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Abstract.

In this work the LAser RAnged Satellites Experiment (LARASE) is presented.

This is a research program that aims to perform new refined tests and measurements

of gravitation in the field of the Earth in the weak field and slow motion (WFSM) limit

of general relativity (GR). For this objective we use the free available data relative to

geodetic passive satellites laser tracked from a network of ground stations by means of

the Satellite Laser Ranging (SLR) technique.

After a brief introduction to GR and its WFSM limit, which aims to contextualize

the physical background of the tests and measurements that LARASE will carry

out, we focus on the current limits of validation of GR and on current constraints

on the alternative theories of gravity that have been obtained with the precise SLR

measurements of the two LAGEOS satellites performed so far. Afterward we present

the scientific goals of LARASE in terms of upcoming measurements and tests of

relativistic physics.

Finally, we introduce our activities and we give a number of new results regarding

the improvements to the modelling of both gravitational and non-gravitational

perturbations to the orbit of the satellites. These activities are a needed prerequisite to

improve the forthcoming new measurements of gravitation. An innovation with respect

to the past is the specialization of the models to the LARES satellite, especially for

what concerns the modelling of its spin evolution, the neutral drag perturbation and

the impact of Earth’s solid tides on the satellite orbit.

Keywords: General Relativity, Artificial satellites, Satellite Laser Ranging, Gravitational
and Non–gravitational Perturbations, Tides Submitted to: Class. Quantum Grav.
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1. Introduction

Einstein’s theory of general relativity (GR) represents the best theory we have at our

disposal for the description of the gravitational interaction (Einstein 1916), both at the

high and low energy scales, and it is the pillar of modern cosmology to understand the

universe that we observe through a number of different techniques. Indeed, after 100

years, GR has passed a wide number of experimental verifications (Will 1993, Will 2014)

and it is currently considered the “Standard Model” for gravitational physics.

Einstein’s GR is a geometric theory of gravity (geometrodynamics) — where gravity

is a manifestation of spacetime curvature — and is fully described by the metric tensor

gµν . Therefore, Einstein’s GR is a metric theory for the description of the gravitational

interaction.

Besides GR, other metric theories of gravitation have been developed during the

years (Jordan 1949, Brans & Dicke 1961, Dicke 1962, Dicke 1964, Dicke 1968, Ni 1973,

Rosen 1973, Rosen 1978), just to cite a few of them. Metric theories of gravitation share

with Einstein’s geometrodynamics the same spacetime structure and the same equations

of motion for test particles, but differ in the field equations form. Moreover, metric

theories are the only theories for the gravitational interaction that fully embody the

Einstein Equivalence Principle (EEP), which relies on the Weak Equivalence Principle

(WEP) and represents its generalization to all the laws of special relativity.

Indeed, Einstein’s theory is founded on a hypothesis that produces a unique

property for gravity, i.e., that the gravitational force (in Newtonian words) is

composition independent or, equivalently, in a gravitational field all bodies — regardless

of being macroscopic or microscopic in their essence and/or in the way they interact

and independently of their mass and composition — fall with the same acceleration.

This hypothesis arises from the universality of free fall (UFF) of Galilei and Newton:

the acceleration imparted to a body by a gravitational field is independent of the

nature of the body. If this is true, inertial and gravitational mass are equivalent,

following Newton. This is the WEP, and Newton made this “principle of equivalence”

the basis of his mechanics. Einstein extended this principle to the invariance of

physical laws in a (non-rotating) laboratory freely falling in a uniform gravitational

field (Einstein 1908, Schwartz 1977), and making it at the foundation — as a postulate

— of his GR. EEP is composed, in the modern view, of three fundamental pieces:

i) weak equivalence principle (WEP), ii) local lorentz invariance (LLI), and iii) local

position invariance (LPI). This composition suggests three possible (and different) ways

to test EEP from the experimental point of view. See e.g. (Will 1993) for the chosen

terminology.

Metric theories different from general relativity provide additional fields (scalar,

vectorial, tensorial) beside the metric tensor gµν , that act as “new” gravitational fields.

The role of these fields is to “explain” how the matter and the non-gravitational

fields generate the gravitational fields themselves and produce the metric. Instead,

as previously underlined, GR is mediated by just one tensor field and has an exact
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symmetry given by EEP.

Therefore, during the last fifty years it has been of great importance to test GR —

in all its many facets — versus other metric and also non–metric theories of gravitation

to gain the best interpretation of the gravitational interaction. This has been possible

thanks to the development of new technologies, such as that of the atomic clocks, the

beginning of the space era, with radar and laser ranging, and also thanks to a number

of fundamental discoveries in the field of astrophysics and cosmology, such as quasars,

cosmic background radiation, pulsars and black holes, see (Schmidt 1963, Penzias &

Wilson 1965, Hewish et al. 1968) and (Kerr 1963, Wheeler 1964, Penrose 1965, Bolton

1972).

However, in addition to the many theoretical and experimental triumphs

of GR, several open points are still present: i) the theory predicts spacetime

singularities (Penrose 1965), but is not able to explain them (quantum physics may come

to play an important role to explain these breaking points of the theory, see also below

in the text); ii) the emission of gravitational radiation, which is predicted by Einstein’s

theory, was observed only indirectly in its effect on the orbit of a binary system of two

neutron stars (Hulse & Taylor 1975, Kramer et al. 2006), but it has never been observed

directly as a twist of spacetime by a gravitational bar detector (Astone et al. 2010) or

by an interferometer (Adhikari 2014, Bizouard 2014); iii) apparently, about 95% of the

observed universe seems constituted by a mass–energy content that the theory is not

able to explain (Riess et al. 1998, Bennett et al. 2003, Ruhl et al. 2003). Therefore,

from all these considerations it is clear the importance to verify the predictions of GR

with respect to the other proposed theories.

Moreover, the possible existence of additional fields in mediating the gravitational

interaction is not only predicted by other (alternative) theories of gravitation, but also

by modern theories of physics which aim to unify gravity with the quantum realm.

Indeed, one more fundamental aspect is connected with the fact that Einsten’s GR is

a classical (i.e., non-quantum) theory of physics. Indeed, all the attempts at merging

gravitation with the other three interactions of nature, in order to encompass all physics

in a New Standard Model, have failed.

In the framework of a unified quantum field theory, the Standard Model (SM)

provides an interesting and well-tested description of the electromagnetic interaction

with the nuclear (weak and strong) interactions. Therefore, there are fundamental

theoretical motivations in order to extend the current SM in such a way to include, at the

Planck scale, the (generally) very weak gravitational interaction into a quantum scenario

with the other fundamental interactions of nature. These extensions of the SM, as for

instance string theory (Veneziano 1968) or the more complete M-theory (Witten 1995),

must of course reduce to Einstein’s theory of general relativity in the appropriate limit

and, in particular, to Newtonian gravity in their non-relativistic limit. It is important

to stress that the SM has twenty free parameters that have been adjusted through the

experimental results while, in the case of string theory, we have no free parameters to

adjust experimentally.
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These theories predict new physical effects that are “suitable” for experimental

investigation. In fact, one of the main characteristics of such theories is that they

contain (new) light-bosons which produce (new) weak forces, i.e., the existence of further

fields to be considered from the theoretical point of view and to be measured from

the experimental one. Anyway, it is important to stress that currently none of the

predictions of these theories has been verified from the experimental point of view.

However, as we have seen above, the alternative theories for gravity (all classical

and non-quantum), as well as the just cited quantum theories, provide scalar and/or

vector fields in mediating the gravitational interaction in addition to the metric tensor

of GR. This represents a natural bridge between modern theories of physics (also those

arising from particle physics) and all other theories for the gravitational interaction that

are different from Einstein’s geometrodynamics.

Such additional interactions are generally responsible of violations of the WEP (see

e.g. (Damour & Polyakov 1994, Damour 1996)). Therefore, violations of the WEP, if

measured, are the signature of the presence of additional very weak non-gravitational

forces related with the exchange of light-bosons which couple to ordinary (baryonic)

matter with a strength not much different from gravity. Currently, the best tests of the

WEP through the UFF — at the level of 10−13 — have been obtained in the field of the

Earth (Schlamminger et al. 2008) and in the field of the Sun (Baeßler et al. 1999) with

torsion balance experiments, as well as via Lunar Laser Ranging (LLR) experiments in

the field of the Sun (Williams et al. 2012). Space tests of the WEP aim to go a step

further with respect to current results, with a goal of about 10−15 in the case of µScope

(Touboul et al. 2012) and a goal of about 10−17 in the case of GG (Nobili et al. 2012).

However, such possible violations may be investigated also through the propagation

of the electromagnetic waves (Shapiro 1990, Bertotti et al. 2003) or via their impact

on the very long-term behaviour of the orbital parameters of a binary system, as in

the case of the argument of pericenter (Nordtvedt 1998, Nordtvedt 2000, Lucchesi &

Peron 2010, Lucchesi & Peron 2014).

It is precisely in this context — characterized by a wide and intricate theoretical

background, from geometrodynamics until metric and non-metric theories of gravity

up to modern quantum physics theories with deep implications at different scales —

that the new research program we are proposing, denominated LAser RAnged Satellites

Experiment (LARASE), aims to provide an original contribution in testing and verifying

relativistic physics by means of the powerful Satellite Laser Ranging (SLR) technique

together with a precise orbit determination (POD) of a dedicated set of passive laser-

ranged satellites.

It is worth mentioning that this background of theories is also quite difficult to test

clearly in a reliable manner, because of the non-linearity of the gravitational interaction,

in order to definitely distinguish one possible contribution from another. A special role

is played by the reliability of the final error budget, in terms of the contribution of the

systematic effects, with the analysis of the possible effects of aliasing.

