in S0, and

(4) {X1, . . . , Xk} ⊆ vars({c, A1, . . . , Am}). Then, by Rule D, we get Si+1 = Si ∪ {D}.
We define the level mapping λ of newp to be equal to max {λ(Ai) | i= 1, . . . , m}.

For any i≥ 0, we denote by Defsi the set of clauses introduced by Rule D during the

construction of S0 �⇒ S1 �⇒ . . . �⇒ Si.

Rule U consists in an application of the one-step unfolding of Definition 2.

(Rule U) Let C: H← c, GL, A, GR be a clause in Si, where A is an atom. Then, by

applying Rule U to C with respect to A, we get Si+1 = (Si \ {C})∪Unf (C, A, S0).

(Rule F) Let C: H← c, GL, Q, GR be a clause in Si, and let D: K← d, B be a variant

of a clause in Defsi. Suppose that: (1) either H is false or λ(H)≥ λ(K), and (2) there

exists a substitution ϑ such that Q=Bϑ and D |= ∀(c→ dϑ). Then, by applying Rule F to

C using D, we derive clause E: H← c, GL, Kϑ, GR, and we get Si+1 = (Si \ {C})∪ {E}.

In the next Rule R, called goal replacement , and in the rest of the proof, by Definite(S0)

we denote the set of definite clauses belonging to S0.

(Rule R) Let C: H← c, c1, GL, G1, GR be a clause in Si. Suppose that the following

two conditions hold:

(R.1) M(Definite(S0)∪Defsi) |= ∀ ((∃T1. c1∧G1)↔ (∃T2. c2∧G2)), and

(R.2) either H is false or, for every atom A occurring in G2 and not in G1, λ(H)>λ(A)

where:

T1 = vars({c1, G1}) \ vars({H, c, GL, GR}), and
T2 = vars({c2, G2}) \ vars({H, c, GL, GR}).

Then, by Rule R, in clause C we replace c1, G1 by c2, G2, and we derive clause D:

H← c, c2, GL, G2, GR. We get Si+1 = (Si \ {C})∪ {D}.

The following result guarantees that, for any DUFR-transformation sequence S0 �⇒
S1 �⇒ . . . �⇒ Sn satisfying Condition (C), S0 and Sn are equisatisfiable (Tamaki and Sato,

1986; Etalle and Gabbrielli, 1996; De Angelis et al., 2022).

Theorem 2 (Correctness of the DUFR-Transformation Rules).

Let S0 �⇒ S1 �⇒ . . . �⇒ Sn be a DUFR-transformation sequence. Suppose that the following

condition holds:

https://doi.org/10.1017/S147106842400019X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400019X


Catamorphic abstractions for constrained Horn clause satisfiability 15

(C) for i=1, . . . , n−1, if Si �⇒ Si+1 by folding a clause in Si using a definition D:

H← c, B in Defsi, then, for some j∈{1, . . . , i−1, i+1, . . . , n−1}, Sj �⇒ Sj+1 by

unfolding D with respect to an atom A such that λ(H) = λ(A).

Then,

(1) for i= 1, . . . , n, M(Definite(S0)∪Defsi) =M(Definite(Si)), and

(2) S0 is satisfiable if and only if Sn is satisfiable.

Now, we will show that each application of Rules R1–R5 can be obtained by one or

more applications of Rules D, U, F, R. Furthermore, for any transformation sequence

S0 �⇒ S1 �⇒ . . . �⇒ Sn constructed using Rules R1–R5, there exists a DUFR-transformation

sequence S0 �⇒ T0 �⇒ . . . �⇒ Tr �⇒ Sn satisfying Condition (C) of Theorem 2.

In order to recast Rules R1–R5 in terms of Rules D, U, F, and R, we first introduce

a suitable level mapping λ defined as follows: for any predicate q, (i) λ(q)=2, if q is a

program predicate of the initial set of clauses or a new program predicate introduced by

Rule R1, and (ii) λ(q)=1, if q is a catamorphism predicate, and (iii) λ(q)=0, if q is a

new predicate symbol introduced by Rule R5. We have that the initial set S0 of CHCs

is stratified with respect to λ. Let us first consider the four Rules R1–R4.

• Rule R1 is a particular case of Rule D, where in the body of clause D, (i) the

constraint c is absent, (ii) exactly one atom among A1, . . . , Am is a program

atom, (iii) all other atoms are catamorphism atoms, and (iv) {X1, . . . , Xk}=
vars({A1, . . . , Am}). By our definition of the level mapping, λ(newp) = 2, as one

of the Ai’s is a program atom.

