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Abstract

Catamorphisms are functions that are recursively defined on list and trees and, in general, on
algebraic data types (ADTs), and are often used to compute suitable abstractions of programs
that manipulate ADTs. Examples of catamorphisms include functions that compute size of
lists, orderedness of lists, and height of trees. It is well known that program properties specified
through catamorphisms can be proved by showing the satisfiability of suitable sets of con-
strained Horn clauses (CHCs). We address the problem of checking the satisfiability of those
sets of CHCs, and we propose a method for transforming sets of CHCs into equisatisfiable sets
where catamorphisms are no longer present. As a consequence, clauses with catamorphisms
can be handled without extending the satisfiability algorithms used by existing CHC solvers.
Through an experimental evaluation on a nontrivial benchmark consisting of many list and tree
processing algorithms expressed as sets of CHCs, we show that our technique is indeed effective
and significantly enhances the performance of state-of-the-art CHC solvers.

KEYWORDS: program verification, constrained Horn clauses, catamorphisms, contracts.

* This is an extended version of the LOPSTR, 2023 paper entitled: Constrained Horn Clauses Satisfiability
via Catamorphic Abstractions, doi: https://doi.org/10.1007/978-3-031-45784-5_4

()]

Check f
https://doi.org/10.1017/5147106842400019X Published online by Cambridge University Press Updates.


https://doi.org/10.1017/S147106842400019X
https://orcid.org/0000-0002-7319-8439
mailto:emanuele.deangelis@iasi.cnr.it
https://orcid.org/0000-0002-1268-7829
mailto:fabio.fioravanti@unich.it
https://orcid.org/0000-0001-7858-4032
mailto:pettorossi@info.uniroma2.it
https://orcid.org/0000-0003-3835-4931
mailto:maurizio.proietti@iasi.cnr.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S147106842400019X&domain=pdf
https://doi.org/10.1017/S147106842400019X

2 E. De Angelis et al.

1 Introduction

Catamorphisms are functions that compute abstractions over algebraic data types
(ADTs), such as lists or trees. The definition of a catamorphism is based on a
simple recursion scheme, called a fold in the context of functional programming
(Meijer et al., 1991). Examples of catamorphisms on lists of integers include functions
that compute the orderedness of a list, the length of a list, and the sum of its elements.
Similarly, examples of catamorphisms on trees are functions that compute the size of a
tree, the height of a tree, and the minimum integer value at its nodes.

Through catamorphisms we can specify many useful program properties such as, for
instance, the property that the list computed by a program for sorting lists is indeed
sorted, or the property that the output list has the same length of the input list. For this
reason, program analysis tools based on abstract interpretation (Cousot and Cousot, 1977;
Hermenegildo et al., 2005) and program verifiers (Suter et al., 2011) have implemented
special purpose techniques that handle catamorphisms.

In recent years, it has been shown that verification problems that use catamorphisms
can be reduced to satisfiability problems for constrained Horn clauses (CHCs) by follow-
ing a general approach that is very well suited for automatic proofs (Bjgrner et al., 2015;
De Angelis et al., 2022; Gurfinkel, 2022). A practical advantage of CHC-based verifica-
tion is that it is supported by several CHC solvers which can be used as back-end tools
(Blicha et al., 2022; De Angelis and Govind V. K., 2022; Komuravelli et al., 2016; Hojjat
and Rimmer, 2018).

Unfortunately, the direct translation of catamorphism-based verification problems into
CHCs is not always helpful, because CHC solvers often lack mechanisms for comput-
ing solutions by performing induction over ADTs. To overcome this difficulty, some
CHC solvers have been extended with special purpose satisfiability algorithms that han-
dle (some classes of) catamorphisms (Govind et al., 2022; Hojjat and Riimmer, 2018;
Kostyukov et al., 2021; Gurfinkel, 2022). For instance, the module of Eldarica for solv-
ing CHCs has been extended by allowing constraints that use the built-in size function
counting the number of function symbols in the ADTs (Hojjat and Riimmer, 2018).

In this paper, we consider a class of catamorphisms that is strictly larger than the ones
handled by the above mentioned satisfiability algorithms, and we follow an approach
based on the transformation of CHCs (De Angelis et al., 2022, 2023). In particular, given
a set P of CHCs that uses catamorphisms and includes one or more queries encoding
the properties of interest, we transform P into a new set P’ such that: (i) P is satisfiable
if and only if P’ is satisfiable, and (ii) no catamorphism is present in P’. Thus, the
satisfiability of P’ can be verified by a CHC solver that is not extended for handling
catamorphisms.

The main difference between the technique we present in this paper and the above
cited works (De Angelis et al., 2022, 2023) is that the algorithm we present here does
not require that we specify suitable properties of how the catamorphisms relate to every
predicate occurring in the given set P of CHCs. For instance, if we want to verify that
the output list S of the set of CHCs defining quicksort(L,S) has the same length of the
input list L, we need not specify that, for the auxiliary predicate partition(X, Xs, Ys, Zs)
that divides the list Xs into the two lists Ys and Zs, it is the case that the length of Xsis
the sum of the lengths of Ys and Zs. This property can automatically be derived by the
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CHC solver when it looks for a model of the set of CHCs obtained by transformation. In
this sense, our technique may allow the discovery of some lemmas needed for the proof
of the property of interest.

We will show through a benchmark set of list and tree processing algorithms expressed
as sets of CHCs, that our transformation technique is indeed effective and is able to
drastically increase the performance of state-of-the-art CHC solvers such as Eldarica
(Hojjat and Riimmer, 2018) (with the built-in catamorphism size) and Z3 with the
SPACER engine (de Moura and Bjgrner, 2008; Komuravelli et al., 2016).

The rest of the paper is organized as follows. In Section 2, we recall some preliminary
notions on CHCs and catamorphisms. In Section 3 we show an introductory example
to motivate our technique. In Section 4 we present our transformation algorithm and
prove that it guarantees the equisatisfiability of the initial sets of CHCs and the trans-
formed sets of CHCs. In Section 5 we present the implementation of our technique in
the VeriCaT,;s tool, and through an experimental evaluation, we show the beneficial
effect of the transformation on both Eldarica and Z3 CHC solvers. We will consider
several abstractions based on catamorphisms relative to lists and trees, such as size,
minimum element, orderedness, element membership, element multiplicity, and combi-
nations thereof. Finally, in Section 6, we discuss related work and we outline future
research directions.

2 Basic notions

The programs and the properties we consider in this paper are expressed as sets of con-
strained Horn clauses written in a many-sorted first-order language £ with equality (=).
Constraints are expressions of the linear integer arithmetic (L/A) and the boolean alge-
bra (Bool). The theories of LIA and Bool will be collectively denoted by LIA U Bool. The
equality symbol = will be used both for integers and booleans. In particular, a constraint
is a quantifier-free formula ¢, where LIA constraints may occur as subexpressions of
boolean constraints, according to the SMT approach (Barrett et al., 2009). The syntaxes
of a constraint ¢ and an elementary LIA constraint d are as follows:

cu=d | B| true | false | ~c | c1&ea | a1V ea | ecr=ca| cr=ca |
ite(c, c1, co) | t=ite(c, t1,ta)
d =1t <t | t1 <to ‘ t1 =19 | t1 > 1o | t1 > 12

where:(i) B is a boolean variable, (ii) ~, &, V, and = denote negation, conjunction,
disjunction, and implication, respectively, (iii) the ternary function ite denotes the if-
then-else operator (i.e. ite(c, ¢1, c2) has the following semantics: if ¢ then ¢; else ¢g), and
(iv) ¢, possibly with subscripts, ¢, t; and t5 is a LIA term of the form ag +a1 Xy + ...+
anX, with integer coefficients ag, ..., a, and integer variables X1, ..., X,,.

The integer and boolean sorts are said to be basic sorts. A recursively defined sort
(such as the sort of lists and trees) is said to be an algebraic data type (ADT, for short).

An atom is a formula of the form p(t,...,t,), where p is a predicate symbol not
occurring in LIAU Bool, and ty,...,t,, are first-order terms in L. A constrained Horn
clause (CHC), or simply, a clause, is an implication of the form H <+ ¢, G. The conclusion
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H, called the head, is either an atom or false, and the premise, called the body, is the
conjunction of a constraint ¢ and a conjunction GG of zero or more atoms. G is said to be
a goal. A clause is said to be a query if its head is false, and a definite clause, otherwise.
Without loss of generality, at the expense of introducing suitable equalities, we assume
that every atom of the body of a clause has distinct variables (of any sort) as arguments.
Given an expression e, by vars(e) we denote the set of all variables occurring in e. By
bvars(e) (or adt-vars(e)) we denote the set of variables in e whose sort is a basic sort (or
an ADT sort, respectively). The universal closure of a formula ¢ is denoted by V().

A D-interpretation for a set S of CHCs is an interpretation where the symbols of
LIA U Bool are interpreted as usual. A D-interpretation I is said to be a D-model of S if
all clauses of S are true in I. A set S of CHCs is said to be D-satisfiable (or satisfiable,
for short) if it has a D-model, and it is said to be D-unsatisfiable (or unsatisfiable, for
short), otherwise.

Given a set P of definite clauses, there exists a least D-model of P, denoted M (P)
(Jaffar and Maher, 1994). Let P be a set of definite clauses and for i=1,...,n, @; be a
query. Then PU{Q1,...,Q,} is satisfiable if and only if, for i=1,...,n, M(P) E Q;.

The catamorphisms we consider in this paper are defined by first-order, relational
recursive schemata as we now indicate. Similar definitions are introduced also in (higher-
order) functional programming (Meijer et al., 1991; Hinze et al., 2013).