By means of a POD it is possible to solve for a number of a priori unknown
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parameters (in principle) that reflect the impact of the relativistic effects on the orbit

of the considered satellites and, at the same time, it is possible to provide a reliable

estimate of the (possible) correlations among the relativistic parameters and all the

other significant ones that enter the dynamical model used to describe the satellites

orbit. All these aspects represent important prerequisites for the construction of an

estimate of the systematic errors — in the case of new measures of relativistic effects —

that must be robust and accurate.

The paper is organised as follows. In section 2, the weak-field and slow-motion limit

of general relativity will be briefly recalled with its main characteristics. In section 3, the

state of the art in testing Einstein’s theory of general relativity in the field of the Earth

by means of SLR will be highlighted. In section 4, the objectives of LARASE, in terms

of the relativistic effects to be measured and of the main disturbing effects that need to

be better modelled, will be described. In section 5, we will introduce our approach to the

orbit determination problem, with the description of the dynamical models used as well

as our preliminary results. In section 6, we will focus on the activities that we started

in order to improve the current models of the main non–gravitational perturbations as

well as of the tidal effects. Finally, in section 7, our conclusions and recommendations

will be highlighted with the activities to be performed in the near future.

2. The weak-field and slow-motion limit of general relativity

Scientists, as well as philosophers, are well aware that no theory is fully correct, and

any new theory represents, from the epistemological point of view, a completion of a

previous one with a deeper insight into the laws of nature and a better comprehension

of previous “known” physical phenomena. Indeed a new theory, if not falsified, can be

widely considered, or at least accepted, as “truth”. Therefore, in the definition of an

experiment to be done to analyze a given phenomenon of nature, we need at the same

time to fix the rules of the theory we want to falsify under the considered experiment.

In the framework of the “experimental” activities we are going to perform with

LARASE, we are not (directly) interested in GR as the background theory to put under

investigation and falsify, but to a simplified and linearized version of the full theory

which is valid in the weak-field and slow-motion limit of Einstein’s theory.

This approach leads to the post-Newtonian (PN) approximation, see below.

However, and very interestingly, the PN approximation results very efficient also in

describing the regime of strong fields and fast motion when it is expanded at high

orders (Will 2011). These considerations reinforce the importance of all efforts aiming

to test gravity in the weak-field and slow-motion limit of GR, as those we are trying to

pursue with LARASE.
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2.1. The WFSM limit of GR

As briefly highlighted in the previous Introduction, Einstein’s general relativity is a

geometric theory of gravity, where gravity is a manifestation of spacetime curvature,

and it is fully described by the metric tensor gµν , a symmetric and non-degenerate

tensor (Einstein 1916). In particular, once defined a curved manifold with a metric —

more precisely a 4-dimensional pseudo-Riemannian manifold — it is possible to define

the infinitesimal length interval ds:

ds2 = c2dτ 2 = gµνdx
µdxν , (1)

where c represents the speed of light, constant and invariant, dτ is the infinitesimal

proper time, and xµ represents an arbitrary coordinate system.

The essential point is that, in Einstein’s GR, the length interval ds between any

two (infinitesimally) close events of the spacetime (such as xµ and xµ + dxµ) remains

invariant under any general change of coordinates.

This is the principle of general covariance of GR. This principle further states

that all physical equations must retain their form, i.e., are to be covariant, under a

general coordinate transformation: xµ → x′µ. Therefore, the metric tensor needs to be

also covariant. This is spacetime general covariance, indeed a revolutionary concept.

Newton’s laws, as well as those of special relativity hold only in inertial frames, hence

are not generally covariant.

The full theory of GR leads to Einstein’s field equations:

Gµν = 8π
G

c4
Tµν , (2)

where Gµν represents Einstein’s tensor (it is built from the metric tensor and from its

first and second derivatives), Tµν represents the stress–energy tensor (a zero divergence

and frame-independent tensor which acts as a source of gravity), finally G represents

the gravitational constant. Because Tµν has null divergence, Gµν is conserved.

According to Einstein’s equations, mass–energy (described by the stress–energy

tensor) tells geometry (described by the metric tensor) how to curve, and the geometry

— from Einstein’s equations — tells mass–energy how to move. This is a very important

aspect, and a way in order to discriminate, from the experimental point of view, between

GR and other metric theories of the gravitational interaction.

As we have remarked, metric theories of gravitation share with GR the same

spacetime structure (i.e., the same pseudo-Riemannian character) and the same

equations of motion for test particles, but differ in the field equations form. In other

words, in metric theories different from GR:

• the spacetime geometry tells mass–energy how to move as in GR;

• but mass–energy tells spacetime geometry how to curve in a different way from

GR;

• and the metric alone acts back on the mass in agreement with EEP.
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We refer to Chapter 3 of (Ciufolini & Wheeler 1995) as well as to (Will 1993) for a

deeper insight into the relationships between GR and other metric theories, as well as

the relationships between metric (and non-metric) theories and Einstein’s equivalence

principle.

Unfortunately, despite the beauty and simplicity of the ideas that led Einstein to

the development of this revolutionary theory for the gravitational interaction, the field

equations are very complicated to be solved, and we are able to solve them analytically

only in a few special cases characterized by particular symmetries, such as the spherical

one.

Luckily, there is a significant number of very interesting physical situations in which

approximations to the solutions of the equations are sufficient. In fact, Einstein’s field

equations may be written in a very simple way if we consider the so-called weak-field

and slow-motion (WFSM) limit of GR. This linear approximation of Einstein theory

can be applied in the case of the Earth: in fact, we deal with a source (the Earth) whose

gravitational field is weak (GM⊕/R⊕ ≪ 1) and whose rotation is not relativistic (where

M⊕ and R⊕ represent, respectively, Earth’s mass and radius).

Indeed, given the relative smallness of the masses at play (that of the Earth as well

as that of the artificial satellites), as well as that of their speed when compared with

that of light (v ≪ c), the WFSM formulation of the theory is sufficient for our purpose.

Einstein’s equations are partial differential equations of the second order in the

metric tensor gµν of spacetime. In the WFSM limit of the theory, these equations

reduce to a form quite similar to those of electromagnetism.

Under these approximations, the metric tensor of the curved spacetime may be

re–written in terms of that of flat spacetime, i.e., of the Minkowskian metric tensor ηµν ,

plus small corrections that are related to the curvature produced by masses as well as

by mass currents:

gµν ≃ ηµν + hµν . (3)

In this equation, the quantities hµν represent the deviations from the flat spacetime

of special relativity and are such that |hµν | ≪ 1, at least in the Solar System and in

agreement with the WFSM limit.

Following this approach we have a gravitoelectric field produced by masses,

analogous to the electric field produced by charges, and a gravitomagnetic field produced

by mass currents, analogous to the magnetic field produced by electric currents.

These two fields, respectively EGE and BGM, in the WFSM limit of GR can be

expressed in terms of a scalar potential Φ and of a vector potential A (Ciufolini &

Wheeler 1995, Mashhoon et al. 2001):

EGE = −∇Φ− 1

2c

∂A

∂t
, (4)

BGM = ∇×A, (5)

where

Φ ≃ −GM⊕

r
, (6)
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which arises from the so-called electric components of the metric, and

A ≃ 2G

c

r× J⊕

r3
, (7)

which arises from the so-called magnetic components of the metric. In Eq. (7), r

represents the satellite position from the Earth’s center of mass, while J⊕ is the Earth’s

angular momentum, i.e., its intrinsic spin. Practically, the spin (generated by mass

currents) plays the same role played by the magnetic moment (generated by currents)

in classical electrodynamics.

The two fields above are responsible for two relativistic precessions on the orbit

of a satellite. Indeed, the satellite orbit around the Earth can be considered as a

sort of enormous gyroscope subject to the torques produced by the gravitoelectric and

gravitomagnetic forces.

These are: the i) Einstein (or Schwarzschild) (Einstein 1916), and ii) Lense-Thirring

(LT) (Lense & Thirring 1918, Mashhoon et al. 1984) precessions, using the name of who

first discovered each effect. The former precession arises from the gravitoelectric field,

while the latter is due to the gravitomagnetic one. These relativistic precessions are

responsible for secular effects on two of the three Euler angles that define the orbit

orientation in space, namely the argument of pericenter, ω, which is subject to both

precessions, and the right ascension of the ascending node, Ω, which is subject to the

Lense-Thirring one‡.
In addition to these two precessions, and in the frame of a relativistic three-body

problem, where the two primaries are the Sun and the Earth and the test particle is

represented by a satellite orbiting the Earth, we have to consider also the de Sitter (or

geodetic) precession (de Sitter 1916). This precession is effective on the right ascension

of the ascending node and on the orbit inclination i, the last of the three Euler angles,

and it arises from the coupling between the Earth-satellite system and the background

field of the Sun.

Einstein’s (or Schwarzschild’s) precession is due to the mass of the primary, it is

therefore a spin-independent secular effect. The other precessions are usually interpreted

as frame-dragging effects, but with two very important differences:

(i) the Lense-Thirring precession is intrinsically related to the spin of the primary

body, i.e., with its rotation, and arises from the additional curvature produced by

the rotation of the primary; it is also known as frame-dragging effect;

(ii) conversely, the de Sitter precession is frame-dependent, it arises from the motion of

a test-gyroscope (the Earth-satellite system) on the static background of the Sun

(i.e., assumed non-rotating).