• Rule R2 consists of applications of Rules U and R. Indeed, in R2, (i) Steps 1

and 2 are applications of Rule U where P is S0, and (ii) Step 3 is an appli-

cation of Rule R. To see Point (ii), note that every catamorphism cata is, by

definition, a functional predicate (see Section 2), and hence M(Definite(S0)) |=
∀(cata(X, T, Y 1)∧ cata(X, T, Y 2)→ Y 1=Y 2). Thus, for any i≥ 0,

M(Definite(S0)∪Defsi) |= ∀(cata(X, T, Y 1)∧ cata(X, T, Y 2)↔
Y 1=Y 2∧ cata(X, T, Y 1))

that is, Condition (R.1) of Rule R holds. Also Condition (R.2) holds, as the head H

of the clause has a predicate newp introduced by definition, and hence λ(newp) = 2,

while we have stipulated that λ(cata) = 1.

• Rule R3 consists of applications of Rule R. Indeed, R3 adds to the body of a clause

C (zero or more) catamorphism atoms cataj(X, Tj , Yj) such that no variable in

the tuple Yj occurs in C. The assumption that catamorphisms are total functions

enforces that M(Definite(S0)) |= ∀X, Tj ∃Yj . cataj(X, Tj , Yj), and hence

M(Definite(S0)∪Defsi) |= ∀(true↔∃Yj . cataj(X, Tj , Yj))

that is, Condition (R.1) of Rule R holds. Also Condition (R.2) holds, as the head

H of clause C is either false or a program atom. In the latter case λ(H) = 2, while

we have stipulated that λ(cataj) = 1.

• Rule R4 consists of applications of Rules R and F. Indeed, an application of

Rule R3 is equivalent to the following for-loop of applications of Rules R and F: for
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k=1, . . . , m, first, (i) the addition of the catamorphism atoms occurring (modulo

variable renaming) in CatasDk and not in its subconjunction CatasCk (as mentioned

above, this catamorphism addition is an instance of Rule R), and then, (ii) the

application of Rule F, thereby replacing the conjunction (CatasDk , Ak) by Hk.

Therefore, for any transformation sequence S0 �⇒ S1 �⇒ . . . �⇒ Si constructed using

Rules R1–R4, there exists a DUFR-transformation sequence S0 �⇒ T0 �⇒ . . . �⇒ Tr �⇒ Si.

When applying Rule R4 to a clause C during the construction of S0 �⇒ S1 �⇒ . . . �⇒ Si,

either the head of C is false or C has been obtained by the unfolding rule (possibly

followed by catamorphism addition). This implies that in S0 �⇒ T0 �⇒ . . . �⇒ Tr �⇒ Si

we have that Condition (C) of Theorem 2 holds. Thus, by Theorem 2 we get:

M(Definite(S0)∪Defsi) =M(Definite(Si)).

Now, suppose that we apply Rule R5 to the set Si of clauses. We have that, for every

predicate p occurring in Si,

M(Definite(Si)∪ χwo(Si)) |= ∀(p(X1, . . . ,Xk,Y1, . . . ,Ym)→ p woADTs(X1, . . . ,Xk)) (†)

where χwo(Si) = {χwo(C) |C is a clause in Si whose head is not false}. Now, it is the

case that an application of Rule R5 is realized by a sequence of applications of Rule R.

Indeed, for each addition of an atom p woADTs(t1, . . . , tk) to the body of a clause C by

R5, Condition (R.1) holds, as the above relation (†) is equivalent to:

M(Definite(Si)∪ χwo(Si)) |=
∀(p(X1, . . ., Xk, Y1, . . .,Ym)↔ (p(X1, . . ., Xk, Y1, . . .,Ym)∧ p woADTs(X1, . . . , Xk)))

and M(Definite(Si)∪ χwo(Si)) =M(Definite(S0 ∪ χwo(Si))∪Defsi), because the predi-

cates in χwo(Si) do not occur in S0, . . . , Si. Also Condition (R.2) holds, because the

head H of C is either false or λ(H)≥1 and λ(p woADTs)=0.

Therefore, for any transformation sequence S0 �⇒ S1 �⇒ . . . �⇒ Sn constructed using

Rules R1–R5, there exists a DUFR-transformation sequence S0 �⇒ T0 �⇒ . . . �⇒ Tr �⇒ Sn.

Then, by Theorem 2, we get that S0 is satisfiable if and only if Sn is satisfiable.

4.3 The transformation algorithm Tabs
The set of the new predicate definitions needed during the execution of the transformation

algorithm Tabs is not given in advance. In general, that set depends on: (i) the initial set

P of CHC clauses, (ii) the given query Q specifying the property of interest to be proved,

and (iii) the given catamorphic abstraction specification α for P . As we will see, we may

compute that set of new definitions as the least fixpoint of an operator, called τP∪{Q},α,
which transforms a given set Δ of predicate definitions into a new set Δ′ of predicate
definitions. First, we need the following notions.

Two definitions D1 and D2 are said to be equivalent , denoted D1 ≡D2, if they can

be made identical by performing the following transformations: (i) renaming of the head

predicate, (ii) renaming of the variables, (iii) reordering of the variables in the head,

and (iv) reordering of the atoms in the body. We leave it to the reader to check that

the results presented in this section are indeed independent of the choice of a specific

definition in its equivalence class.
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A set Δ of definitions is said to be monovariant if, for each program predicate p, in Δ

there is at most one definition having an occurrence of p in its body. The transformation

algorithm Tabs and the operator τP∪{Q},α work on monovariant sets of definitions and

are defined by means of the Define, Unfold , AddCata, Fold , and AddErasure functions

defined in Figure 3.