Let f be a predicate symbol with m + n arguments (for m>0 and n>0) with sorts
Q1,5 Qm, B1, - -, Bn, respectively. We say that f is a functional predicate from sort
a1 X...Xay, to sort B1X...x[3,, with respect to a given set P of definite clauses that
define f, if M(P)EVX,Y,Z. f(X,)Y) A f(X,Z) —Y=Z, where X is an m-tuple of distinct
variables, and Y and Z are n-tuples of distinct variables. In this case, when we write the
atom f(X,Y), we mean that X and Y are the tuples of the input and output variables
of f, respectively. We say that f is a total predicate if M(P) EVX3Y. f(X,Y). In what
follows, a ‘total, functional predicate’ f from a tuple « of sorts to a tuple 3 of sorts is
said to be a ‘total function’ in [a — f], and it is denoted by f € [« — ]

Now we introduce the notions of a list catamorphism and a binary tree catamorphism.
We leave to the reader the task of introducing, the definitions of similar catamorphisms for
recursively defined algebraic data types that may be needed for expressing the properties
of interest. Let «, 8, 7, and ¢ be (products of) basic sorts. Let list(3) be the sort of lists
with elements of sort 8, and btree() be the sort of binary trees with values of sort 3.

Definition 1 (List and Binary Tree Catamorphisms).
A list catamorphism ¢ is a total function in [axlist(8) — 7] defined as follows:

L1. UX,[],Y) < { basis(X,Y)

L2. ¢(X,[H|T),Y) « f(X,T, Rf), {(X,T,R), {_combine(X, H, R, Rf,Y)
where: (i) £_basis € [a—], (ii) L_combine € [axBxyxd — ], and (iii) f is itself a list
catamorphism in [axlist(8) — 4].
A binary tree catamorphism bt is a total function in [ax btree(8) — +] defined as follows:

BT1. bt(X,leaf,Y) + bt_basis(X,Y)

BT2. bt(X,node(L,N,R),Y) <« g(X, L, RLg), g(X, R, RRy),

bi(X, L, RL), bt(X, R, RR), bl_combine(X, N, RL, RR, RLg, RRg,Y)
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*** Initial set of CHCs including the catamorphism listcount.

. double(Xs,Zs) « eq(Xs,Ys), append(Xs,Ys,Zs)

eq(Xs,Xs) <

. append([],Ys,Ys) +

. append([X|Xs],Ys,[X|Zs]) «+ append(Xs,Ys,Zs)

. listcount(X,[], N) < N=0

. listcount(X,[H|T], N) < N =ite(X=H,NT+1,NT), listcount(X,T,NT)

*HE Query.
7. false + M =2 N+1, listcount(X, Zs, M), double(Xs, Zs)

o Ut W

Fig. 1. The initial set of CHCs (clauses 1-6) and query 7 that specifies that the number of
occurrences of an element X in the list Zs is even.

where : (i) bt_basis € [a — 7], (ii) bt_combine € [axBxyxyxIxd —~], and (iii) g is itself
a binary tree catamorphism in [ax btree(8) — d].

Instances of the schemas of the list catamorphisms and the binary tree catamorphisms
(see Definition 1 above) may lack some components, such as the parameter X of basic
sort «, or the catamorphisms f or g. The possible presence of these components makes
the class of catamorphisms considered in this paper strictly larger than the ones used
by other CHC-based approaches (Govind V. K. et al., 2022; Hojjat and Riimmer, 2018;
Kostyukov et al., 2021; Gurfinkel, 2022).

3 An introductory example

Let us consider a set of CHCs for doubling lists of integers (see clauses 14 in Figure 1).
We have that: (i) double(Xs, Zs) holds if and only if list Zs is the concatenation of
two copies of the same list Xs of integers, (ii) eq(Xs,Ys) holds if and only if list Xs is
equal to list Vs, and (iii) append(Xs, Ys, Zs) holds if and only if list Zs is the result of
concatenating list Ys to the right of list Xs.

Let us assume that we want to verify the following Even property: if double(Xs, Zs)
holds, then for any integer X, the number of occurrences of X in Zs is an even number.
In order to do so, we use the list catamorphism listcount(X, Zs, M) (see clauses 56 in
Figure 1) that holds if and only if M is the number of occurrences of X in list Zs. Note
that listcount(X, Zs, M) is indeed a list catamorphism because clauses 5-6 are instances
of clauses L1-L2 in Definition 1, when: (i) £ is listcount, (il) Y is N, (iii) £_basis(X,Y) is
the LIA constraint N=0, (iv) f(X,T, Rf) is absent, and (v) ¢_combine(X, H, R, Rf,Y)
is the LIA constraint N=ite(X=H, NT+1, NT).

Our verification task can be expressed as query 7 in Figure 1, whereby we derive false
if the number M of occurrences of X in Zs is odd (recall that we assume that M=2 N+1
is a LIA constraint).

Now, neither the CHC solver Eldarica nor Z3 is able to prove the satisfiability of
clauses 1-7 and thus, those solvers are not able to show the Ewven property. By the
transformation technique we will propose in this paper, we get a new set of clauses
whose satisfiability can be shown by Z3 and thus, the Even property is proved.
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To perform this transformation, we use the information that the property to be veri-
fied is expressed through the catamorphism listcount. However, in contrast to previous
approaches (De Angelis et al., 2022, 2023), we need not specify any property of the
catamorphism listcount when it acts upon the predicates double, eq, and append. For
instance, we need not specify that if Zs is the concatenation of Xs and Ys, then for any
X, the number of occurrences of X in Zs is the sum of the numbers of occurrences of
X in Xs and Ys. Indeed, in the approach we propose in this paper, we have only to
specify the association of every ADT sort with a suitable catamorphism or, in general,
a conjunction of catamorphisms. In particular, in our double example, we associate the
sort of integer lists, denoted list(int), with the catamorphism listcount. Then, we rely
on the CHC solver for the discovery, after the transformation described in the follow-
ing sections, of suitable relations between the variables that represent the output of the
listcount catamorphism atoms. Thus, by applying the technique proposed in this paper,
much less ingenuity is required on the part of the programmer for verifying program
correctness with respect to the previously proposed approaches.

Our transformation technique introduces, for each predicate p occurring in the initial
set of CHCs, a new predicate newp defined by the conjunction of a p atom and, for
each argument of p with ADT sort 7, the catamorphism atom(s) with which 7 has been
associated. In particular, in the case of our double example, for the predicate double we
introduce the new predicate newl (for simplicity, we call it newl, instead of newdouble)
whose definition is clause D1 in Figure 2. The body of that clause is the conjunction
of the atom double(B, E) and two listcount catamorphism atoms, one for each of the
integer lists B and FE, as listcount is the catamorphism with which the sort of integer
lists has been associated. Similarly, for the predicates append and eq whose definitions
are respectively clauses D2 and D3 listed in Figure 2.

Thus, we derive a new version of the initial CHCs where each predicate p has been
replaced by the corresponding newp. Then, by applying variants of the fold/unfold trans-
formation rules, we derive a final, transformed set of CHCs. When the CHC solver
looks for a model of this final set of CHCs, it is guided by the fact that suitable con-
straints, inferred from the query, must hold among the arguments of the newly introduced
predicates, such as newp, and thus, the solver can often be more effective.

In our transformation we also introduce, for each predicate newp, a predicate called
newp_woADTs whose definition is obtained by removing the ADT arguments from
the definition of newp. For the CHC solvers, it is often easier to find a model for
newp_woADTs, rather than for newp, because the solvers need not handle ADTs at
all. However, since each newp_woADTs is an overapproximation of newp, by using the
clauses with the ADTs removed, one could wrongly infer unsatisfiability in cases when,
on the contrary, the initial set of CHCs is satisfiable.

Now, in order to make it easier for the solvers to show satisfiability of sets of CHCs
and, at the same time, to guarantee the equisatisfiability of the derived set of clauses with
respect to the initial set, we add to every atom in the body of every derived clause for
newp the corresponding atom without ADT arguments (see Theorem 1 for the correct-
ness of these atom additions). By performing these transformation steps starting from
clauses 1-6 and query 7 (listed in Figure 1) together with the specification that every
variable of sort list(int) should be associated with a listcount atom, we derive using our
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*** The new predicate definitions introduced during transformation. In these definitions
the underlined variables have an ADT sort (i.e., they are integer lists), while the non-
underlined variables have a basic sort (i.e., they are integer numbers).

D1. newl(A,B,C, E, F) «+ listcount(A, B, C), listcount(A, E, F), double(B, E)

D2. new2(A,B,C,E,F,H,I) + listcount(A,B,C), listcount(A,E,F), listcount(A,H,I),
append(H,B,E)

D3. new3(A,B,C, E, F) + listcount(A, B, C), listcount(A,E, F), eq(E, B)

D4. newd(A, B, C) <+ listcount(A, B, C)

*** Clauses derived after transformation from clauses 1-7 of Figure 1.

11. false + C=2D+1, newl(A, E,F,G,C), newl_woADTs(A, F,C)

12. newl(A, B,C, E, F) + new2(A, M, K,E, F, B,C), new2_ woADTs(A, K, F,C),
new3(A, M, K, B,C), new3_woADTs(A, K,C)

13. new2(A,B,C, B,C,[],G) + G=0, new4(A, B,C), newd woADTs(A,C)

14. new2(A,B,C, [E|F), G, [E|J],K) + G=ite(A=E,N+1,N), K =ite(A=E,P+1,P),
new2(A, B,C,F,N, J, P), new2 woADTs(A,C, N, P)

15. new3(A, B,C, B, C) + newd(A, B,C), newd_woADTs(A,C)

16. new4(A,[],B) + B=0

17. newd(A, [B|C], D) < D=ite(A=B, F+1,F), new4(A,C, F), newd woADTs(A, F)

18. newl_woADTs(A, B, D) < new2_woADTs(A,I,D, B), new3_ woADTs(A, I, B)

19. new2_woADTs(A, B, B, F) < F=0, new4 woADTs(A B)

20. new2_woADTs(A, B,D F) «— D=ite(A=I1,K+1,K), F=ite(A=I,L+1,L),
new2_woADTs(A, B, K, L)

21. new3_woADTs(A, B, B) + new4_w0ADTs(A,B)

22. new4d_woADTs(A, B) < B=0.