In other words, while the de Sitter precession can be cancelled by an appropriate

change of coordinates — in such a way to null the speed of the test-gyroscope with

‡ It is worth mentioning that the gravitoelectric field is also responsible for a secular effect on the mean

anomaly M of the satellite.
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respect to the non-rotating Sun — the Lense-Thirring precession can never be cancelled

by any change of coordinates. Therefore, the Lense-Thirring precession must be related

to an intrinsic gravitomagnetism. We refer to Section 6.11 of (Ciufolini & Wheeler 1995)

for a deeper insight into gravitomagnetism and its invariant character.

Following (Huang et al. 1990), a formulation of the relevant equations of motion

in a geocentric non-inertial reference system (non-rotating with respect to the solar

barycentric one) is possible. This is the formulation implemented in the main codes

used for a POD of the orbit of a satellite. It has to be noticed that the problem of a

consistent local relativistic formulation of reference frames and equations of motion is

not trivial. This problem has been tackled in a series of papers, starting from (Ashby &

Bertotti 1984, Ashby & Bertotti 1986). The resulting models are condensed in the

IAU 2000 resolutions for astrometry, celestial mechanics and metrology (see (Soffel

et al. 2003) and (Damour et al. 1991, Damour et al. 1992, Damour et al. 1993, Damour

et al. 1994), to which we refer for a deeper discussion).

In agreement with this formulation, the accelerations responsible for the above

relativistic precessions are:

aSchw =
GM⊕

c2r3

[(

4GM⊕

r
− v2

)

r+ 4(v · r)v
]

, (8)

which arises from the gravitoelectric curvature of spacetime induced by Earth’s mass-

energy M⊕,

aLT =
2GM⊕

c2r3

[

3

r2
(r× v)(r · J⊕) + v × J⊕

]

, (9)

which arises from the gravitomagnetic curvature of spacetime induced by Earth’s mass-

energy currents J⊕,

adS = 2ΩdS × v, (10)

which arises from the Earth-satellite motion in the spacetime curved by the Sun mass-

energy M⊙, where

ΩdS ≈ −3

2
(V⊕ −V⊙)×

GM⊙X⊕⊙

c2R3
⊕⊙

(11)

represents the de Sitter precession.

In the notation we follow in general (Ashby & Bertotti 1986, Huang et al. 1990),

where small letters refer to the geocentric reference frame and capital letters to the solar

barycentric one. In particular, r and v are the test mass position and velocity in the

geocentric frame, V⊕ and V⊙ are the Earth and Sun barycentric velocities, X⊕⊙ is the

Earth-Sun vector, with distance R⊕⊙.

Using the methods of celestial mechanics (see for instance (Soffel 1989)), the effects

of the relativistic corrections in the satellite Keplerian elements can be evaluated. In

particular, for the three Euler angles that define the orbit orientation in space: ω, Ω and

i. Here we focus on the satellite argument of pericenter ω, and on the right ascension

of the ascending node Ω. The results for the orbit inclination will be discussed in a

forthcoming paper dedicated to the de Sitter effect.



LARASE 10

Therefore, following GR, the secular behavior for the pericenter rate is given by

ω̇Rel = ω̇Ein + ω̇LT, (12)

where

ω̇Ein =
2 + 2γ − β

3

3(GM⊕)
3/2

c2a5/2(1− e2)
(13)

denotes the gravitoelectric or “Einstein” part (Einstein 1915), and

ω̇LT =
1 + γ

2

−6GJ⊕
c2a3(1− e2)3/2

cos i (14)

the gravitomagnetic or “Lense-Thirring” part (Lense & Thirring 1918), respectively.

Conversely, in the case of the right ascension of the ascending node for its secular

behavior we have:

Ω̇Rel = Ω̇LT + Ω̇dS, (15)

where

Ω̇LT =
1 + γ

2

2GJ⊕
c2a3(1− e2)3/2

(16)

denotes the gravito-magnetic or “Lense-Thirring” part (Lense & Thirring 1918), and

Ω̇dS =

(

1

2
+ γ

)

GM⊙

c2R3
⊕⊙

|(V⊕ −V⊙)×X⊕⊙| cos ǫ⊙ (17)

the geodetic or “de Sitter” part (de Sitter 1916), respectively. In the last equation,

ǫ⊙ ≃ 23.45◦ represents the obliquity of the Earth’s orbit with respect to its equatorial

plane. Obviously, the geodetic effect is the same for every satellite in orbit around the

Earth.

In the previous equations, the GR precessions have been expressed as a function

of the parameterized post-Newtonian (PPN) parameters β and γ, see (Nordtvedt 1968,

Will 1971, Will & Nordtvedt 1972, Nordtvedt & Will 1972). These are two among the

ten parameters that are necessary to describe the post-Newtonian limit in the so-called

standard post-Newtonian gauge, see e.g. Chapter 4.2 of (Will 1993) (and also (Poisson

& Will 2014)) for details.

In Einstein’s theory, all PPN parameters are zero with the exception of γ and β,

both equal to unity: γ measures the space curvature per unit of mass, while β describes,

in the standard post–Newtonian gauge, the non-linearity of the gravitational interaction

in the time component of the metric tensor:

g00 = −1− 2
Φ

c2
− 2β

Φ2

c4
+ . . . , (18)

where the dots stand for the contribution of additional post-Newtonian potentials

and of the other PPN parameters in the case of metric theories different from GR:

ξ, α1, α2, α3, ζ1, ζ2, ζ3, ζ4.
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In a forthcoming paper, we will focus on the impact of these additional PPN

parameters on the ideal two–body orbit of a satellite around the Earth. As a matter

of fact, the investigation on these parameters may help us in discriminating on the

possibility of possible preferred-location effects (ξ), or possible preferred-frame effects

(α1, α2, α3) and, finally, on the possible violation of the total momentum conservation

(ζ1, ζ2, ζ3, ζ4).

Indeed, as we briefly described in the Introduction and at the beginning of this

section, in GR and in other metric theories, the metric tensor represents the only

gravitational field that enters the equations of motion. However, the other (possible)

gravitational fields that other metric theories suggest may help in generating additional

spacetime curvature, i.e., they may contribute to the metric together with the matter,

but they cannot interact (directly) with matter.

This is sufficient in explaining the importance of the PPN formalism in order to

test the validity of metric theories at the post–Newtonian order. At the same time,

it is also important to stress that the ten PPN parameters may not be sufficient to

test every possible conceivable metric theory for the gravitational interaction at the

post–Newtonian order; see Section 3.7 of (Ciufolini & Wheeler 1995) for details.

Under this point of view, and also as a consequence of previous discussion about

frame-dependent gravitomagnetism versus intrinsic gravitomagnetism, it should be

preferable to express the Lense-Thirring precessions of Eqs. (14) and (16) not as a

function of the PPN parameter γ, but as a function of a different parameter µ, i.e.,

replace (1 + γ)/2 with µ:

ω̇LT = µ
−6GJ⊕

c2a3(1− e2)3/2
cos i, (19)

Ω̇LT = µ
2GJ⊕

c2a3(1− e2)3/2
. (20)

In this perspective, and in agreement with the discussion of Sections 3.4.3 and 6.11

of (Ciufolini & Wheeler 1995), µ should not be considered a standard PPN parameter,

nor it is a function of one (or more) of them. In other words, in terms of metric gµν ,

µ measures the contribution to the metric of the spacetime curvature that arises from

mass–energy currents relative to other masses.

The reader interested in the mathematical details for the derivation of the above

equations for the secular rates may refer to (Will 1993, Ciufolini &Wheeler 1995, Poisson

& Will 2014), as well as to the classical textbooks of (Weinberg 1972) and (Misner

et al. 1973). Conversely, for an alternative derivation of the Lense-Thirring effect, we

also refer to (Chashchina et al. 2009).

3. SLR contribution to GR measurements: state of the art

The Satellite Laser Ranging (SLR) technique represents a powerful and impressive

tracking system that allows recovery of the two-way time of flight of laser pulses from
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a ground station to cube corner retro-reflectors (CCRs) on a satellite (for a valuable

discussion of this technique see e.g. (Degnan 1985)). The observable is represented by

the round-trip time of short laser pulses measured by means of very precise time devices

down to a resolution of about 10 ps or less (1 ps = 1 · 10−12 s). The station-satellite

distance (range) is obtained after an averaging procedure over a short time period (bin)

that depends both on the structure and height of the satellite. The ranges obtained after

the averaging procedure are called Normal Points (NPs), see (Sinclair 1997). These high

quality data are presently gathered by the International Laser Ranging Service (ILRS),

with range NPs characterized by a mm precision in their root-mean-square (RMS),

see (Pearlman et al. 2002).

In the case of the two LAGEOS satellites (see Figure 1), currently the best tracked

satellites around the Earth, the cited mm precision in the RMS of their NPs corresponds

to an accuracy in the orbit reconstruction at a few cm level, when using the best

dynamical models in their data reduction as well as empirical accelerations (these are

usually applied in order to account for unmodeled effects, see Section 5).

Therefore, from these considerations it is obvious the key role played by this

technique in the case of precise relativistic measurements in the field of Earth. In fact,

the size of the general relativistic effects is dictated by the value of the Schwarzschild

radius of the primary body around which the satellite is in free fall along its geodesic,

once removed the perturbing effects due to the non-gravitational forces. In the case of

the Earth, for the Schwarzschild radius we obtain:

RSch = 2
GM⊕

c2
≃ 1cm (21)

which is of the same order of magnitude of the level of accuracy reached by the SLR

technique.

A second important aspect is played by the accuracy of the dynamical models

implemented in the software used for the data reduction. Indeed, their quality directly

impacts the final POD reached by the analysis of the satellite’s orbit.