In the definition of the Define function we assume that, for each clause C in Cls and

each catamorphism atom Cata in the body of C, there is a program atom A in the body

of C such that adt-vars(Cata)⊆ adt-vars(A). If A is absent for a catamorphism atom

having the ADT variable X of sort τ , in order to comply with our assumption, we add

to the body of C a program atom trueτ (X) that is defined on the (possibly recursive)

structure of sort τ and holds for every X of sort τ . For instance, for the sort list(int),

the program atom truelist(int)(X) will be defined by the two clauses truelist(int)([ ]) and

truelist(int)([H|T ])← truelist(int)(T ), where H is an integer variable. Note that, by adding

to clause C the atom trueτ (X), we get a clause equivalent to C.

Definition 3 (Domain of Definitions).

We denote by D a maximal set of definitions such that
(D1) for every definition newp(X1, . . . , Xk)←Catas, A in D, for every ADT variable

Xi occurring in the program atom A, for each catamorphism predicate cata in the

conjunction Catas of catamorphism atoms, at most one catamorphism atom of the

form cata(. . . , Xi, . . . ) occurs in Catas, and

(D2) D does not contain equivalent definitions.

It follows directly from our assumptions that D is a finite set.

Now we define a partial order (�), a join operation (�) and a meet operation (�) for
definitions and also for monovariant subsets of definitions in D.

Definition 4.

Let D1: newp1(U1)←Catas1,Catas, A and D2: newp2(U2)←Catas2,Catas, A be two

definitions in D for the same program atom A, where Catas,Catas1, and Catas2 are

conjunctions of catamorphism atoms. We assume that the variables in D1 and D2 have

been renamed and the atoms in their bodies have been reordered so that (Catas , A) is

the maximal common subconjunction of atoms in their bodies, that is, there exists no

atom Cata in Catas1 and no variant of D2 of the form newp2(U ′
2)←Catas ′2,Catas, A,

such that Cata is an atom in Catas ′2.
(i) D2 is an extension of D1, written D1 �D2, if Catas1 is the empty conjunction;

(ii) By D1 �D2 we denote the definition D3: newp3(U3)←Catas1,Catas2,Catas, A,

where U3 is a tuple consisting of the distinct variables occurring in (U1, U2);

(iii) By D1 �D2 we denote the definition D3: newp3(U3)←Catas, A, where U3 is a

tuple consisting of the variables occurring in both U1 and U2.

Let Δ1 and Δ2 be two monovariant subsets of D.
(iv) Δ2 is an extension of Δ1, written Δ1 �Δ2, if for each D1 in Δ1 there exists D2 in

Δ2 such that D1 �D2;

(v) Δ1 �Δ2 = {D |D is the only definition in Δ1 ∪Δ2 for some program atom in

Δ1 ∪Δ2} ∪
{D1 �D2 |D1 and D2 are definitions for the same program atom in

Δ1 and Δ2, respectively};
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Fig. 3. The Define, Unfold , AddCata, Fold , and AddErasure functions.

(vi) Δ1 �Δ2 = {D1 �D2 |D1 and D2 are the definitions for the same program atom in

Δ1 and Δ2, respectively}.

Let Pm(D) denote the set of monovariant subsets of D. We have that (Pm(D),�,�,�)
is a lattice and, since D is a finite set, it is also a complete lattice. We define the operator

τP∪{Q},α:Pm(D)→Pm(D) as follows:

τP∪{Q},α(Δ) =def Define(AddCata(Unfold(Δ, P )∪ {Q}, α),Δ)

Now, we show that the operator τP∪{Q},α is a well defined function from Pm(D) to itself,

that is, for any Δ∈Pm(D), the set Δ′ = τP∪{Q},α(Δ) is an element of Pm(D).
First, note that: (i) the Define function introduces (see the (Add) case) a new definition

for a program predicate only if no definition for that predicate already belongs to Δ, and

(ii) Define replaces (see the (Extend) case) a definition for a program predicate by a new
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definition for the same predicate. Thus, if Δ is monovariant, so is Δ′. Moreover, no two

equivalent clauses will belong to Δ′ (see Point (D2) of Definition 3).

Note also that, due to the definition of function AddCata (see, in particular, Point (ii)

of Rule R3 applied by that function), Point (D1) of Definition 3 holds, and in par-

ticular, for every ADT variable Xi in the body of any new definition in Δ′, and for

every catamorphism predicate cata, there is at most one catamorphism atom of the form

cata(. . . , Xi, . . .).

Lemma 1 (Existence and Uniqueness of the Fixpoint of

τP∪{Q},α). The operator τP∪{Q},α is monotonic on the finite lattice Pm(D). Thus, it has
a least fixpoint lfp(τP∪{Q},α), also denoted τfix , which is equal to τnP∪{Q},α(∅), for some

natural number n.