23. new4d woADTs(A, B) < B=ite(A=C,D+1,D), newd_woADTs(A, D).

Fig. 2. Clauses D1-D4 are the predicate definitions introduced during transformation.
Clauses 11-23 are the clauses derived after transformation from clauses 1-6 and query 7 of
Figure 1.

transformation algorithm 7,5 (see Section 4) clauses 11-23 listed in Figure 2. These
derived clauses are indeed shown to be satisfiable by the Z3 solver, and thus the Fven
property is proved.

4 CHC transformation via catamorphic abstractions

In this section we present our transformation algorithm, called 7.5, whose input is:
(i) a set P of definite clauses, (ii) a query @ expressing the property to be verified, and
(iii) for each ADT sort, a conjunction of catamorphisms whose definitions are included
in P. Algorithm 7., introduces a set of new predicates, which incorporate as extra
arguments some information coming from the catamorphisms, and transforms P U {Q}
into a new set P’ U{Q’} such that PU{Q} is satisfiable if and only if so is P’ U {Q’}.
The transformation is effective when the catamorphisms used in the new predicate
definitions establish relations that are useful to solve the query. In particular, it is often
helpful to use in the new definitions catamorphisms that include the ones occurring in the
query, such as the catamorphism listcount of our introductory double example. However,
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as we will see later, there are cases in which it is important to consider catamorphisms not
present in the query (see Example 2). The choice of the suitable catamorphisms to be used
in the transformation rests upon the programmer’s ingenuity and on her /his understand-
ing of the program behavior. The problem of chosing the most suitable catamorphisms
in a fully automatic way is left for future research.

4.1 Catamorphic abstraction specifications

The predicates in P different from catamorphisms are called program predicates. An
atom whose predicate is a program predicate is called a program atom and an atom
whose predicate is a catamorphism predicate is called a catamorphism atom. Without
loss of generality, we assume that no clause in P has occurrences of both program atoms
and catamorphism atoms. The query @ given in input to T, is of the form:

false ¢, cata1(X,T1,Y1),. .., cata, (X, Ty, Yy), p(Z)

where: (i) p(Z) is a program atom and Z is a tuple of distinct variables; (ii) catay,
..., cata, are catamorphism predicates; (iii) ¢ is a constraint; (iv) X is a tuple of
distinct variables of basic sort; (v) T1,...,T, are ADT variables occurring in Z; and
(vi) Y1, ...,Y, are pairwise disjoint tuples of distinct variables of basic sort not occur-
ring in vars({X, Z}). Without loss of generality, we assume that the cata;’s over the
same ADT variable are all distinct (this assumption is trivially satisfied by query 7 of
Figure 1). For each ADT sort 7, a catamorphic abstraction for T is a conjunction of
catamorphisms defined as follows:

catar (X, T,Y1,...,Y,) =ae cata1 (X, T, Y1),. .., cata, (X, T,Ys,)

where: (i) T is a variable of ADT sort 7, (ii) X, Y1,...,Y, are tuples of variables of basic
sort, (iii) the variables in {X,Y7,...,Y,} are all distinct, and (iv) the cata; predicates
are all distinct.

Given catamorphic abstractions for the ADT sorts 71, ..., Tk, a catamorphic abstrac-
tion specification for the set P of CHCs is a set of expressions, one expression for each
program predicate p in P that has at least one argument of ADT sort. The expression
for the predicate p is called the catamorphic abstraction specification for p and it is of
the form:

p(Z) = cata. (X, T1, V1), ..., catar, (X, Tk, Vi)

where: (i) Z is a tuple of distinct variables, (ii) 77, ...,T) are the distinct variables
in Z of (not necessarily distinct) ADT sorts 7, .. ., 7, respectively, (iii) Vi,..., V) are
pairwise disjoint tuples of distinct variables of basic sort not occurring in vars({X, Z});
and (iv) vars(X) N vars(Z)=0.

Ezample 1.
Let us consider our introductory double example (see Figure 1) and the catamorphic
abstraction for the sort list(int):

cataysy(int) (X, L, N) = ey listcount(X, L, N)
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This abstraction determines the following catamorphic abstraction specifications for the
predicates double, eq, and append (and thus, for the set {1,...,6} of clauses):

double(Xs, Zs) = listcount(X, Xs, N1), listcount(X, Zs, N2)
eq(Xs, Zs) = listcount(X, Xs, N1), listcount(X, Zs, N2)
append(Xs,Ys,Zs) = listcount(X,Xs,N1), listcount(X,Ys,N2), listcount(X,Zs,N3)

Note that no relationships among the variables N1, N2, and N3 are stated by the
specifications. Those relationships will be discovered by the solver after transformation.
O

FEzample 2.
Let us consider: (i) a set Quicksort of clauses where predicate quicksort(L, S) holds if S
is obtained from list L by the quicksort algorithm and (ii) the following query:

false < BS=false, is_asorted(S,BS), quicksort(L,S) (Ord)

where is_asorted(S,BS) returns BS=true if the elements of S are ordered in weakly
ascending order, and BS=false, otherwise. The catamorphism is_asorted is defined in
term of the catamorphism hd, as follows:

is_asorted([], B) + B=true

is_asorted([H|T], B) < B=(IsDef = (H<HdT & BT)),
hd(T, IsDef, HAT), is_asorted(T, BT)

hd([], IsDef, Hd) < IsDef=false, Hd=0

hd([H|T], IsDef , Hd) < IsDef =true, Hd=H.

hd(L, IsDef , Hd) holds if either L is the empty list (IsDef=false) and Hd is 0 or L is a
nonempty list (IsDef=true) and Hd is its head. Thus, hd is a total function. Note that
the arbitrary value 0 is not used in the clauses for is_asorted.

Let us consider a catamorphic abstraction catays(ins) for the sort list(int), which is
the sort of the variables L and S in quicksort(L, S). That abstraction, consisting of the
conjunction of three list catamorphisms listmin, listmaz, and is_asorted, is defined as
follows:

cataysy(int) (L, BMinL, MinL, BMaxL, MaxL, BL) = gy
listmin (L, BMinL, MinL), listmax (L, BMazL, MaxL), is_asorted(L, BL)

where: (i) if L is not empty, listmin(L, BMinL, MinL) holds if BMinL=true and MinL
is the minimum integer in L, and (ii) otherwise, if L is empty, listrin(L, BMinL, MinL)
holds if BMinL=false and MinL=0. If BMinL=false, then MinL should not be used
elsewhere in the clause where listrmin (L, BMinL, MinL) occurs. Analogously for listmaz,
instead of listmin. Then, the catamorphic abstraction specification for quicksort is as
follows:

quicksort(L, §) =
listmin (L, BMinL,MinL), listmaz(L,BMaxL,MazL), is_asorted(L,BL),
listmin(S,BMinS,MinS), listmax(S,BMazS,MaxS), is_asorted(S,BS)

Now, let us assume that in the set of clauses defining quicksort(L, S), we have the atom
partition(V,L,A,B) that, given the integer V' and the list L, holds if A4 is the list made

https://doi.org/10.1017/5147106842400019X Published online by Cambridge University Press


https://doi.org/10.1017/S147106842400019X

10 E. De Angelis et al.

out of the elements of L not larger than V', and B is the list made out of the remaining
elements of L larger than V. We have that the catamorphic abstraction specification for
partition which has the list arguments L, A, and B, is as follows:

partition(V,L,A,B) =
listmin(L,BMinL,MinL), listmaz(L,BMaxL,MazL), is_asorted(L,BL),
listmin(A,BMinA,MinA), listmax(A,BMazA,MazA), is_asorted(A,BA),
listmin(B,BMinB,MinB), listmaz(B,BMaxB,MazB), is_asorted(B,BB)

Note that the catamorphisms listmin and listmaz are not present in the query
Ord. However, they are needed for stating the property that, if partition(V,L,A,B) holds,
then the maximum element of the list A is less than or equal to the minimum element
of the list B. This is a key property useful for proving the orderedness of the list S con-
structed by quicksort(L,S). The fact that the catamorphisms listmin and listmaz are
helpful in the proof of the orderedness of S rests upon programmer’s intuition. However,
in our approach the programmer need not explicitly state all the properties of listmin
and [listmax which are needed for the proof. Indeed, the relationships among the output
variables of listmin and listmax are automatically inferred by the CHC solver. O

4.2 Transformation rules

The rules for transforming CHCs that use catamorphisms are variants of the usual
fold /unfold rules for CHCs (De Angelis et al., 2022).

A transformation sequence from an initial set Sy of CHCs to a final set S,, of CHCs
is a sequence Sy = S1= ... S, of sets of CHCs such that, for i=0,...,n—1, S;11 is
derived from S;, denoted S; = S;+1, by performing a transformation step consisting in
applying one of the following transformation Rules R1-R5.

The objective of a transformation sequence constructed by algorithm 7T, is to derive
from a given set Sy a new, equisatisfiable set S,, in which for each program predicate p
in Sy, there is a new predicate newp whose definition is given by the conjunction of an
atom for p with some catamorphism atoms. With respect to p, the predicate newp has
extra arguments that hold the values of the catamorphisms for the arguments of p with
ADT sort.