The goal of the software code is to minimize, in a least-squares fit sense, an

appropriate function (also known as cost-function) and solve for the unknowns we are

interested in. Indeed, these models have to account for both gravitational and non-

gravitational forces in such a way to reduce as much as possible the difference between

the observed range and the computed (from the models) one.

The better the minimization process through the orbit data reduction from one

side and the better the estimate of the systematic error sources from the other, the

more precise and accurate will be the a posteriori reconstruction of the satellite orbit.

Indeed, concerning the estimation problem, the orbit determination is reduced to the

least-squares solution of the so-called range residuals:

Oi − Ci = −
∑

j

∂Ci

∂Pj

dPj + dOi (22)
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Figure 1. Picture of the LAGEOS II satellite (courtesy of ASI). Launched by

ASI/NASA space agencies at the end of October 1992, LAGEOS II is one of the best

tracked satellites all over the word by the SLR technique. LAGEOS II is almost a twin

of the older LAGEOS (NASA, 1976), see Section 6. Spherical in shape (their radius

is only 30 cm), passive (i.e., with no solar panels, instruments, engines or antennae

for radio communications with the ground), the external aluminum surface of these

geodetic satellites is covered with 426 CCRs for satellite laser ranging. In the case of

LAGEOS II, the satellite direct orbit has an inclination of about 53◦ over the Earth’s

equator, a semi-major axis of about 12,163 km (corresponding to an orbital period of

about 13,348 s) and an orbital eccentricity of about 0.014. The older LAGEOS has an

orbit inclination of about 110◦, a semi-major axis of about 12,270 km (corresponding

to an orbital period of about 13,526 s) and an orbital eccentricity of about 0.004. The

smaller inclination of LAGEOS II has been chosen to obtain a better visibility from

the network of the Earth laser ranging stations. The satellite area-to-mass ratio of

these satellites is quite small in order to minimize the impact of the non-gravitational

perturbations (NGPs). See Section 4 for further details.

where Oi and Ci are, respectively, the SLR range observations and their computed

(from the dynamical models) values, dPj represent the corrections to the vector P

of parameters to be estimated and, finally, dOi are the errors associated with each

observation. With regard to the errors dOi, they account for both the contribution

from the noise in the observations as well as for the incompleteness of the mathematical

model included in the software used for the orbit determination.

Therefore, it is of extreme importance to have at the same time good observations

and good models in order to perform the measurements of the tiny relativistic effects

predicted by Einstein’s theory, and to verify these predictions with respect to those of

other proposed (alternative) theories of the gravitational interaction.
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3.1. The Lense-Thirring effect measurements

The first measurements of the relativistic effects with the SLR technique start only

after 1995 when, in addition to the good laser observations of the two LAGEOS

provided by the ILRS, the systematic errors of the dynamical models — in particular

the errors associated with the even zonal harmonics of the Earth’s geopotential —

became sufficiently small to allow the first detection of the impact of the secular

relativistic precession produced by the Lense-Thirring effect on the orbit of the satellites,

see (Ciufolini et al. 1996).

The first successful model of the Earth’s gravitational field, under this perspectives,

was the JGM-3 model jointly developed by the Center for Space Research (CSR) — of

the University of Texas at Austin — and by NASA GSFC, see (Tapley et al. 1996).

This first measurement of the Lense-Thirring effect was obtained analyzing the data

of the two LAGEOS satellites over a time span of about 2 years and the result was:

µ ≃ (1.3± 0.2)± 0.3, (23)

where µ represents the normalized general relativistic precession on the combined node

of the two LAGEOS satellites and on the argument of pericenter of LAGEOS II (µ = 1

in Einstein’s GR and µ = 0 in Newtonian physics), see Section 2.

In the above equation, 0.2 represents the RMS of the final fit to the combined

residuals, while 0.3 (i.e., 30%), represents the error budget estimated in (Ciufolini

et al. 1996) that arises from the main systematic effects due to both gravitational

and non-gravitational perturbations. In equation (23), the quantity 0.3 was also the

discrepancy with respect to the prediction of GR, i.e., µ = 1.3 vs. µ = 1. This first

estimate of the error budget around 30% has been successively reviewed and increased,

see e.g. (Lucchesi 2001).

Indeed, following (Ciufolini 1996), the residuals of these three orbital elements

were combined in such a way to cancel out the errors due to the Earth’s quadrupole and

octupole uncertainties (in fact, the main systematic errors were those associated with the

uncertainties of the even zonal harmonics δJn of the expansion in spherical harmonics

of the gravitational field of the Earth) while solving for the relativistic parameter µ

that describes the GR combined precession (about 60.2 mas/yr) that arises from the

Lense-Thirring effect (see Eqs. (19) and (20)):

µ ≃ δΩ̇res
I + k1δΩ̇

res
II + k2δω̇

res
II

60.2
, (24)

where δΩ̇res
I , δΩ̇res

II and δω̇res
II represent the residuals in the rate of the elements after

the data reduction of the orbit of the two satellites (see (Lucchesi & Balmino 2006)),

while k1 = −0.295 and k2 = +0.350 are the two coefficients that arise from the solution

of a system of three equations in three unknowns. For a further discussion of the

combinations concept see also (Peron 2013).

With the term residual of an orbital element we mean the unmodeled effects that

impact this element after the orbit data reduction of the satellite over a given time span
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(arc), 14-day in the case of the two LAGEOS. We refer to Section 5 and to (Lucchesi

& Balmino 2006) for further details and for a deeper insight on the meaning of orbital

residuals.

A subsequent analysis of the orbit of the two satellites, extended to a period of about

3 years and with the same model JGM-3 for the Earth’s gravitational field, provided a

new measurement with a fit characterized by a smaller discrepancy with respect to the

prediction of GR, but with the same difficulties with regard to the correct estimate of

the error budget that arises from the systematic effects of gravitational origin, and of

their consequent underestimation, see (Ciufolini, Chieppa, Lucchesi & Vespe 1997) and

(Ciufolini, Lucchesi, Vespe & Chieppa 1997):

µ ≃ (1.1± 0.2)± 0.3. (25)

This procedure for the measurement of the Lense-Thirring effect dates back to 1984,

when I. Ciufolini suggested the use of two LAGEOS satellites with supplemenary

inclinations in order to cancel out the errors due to the even zonal harmonics of the

Earth’s geopotential on the combined nodes of the two satellites, see (Ciufolini 1984)

and also (Ciufolini 1986, Ciufolini 1989).

Indeed, a big effort was done at that time, with a wide international community

involved, and culminated with a proposal to NASA for a third LAGEOS satellite to be

launched in supplementary orbital configuration with respect to the older LAGEOS, in

the context of the so-called LAGEOS III Experiment, see (Tapley et al. 1989).

In fact, in the case of two satellites in exactly supplementary orbit configuration

(i.e., all the orbital elements coincident, but with the sum of their inclination equal

to 180◦), the relativistic Lense-Thirring precession on their ascending node are equal

(i.e., Ω̇LT
I = Ω̇LT

III ), while the secular precession of the ascending node due to the Earth’s

deviation from the spherical symmetry are equal and opposite (i.e., Ω̇class
I = −Ω̇class

III ) as

they are both proportional to the cosine of the orbit inclination i:

Ω̇class = −3

2
n

(

R⊕

a

)2
cos i

(1− e2)2

{

J2 + J4

[

5

8
n

(

R⊕

a

)2
(

7 sin2 i− 4
)

(

1 + 3
2
e2
)2

(1− e2)2

]

+ . . .

}

,

(26)

where n represents the satellite mean motion.

For completeness, it is worth mentioning that, in the scientific literature and from

the historical point of view of the proposals for the Lense-Thirring effect measurement,

it has been H. Yilmaz in 1959, well aware of the perturbing effect of the classical

precession provoked by the Earth’s oblateness, that proposed to launch a new satellite

in a polar orbit in such a way to cancel all these aliasing effects (Yilmaz 1959). Then,

about 15 years later, (van Patten & Everitt 1976) proposed to launch two drag-free

and counter-orbiting satellites in nearly polar orbits to measure their (combined) Lense-

Thirring precession on the two nodes. About two years later, (Cugusi & Proverbio 1978)

suggested using the existing laser-ranged satellites, and among them LAGEOS, in

order to take advantage of the precise SLR technique to measure the post-Newtonian
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corrections of GR to their orbits and, in particular, the Lense-Thirring secular precession

of their ascending nodes.

A step forward in the measurement of the Lense–Thirring effect with the two

LAGEOS satellites was performed in 1998 with the inclusion of EGM96 in the dynamical

models used for the satellites orbit determination. EGM96 represents one of the last

multi–satellite models for the gravitational field of the Earth and was jointly developed

by NASA/GSFC and NIMA (Lemoine & et al. 1998). In this case the orbit analysis of

the two satellites was extended up to four years, and the result was (Ciufolini et al. 1998):

µ ≃ (1.1± 0.03)± 0.2. (27)

As we can see, this measurement confirmed the previous measure in terms of the

discrepancy between the measured precession and that predicted by GR, i.e., a 10%

agreement, but with an higher precision in the final fit: 3% with respect to 20%.

However, with regard to the overall accuracy of the measurement, the actual

estimate of 20% of the systematic effects was illusory, because of the high correlation

among the gravity field coefficients (in particular for the low degree even zonal

harmonics to which the two LAGEOS are most sensitive to) despite their smaller formal

uncertainties with respect to previous models; see (Ries et al. 2003) for a dedicated

discussion.

The problem of a precise and, especially, accurate measurement of the relativistic

Lense-Thirring precession on the orbit of the two LAGEOS satellites has found

a first significant improvement with the launch of the CHAMP (July, 2000) and

GRACE (March, 2002) satellites (see (Reigber et al. 2002, Reigber et al. 2003, Reigber

et al. 2005, Tapley & Reigber 2001)).