Proof.

In order to prove the monotonicity of τP∪{Q},α, let us assume that Δ1 and Δ2 are two

sets of monovariant definitions in Pm(D), with Δ1 �Δ2. Let D1 ∈ τP∪{Q},α(Δ1) be a

definition for program atom A. We consider two cases.

(Case 1) There is no definition for A in Δ1. Then, by construction, according to the Define

function (see Figure 3), D1 can be viewed as the result of a sequence of join operations of

the form: E0 �E1 � . . .�En, with n≥0, where: (1) clause E0 has been obtained by the

(Add) case of Define, and (2) for i=1, . . . , n, clause E0 � . . .�Ei is a clause obtained by

the (Extend) case of Define from clause E0 � . . .�Ei−1. In particular, for all i=0, . . . , n,

clause Ei is a clause of the form newpi(Vi)←Catasi , A obtained from a clause H← c, G

(here and below in this proof H may be false) in AddCata(Unfold(Δ1, P )∪ {Q}, α) such
that A is a program atom in G and Catasi is the conjunction of all catamorphism atoms F

in G with adt-vars(F )⊆ adt-vars(A).

(Case 2) There is a definition E0 for A in Δ1. Then, similarly to Case 1, by construction,

D1 =E0 � . . .�En, where, for i=1, . . . , n, with n≥0, E0 � . . .�Ei is a clause obtained

by the (Extend) case of Define.

Now, since Δ1 �Δ2, for each clause H← c, G in AddCata(Unfold(Δ1, P )∪ {Q}, α),
there exists a clause H← c, C, G in the set of clauses AddCata(Unfold(Δ2, P )∪ {Q}, α),
where C is a conjunction of catamorphism atoms, and then, by construction,

Define(AddCata(Unfold(Δ2, P )∪ {Q}, α),Δ2) contains, for i=1, . . . , n, a clause E′
i,

with Ei �E′
i. Then, there exists D2 ∈ τP∪{Q},α(Δ2) such that D1=(E0 � . . .�En)�

(E′
0 � . . .�E′

n)� (E′
0 � . . .�E′

n � F1 � . . .� Fr) =D2, with r≥ 0. (Note that, since

Δ1 �Δ2, in AddCata(Unfold(Δ2, P )∪ {Q}, α) there may be clauses that are derived

from definitions in Δ2 that are not extensions of definitions in Δ1. In the bodies of

those clauses there may be some variants of A that determine r extra applications of

the (Extend) case of Define.) Therefore, by Definition 4, τP∪{Q},α(Δ1)� τP∪{Q},α(Δ2).

Thus, τP∪{Q},α is monotonic with respect to �. Since Pm(D) is a finite, hence com-

plete, lattice, τP∪{Q},α has a least fixpoint lfp(τP∪{Q},α), which can be computed as

τnP∪{Q},α(∅), for some natural number n.

Now, we define our transformation algorithm Tabs as follows:

Tabs(P ∪ {Q}, α) =AddErasure(Fold(AddCata(Unfold(τfix , P )∪ {Q}, α), τfix ))
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The termination of Tabs follows immediately from the fact that the functions Unfold ,

AddCata, Fold , and AddErasure terminate and the least fixpoint τfix is computed in a

finite number of steps (see Lemma 1). Thus, by the correctness of the transformation

rules (see Theorem 1), we get the following result.

Theorem 3 (Total Correctness of Algorithm

Tabs). Tabs terminates for any set P of definite clauses, query Q, and catamorphic

abstraction specification α. Also, P ∪ {Q} is satisfiable if and only if Tabs(P ∪ {Q}, α) is
satisfiable.

Finally, we would like to comment on the fact that our transformation algorithm Tabs
introduces a monovariant set of definitions. Other definition introduction policies could

have been considered. In particular, one could introduce more than one definition for each

program predicate, thus producing a polyvariant set of definitions. The choice between

monovariant and polyvariant sets of definitions has been subject to ample discussion in

the literature (De Angelis et al., 2022) and both have advantages and disadvantages. We

will show in the next section that our technique performs quite well in our benchmark.

However, we leave a more accurate experimental evaluation to future work.

5 Implementation and experimental evaluation

In this section we provide some details on the implementation of algorithm Tabs , and on

its experimental evaluation.

Implementation. We have implemented algorithm Tabs in a tool, called VeriCaTabs ,

based on VeriMAP (De Angelis et al., 2014), which is a system for transforming CHCs.

In order to check satisfiability of sets of CHCs (before and after their transformation)

we have used the following two solvers: (i) Eldarica (v. 2.0.9) (Hojjat and Rümmer,

2018), and (ii) Z3 (v. 4.12.2) (de Moura and Bjørner, 2008) with the SPACER engine

(Komuravelli et al., 2016) and the global guidance option (Krishnan et al., 2020).

The tool VeriCaTabs manipulates clauses as indicated in the following three phases.