(R1) Definition Rule. Let D be a clause of the form newp(Xi,...,Xy) < Catas, A,
where: (1) newp is a predicate symbol not occurring in the sequence So = S1 = ... = S;
constructed so far, (2) {Xi,..., Xi}=vars({Catas, A}), (3) Catas is a conjunction
of catamorphism atoms, with adt-vars(Catas) C adt-vars(A), and (4) A is a program
atom. By the definition introduction rule we add D to S; and we get the new set
SiJrl =S, U {D}

We will say that D is a definition for A.

For any >0, by Defs, we denote the set of clauses, called definitions, introduced by
Rule R1 during the construction of the sequence So= S1 = ... 5;.

Ezxample 3.

In our double example, by applying the definition rule we may introduce the following
clause, whose variables of sort list(int) are B and E (the underlining of the list variables
B and F has been omitted here):
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D1. newl(A,B,C,E,F) + listcount(A,B,C), listcount(A,E,F), double(B,E)
Thus, S; =Sy U {D1}, where Sy consists of clauses 1-7 of Figure 1. O

By making use of the Unf function (see Definition 2), we introduce the unfolding rule
(see Rule R2), which consists of some unfolding steps followed by the application of the
functionality property, which was presented in previous work (De Angelis et al., 2022).
Recall that list and binary tree catamorphisms and, in general, all catamorphisms are
assumed to be total functions (see Definition 1).

Definition 2 (One-step Unfolding).

Let D: H<c, L, A, R be a clause, where A is an atom, and let P be a set of definite
clauses with vars(D) Nwvars(P)=0. Let Ky < c1, By, ..., K, < ¢m, Bm, with m>0, be
the clauses in P, such that, for j=1,...,m: (i) there exists a most general unifier 9, of
A and K, and (ii) the conjunction of constraints (c, ¢;)¥; is satisfiable.

One-step unfolding produces the following set of CHCs:

Unf(D, A, P) = {(}I(—C7 Cj, L, Bj, R)’L?] |]= 1, e ,m}.
In the sequel, Catas denotes a conjunction of catamorphism atoms.

(R2) Unfolding Rule. Let D: newp(U) < Catas, A be a definition in S; N Defs;, where A
is a program atom, and P be the set of definite clauses in S;. We derive a new set UnfD
of clauses by the following three steps.
Step 1. (One-step unfolding of program atom) UnfD := Unf (D, A, P);
Step 2. (Unfolding of the catamorphism atoms)
while there exists a clause E: H<d, L,C, R in UnfD, for some conjunctions L
and R of atoms, such that C' is a catamorphism atom whose argument of ADT
sort is not a variable do
UnfD := (UnfD\{E})U Unf(E, C, P);
Step 3. (Applying Functionality on catamorphism atoms)
while there exists a clause E: H < d, L, cata(X, T, Y1), cata(X,T,Y2), Rin UnfD,
for some catamorphism cata do

UnfD := (UnfD — {EY) U{H «d,Y1=Y2, L, cata(X, T, Y1), R}.
Then, by unfolding clause D, we get the new set of clauses S;11 = (S; \ {D}) U UnfD.

Ezxzample 4.

For instance, in our double example, by unfolding clause D1 we get:

El. newl(A,B,C,E F)+listcount(A,B,C), listcount(A,E.F), eq(B,G), append(B,G,E)

Thus, SQZSOU{El}. O
By the following catamorphism addition rule, we use the catamorphic abstraction

specifications for adding catamorphism atoms to the bodies of clauses. Here and in what

follows, for any two conjunctions GG; and G4 of atoms, we say that G is a subconjunction
of G4 if every atom of (G; is an atom of Gs.

(R3) Catamorphism Addition Rule. Let C: H + ¢, Catas, Ay, ..., A, be a clause in S;,
where H is either false or a program atom, and A, ..., A,, are program atoms. Let F
be the clause derived from C' as follows:
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for k=1,...,m do

- let Catasy be the conjunction of every catamorphism atom F in Catas such that
adt-vars(Ax) N adt-vars(F) # 0;

- let Ap = cata1(X,T1,Y1),...,catan(X,T,,Y,) be a catamorphic abstraction
specification for the predicate of Ay, where the variables in Y7, ..., Y}, do not occur
in C, and the conjunction catay(X,T1,Y1),..., cata, (X, T,,Y,) can be split into
two subconjunctions By and By such that:

(i) avariant B19 of By, for a substitution ¥ acting on vars(Bi), is a subconjunction
of Catasy, and

(ii) for every catamorphism atom cata;(X, T}, Y;) in Bod, there is no catamorphism
atom in Catasy, of the form cata;(V,T;, W) (i.e., there is no catamorphism atom
with the same predicate acting on the same ADT variable Tj);

- add the conjunction By¥ to the body of C.
Then, by the catamorphism addition rule, we get the new set S; 11 = (5; \ {C}) U{FE}.

Example 5.
In our double example, by applying the catamorphism addition rule to clause E'1, we add
the catamorphism listcount(A,H,I), and we get:

E2. newl(A,B,C,E,F) <« listcount(A,B,C), listcount(A,E,F), listcount(A,H,I),
eq(B,H), append(B,H,FE)

Thus, we get the new set of clauses S3 =Sy U {E2}. O

The following folding rule allows us to replace conjunctions of catamorphism atoms
and program atoms by new program atoms whose predicates has been introduced in
previous applications of the definition rule.

(R4) Folding Rule. Let C: H + c, Catas®, Ay, ..., Ay, be a clause in S;, where either H
is false or C' has been obtained by the unfolding rule, possibly followed by the applica-
tion of the catamorphism addition rule. Catas®
Ay, ..., A, are program atoms. For k=1,...,m,

is a conjunction of catamorphisms and

- let Cataskc be the conjunction of every catamorphism atom F' in Catas® such that
adt-vars(Ag) N adt-vars(F) # 0;

- let Dy: Hy < Catasy, A be a clause in Defs; (modulo variable renaming) such
that Catasy is a subconjunction of Catasy .

Then, by folding C using D1, ..., D,,, we derive clause E: H <—c¢, Hy, ..., Hy,, and we
get the new set of clauses S; 11 = (5; \ {C}) U{E}.

Ezample 6.

In order to fold clause E2 (see Example 5) according to the folding rule R4, we introduce
for the program atoms append(B, H, E) and eq(B, H) that occur in the body of E2, the
new definitions D2 and D3, respectively. Those new definitions are shown in Figure 2.
Then, by folding clause E2 using D2 and D3, we get:

E3. newl(A,B,C,E,F) + new2(A,M ,K,E,F,B,C), new3(A,M,K,B,C).
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Also, query 7 (see Figure 1) can be folded using definition D1, and we get:

E4. false < C=2 D+1, newl(A,E,F,G,C)

Thus, Sy =(So\ {7}) U{E3, E4, D2, D3}. Then, we will continue by transforming the
newly introduced definitions D2 and D3. O

The following Rule R5 is a new transformation rule that allows us: (i) to introduce new
predicates by erasing ADT arguments from existing predicates, and (ii) to add atoms
with these new predicates to the body of a clause.

(R5) Erasure Addition Rule. Let A be the atom p(tq, ..., tk, w1, ..., Up), where t1, ... 1
have (possibly distinct) basic sorts and wu, . .., u,, have (possibly distinct) ADT sorts.
We define the ADT-erasure of A, denoted xu(A), to be the atom p_woADTs(ty, ..., tx),
where p_woADTs is a new predicate symbol. Let C: H < ¢, Ay, ..., A, be a clause in S;.
Then, by the erasure addition rule, from C' we derive the two new clauses:

Xawo (H )¢, Xawo (A1), - -+, Xowo An)s denoted X0 (C), and

H<_Ca Ala Xwo (A1)7 ceey Ana Xwo (An)7 denoted Xwé&wo (0)7

and we get the new set of clauses

Sit1 = {Xwewo(C) |C € S;i} U {xwo(C)|C is a clause in S; whose head is not false}.

Ezample 7.
Let us consider clause E3 of Example 6. We have that:
Xuwo(newl(A, B,C, E, F)) = newl_woADTs(A,C, F),
Xuwo(new2(A, M, K, E, F, B,C)) = new2_woADTs(A, K, F,C),
Xwo (new3(A, M, K, B, C)) = new3_woADTs(A, K, C).
Thus, from clause FE3, by erasure addition we get clauses 12 and 18 of Figure 2. O

The following theorem is a consequence of well-known results for CHC transformations
(see, for instance, the papers cited in a recent survey (De Angelis et al., 2022)).

Theorem 1 (Correctness of the Rules).
Let So = S1=...= S, be a transformation sequence using Rules R1-R5. Then, S is
satisfiable if and only if \S,, is satisfiable.

Proof.

The proof consists in showing that Rules R1-R5 presented earlier in this section can be
derived from the transformation rules considered in previous work (De Angelis et al.,
2022) and proved correct based on results by Tamaki and Sato (Tamaki and Sato, 1986)
for logic programs and Etalle and Gabbrielli (Etalle and Gabbrielli, 1996) for constraint
logic programs. Below we will recall these transformation rules.

Let us first introduce the notion of stratification for a set of clauses (Lloyd, 1987). Let
N be the set of the natural numbers and Pred be the set of the predicate names. A level
mapping is a function A: Pred—N. For every predicate p, the natural number A(p) is said
to be the level of p. Level mappings are extended to atoms by stating that the level A(A)
of an atom A is the level of its predicate symbol. A clause H < ¢, A1, ..., A, is stratified
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with respect to X if either H is false or, for i=1,...,n, A\(H) > A(A;). A set P of CHCs
is stratified with respect to X if all clauses of P are stratified with respect to .