Both missions use Global Positioning System (GPS) receivers and accelerometer

measurements (Touboul et al. 1999) in order to precisely determine their orbits and

remove the non–gravitational accelerations from the list of unknowns. These satellites

are also equipped with CCRs for SLR measurement of their orbit.

One of the characteristics of the Earth gravity models derived from these missions is

to improve the gravity field knowledge with a limited amount of data and, especially, in

the medium and long wavelengths regions of its spectrum. A significant consequence has

been an overall better accuracy in the determination of the gravity field coefficients as

well as a strong reduction of the correlations among the various coefficients, in particular

of the even zonal ones to which we are mainly interested in. Unfortunately, because of

the low altitude of these satellites (about 500 km at the beginning of their mission),

the lower degree coefficients have not been so significantly improved with respect to the

accuracy provided by EGM96§.
In this context it is also important to distinguish between formal uncertainties

and calibrated ones. The calibration procedures aim to estimate the systematic errors

§ Moreover, the analysis of the orbit of the LAGEOS satellites has strongly contributed to the estimate

of their current values and uncertainties.
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Table 1. Comparison between EGM96 and EIGEN-GRACE02S formal (for) and

calibrated (cal) uncertainties for the first five even zonal harmonics.

Coefficient EGM96 (for) EIGEN-GRACE02S (for) EIGEN-GRACE02S (cal)

δC̄2,0 0.3561× 10−10 0.1433× 10−11 0.5304× 10−10

δC̄4,0 0.1042× 10−9 0.4207× 10−12 0.3921× 10−11

δC̄6,0 0.1450× 10−9 0.3037× 10−12 0.2049× 10−11

δC̄8,0 0.2266× 10−9 0.2558× 10−12 0.1479× 10−11

δC̄10,0 0.3089× 10−9 0.2347× 10−12 0.2101× 10−11

that may have impacted the determination of the coefficients of the gravity field model

during the POD of the satellite(s) orbit and the subsequent procedures of data analysis.

Indeed, the calibration of the coefficients is a very important and complicated issue

which is rarely performed with reliability. We refer to Section VIII.A of (Lucchesi &

Peron 2014) for a detailed discussion on this topic.

For instance, in the case of the EIGEN-GRACE02S model (Reigber et al. 2005),

their formal errors were calibrated with a procedure based on the scattering of subset

solutions. In this case, each solution was generated from data covering different periods

of the GRACE mission. In particular, the variances per degree of the coefficients

differences between the considered subset solutions were compared with the formal error

degree variances as resulting from the adjustment. We refer to the literature for further

details (Reigber et al. 2005).

In Table 1 are shown the formal uncertainties of the first five even zonal harmonics

(for the normalized Stokes coefficients) in the case of the EGM96 and EIGEN-

GRACE02S models, compared with the calibrated errors of EIGEN-GRACE02S.

From this table it is clear that the formal errors of EGM96 are much larger than

those of EIGEN-GRACE02S (between one and three orders of magnitude), while the

calibrated errors of EIGEN-GRACE02S are about a factor of 10 larger than their

corresponding formal errors.

One of the great advantages of the higher precision and of the very low correlations

among the various coefficients from the new models for the Earth’s gravitational field

arising from the GRACE mission resides in the possibility of taking out the LAGEOS

II satellite argument of pericenter in the combination of equation (24).

Indeed, the argument of pericenter of the two LAGEOS satellites is very sensitive

to the perturbation due to the thermal effects, especially to the Yarkovsky–Schach

effect provoked by the direct solar radiation pressure, when its absorption is modulated

by the satellite eclipses, see Section 6.2. If such perturbation is not modelled, as in

the case of the past measurements of the Lense-Thirring effect, unmodelled long-period

effects will modify the pericenter evolution, with a subsequent change in the slope of the

relativistic precession to be recovered from the combination of the orbital residuals, see

(Ciufolini 1996), (Lucchesi 2002) and (Lucchesi et al. 2004). Conversely, the ascending
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node of the satellite is less perturbed by the unmodelled Yarkovsky–Schach effect, see

(Farinella et al. 1990) and (Lucchesi 2002).

Therefore, in this case, only the two nodes of the LAGEOS satellites were combined

in such a way to remove both the static and the time-dependent errors related with the

first even zonal harmonic coefficient (J2) while solving for the relativistic precession:

µ ≃ δΩ̇res
I + k3δΩ̇

res
II

48.2
, (28)

where k3 ≃ 0.545, and 48.2 mas/yr represents the GR value of the relativistic precession

to be measured. For an explicit derivation of Eq. (28) see (Iorio & Morea 2004).

It is also important to stress that a large fraction of the error associated with

the 18.6-year tide is due to the uncertainty δJ2 in the knowledge of the quadrupole

coefficient. This tide, as well as the 9.3-year tide, is due to the so–called Moon nodes

line regression. Hence, with the combinations of Eqs. (24) and (28) also these tidal errors

are further reduced (cancelled in principle) concerning their impact in the relativistic

measurement; see also Section 6.4.

Indeed, in 2004 a new measurement of the Lense-Thirring effect was performed by

(Ciufolini & Pavlis 2004) using the EIGEN-GRACE02S model as the background field

for the Earth’s geopotential and Eq. (28). They obtained:

µ ≃ (0.99± 0.12)± 0.05(±0.10). (29)

This analysis of the orbit of the two LAGEOS satellites was performed over a time span

of about 11 years. The combined residuals of Eq. (28) were fitted — after the removal

of six periodic effects — by means of a function composed of a linear term plus phases

and amplitudes of six main periodic signals, corresponding to a 13-parameter fit. The

authors obtained a linear term of about 47.9 mas/yr, corresponding to a 1% discrepancy

with respect to the prediction of GR, with a RMS of their post–fit residuals of about 6

mas, which corresponds to a 12% error in their best fit.

With regard to the error budget estimate, due to possible systematic uncertainties,

the authors first estimated a value of about 5% due to the contribution of gravitational

and non-gravitational perturbations added together in a root–sum–square fashion.

About 80% of this error was originated by the even zonal harmonics with degree ℓ ≥ 4,

and largely dominated by the uncertainty in the J4 coefficient. Finally, considering other

possible unknown errors, also related to an underestimate of the even zonal harmonics

uncertainties, the authors have considered, conservatively, an overall error budget of

about 10%.

This result represents the most accurate measurement of the Lense-Thirring effect

performed so far, and it has also been confirmed independently by other teams, also

using new (and more recent) models for the Earth’s gravitational field (see (Ries &

Eanes 2012, Ries et al. 2008, Koenig et al. 2012)).

Still in 2004, a more precise but less accurate measurement of the Lense-Thirring

precession was obtained by analysing nine years of the orbits of LAGEOS and of
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LAGEOS II with the EIGEN2S gravitational field (Reigber et al. 2003) from the

CHAMP mission, see (Lucchesi 2004b, Lucchesi 2007). The result was:

µ ≃ (0.99± 0.01)± 0.18, (30)

with a RMS discrepancy of just 1% with respect to the prediction of GR, obtained with

a simple linear fit to the combined and integrated node residuals of the two satellites.

The error budget is at 1–σ level, and it is dominated by the uncertainties of the even

zonal harmonics with degree ℓ ≥ 4 obtained by the formal (and uncalibrated) errors of

the EIGEN2S model, of about 17.8%.

In this work, the fit to the combined residuals of the two satellites was carried

out over a nine years time span. This is due to the fact that the oscillations on the

combined nodes provoked by the non-gravitational perturbations (NGP) are close to

full cycles over this time span. Consequently, the periodic disturbing effects of the NGP

on the orbit of the two LAGEOS satellites are smaller, on the average, than those on

longer or shorter time spans. In this way, the impact of the unmodelled part of the

NGP is strongly reduced both in the fit to the residuals and in the estimate of their

(systematic) unmodelled effects, about 0.4%, see (Lucchesi 2007) for details. Indeed,

the fit obtained by (Ciufolini et al. 2006) with the EIGEN2S model over a ten years

period was characterized by a much larger RMS discrepancy: about 32% when fitting

for a linear trend only, and about 11% when fitting for a linear trend plus ten periodic

signals. All the data reductions quoted above for a POD of the two LAGEOS satellites

for the measurement of the Lense-Thirring effect have been performed with the software

GEODYN II of NASA/GSFC, see (Pavlis & et al. 1998).

With regard to the Lense-Thirring effect measurement, it is worth mentioning the

NASA and Stanford University space mission denominated Gravity Probe B (GP-B),

see (Everitt et al. 2011). Following Schiff, a gyroscope in orbit around the Earth — an

almost circular polar orbit in the case of the GP-B satellite at an altitude of about 640

km — is subject to two main relativistic precessions: a drift in the orbital plane, i.e.,

the de Sitter or geodetic precession, and a frame-dragging effect perpendicular to the

orbital plane, see (Schiff 1960). This frame-dragging, also known as Schiff dragging, is

due to the Earth’s rotation and it is therefore related with the orbit dragging, i.e., with

the Lense-Thirring effect. GP-B was equipped with four cryogenic gyroscopes. These

were almost perfect homogeneous spheres with a tolerances better than 1 part per

million. Each gyroscope was coated with a very thin layer of superconducting niobium.

The gyroscopes were included inside a dewar of 2440 liters of superfluid helium at a

temperature of 1.8 K. GP-B has provided a measurement of the frame-dragging effect

and of the geodetic effect in agreement with the GR predictions with accuracies of about

19% and 0.28%, respectively.
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3.2. Measurement of the GR advance of the argument of pericenter and of the PPN

parameters β and γ

The GR precession of the argument of pericenter of a satellite tracked via SLR has

been the subject of many investigations since the 70s of the last century. It was

D.P. Rubincam that, in 1977, first attacked the problem of the precession of LAGEOS

pericenter provoked by the Earth’s gravitoelectric field, see (Rubincam 1977).