(Phase 1) A pre-processing phase. In this phase VeriCaTabs produces a catamorphic

abstraction specification α starting from: (i) a given set P of CHCs, and (ii) the cata-

morphic abstractions for the ADTs occurring in P . For instance, in the case of our

introductory example double (see Figure 1), Phase 1 produces the catamorphic abstrac-

tion specifications for double, eq , and append we have listed in Example 1, starting from

clauses 1–6 and the catamorphic abstraction cata list(int) =def listcount(X, L, N),

In the following example, referring to a treesort algorithm, we present the VeriCaTabs

syntax for representing: (i) the catamorphic abstractions given in input, using the direc-

tive cata_abs, and (ii) the catamorphic abstraction specifications produced in output,

after Phase 1, using the directive spec.

Example 8.

Let treesort(L,S) and visit(T,L) be two atoms included in a CHC encoding of the

treesort algorithm. The atom treesort(L,S) holds if and only if S is the list of integers

obtained by applying the treesort algorithm to the list L of integers. The auxiliary atom
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visit(T,L) holds if and only if L is the list of integers obtained by a depth first visit

of the tree T with integers at its nodes. The catamorphic abstractions for the ADT sorts

list(int) and tree(int) used by our tool VeriCaTabs during Phase 1, are as follows:

:- cata_abs list(int) ==> listcount(X,L,C).

:- cata_abs tree(int) ==> treecount(X,T,C).

The catamorphisms listcount(X,L,B) and treecount(X,T,A) count the occurrences

of the integer X in the list L and in the tree T, respectively. In general, the directive

cata_abs for a sort τ is as follows:

:- cata_abs τ ==> catamorphisms acting on τ.

For the program predicates treesort and visit, the catamorphic abstraction

specifications produced by VeriCaTabs after Phase 1, are as follows:

:- spec treesort(L,S) ==> X=Y, listcount(X,S,A), listcount(Y,L,B).

:- spec visit(T,L) ==> X=Y, treecount(X,T,A), listcount(Y,L,B).

Note that both the tree catamorphism treecount(X,T,A) and the list catamorphism

listcount(Y,L,B) occur in the catamorphic specification for visit(T,L).

(Phase 2) A fold/unfold transformation phase. In this phase VeriCaTabs computes the fix-

point τfix and the set Tw of clauses, which is Fold(AddCata(Unfold(τfix , P )∪{Q}, α), τfix ).
For the double introductory example (see Figure 1), we have that P is the set {1, . . . , 6}
of clauses, query Q is clause 7, and α is the set of catamorphic abstraction specifications

produced at Phase 1 (see Example 1). Now, τfix is the set {D1, D2, D3, D4} of definitions
listed in Figure 2 and the set Tw is as follows:

false←C=2D+ 1, new1(A, E, F, G, C)

new1(A, B, C, E, F )← new2(A,M,K, E, F, B, C), new3(A,M,K, B, C)

new2(A, B, C, B, C, [ ], G)←G=0, new4(A, B, C)

new2(A, B, C, [E|F ], G, [E|J ], K)←G=ite(A=E,N+1, N), K=ite(A=E, P+1, P ),

new2(A, B, C, F, N, J, P )

new3(A, B, C, B, C)← new4(A, B, C)

new4(A, [ ], B)←B=0

new4(A, [B|C], D)←D=ite(A=B, F+1, F ), new4(A, C, F )

(Phase 3) A post-processing phase. In this phase, VeriCaTabs produces the following two

additional sets of clauses by applying the AddErasure function to Tw:
(i) Two = {χwo(C) |C is a clause in Tw}, that is, Two is made out of the clauses in Tw

where every atom with ADT arguments has been replaced by its corresponding

atom without ADT arguments, and

(ii) Tw&wo = {χw&wo(C) |C is a clause in Tw} ∪ Two , that is, Tw&wo is made out of

the clauses in either (ii.1) Tw, where every atom in the body with ADT arguments

is paired with its corresponding atom without ADT arguments, or (ii.2) Two =

{χwo(C) |C is a clause in Tw whose head is not false}.

Tw&wo is, indeed, the set of clauses computed by our transformation algorithm Tabs . The
other two sets Tw and Two , produced by VeriCaTabs , will be used for comparing and

analyzing the features of Tw&wo , as we do in the experimental evaluation below.
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For our introductory example double (see Figure 1), at the end of Phase 3, VeriCaTabs

produces the following two sets of clauses (clause numbers refer to Figure 2):

Two={false←C=2D+1, new1--woADTs(A,F,C)} ∪ {18, . . . , 23}, and
Tw&wo = {11, . . . , 23}.

The set {18, . . . , 23} of clauses is Two of Point (ii.2) above.