A DUFR-transformation sequence from Sy to S, is a sequence Sy S1 = ... .5, of
sets of CHCs such that, for i=0,...,n—1, S;;1 is derived from S;, denoted S; = S;41, by
applying one of the following rules: (i) Rule D, (ii) Rule U, (iii) Rule F, and (iv) Rule G.
(To avoid confusion with Rules R1-R5 presented earlier in this section, in this proof
we use the letters D, U, F, and G to identify the rules presented in previous work (De
Angelis et al., 2022).) We assume that the initial set Sy is stratified with respect to a
given level mapping A.

(Rule D) Let D be the clause newp(Xy, ..., Xk) ¢, A1, ..., Apn, where: (1) newp is
a predicate symbol not occurring in the sequence Syt Sik=...=.S; constructed so
far, (2) ¢ is a constraint, (3) the predicate symbols of A;,..., A, occur in Sy, and
(4) {X1,..., Xk} Cwars({c, A1,..., Ap}). Then, by Rule D, we get S;y; =S5; U{D}.
We define the level mapping A of newp to be equal to maz{\(4;)|i=1,...,m}.

For any i > 0, we denote by Defs; the set of clauses introduced by Rule D during the
construction of So = S1=...=5;.

Rule U consists in an application of the one-step unfolding of Definition 2.

(Rule U) Let C: H<+¢,Gp, A, Gg be a clause in S;, where A is an atom. Then, by
applying Rule U to C' with respect to A, we get S;11 =(5; \ {C})U Unf(C, A, Sy).

(Rule F) Let C: H < ¢,GL,Q,Gg be a clause in S;, and let D: K < d, B be a variant
of a clause in Defs;. Suppose that: (1) either H is false or A(H)> A(K), and (2) there
exists a substitution ¢ such that Q=Bv and D = V(c — di). Then, by applying Rule F to
C using D, we derive clause E: H < ¢, G, KV, Gg, and we get S;y1 = (S; \ {C}) U{E}.

In the next Rule R, called goal replacement, and in the rest of the proof, by Definite(Sy)
we denote the set of definite clauses belonging to Sy.

(Rule R) Let C: H ¢, ¢1,Gr,G1,GRr be a clause in S;. Suppose that the following
two conditions hold:

(R.1) M (Definite(So) U Defs;) =V ((3T1. caANG1) <> (FT3. caAG3)), and

(R.2) either H is false or, for every atom A occurring in G and not in G, A\(H)>A(4)
where:

Ty =vars({c1,G1}) \ vars({H, ¢,Gr,Gr}), and

Ty = vars({cz, G2}) \ vars({H, ¢, GL, Gr}).
Then, by Rule R, in clause C' we replace ¢1,G1 by c2,Go, and we derive clause D:
H<c,co,Gr,Go, Gr. We get Sz'+1 = (Sz \ {C}) U {D}

The following result guarantees that, for any DUFR-transformation sequence Sy =
S1 5 ... S, satisfying Condition (C), Sy and S,, are equisatisfiable (Tamaki and Sato,
1986; Etalle and Gabbrielli, 1996; De Angelis et al., 2022).

Theorem 2 (Correctness of the DUFR-Transformation Rules).
Let So = S1 = ...= S, be a DUFR-transformation sequence. Suppose that the following
condition holds:
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(C) for i=1,...,n—1, if S;= S;41 by folding a clause in S; using a definition D:
H < ¢, B in Defs;, then, for some je{l,...,i—1,i+1,...,n—1}, S;= S;41 by
unfolding D with respect to an atom A such that A\(H) = A(A).

Then,
(1) fori=1,...,n, M(Definite(So) U Defs;) = M (Definite(S;)), and
(2) Sp is satisfiable if and only if S, is satisfiable.

Now, we will show that each application of Rules R1-R5 can be obtained by one or
more applications of Rules D, U, F, R. Furthermore, for any transformation sequence
So = S1 = ... = S5, constructed using Rules R1-R5, there exists a DUFR-transformation
sequence Sy = Ty = ...= T, = S, satisfying Condition (C) of Theorem 2.

In order to recast Rules R1-R5 in terms of Rules D, U, F, and R, we first introduce
a suitable level mapping A defined as follows: for any predicate g, (i) A(q)=2, if ¢ is a
program predicate of the initial set of clauses or a new program predicate introduced by
Rule R1, and (ii) A(¢)=1, if ¢ is a catamorphism predicate, and (iii) A(q)=0, if ¢ is a
new predicate symbol introduced by Rule R5. We have that the initial set Sy of CHCs
is stratified with respect to A. Let us first consider the four Rules R1-R4.

e Rule Rl is a particular case of Rule D, where in the body of clause D, (i) the
constraint ¢ is absent, (ii) exactly one atom among Aj,..., A, is a program
atom, (iii) all other atoms are catamorphism atoms, and (iv) {Xi,..., Xk} =
vars({A1, ..., An}). By our definition of the level mapping, A(newp) =2, as one
of the A;’s is a program atom.

e Rule R2 consists of applications of Rules U and R. Indeed, in R2, (i) Steps 1
and 2 are applications of Rule U where P is Sy, and (ii) Step 3 is an appli-
cation of Rule R. To see Point (ii), note that every catamorphism cata is, by
definition, a functional predicate (see Section 2), and hence M (Definite(Sy)) =
V(cata(X, T, Y1) A cata(X,T,Y2) — Y1=Y2). Thus, for any i >0,

M (Definite(So) U Defs,;) =V(cata(X, T, Y1) A cata(X,T,Y2)
Y1=Y2A cata(X,T,Y1))

that is, Condition (R.1) of Rule R holds. Also Condition (R.2) holds, as the head H
of the clause has a predicate newp introduced by definition, and hence A\(newp) = 2,
while we have stipulated that A(cata) =1.

e Rule R3 consists of applications of Rule R. Indeed, R3 adds to the body of a clause
C (zero or more) catamorphism atoms cata;(X,T;,Y;) such that no variable in
the tuple Y; occurs in C. The assumption that catamorphisms are total functions
enforces that M (Definite(Sy)) =YX, T; 3Y;. cata;(X,T;,Y;), and hence
M (Definite(So) U Defs;) = V(true <> 3Y;. cata; (X, T;,Y;))
that is, Condition (R.1) of Rule R holds. Also Condition (R.2) holds, as the head
H of clause C is either false or a program atom. In the latter case A(H) =2, while
we have stipulated that A(cata;) =1.

e Rule R4 consists of applications of Rules R and F. Indeed, an application of
Rule R3 is equivalent to the following for-loop of applications of Rules R and F: for
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k=1,...,m, first, (i) the addition of the catamorphism atoms occurring (modulo
variable renaming) in Catast and not in its subconjunction C’ataskc (as mentioned
above, this catamorphism addition is an instance of Rule R), and then, (ii) the
application of Rule F, thereby replacing the conjunction (C’ataskD , Ax) by Hg.

Therefore, for any transformation sequence Sp= SiE-...=S5; constructed using
Rules R1-R4, there exists a DUFR-transformation sequence So = 1y = ... =T, = .5;.
When applying Rule R4 to a clause C' during the construction of Sy = S1 & ... 5;,
either the head of C is false or C has been obtained by the unfolding rule (possibly
followed by catamorphism addition). This implies that in So=To=...=&T.=5;
we have that Condition (C) of Theorem 2 holds. Thus, by Theorem 2 we get:
M (Definite(So) U Defs,) = M (Definite(.S;)).

Now, suppose that we apply Rule R5 to the set S; of clauses. We have that, for every
predicate p occurring in 5;,

M (Definite(S;) U xwo (S:)) EV(0( X1, ... Xk, Y, -« -, Yim) = p-woADTs(Xq, ..., X)) (1)

where Xuwo(Si) = {Xwo(C) | C is a clause in S; whose head is not false}. Now, it is the
case that an application of Rule R5 is realized by a sequence of applications of Rule R.
Indeed, for each addition of an atom p_woADTs(t1, ... ,t;) to the body of a clause C' by
R5, Condition (R.1) holds, as the above relation (1) is equivalent to:

M (Definite(S;) U xwo(S:)) E
Vip(X1, . 0 X, Y1, .. V) & (X, oo Xk, Y1, - YY) Ap_woADTs(Xq, ..., X))

and M (Definite(S;) U xwo (S:)) = M (Definite(So U xuwo(Si)) U Defs;), because the predi-
cates in Xuo(S;) do not occur in Sp,...,S;. Also Condition (R.2) holds, because the
head H of C is either false or A(H)>1 and A(p_woADTs)=0.

Therefore, for any transformation sequence Sy S1E...= S, constructed using
Rules R1-R5, there exists a DUFR-transformation sequence So= T ... =T, = S,.
Then, by Theorem 2, we get that Sy is satisfiable if and only if S, is satisfiable. O

4.3 The transformation algorithm 7T

The set of the new predicate definitions needed during the execution of the transformation
algorithm T, is not given in advance. In general, that set depends on: (i) the initial set
P of CHC clauses, (ii) the given query @ specifying the property of interest to be proved,
and (iii) the given catamorphic abstraction specification « for P. As we will see, we may
compute that set of new definitions as the least fixpoint of an operator, called Tpu{Q},a;
which transforms a given set A of predicate definitions into a new set A’ of predicate
definitions. First, we need the following notions.

Two definitions D; and D5 are said to be equivalent, denoted Dy = D5, if they can
be made identical by performing the following transformations: (i) renaming of the head
predicate, (ii) renaming of the variables, (iii) reordering of the variables in the head,
and (iv) reordering of the atoms in the body. We leave it to the reader to check that
the results presented in this section are indeed independent of the choice of a specific
definition in its equivalence class.
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A set A of definitions is said to be monovariant if, for each program predicate p, in A
there is at most one definition having an occurrence of p in its body. The transformation
algorithm 75 and the operator Tpy(g},« Work on monovariant sets of definitions and
are defined by means of the Define, Unfold, AddCata, Fold, and AddErasure functions
defined in Figure 3.