Rubincam concluded that, at that time, the relativistic shift was too small to

be separated from other perturbations, such as the direct radiation pressure and the

atmospheric drag; however he also underlined that an improved knowledge of the

perturbations “may permit the relativistic perigee shift to be measured in the near

future, although the small orbital eccentricity may make determination of the argument

of perigee difficult”.

Indeed, in the case of the pericenter ω, the observable is eω̇; therefore, the larger the

eccentricity e, the better the determination of the argument of pericenter ω. In 1977, the

role of the several non-gravitational perturbations at work on the LAGEOS satellite was

not yet well established, and Rubincam had, among the many researchers involved on

this topic, a key role in their understanding during the subsequent years. For instance,

thermal effects have been later discovered to play a fundamental role in explaining a

large fraction of the observed decay of the semi-major axis of the two LAGEOS satellites

(see e.g. (Rubincam 1987, Rubincam 1988, Scharroo et al. 1991)), while a smaller role

is played by the neutral and charged particle drag. In particular, the Yarkovsky–Schach

effect is responsible for several long-period perturbations on the satellite argument of

pericenter, with an amplitude inversely proportional to the eccentricity e of the satellite;

see Section 6.2 below.

A step forward in estimating the relativistic contribution to the advance of the

pericenter of LAGEOS was done in 1992 by (Ciufolini & Matzner 1992). These authors,

based on a measurement of LAGEOS pericenter advance at a 10% level over a time

span of about 13 years (from a private communication by R. Eanes (CSR/Texas), see

their Ref. [51]), performed an analysis of the main systematic errors due to the even

zonal harmonics of the Earth’s gravitational field. They considered the GEM-L2 and

GEM-T1 models — see (Lerch, Klosko, Patel & Wagner 1985, Lerch, Klosko, Wagner

& Patel 1985, Marsh et al. 1988) — and found an upper bound value of about 20%

for the error of the shift of the pericenter with respect to the relativistic precession.

In particular, they considered the covariance matrix of the two fields applied to their

formal errors in order to account for the correlations among the coefficients. Therefore,

their result can be expressed as:

ǫω − 1 ≈ (0± 0.1)± 0.2, (31)

where ǫω represents the GR normalized precession due to the Earth’s gravitoelectric

field, with ǫω = 1 in Einstein’s GR and ǫω = 0 in Newtonian classical physics.

It is important to stress that this 20% estimate for the error budget due to the

systematic effects has to be considered for this analysis, at that epoch, as a lower
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limit. Indeed, (Ciufolini & Matzner 1992) have not explicitly considered neither other

gravitational error sources on the argument of pericenter — such as the time dependency

of the even zonal harmonics, or the contribution from the odd zonal harmonics as well

as that from the tidal effects — nor the non-gravitational perturbations. The authors

have simply considered in their 20% estimate also a few percent contribution from other

minor perturbations, as described in (Cohen et al. 1985), but not updated for that time.

In the subsequent years, and very strangely, no explicit measurement of the

GR pericenter advance of an Earth satellite has never been performed, and only

new estimates of the error budget for such a measurement were published, see e.g.

(Iorio et al. 2002, Lucchesi 2003a, Lucchesi 2011) (this last work was presented at

COSPAR2006, see (Lucchesi & Peron 2006)). The value of these works lies in focusing

attention to a better consideration of the role played by the main systematic effects

produced by the perturbations due to the gravitational and non-gravitational forces in

the error budget of a measurement of the GR precession of the pericenter.

It was only in 2010 that a work focusing on the explicit measurement of the

GR advance of LAGEOS II argument of pericenter was performed, see (Lucchesi &

Peron 2010). The result was:

ǫω − 1 ≃ (0.28± 2.14)× 10−3 ± 2× 10−2. (32)

This result was based on a 13-year analysis of the orbit of the LAGEOS II satellite

with the inclusion of the EIGEN-GRACE02S model for the Earth’s gravitational field

in the POD of the satellite. The LAGEOS II satellite was used because of its larger

eccentricity (eII ≃ 0.014) with respect to that of LAGEOS (eI ≃ 0.004). As in the case

of the previously described measurements of the Lense-Thirring effect, the GEODYN II

software was used for the satellite data reduction.

As we can see from Eq. (32), the authors obtained, from their best fit of the

integrated residuals of the satellite pericenter, a discrepancy of about 0.03% with respect

to the prediction of GR, with an error of about 0.2% from the result of a sensitivity

analysis. Finally, based on the previous estimate of the systematic effects provided in

(Lucchesi 2003a) and in (Lucchesi 2011), (Lucchesi & Peron 2010) have preliminarily

fixed the error budget of the measurement at the level of 2%, mainly dominated by the

uncertainty in the quadrupole coefficient J2.

In a subsequent re-analysis of the LAGEOS II orbit over the same time span of

about 13 years, (Lucchesi & Peron 2014) have provided a new — and more precise —

measurement of the GR advance of the satellite argument of pericenter, together with

a very accurate analysis of the main systematic effects. The new result was:

ǫω − 1 ≃ (−0.12± 2.14)× 10−3 ± 2.54× 10−2. (33)

As we can see from Eq. (33), the discrepancy with respect to the slope of the integrated

residuals of the pericenter predicted by GR has been reduced to 0.01%, a factor of three

smaller than the result of the previous measurement. The very accurate estimate of the
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error budget gives a value of 2.54%, slightly larger than the 2% previously fixed. This

error budget is dominated by the uncertainty due to the first even zonal harmonic J2,

with an impact on the pericenter precession of about 2.27% of the prediction of general

relativity. We refer to (Lucchesi & Peron 2014) for a deeper insight into the details of

the error budget.

It is important to stress that in the framework of the PPN parameters the parameter

ǫω may be interpretated as a combination of the two post-Newtonian parameters β and

γ (see Section 2), that is:

ǫω ≃ |2 + 2γ − β|
3

. (34)

Therefore, the quoted measurements, in particular those of Eqs. (32) and (33), should

be considered as a direct measurement of such a combination of the PPN parameters in

the field of the Earth.

In particular, we can compare the result shown in Eq. (33) with analogous

measurements from experiments performed in the solar system with the tracking of

planets and of probes around planets or during flybys. A first and very long series

of measurements in the case of the perihelion advance of Mercury was performed by

Shapiro and collaborators, see (Shapiro et al. 1972, Shapiro 1990). They obtained:

|2 + 2γ − β|
3

− 1 ≃ (±1.0 · 10−3)± 2 · 10−2. (35)

This previous and very important test of GR was performed with the radar ranging

technique and based on the measurement of the echo delay between the Earth and

Mercury in the period between 1966 and 1990.

Other constraints for the perihelion advance have been indirectly obtained from the

ephemerides of the solar-system bodies. These ephemeris are computed numerically on

the basis of relativistic equations of motion and are improved, for what concerns masses

and distances of the considered bodies, with the tracking data of interplanetary probes,

see for instance (Pitjeva 2009, Fienga et al. 2009). From this global fit of solar system

bodies constraints on the advance of the perihelion of the planets produced by GR are

given. From the cited papers (see also references therein) we can infer the following

precision for the β and γ combination:

|2 + 2γ − β|
3

− 1 ≃ ±2 · 10−4. (36)

The real accuracy of such result is probably reduced because of several systematic effects.

3.3. Constraints on alternative theories for the gravitational interaction

As highlighted in Section 1, tests for non-Newtonian gravity and for a possible violation

of the Weak Equivalence Principle are strongly related (see e.g. (Fischbach & et

al. 1986, Adelberger et al. 2003)) and represent a powerful approach in order to validate

GR with respect to other (proposed) alternative theories of gravity. In the following, we

summarize the constraints obtained so far in this context from the SLR measurements

of the orbit of the two LAGEOS satellites and their subsequent analyses.
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3.3.1. Constraints on New Long Range Interactions Violations of the inverse–square

law by very weak New Long Range Interactions (NLRI) are usually described by means

of a Yukawa–like potential with strength α and range λ and transmitted by a field of

very small mass µ = ~/λc:

VYuk = −α
G∞M⊕

r
e−r/λ, α =

1

G∞

(

K⊕

M⊕

Ks

ms

)

. (37)

Here G∞ represents the Newtonian gravitational constant, M⊕ and ms are the mass of

the primary body (the Earth) and of the satellite, r is their separation, c the speed of

light and ~ the reduced Planck constant. The strength α depends both on the mass-

energy content of the sources and on their coupling strengths, K⊕ and Ks respectively.

Indeed, depending on the nature of the coupling strengths that enter in Eq. (37), we

can simply have a metric gravitational theory or a more complex non-metric theory.

The former case happens when K⊕ and Ks are proportional to the mass-energy content

of the two sources, i.e., to M⊕ and ms respectively. Conversely, in the latter case,

the coupling strengths are proportional to some exotic (conserved) charge or to other

forms of energy. In these cases, in addition to violations of the inverse-square law

also EEP violations will be present. Threfore, NLRI may have various origins, from

modifications of the gravitational interaction with respect to Einstein’s GR to modern

theories for particle physics and string theory. For instance, NLRI may be thought of

as the residual of a cosmological primordial scalar field related with the inflationary

stage (Damour et al. 2002a). This is the so-called dilaton scenario, in which the dilaton

is a scalar partner of the spin-2 graviton, see also (Damour et al. 2002b).