Experimental evaluation. Our benchmark consists of 228 sets of CHCs that encode

properties of various sorting algorithms (such as bubblesort, heapsort, insertionsort,

mergesort, quicksort, selectionsort, and treesort), and simple list and tree manipulation

algorithms (such as appending and reversing lists, constructing permutations, deleting

copies of elements, manipulating binary search trees). Properties of those algorithms

are expressed via catamorphisms. Here is a non-exhaustive list of the catamorphisms

we used: (i) size(L, S ), (ii) listmin(L,Min), (iii) listmax (L,Max ), and (iv) sum(L, Sum)

computing, respectively, the size S of list L, the minimum Min, the maximum Max ,

and the sum Sum of the elements of list L, (v) is--asorted(L,BL), which holds with

BL=true if and only if list L is ordered in weakly ascending order, (vi) allpos(L, B),

which holds with B=true if and only if list L is made out of all positive elements,

(vii) member(X, L, B), which holds with B=true if and only if X is an element of the

list L, and (viii) listcount(X, L, N), which holds if and only if N is the number (≥0) of
occurrences of X in the list L. For some properties, we have used more than one cata-

morphism at a time and, in particular, for lists of integers, we have used the conjunction

of member and listcount , and for different properties, we have also used the conjunction

of listmin, listmax , and is--asorted, as already indicated in the paper.

A property holds if and only if its CHC encoding via a query Q is satisfiable, and a

verification task consists in using a CHC solver to check the satisfiability of Q. When the

given property holds for a set P of clauses, the solver should return sat and the property

is said to be a sat property. Analogously, when a property does not hold, the solver should

return unsat and the property is said to be an unsat property. In our benchmark, for

each verification task of a sat property, we have considered a companion verification task

whose CHCs have been modified so that the associated property is unsat . In particular,

we have 114 sat properties and 114 unsat properties.

We have performed our experiments on an Intel(R) Xeon(R) Gold 6238R CPU

2.20GHz with 221GB RAM under CentOS with a timeout of 600s per verification task.

The results of our experiments are reported in Table 1. The VeriCaTabs tool and the

benchmarks are available at https://fmlab.unich.it/vericatabs.

Table 1 shows that, for each verification task, the transformation of the CHCs allows

a very significant improvement of the performance of the Z3 solver and also an overall

improvement of the Eldarica solver (notably for sat properties).

In particular, before CHC transformation, Z3 did not prove any of the 114 sat proper-

ties of our benchmark. After CHC transformation, Z3 proved 109 of them to be sat (see

columns Z1 and Z3 of Table 1). The time cost of this improvement is very small. Indeed,

most CHC transformations take well below 1.5s and only one of them takes a little more

than 2s (for details, see column T , where each entry is the sum of the times taken for

the individual transformation tasks of each row). The times taken by the solvers after
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Table 1. Properties proved by the solvers Eldarica and Z3 before and after the transformation performed by algorithm Tabs . In the
before case, the input to the solver is the source set of clauses (src-columns), and in the after case, the input is Tw&wo (Tw&wo-columns).

The columns occur in pairs referring to the sat properties (s-columns) and the unsat properties (u-columns), respectively. The two
Tw-columns and the two Two-columns refer to the input Tw and Two , respectively. The last column shows the time (in seconds) taken by

Tabs as implemented by VeriCaTabs .

Eldarica Z3
Transf

Properties src Tw&wo Tw Two src Tw&wo Tw Two time

Programs s u s u s u s u s u s u s u s u s u T

Append 4 4 0 3 3 3 3 4 3 4 0 4 4 4 4 4 4 4 6.4
Bubblesort 9 9 2 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 15.8
BinSearchTree 8 8 0 7 0 5 2 7 4 8 0 8 8 8 7 8 8 8 19.2
DeleteCopies 7 7 0 7 4 7 3 7 6 7 0 7 7 7 7 7 7 7 11.1
Heapsort 7 7 0 7 2 7 0 7 4 7 0 7 7 7 3 7 5 7 13.5
Insertionsort 9 9 2 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 16.0
Member 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1.7
Mergesort 9 9 0 9 1 9 2 9 4 9 0 9 9 9 3 9 7 9 14.1
Permutations 7 7 2 7 7 7 7 7 7 7 0 7 7 7 7 7 7 7 12.4
QuicksortA 8 8 0 6 2 3 1 6 5 8 0 8 8 8 8 8 8 8 14.3
QuicksortC 8 8 0 8 1 7 1 8 3 8 0 8 6 8 5 8 6 8 13.4
Reverse 12 12 1 12 6 11 6 12 11 12 0 12 11 12 3 12 11 12 20.9
ReverseAcc 8 8 0 8 6 7 7 8 7 8 0 8 8 8 8 8 7 8 15.6
ReverseRev 2 2 0 2 0 0 0 0 2 2 0 2 2 2 0 2 2 2 3.8
Selectsort 9 9 2 9 7 8 7 9 8 9 0 9 8 9 8 9 8 9 14.2
Treesort 6 6 0 6 1 6 1 6 4 6 0 6 5 6 1 6 5 6 10.2

E1 E2 E3 E4 E5 E6 E7 E8 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

Total 114 114 9 110 59 99 59 109 87 114 0 114 109 114 83 114 104 114 202.5

23
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transformation (not shown in Table 1) are usually quite small. In particular, for the 109

properties proved sat by Z3, the verification time was almost always below 1s. Only for

13 of them, it was between 1s and 4s. For the remaining five sat properties, Z3 exceeded

the timeout limit.