In the definition of the Define function we assume that, for each clause C' in Cls and
each catamorphism atom Cata in the body of C, there is a program atom A in the body
of C such that adt-vars(Cata) C adt-vars(A). If A is absent for a catamorphism atom
having the ADT variable X of sort 7, in order to comply with our assumption, we add
to the body of C' a program atom true,(X) that is defined on the (possibly recursive)
structure of sort 7 and holds for every X of sort 7. For instance, for the sort list(int),
the program atom trueys(ing)(X) will be defined by the two clauses trueys(int)([]) and
truegss (int) ([H|T]) < truegse(int) (T'), where H is an integer variable. Note that, by adding
to clause C' the atom true.(X), we get a clause equivalent to C.

Definition 8 (Domain of Definitions).

We denote by D a maximal set of definitions such that

(D1) for every definition newp(Xy,..., Xy) <+ Catas, A in D, for every ADT variable
X, occurring in the program atom A, for each catamorphism predicate cata in the
conjunction Catas of catamorphism atoms, at most one catamorphism atom of the
form cata(. .., X;,...) occurs in Catas, and

(D2) D does not contain equivalent definitions.
It follows directly from our assumptions that D is a finite set.

Now we define a partial order (C), a join operation (L) and a meet operation (M) for

definitions and also for monovariant subsets of definitions in D.

Definition 4.
Let Di: newpl(Uy) + Catasy, Catas, A and Ds: newp2(Us) < Catass, Catas, A be two
definitions in D for the same program atom A, where Catas, Catasy, and Catass are
conjunctions of catamorphism atoms. We assume that the variables in D; and Dy have
been renamed and the atoms in their bodies have been reordered so that (Catas, A) is
the maximal common subconjunction of atoms in their bodies, that is, there exists no
atom Cata in Catas; and no variant of Ds of the form newp2(U}) < Catasy, Catas, A,
such that Cata is an atom in Catas).
(i) Dy is an extension of Dy, written D; C Do, if Catas; is the empty conjunction;
(ii) By Dy U Dy we denote the definition Ds: newp3(Us) < Catasy, Catass, Catas, A,
where Us is a tuple consisting of the distinct variables occurring in (Uy, Us);
(iii) By D; M Dy we denote the definition Ds: newp3(Us) + Catas, A, where Us is a
tuple consisting of the variables occurring in both U; and Us.
Let A and Ay be two monovariant subsets of D.
(iv) Ag is an extension of Ay, written Ay C Ay, if for each D in A; there exists Do in
Ay such that Dy C Do;
(v) AyUAy={D|D is the only definition in A; U A, for some program atom in
AU AQ} U
{Dy U Dy | Dy and D5 are definitions for the same program atom in
Ay and Ag, respectively};
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Given a set Cls of clauses and a monovariant set A of definitions,
Define(Cls, A) returns a monovariant set A’ of new definitions computed as follows.
A=A
for each clause H < ¢, G in Cls, where goal G contains at least one ADT variable do
for each program atom A in G do
Catasa := {F | F is a catamorphism atom in G and adt-vars(F) C adt-vars(A)};

if there is a clause D: newp(U) < B, A in A’, for some conjunction B of
catamorphism atoms
then if Catass is not a subconjunction of B then // (Extend)
by applying the definition rule R1, introduce the definition
ExtD: extp(V) < B’, A, where: (i) extp is a new predicate symbol, (ii) B’
is the conjunction of the distinct catamorphism atoms occurring either
in B or in Catasa, and (iii) V =wvars({B’, A});
A" = (A’ \{D}) U{EztD};
else by applying the definition rule R1, introduce the definition // (Add)
NewD: newp(V') < Catasa, A, where: (i) newp is a new predicate symbol,
and (ii) V =wvars({ Catasa, A});
A" := A" U {NewD};

Given a set A={D; | 0<i<n} of definitions and a set P of definite clauses,
Unfold(A, P) =J}_, UnfD;, where UnfD, is the set of clauses derived by applying
the unfolding rule R2 to clause D;.

Givenaset Cls={C;|0<i<n} of clauses and a catamorphic abstraction specification «,
AddCata(Cls,a)={E;|0<i<n and F; is obtained from C; by applying the catamor-
phism addition rule R3 using «}.

Given a set Cls={C;|0<i<n} of clauses and a monovariant set A of definitions,
Fold(Cls,A) ={E; |0 <i<n and E; is obtained from C; by applying the folding
rule R4 using definitions in A}.

Given a set Cls of clauses by applying the erasure addition rule R5,
AddErasure(Cls) ={xwo(C) | C is a clause in Cls whose head is not false} U
{Xw&wo(C) | C € Cls}.

Fig. 3. The Define, Unfold, AddCata, Fold, and AddErasure functions.

(vi) A1 M Ay={D1MNDy|D; and D, are the definitions for the same program atom in
Ay and Ao, respectively}.

Let Py, (D) denote the set of monovariant subsets of D. We have that (P, (D), C, L, M)
is a lattice and, since D is a finite set, it is also a complete lattice. We define the operator
TPU{Q} .0t Pm(D) = P (D) as follows:

TPU{Q},a(A) =dep Define(AddCata( Unfold(A, P)U{Q}, o), A)

Now, we show that the operator Tpy(0},qo is a well defined function from P, (D) to itself,
that is, for any A € Pp,,(D), the set A" =7py(g1,a(A) is an element of Py, (D).

First, note that: (i) the Define function introduces (see the (Add) case) a new definition
for a program predicate only if no definition for that predicate already belongs to A, and
(ii) Define replaces (see the (Extend) case) a definition for a program predicate by a new
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definition for the same predicate. Thus, if A is monovariant, so is A’. Moreover, no two
equivalent clauses will belong to A’ (see Point (D2) of Definition 3).

Note also that, due to the definition of function AddCata (see, in particular, Point (ii)
of Rule R3 applied by that function), Point (D1) of Definition 3 holds, and in par-
ticular, for every ADT variable X; in the body of any new definition in A’, and for
every catamorphism predicate cata, there is at most one catamorphism atom of the form
cata(. .., X, ...).

Lemma 1 (Existence and Uniqueness of the Fixzpoint of

TPU{Q},a). The operator Tp(g},« is monotonic on the finite lattice P, (D). Thus, it has
a least fixpoint Ifp(Tputg},a), also denoted 77,, which is equal to T‘?,U{Q}’a (@), for some
natural number n.

Proof.

In order to prove the monotonicity of 7py(g},a, let us assume that A; and Ag are two
sets of monovariant definitions in P, (D), with A; C Ay. Let Di € Tpug},a(A1) be a
definition for program atom A. We consider two cases.

(Case 1) There is no definition for A in A;. Then, by construction, according to the Define
function (see Figure 3), Dy can be viewed as the result of a sequence of join operations of
the form: Eg U Ey U. ..U E,, with n>0, where: (1) clause Ej has been obtained by the
(Add) case of Define, and (2) for i=1,...,n, clause EgLl...U E; is a clause obtained by
the (Extend) case of Define from clause EgU . ..U E;_;. In particular, for all i=0, ..., n,
clause E; is a clause of the form newp,(V;) + Catas;, A obtained from a clause H < ¢, G
(here and below in this proof H may be false) in AddCata(Unfold(Aq, P)U{Q}, «) such
that A is a program atom in G and Catas; is the conjunction of all catamorphism atoms F'
in G with adt-vars(F') C adt-vars(A).

(Case 2) There is a definition Ey for A in A;. Then, similarly to Case 1, by construction,
Di=FEyU...UE,, where, for i=1,...,n, with n>0, EoU...UFE; is a clause obtained
by the (Extend) case of Define.

Now, since A1 C Ag, for each clause H < ¢, G in AddCata(Unfold(Aq, P)U{Q}, ),
there exists a clause H < ¢, C, G in the set of clauses AddCata(Unfold(A2, P)U{Q}, a),
where C' is a conjunction of catamorphism atoms, and then, by construction,
Define(AddCata(Unfold(As, P)U{Q}, &), Ay) contains, for i=1,...,n, a clause EI,
with E; € Ej. Then, there exists Dy € Tpu(g},a(QA2) such that Di=(EqU...UE,)C
(EjU...UE)C(E)U...UE, U U...UF.)=D,y, with r>0. (Note that, since
Ay C Ay, in AddCata(Unfold(Aq, P)U{Q}, «) there may be clauses that are derived
from definitions in A, that are not extensions of definitions in Aj. In the bodies of
those clauses there may be some variants of A that determine r extra applications of
the (Extend) case of Define.) Therefore, by Definition 4, 7py(0},a (A1) CE Tpu(g},a(A2).

Thus, Tpyu{},« is monotonic with respect to C. Since P,,(D) is a finite, hence com-
plete, lattice, TpuQ},o has a least fixpoint Ifp(Tpug},a), Which can be computed as
T;U{Q}’Q(Q), for some natural number n. O

Now, we define our transformation algorithm 7, as follows:

Tabs (P U{Q}, o) = AddErasure(Fold(AddCata( Unfold(Tas, P) U{Q}, @), Thz))
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The termination of T,ps follows immediately from the fact that the functions Unfold,
AddCata, Fold, and AddErasure terminate and the least fixpoint 74, is computed in a
finite number of steps (see Lemma 1). Thus, by the correctness of the transformation
rules (see Theorem 1), we get the following result.

Theorem 8 (Total Correctness of Algorithm

Tabs)- Taps terminates for any set P of definite clauses, query @, and catamorphic
abstraction specification a. Also, P U {Q} is satisfiable if and only if Tops (P U{Q}, ) is
satisfiable.