Among the different techniques useful for the search of this additional physics

at the various scales, the accurate measurement of the pericenter shift of binary

systems, such as the Earth and an orbiting satellite, may be used to test for

a NLRI with a characteristic range comparable with the system semimajor axis,

see (Nordtvedt 1998, Nordtvedt 2000). In particular, the impact on LAGEOS II

argument of pericenter of the main systematic error sources in this context was evaluated

in (Lucchesi 2003a, Lucchesi 2011), see also (Iorio et al. 2002). Subsequently, (Lucchesi

& Peron 2010, Lucchesi & Peron 2014) have constrained a possible NLRI at a range

λ close to 1 Earth radius from their measurement and error budget of the pericenter

advance of LAGEOS II. Indeed, (Lucchesi & Peron 2014) found a maximum secular

effect on the pericenter given by:

< ω̇Yuk >2π≃ 8.29 · 1011α [mas/yr] (38)

which corresponds to the peak value at a range λ = 6, 082 km. Consequently, from their

result of Eq. (33) they found an upper bound for the strength α of a possible long-range

interaction given by:

|α| ≃ |(0.5± 8.0)± 101| · 10−12 (39)

where the last contribution is due to the systematic errors.
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It is worth mentioning that previous results using Earth-LAGEOS and Lunar-

LAGEOS measurements of GM were confined at the level of 10−5 and 10−8 respectively,

see e.g. (Li & Zhao 2005). Therefore, this result represents a huge improvement in the

constraint of the strength α at 1 Earth radius and it is very competitive with those

obtained with Lunar Laser Ranging (LLR) measurements at a characteristic scale of

about 60 Earth radii, where α ≃ 2 · 10−11, see (Müller et al. 2008, Murphy 2013) and

references therein.

3.3.2. Constraints on Non-Symmetric and Torsional theories When a modification of

GR is proposed, the equation of motion of a test body is no longer the standard geodesic

equation because of the presence of some new attribute. If, as a consequence, this new

attribute is responsible for a secular effect on one of the orbital elements of a satellite,

we are able to measure the long-term behaviour of such element and place constraints

on the existence of the attribute responsible of its further — with respect to that of

GR — time evolution. In the following, we show the constraints obtained with the two

LAGEOS satellites in the case of theories of gravitation characterized by non–symmetric

connection coefficients Γγ
αβ.

For instance (Moffat 1979), see also (Moffat & Woolgar 1988), suggested the

possibility of a Non-Symmetric Gravitation Theory (NSGT). The motivation was to

follow Einstein’s idea to unify gravitation and electromagnetism introducing a non-

symmetric fundamental tensor. As a consequence, for the pericenter rate of a binary

system consisting of a primary B and a satellite S, the authors obtained an additional

contribution with respect to Schwarzschild precession given by:

ω̇Mof =
3(GM)3/2

c2a5/2(1− e2)

[

CBS
c4
(

1 + e2/4
)

(

GMa(1− e2)
)2

]

, (40)

with CBS depending on the NSGT charges of the two bodies: ℓ2B and ℓ2S . In the case of

the Earth-LAGEOS system a first constraint in CBS → C⊕Lageos was given by (Ciufolini

& Matzner 1992) using the total uncertainty in the calculated precession of the satellite

pericenter. The authors obtained:

C⊕Lageos ≤ (0.16km)4. (41)

Subsequently, (Lucchesi 2003a) was able to improve such result on the basis of an

accurate analysis of the main systematic effects on the LAGEOS II pericenter rate. The

result was:

C⊕Lageos II ≤ (0.087km)4. (42)

Finally, (Lucchesi & Peron 2014), by imposing that their estimated precision and

accuracy in the LAGEOS II pericenter rate measurement of Eq. (33) is due to the

discrepancy between the Moffat NSGT and Einstein’s GR, obtained the following upper

bounds:

C⊕Lageos II ≤ (0.003km)4 ± (0.036km)4 ± (0.092km)4. (43)
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The larger upper bound, that arises from the analysis of the systematic errors, is

comparable with the result obtained in (Lucchesi 2003a). In conclusion, these results

are all consistent with a null result, hence they place very strong limits on a possible

NSGT.

A second example of non-symmetric connection coefficients Γγ
αβ is that due to a non-

vanishing torsional tensor, as when a generalization of Einstein’s GR may be obtained

from a Riemann-Cartan spacetime (Hehl et al. 1976, Hammond 2002). Following (Mao

et al. 2007) the presence of torsional effects in the Solar System should be tested

experimentally. These authors developed a theory that parameterizes both metric

and connection by a set of parameters that are able to describe torsional effects.

Subsequently, the corrections to the pericenter longitude (̟ = ω + Ω) produced by

these possible spacetime torsions were computed in the WFSM limit in the case of a

satellite orbiting the Earth and in the field of the Sun by (March et al. 2011a, March

et al. 2011b). Considering only their corrections to Schwarzschild precession, the authors

obtained:

ω̇torsion =
3(GM)3/2

c2a5/2(1− e2)

(

2t2 + t3
3

)

, (44)

where t2 and t3 are two of the parameters (among the several) that describe the torsion

effects. Then (Lucchesi & Peron 2014), with the results of their analysis, have been able

to constrain these two parameters related with torsion. They obtained:

|2t2 + t3| ≃ 3.5 · 10−4 ± 6.2 · 10−3 ± 7.49 · 10−2, (45)

to be compared with |2t2 + t3| ≃ 3 · 10−3 obtained by (March et al. 2011b) using the

Mercury’s perihelion shift measurement of (Shapiro 1990).

4. LARASE goals

In the previous two sections we have defined the theoretical limits of our field of

investigation as well as the current state of the art of the best measurements of

relativistic gravity in the field of the Earth by means of the SLR technique. In this

section we will focus on the main objectives of LARASE.

The project denominated LARASE (LAser RAnged Satellites Experiment) aims to

test the gravitational interaction in the WFSM limit of GR by means of very precise

orbit determination for a set of laser-ranged satellites orbiting the Earth. In the family

of the passive laser-ranged satellites, the two LAGEOS will still play a key role together

with the recently launched LARES. The older LAGEOS (LAser GEOdynamic Satellite)

was launched by NASA on May 4, 1976; LAGEOS II was jointly launched by NASA

and ASI on October 22, 1992; finally LARES (LAser RElativity Satellite) was launched

by ASI on February 13, 2012.

These satellites are spherical in shape, fully passive, and with a low area-to-mass

ratio in order to minimize the non-gravitational accelerations acting on them. The two

LAGEOS are almost twin satellites, with an area-to-mass ratio of about 6.95 · 10−4
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m2/kg and a radius of about 30 cm. LARES has an area-to-mass ratio smaller by a

factor of 2.6 with respect to that of the two LAGEOS, and a radius of about 18 cm.

Indeed, it is made of a tungsten alloy, and it represents the densest object ever launched

in space, see Figure 2.

Figure 2. Picture of the LARES satellite (credits from LARES Mission: CC BY 3.0;

see also www.lares-mission.com/gallery.html). LARES is made of a unique piece of

tungsten (THA-18N, composition 95% of W and 5% of Cu and Ni) and its surface is

covered with 92 CCRs for SLR tracking. The CCRs mounting system is quite similar

to that of the two LAGEOS, the most important difference is that the mounting rings

and the screws are made of the same tungsten alloy of the satellite. The satellite radius

is 18.2 cm and its mass is about 386.8 kg. The satellite orbit is almost circular with a

semi-major axis of about 7820 km (corresponding to an orbital period of about 6883 s).

LARES has been lunched with the qualification flight of the new European launcher

VEGA.

In Table 2 the mean elements for the three satellites are given for their semi-major

axis a, eccentricity e and inclination i. The table also gives the satellites right ascension

of the ascending node Ω and argument of pericenter ω, for a fixed reference epoch.

LARES was launched with the goal to provide — by combining in a suitable manner

its POD with that of the two LAGEOS — a new and refined measurement of the Lense-

Thirring effect at about 1% level, i.e., a factor of 10 better than the current constraints
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Table 2. Mean Keplerian orbital elements of LAGEOS, LAGEOS II and LARES. The

reference epochs at which right ascension of ascending node and argument of pericenter

are estimated are MJD 48919 (October 24, 1992) for LAGEOS and LAGEOS II and

MJD 55975 (February 18, 2012) for LARES, respectively.

Element LAGEOS LAGEOS II LARES

Semi-major axis [m] 1.227 000 320× 107 1.216 207 038× 107 7.820 305 76× 106

Eccentricity 4.433 30× 10−3 1.379 805× 10−2 1.195 78× 10−3

Inclination [deg.] 109.84 52.66 69.49

Right ascension of the

ascending node [deg.]

289.74 113.75 230.84

Argument of pericen-

ter [deg.]

53.12 212.57 296.99

obtained with the two LAGEOS satellites only; we refer to (Ciufolini et al. 2009) and

(Paolozzi & Ciufolini 2013) for details.

As we highlighted in Section 3, there are two fundamental ingredients needed for

the POD of a satellite: i) the quality of the tracking observations of the orbit and

ii) the quality of the dynamical models included in the software code for the orbit

determination. Therefore, LARASE aims to improve the dynamical models of the

currently best laser-ranged satellites, with special attention to the subtle and complex

modelling of non-gravitational forces. These are non-conservative forces that depend

(strongly) on the satellite structure — both external and internal — and on the way it

interacts with the environment around it and the radiations hitting its surface.

The dynamical models for the non-gravitational perturbations are only partly

included in the current best codes developed for the POD of passive laser–ranged

satellites, such as the two LAGEOS. This means that an effort is needed to develop

more accurate models, as well as new dedicated models for the LARES satellite, and

then include them in the current codes for a more precise and accurate data reduction.