Out of the 114 sat properties, Eldarica proved 9 sat properties (all relative to list size)

before transformation and 59 sat properties (relative also to catamorphisms different

from list size) after transformation (see columns E1 and E3). However, one property that

was proved sat before transformation, was not proved sat after transformation. This is

the only example where the built-in size function of Eldarica has been more effective

than our transformation-based approach.

Given the 114 unsat properties, Z3 proved all of them to be unsat before transformation

and also after transformation (see columns Z2 and Z4). The proofs before transformation

took well-below 1s in almost all examples, and after transformation took an equal or

shorter time for more than half of the cases.

Given the 114 unsat properties, Eldarica proved 110 of them to be unsat before trans-

formation, and only 99 of them after transformation (see columns E2 and E4). This is the

only case where we experienced a degradation of performance after transformation. This

degradation may be related to the facts that: (i) the number of clauses in the transformed

set Tw&wo is larger than the number of clauses in the source set, and (ii) the clauses in

Tw&wo have often more atoms in their bodies with respect to the source clauses.

If we consider the set Tw , instead of Tw&wo , we have a significant decrease in the

number of clauses and the number of atoms in the bodies of clauses. In this case, Z3

proved 83 properties to be sat (less than for Tw&wo , see columns Z3 and Z5) and all 114

properties to be unsat (as for all other input sets of clauses, see columns Z2, Z4, and Z6).

Eldarica proved 59 properties to be sat (the same as for Tw&wo , see columns E3 and E5)

and 109 properties to be unsat (almost the same as for the source clauses, see columns

E2 and E6).

Finally, we have considered the set Two , instead of Tw&wo . For the 114 sat properties,

Eldarica proved 87 of them (see column E7), while Z3 proved 104 of them (see column Z7).

For the unsat properties both Eldarica and Z3 proved all of them (see columns E8 and

Z8). However, since Two computes an overapproximation with respect to Tw&wo (and

also with respect to Tw ), when the solver returns the answer unsat , one cannot conclude

that the property at hand is indeed unsat . Both solvers, in fact, wrongly classified 10 sat

properties as unsat .

In summary, our experimental evaluation shows that VeriCaTabs with Z3 as back-end

solver outperforms the other CHC solving tools we have considered. Indeed, our tool

shows much higher effectiveness than the others when verifying sat properties, while it

retains the excellent performance of Z3 for unsat properties.

6 Conclusions and related work

It is well known that the proof of many program properties can be reduced to a proof

of satisfiability of sets of CHCs (Bjørner et al., 2015; De Angelis et al., 2022; Gurfinkel,

2022). In order to make it easier to automatically prove satisfiability, whenever a program

is made out of many functions, possibly recursively defined and depending on each other,
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it is commonly suggested to provide properties also for the auxiliary functions that may

occur in the program. Those extra properties basically play the role of lemmas, which

often make the proof of a property of interest much easier.

We have focused our study on the automatic proof of properties of programs that

compute over ADTs, when these properties can be defined using catamorphisms. In a

previous paper (De Angelis et al., 2023), we have proposed an algorithm for dealing with

a multiplicity of properties of the various program functions to be proved at the same

time. In this paper, we have investigated an approach, whereby the auxiliary properties

need not be explicitly defined, but it is enough to indicate the catamorphisms involved in

their specifications. This leaves to the CHC solver the burden of discovering the suitable

auxiliary properties needed for the proof of the property of interest. Thus, this much sim-

pler requirement we make avoids the task of providing all the properties of the auxiliary

functions occurring in the program. However, in principle, the proofs of the properties

may become harder for the CHC solver. Our experimental evaluation shows that this is

not the case if we follow a transformation-based approach. Indeed, the results presented

in this paper support the following two-step approach: (1) use algorithm Tabs proposed

here to derive a new, transformed set of CHCs from the given initial set of CHCs that

translate the program together with its property of interest, and then, (2) use the Z3

solver with global guidance (Krishnan et al., 2020) on the derived set.

We have shown that our approach is a valid alternative to the development of algo-

rithms for extending CHC solvers with special purpose mechanisms that handle ADTs.

In fact, recently proposed approaches extend CHC solvers to the case of CHCs over ADTs

through the use of various mechanisms such as: (i) the combination with inductive the-

orem proving (Unno et al., 2017), (ii) the lemma generation based on syntax-guided

synthesis from user-specified templates (Yang et al., 2019), (iii) the invariant discov-

ery based on finite tree automata (Kostyukov et al., 2021), and (iv) the use of suitable

abstractions on CHCs with recursively defined function symbols (Govind V. K., Shoham,

and Gurfinkel, 2022).