Finally, we would like to comment on the fact that our transformation algorithm 7,
introduces a monovariant set of definitions. Other definition introduction policies could
have been considered. In particular, one could introduce more than one definition for each
program predicate, thus producing a polyvariant set of definitions. The choice between
monovariant and polyvariant sets of definitions has been subject to ample discussion in
the literature (De Angelis et al., 2022) and both have advantages and disadvantages. We
will show in the next section that our technique performs quite well in our benchmark.
However, we leave a more accurate experimental evaluation to future work.

5 Implementation and experimental evaluation

In this section we provide some details on the implementation of algorithm 7., and on
its experimental evaluation.

Implementation. We have implemented algorithm 7., in a tool, called VeriCaTys,
based on VeriMAP (De Angelis et al., 2014), which is a system for transforming CHCs.
In order to check satisfiability of sets of CHCs (before and after their transformation)
we have used the following two solvers: (i) Eldarica (v. 2.0.9) (Hojjat and Rimmer,
2018), and (ii) Z3 (v. 4.12.2) (de Moura and Bjgrner, 2008) with the SPACER engine
(Komuravelli et al., 2016) and the global guidance option (Krishnan et al., 2020).

The tool VeriCaT,;s; manipulates clauses as indicated in the following three phases.

(Phase 1) A pre-processing phase. In this phase VeriCaT,;s produces a catamorphic
abstraction specification « starting from: (i) a given set P of CHCs, and (ii) the cata-
morphic abstractions for the ADTs occurring in P. For instance, in the case of our
introductory example double (see Figure 1), Phase 1 produces the catamorphic abstrac-
tion specifications for double, eq, and append we have listed in Example 1, starting from
clauses 1-6 and the catamorphic abstraction catajsi(int) =des listcount(X, L, N),

In the following example, referring to a treesort algorithm, we present the VeriCaTys
syntax for representing: (i) the catamorphic abstractions given in input, using the direc-
tive cata_abs, and (ii) the catamorphic abstraction specifications produced in output,
after Phase 1, using the directive spec.

Ezample 8.

Let treesort(L,S) and visit(T,L) be two atoms included in a CHC encoding of the
treesort algorithm. The atom treesort(L,S) holds if and only if S is the list of integers
obtained by applying the treesort algorithm to the list L of integers. The auxiliary atom
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visit(T,L) holds if and only if L is the list of integers obtained by a depth first visit
of the tree T with integers at its nodes. The catamorphic abstractions for the ADT sorts
list(int) and tree(int) used by our tool VeriCaT,;s during Phase 1, are as follows:

:— cata_abs list(int) ==> listcount(X,L,C).
:— cata_abs tree(int) ==> treecount (X,T,C).

The catamorphisms listcount(X,L,B) and treecount(X,T,A) count the occurrences
of the integer X in the list L and in the tree T, respectively. In general, the directive
cata_abs for a sort 7 is as follows:

:— cata_abs 7 ==> catamorphisms acting on 7.

For the program predicates treesort and visit, the catamorphic abstraction
specifications produced by VeriCaT,;s after Phase 1, are as follows:

:- spec treesort(L,S) ==> X=Y, listcount(X,S,A), listcount(Y,L,B).
:— spec visit(T,L) ==> X=Y, treecount(X,T,A), listcount(Y,L,B).

Note that both the tree catamorphism treecount(X,T,A) and the list catamorphism
listcount(Y,L,B) occur in the catamorphic specification for visit(T,L). O

(Phase 2) A fold/unfold transformation phase. In this phase VeriCaTg;s computes the fix-
point 74, and the set Ty, of clauses, which is Fold(AddCata(Unfold(Ths, P)U{Q}, ), Tfz).
For the double introductory example (see Figure 1), we have that P is the set {1,...,6}
of clauses, query @ is clause 7, and « is the set of catamorphic abstraction specifications
produced at Phase 1 (see Example 1). Now, 74, is the set {D1, D2, D3, D4} of definitions
listed in Figure 2 and the set Ty, is as follows:

false <~ C=2D + 1, newl(A,E, F,G,C)

newl(A, B,C, E, F) <+ new2(A, M, K,E, F,B,C), new3(A, M, K, B, C)

new2(A, B, C, B,C,[],G) + G=0, newd(A, B,C)

new2(A, B, C, [E|F], G, [E|J], K) - G=ite(A=E, N+1,N), K=ite(A=E, P+1, P),
new2(A, B,C,F, N, J, P)

new3(A, B, C, B, C) < newd(A, B, C)

newd(4, [], B) < B=0

newd(A, [B|C], D) < D=ite(A=B, F+1, F), new4(A,C, F)

(Phase 3) A post-processing phase. In this phase, VeriCaT,s produces the following two
additional sets of clauses by applying the AddErasure function to T,:

(1) Two ={Xwo(C)|C is a clause in Ty, }, that is, T, is made out of the clauses in Ty,
where every atom with ADT arguments has been replaced by its corresponding
atom without ADT arguments, and

(i) Twewo = {Xw&wo(C) | C is a clause in Ty} UTy,, that is, Tygwe is made out of
the clauses in either (ii.1) T,,, where every atom in the body with ADT arguments

is paired with its corresponding atom without ADT arguments, or (ii.2) T, =
{Xwo(C) | C is a clause in T}, whose head is not false}.

Twewo 18, indeed, the set of clauses computed by our transformation algorithm 7,;s. The
other two sets T, and T,,, produced by VeriCaTy;s, will be used for comparing and
analyzing the features of T\, ¢ w0, as we do in the experimental evaluation below.
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For our introductory example double (see Figure 1), at the end of Phase 3, VeriCaTgs
produces the following two sets of clauses (clause numbers refer to Figure 2):

Two={false < C=2D+1, newl_woADTs(A,F,C)} U {18,...,23}, and
Twgwo = {11,...,23}.

The set {18,...,23} of clauses is T, of Point (ii.2) above.

Experimental evaluation. Our benchmark consists of 228 sets of CHCs that encode
properties of various sorting algorithms (such as bubblesort, heapsort, insertionsort,
mergesort, quicksort, selectionsort, and treesort), and simple list and tree manipulation
algorithms (such as appending and reversing lists, constructing permutations, deleting
copies of elements, manipulating binary search trees). Properties of those algorithms
are expressed via catamorphisms. Here is a non-exhaustive list of the catamorphisms
we used: (i) size(L, S), (ii) listmin(L, Min), (iii) listmaz(L, Maz), and (iv) sum(L, Sum)
computing, respectively, the size S of list L, the minimum Min, the maximum Mazx,
and the sum Sum of the elements of list L, (v) is_asorted(L, BL), which holds with
BL=true if and only if list L is ordered in weakly ascending order, (vi) allpos(L, B),
which holds with B=true if and only if list L is made out of all positive elements,
(vil) member(X, L, B), which holds with B=true if and only if X is an element of the
list L, and (viii) listcount(X, L, N'), which holds if and only if N is the number (>0) of
occurrences of X in the list L. For some properties, we have used more than one cata-
morphism at a time and, in particular, for lists of integers, we have used the conjunction
of member and listcount, and for different properties, we have also used the conjunction
of listmin, listmazx, and is_asorted, as already indicated in the paper.

A property holds if and only if its CHC encoding via a query @ is satisfiable, and a
verification task consists in using a CHC solver to check the satisfiability of (). When the
given property holds for a set P of clauses, the solver should return sat and the property
is said to be a sat property. Analogously, when a property does not hold, the solver should
return unsat and the property is said to be an unsat property. In our benchmark, for
each verification task of a sat property, we have considered a companion verification task
whose CHCs have been modified so that the associated property is unsat. In particular,
we have 114 sat properties and 114 unsat properties.

We have performed our experiments on an Intel(R) Xeon(R) Gold 6238R CPU
2.20 GHz with 221 GB RAM under CentOS with a timeout of 600s per verification task.
The results of our experiments are reported in Table 1. The VeriCaTy,s tool and the
benchmarks are available at https://fmlab.unich.it/vericatabs.

Table 1 shows that, for each verification task, the transformation of the CHCs allows
a very significant improvement of the performance of the Z3 solver and also an overall
improvement of the Eldarica solver (notably for sat properties).

In particular, before CHC transformation, Z3 did not prove any of the 114 sat proper-
ties of our benchmark. After CHC transformation, Z3 proved 109 of them to be sat (see
columns Z; and Z3 of Table 1). The time cost of this improvement is very small. Indeed,
most CHC transformations take well below 1.5s and only one of them takes a little more
than 2s (for details, see column T, where each entry is the sum of the times taken for
the individual transformation tasks of each row). The times taken by the solvers after
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Table 1. Properties proved by the solvers Eldarica and Z3 before and after the transformation performed by algorithm Taps. In the
before case, the input to the solver is the source set of clauses (src-columns), and in the after case, the input is Twgwo (Twswo-columns).
The columns occur in pairs referring to the sat properties (s-columns) and the unsat properties (u-columns), respectively. The two
Tw-columns and the two Two-columns refer to the input Ty and Two, respectively. The last column shows the time (in seconds) taken by
Tabs as implemented by VeriCaTyps.

Eldarica 73
Transf

Properties sre Tw&wo Tw Two sre Twawo Tw Two time
Programs s u s U s U s U s u s u s U s u s U T
Append 4 4 0 3 3 3 3 4 3 4 0 4 4 4 4 4 4 4 6.4
Bubblesort 9 9 2 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 15.8
BinSearchTree 8 8 0 7 0 5 2 7 4 8 0 8 8 8 7 8 8 8 19.2
DeleteCopies 7 7 0 7 4 7 3 7 6 7 0 7 7 7 7 7 7 7 11.1
Heapsort 7 7 0 7T 2 7 0 7 4 7 0 7 7 7 3 7 5 7 13.5
Insertionsort 9 9 2 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 16.0
Member 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1.7
Mergesort 9 9 0 9 1 9 2 9 4 9 0 9 9 9 3 9 7 9 14.1
Permutations 7 7 2 7 7 7 7 7 7 7 0 7 7 7 7 7 7 7 12.4
QuicksortA 8 8 0 6 2 3 1 6 5 8 0 8 8 8 8 8 8 8 14.3
QuicksortC 8 8 0 8 1 7 1 8 3 8 0 8 6 8 5 8 6 8 13.4
Reverse 12 12 1 12 6 11 6 12 11 12 0 12 11 12 3 12 11 12 20.9
ReverseAcc 8 8 0 8 6 7 7 8 7 8 0 8 8 8 8 8 7 8 15.6
ReverseRev 2 2 0 2 0 0 0 0 2 2 0 2 2 2 0 2 2 2 3.8
Selectsort 9 9 2 9 7 8 7 9 8 9 0 9 8 9 8 9 8 9 14.2
Treesort 6 6 0 6 1 6 1 6 4 6 0 6 5 6 1 6 5 6 10.2

v E» E3 Ey FEs Es Er Ly Zy Zs Zs Ly ds Zs I Zs

Total 114 114 9 110 59 99 59 109 87 114 0 114 109 114 83 114 104 114 202.5
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transformation (not shown in Table 1) are usually quite small. In particular, for the 109
properties proved sat by Z3, the verification time was almost always below 1s. Only for
13 of them, it was between 1s and 4s. For the remaining five sat properties, Z3 exceeded
the timeout limit.

Out of the 114 sat properties, Eldarica proved 9 sat properties (all relative to list size)
before transformation and 59 sat properties (relative also to catamorphisms different
from list size) after transformation (see columns F; and Fs). However, one property that
was proved sat before transformation, was not proved sat after transformation. This is
the only example where the built-in size function of Eldarica has been more effective
than our transformation-based approach.

Given the 114 unsat properties, Z3 proved all of them to be unsat before transformation
and also after transformation (see columns Z3 and Z4). The proofs before transformation
took well-below 1s in almost all examples, and after transformation took an equal or
shorter time for more than half of the cases.

Given the 114 unsat properties, Eldarica proved 110 of them to be unsat before trans-
formation, and only 99 of them after transformation (see columns Ey and Ey). This is the
only case where we experienced a degradation of performance after transformation. This
degradation may be related to the facts that: (i) the number of clauses in the transformed
set Ty wo 18 larger than the number of clauses in the source set, and (ii) the clauses in
Tw&wo have often more atoms in their bodies with respect to the source clauses.

If we consider the set T, instead of Tygwo, We have a significant decrease in the
number of clauses and the number of atoms in the bodies of clauses. In this case, Z3
proved 83 properties to be sat (less than for Ty gwo, see columns Z3 and Zy) and all 114
properties to be unsat (as for all other input sets of clauses, see columns Zs, Z4, and Zg).
Eldarica proved 59 properties to be sat (the same as for T8 w0, see columns E5 and Es)
and 109 properties to be unsat (almost the same as for the source clauses, see columns
E2 and EG)

Finally, we have considered the set T, instead of T,g .. For the 114 sat properties,
Eldarica proved 87 of them (see column E7), while Z3 proved 104 of them (see column Z7).
For the unsat properties both Eldarica and Z3 proved all of them (see columns FEg and
Zg). However, since T, computes an overapproximation with respect to Tygwo (and
also with respect to Ty, ), when the solver returns the answer unsat, one cannot conclude
that the property at hand is indeed unsat. Both solvers, in fact, wrongly classified 10 sat
properties as unsat.

In summary, our experimental evaluation shows that VeriCaT,;s with Z3 as back-end
solver outperforms the other CHC solving tools we have considered. Indeed, our tool
shows much higher effectiveness than the others when verifying sat properties, while it
retains the excellent performance of Z3 for unsat properties.

6 Conclusions and related work

It is well known that the proof of many program properties can be reduced to a proof
of satisfiability of sets of CHCs (Bjgrner et al., 2015; De Angelis et al., 2022; Gurfinkel,
2022). In order to make it easier to automatically prove satisfiability, whenever a program
is made out of many functions, possibly recursively defined and depending on each other,
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it is commonly suggested to provide properties also for the auxiliary functions that may
occur in the program. Those extra properties basically play the role of lemmas, which
often make the proof of a property of interest much easier.

We have focused our study on the automatic proof of properties of programs that
compute over ADTs, when these properties can be defined using catamorphisms. In a
previous paper (De Angelis et al., 2023), we have proposed an algorithm for dealing with
a multiplicity of properties of the various program functions to be proved at the same
time. In this paper, we have investigated an approach, whereby the auxiliary properties
need not be explicitly defined, but it is enough to indicate the catamorphisms involved in
their specifications. This leaves to the CHC solver the burden of discovering the suitable
auxiliary properties needed for the proof of the property of interest. Thus, this much sim-
pler requirement we make avoids the task of providing all the properties of the auxiliary
functions occurring in the program. However, in principle, the proofs of the properties
may become harder for the CHC solver. Our experimental evaluation shows that this is
not the case if we follow a transformation-based approach. Indeed, the results presented
in this paper support the following two-step approach: (1) use algorithm 75 proposed
here to derive a new, transformed set of CHCs from the given initial set of CHCs that
translate the program together with its property of interest, and then, (2) use the Z3
solver with global guidance (Krishnan et al., 2020) on the derived set.

We have shown that our approach is a valid alternative to the development of algo-
rithms for extending CHC solvers with special purpose mechanisms that handle ADTs.
In fact, recently proposed approaches extend CHC solvers to the case of CHCs over ADT's
through the use of various mechanisms such as: (i) the combination with inductive the-
orem proving (Unno et al., 2017), (ii) the lemma generation based on syntax-guided
synthesis from user-specified templates (Yang et al., 2019), (iii) the invariant discov-
ery based on finite tree automata (Kostyukov et al., 2021), and (iv) the use of suitable
abstractions on CHCs with recursively defined function symbols (Govind V. K., Shoham,
and Gurfinkel, 2022).

One key feature of our algorithm T, is that it is sound and complete with respect
to satisfiability, that is, the transformed set of CHCs is satisfiable if and only if so is the
initial one. In this respect, our results here improve over previous work (De Angelis et al.,
2022), where algorithm 7.4, only preserves soundness, that is, if the transformed set of
CHCs is satisfiable, then so is the initial one, while if the transformed set is unsatisfiable,
nothing can be inferred for the given set.

In our experiments, we have also realized the usefulness of having more catamor-
phisms acting together when verifying a specific property. For instance, in the case of
the quicksort program, when using the catamorphism is_asorted alone, Z3 is unable to
show (within the timeout of 600s) sortedness of the output list, while when using also
the catamorphisms listmin and listmax, after transformation Z3 proved sortedness in
less than 2s. We leave it for future work to automatically derive the catamorphisms that
are useful for showing the property of interest, even if they are not strictly necessary for
specifying that property.

Our approach is very much related to abstract interpretation (Cousot and Cousot,
1977), which is a methodology for checking properties by interpreting the program as
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computing over a given abstract domain. Catamorphisms can be seen as specific abstrac-
tion functions. Abstract interpretation techniques have been studied also in the field of
logic programming. In particular, the CiaoPP preprocessor (Hermenegildo et al., 2005)
implements abstract interpretation techniques that use type-based norms, which are a
special kind of integer-valued catamorphisms. These techniques have important appli-
cations in termination analysis (Bruynooghe et al., 2007) and resource analysis (Albert
et al., 2020).

Usually, abstract interpretation is the basis for sound analysis techniques by computing
an (over-)approximation of the concrete semantics of a program, and hence these tech-
niques may find counterexamples to the properties of interest that hold in the abstract
semantics, but that are not feasible in the concrete semantics. As already mentioned, our
transformation guarantees the equisatisfiability of the initial and the transformed CHCs,
and hence all counterexamples found are feasible in the initial CHCs.

Among the various abstract interpretation techniques, the one which is most related to
our verification approach, is the so-called model-based abstract interpretation (Gallagher
et al., 1995). This abstract interpretation technique is based on the idea of defining a
pre-interpretation, that is, an interpretation of the function symbols of a logic program
over a specified domain of interest. That pre-interpretation is used for generating, via
abstract compilation (De Angelis et al., 2022, Sec. 4.3), a domain program whose least
model is an abstraction of the least model of the original program. Then, program prop-
erties can be inferred from the model of the domain program. One similarity is that
pre-interpretations of ADT constructors can be seen as catamorphisms. Actually, our
definition of a catamorphism is more general than the one of a pre-interpretation, in
that: (i) we admit non-ADT additional parameters as, for instance, in the listcount pred-
icate of our introductory example, and (ii) we allow mutually dependent predicates in the
definitions of catamorphisms. Another similarity is that the abstract compilation used
by model-based abstract interpretation can be seen as a program transformation and,
indeed, it can be implemented by partial evaluation. However, as already mentioned for
other abstract interpretation techniques, that transformation does not guarantee equi-
satisfiability and by using it, one can prove the satisfiability of the original set of clauses,
but not its unsatisfiability.

Our transformation-based approach is, to a large extent, parametric with respect to
the theory of constraints used in the CHCs. Thus, it can easily be extended to theories
different from LIA and Bool used in this paper, and in particular, to other theories
such as linear real/rational arithmetic or bit-vectors, as far as they are supported by the
CHC solver. This is a potential advantage with respect to those abstract interpretation
techniques that require the design of an ad-hoc abstract domain for each specific program
analysis.
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