One key feature of our algorithm Tabs is that it is sound and complete with respect

to satisfiability, that is, the transformed set of CHCs is satisfiable if and only if so is the

initial one. In this respect, our results here improve over previous work (De Angelis et al.,

2022), where algorithm Tcata only preserves soundness, that is, if the transformed set of

CHCs is satisfiable, then so is the initial one, while if the transformed set is unsatisfiable,

nothing can be inferred for the given set.

In our experiments, we have also realized the usefulness of having more catamor-

phisms acting together when verifying a specific property. For instance, in the case of

the quicksort program, when using the catamorphism is--asorted alone, Z3 is unable to

show (within the timeout of 600s) sortedness of the output list, while when using also

the catamorphisms listmin and listmax , after transformation Z3 proved sortedness in

less than 2s. We leave it for future work to automatically derive the catamorphisms that

are useful for showing the property of interest, even if they are not strictly necessary for

specifying that property.

Our approach is very much related to abstract interpretation (Cousot and Cousot,

1977), which is a methodology for checking properties by interpreting the program as
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computing over a given abstract domain. Catamorphisms can be seen as specific abstrac-

tion functions. Abstract interpretation techniques have been studied also in the field of

logic programming. In particular, the CiaoPP preprocessor (Hermenegildo et al., 2005)

implements abstract interpretation techniques that use type-based norms , which are a

special kind of integer-valued catamorphisms. These techniques have important appli-

cations in termination analysis (Bruynooghe et al., 2007) and resource analysis (Albert

et al., 2020).

Usually, abstract interpretation is the basis for sound analysis techniques by computing

an (over-)approximation of the concrete semantics of a program, and hence these tech-

niques may find counterexamples to the properties of interest that hold in the abstract

semantics, but that are not feasible in the concrete semantics. As already mentioned, our

transformation guarantees the equisatisfiability of the initial and the transformed CHCs,

and hence all counterexamples found are feasible in the initial CHCs.

Among the various abstract interpretation techniques, the one which is most related to

our verification approach, is the so-called model-based abstract interpretation (Gallagher

et al., 1995). This abstract interpretation technique is based on the idea of defining a

pre-interpretation, that is, an interpretation of the function symbols of a logic program

over a specified domain of interest. That pre-interpretation is used for generating, via

abstract compilation (De Angelis et al., 2022, Sec. 4.3), a domain program whose least

model is an abstraction of the least model of the original program. Then, program prop-

erties can be inferred from the model of the domain program. One similarity is that

pre-interpretations of ADT constructors can be seen as catamorphisms. Actually, our

definition of a catamorphism is more general than the one of a pre-interpretation, in

that: (i) we admit non-ADT additional parameters as, for instance, in the listcount pred-

icate of our introductory example, and (ii) we allow mutually dependent predicates in the

definitions of catamorphisms. Another similarity is that the abstract compilation used

by model-based abstract interpretation can be seen as a program transformation and,

indeed, it can be implemented by partial evaluation. However, as already mentioned for

other abstract interpretation techniques, that transformation does not guarantee equi-

satisfiability and by using it, one can prove the satisfiability of the original set of clauses,

but not its unsatisfiability.

Our transformation-based approach is, to a large extent, parametric with respect to

the theory of constraints used in the CHCs. Thus, it can easily be extended to theories

different from LIA and Bool used in this paper, and in particular, to other theories

such as linear real/rational arithmetic or bit-vectors, as far as they are supported by the

CHC solver. This is a potential advantage with respect to those abstract interpretation

techniques that require the design of an ad-hoc abstract domain for each specific program

analysis.
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Hojjat, H. and Rümmer, P. 2018. The ELDARICA Horn solver. In Formal Methods in
Computer Aided Design, FMCAD ’18. IEEE, 1–7.

Jaffar, J. and Maher, M. 1994. Constraint logic programming: A survey. Journal of Logic
Programming 19, 20, 503–581.

Komuravelli, A.,Gurfinkel, A. and Chaki, S. 2016. SMT-based model checking for recursive
programs. Formal Methods in System Design 48, 3, 175–205.

Kostyukov, Y., Mordvinov, D. and Fedyukovich, G. 2021. Beyond the elementary repre-
sentations of program invariants over algebraic data types. In Conference on Programming
Language Design and Implementation, PLDI ’21. ACM, 451–465.

Krishnan, H. G. V., Chen, Y., Shoham, S. and Gurfinkel, A. 2020. Global guidance for
local generalization in model checking. In CAV ’20, Part II. Lahiri, S. K. and Wang, C., Eds.,
vol. 12225. Lecture Notes in Computer Science. Springer, 101–125.

Lloyd, J. W. 1987. Foundations of Logic Programming. 2nd ed. Springer-Verlag, Berlin.

Meijer, E., Fokkinga, M. M. and Paterson, R. 1991. Functional programming with bananas,
lenses, envelopes and barbed wire. In 5th ACM Conference on Functional Programming
Languages and Computer Architecture, vol. 523. Lecture Notes in Computer Science. Springer,
124–144.
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