Among the various non-gravitational perturbations that need special attention,

especially if we are interested in the joint analyses of the orbit of LARES with those of the

two LAGEOS, we have to consider the thermal thrust forces and the drag perturbations

due to both neutral and charged species at the altitude of interest.

The thermal thrust forces depend strongly on the satellite spin–axis orientation

and rate, hence an accurate model for the spin evolution of each satellite is needed.

Moreover, in order to account correctly for the various thermal forces acting on the

surface of a satellite, a detailed structural and thermal model is also needed. These

forces have to be considered carefully both for the two LAGEOS and the new LARES.

Conversely, the drag forces are especially important for LARES because of its (much)

lower height with respect to the two LAGEOS, about 1450 km vs. 5900 km.

Beside the non-gravitational perturbations, also the gravitational perturbations

need to be carefully considered in order to reduce the impact of their systematic
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Table 3. Magnitude of the main disturbing accelerations [m/s2] on LAGEOS II and

on LARES. Derived from (Milani et al. 1987).

Effect Estimate LAGEOS II LARES

Earth’s monopole GM⊕

r2
2.69 6.51

Earth’s oblateness 3GM⊕

r2

(

R⊕

r

)2

C̄2,0 −1.1× 10−3 −6.4× 10−3

Low-order geopoten-

tial harmonics

3GM⊕

r2

(

R⊕

r

)2

C̄2,2 5.4× 10−6 3.2× 10−5

High-order geopoten-

tial harmonics

19GM⊕

r2

(

R⊕

r

)18

C̄18,18 1.4× 10−12 4.6× 10−9

Moon perturbation 2GM•

r3•
r 2.2× 10−6 1.4× 10−6

Sun perturbation 2GM⊙

r3
⊙

r 9.6× 10−7 6.2× 10−7

General relativistic

correction

GM⊕

r2
GM⊕

c2
1
r

9.8× 10−10 3.7× 10−9

Atmospheric drag 1
2
CD

A
M
ρV 2 −2.6× 10−13 −1.3× 10−11

Solar radiation pres-

sure

CR
A
M

Φ⊙

c
3.2× 10−9 1.2× 10−9

Albedo radiation pres-

sure

CR
A
M

Φ⊙

c
A⊕

(

R⊕

r

)2

3.5× 10−10 2.4× 10−10

Thermal emission 4
9
A
M

Φ⊙

c
α∆T

T0

2.8× 10−11 not available

Dynamic solid tide 3k2
GM•

r•

(

R⊕

r•

)2 R3

⊕

r4
3.7× 10−6 2.2× 10−5

Dynamic ocean tide ∼ 0.1 of the dynamic solid tide 3.7× 10−7 2.2× 10−6

uncertainties on the relativistic measurements in which we are interested. In particular,

with regard to the LARES, because of its relative low altitude — compared to that of

the two LAGEOS — we need to account in the modelling of the Earth’s gravitational

field for a much higher number of spherical harmonic terms, up to degree ℓ and order

m of about 90, compared to ℓ and m of about 30 for the two LAGEOS. Moreover, also

the Earth’s tides (both solid and ocean) will impact more deeply the satellite orbit. We

refer to Table 3 for an order-of-magnitude comparison of the main gravitational and

non-gravitational perturbations acting on LAGEOS II and on LARES.

As we can see, because of its smaller semi-major axis (about 7820 km vs. 12162

km), the perturbing effects on LARES are usually larger than those on LAGEOS II.

Indeed, in the case of the non-conservative forces, the smaller area-to-mass ratio plays

a significant role only in the case of the direct solar radiation pressure. In the case of

the drag acceleration, the benefit is cancelled by the much larger atmospheric density

ρ and the higher speed V of LARES, see Section 6.3, while in the case of the albedo

perturbation the benefit is nulled by the 1/r2 dependence on the Earth’s distance.

However, it is precisely thanks to the lower area/mass ratio of LARES that the
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Table 4. Rate (mas/yr) of the different types of secular relativistic precession for

the two LAGEOS satellites and LARES (1 mas/yr = 1 milli–arc–second per year).

These rates have been computed using the mean values of the orbital elements shown

in previous Table 2.

Rate [mas/yr] LAGEOS LAGEOS II LARES

ω̇Schw 3278.78 3352.58 10 110.13

ω̇LT 31.23 −57.33 −124.53

Ω̇LT 30.67 31.51 118.47

Ω̇dS 17.60 17.60 17.60

disturbing effects due to the non-gravitational perturbations, independently of the lower

height of the satellite, are comparable with those of the two LAGEOS. This allows one

to infer an orbit determination of LARES not too much different from that obtainable

for the two LAGEOS. See Section 5.2.

With regard to the relativistic measurements to be performed in the near future,

a way to test the predictions of Einstein’s geometrodynamics with respect to those due

to other metric theories is through the measurements of the so-called PPN parameters

(Section 2). In particular, among these parameters, major goals of our investigation are

γ, β, α1 and α2. Because of the importance of the Lense-Thirring precession, also the

parameter µ will be subject of our new investigations. Indeed, in Section 2 we have only

focused on the distinction between intrinsic gravitomagnetism and the gravitomagnetic-

like effect that arises from a motion on a static background, i.e., the geodetic precession.

However, very interesting are the astrophysical and cosmological implications associated

with the frame-dragging effect, see e.g. (Ciufolini & Wheeler 1995), that enhance the

importance of a very precise measurement of this relativistic precession, also in the

WFSM limit.

Through a POD, these relativistic parameters may be determined in two distinct

ways: i) directly, as solved-for parameters or, ii) indirectly, by the measurement of the

relativistic precessions that impact the three Euler angles that define the orientation of

the orbit in the inertial space (see Sections 2 and 3).

In Table 4, the values of the secular relativistic effects on the pericenter and nodal

rate of such satellites in the case of their nominal keplerian elements a, e and i (see

Table 2) are shown.

In the case of the argument of pericenter, the dominant effect is the gravitoelectric

precession, analogous to Mercury perihelion precession in the field of the Sun, with a

smaller contribution from the gravitomagnetic effect. As we can see, due to the fact

that the gravitomagnetic precession is inversely proportional to the cube of the distance,

in the case of LARES the relativistic Lense-Thirring precessions of the argument of

pericenter and of the right ascension of the ascending node are larger than those of the

two LAGEOS satellites by a factor close to four.

Concerning the effects on the satellite orbital motion produced by a (possible)
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preferred frame, in particular from the α1 parameter, these have been investigated by

(Damour & Esposito-Farèse 1994). The main effects consist of a very complex secular

evolution of the orbit eccentricity vector e — the so-called Runge-Lenz (or Laplace)

vector (which is a constant of motion in the ideal two-body and Newtonian problem) —

and on a yearly oscillation in the longitude of the satellite. These authors have shown

that satellites characterized by particular values of their orbit inclination i with respect

to the Earth’s equator have the potential to improve the current limits on α1 (≃ 1 ·10−4)

by about two orders of magnitude. Luckily for this goal, the orbital inclinations of

the two LAGEOS satellites, as well as that of LARES, are very close to these critical

inclinations. A similar work has been performed by (Vokrouhlický & Métris 1998), that

have also considered the measurement of the α2 parameter. See also (Nordtvedt 1999).

Moreover, concerning the constraints to alternative theories for the gravitational

interaction, it will be very interesting to compare the results of gravitational physics

tests from the SLR technique measurements with those of the LLR ones. In addition to

the previously cited PPN parameters and to the strength α of a possible Yukawa-like

interaction, this comparison will be relevant about the constraints on possible violations

of the WEP and of the strong equivalence principle (SEP), as well as on the possible

time variation of the gravitational constant G. The goal is not simply to see whether

one technique provides better and more robust measurements — of course in this sense

LLR is much better for EEP tests — but to test the characteristic methods of one

technique (the LLR one) as compared to the other one and to verify the impact of

different systematic error sources in the results. Indeed, while the techniques are very

similar, some of the physical models involved and the orbits are different. This means

that the main perturbations have a different role in the two cases. For instance, in

the case of SLR the non-gravitational perturbations play a major role, while they are

negligible for the Moon. Conversely, while some gravitational perturbation is of primary

importance in the case of LLR, it is negligible for SLR (as for the tidal evolution effects).

Of course, and similarily, both the Earth-Moon and the Earth-LAGEOS systems

are in free fall in the field of the Sun; but the orbit of a LAGEOS-like satellite is more

strongly tied to the Earth than the orbit of the Moon, and this has a deep consequence

in the measurement of several tiny relativistic effects. In case of common models for

some parameters, such as for the positions of the stations that perform both LLR and

SLR tracking, the more precise measurements of such parameters from one technique

could help in improving the results obtainable with the other. For further details about

this possible comparison between the two techniques we refer to (Nordtvedt 2001) and

to (Nobili et al. 2008).

One crucial aspect that LARASE should clearly address is represented by a reliable

estimate of the systematic uncertainties that contribute to the error budget of the

various relativistic measurements that will be performed in the future. As previously

outlined, these systematic uncertainties are, in their nature, both of gravitational and

non-gravitational origin. In particular, it will be of great importance to clearly identify

possible correlations among estimates of the relativistic precessions and those of other
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physical quantities that are able to mimic, because of their secular (or very long periodic)

behavior, a secular trend like those of the relativistic effects.

In conclusion, once the above improvements in the dynamical models will be

reached, it will be possible to test more precisely and accurately Einstein’s theory of

gravitation with respect to the other metric (and also non-metric) theories that have

been proposed for the interpretation of the gravitational interaction, and to go beyond

the present best measurements (and kinds of tests) performed so far.

5. Precise orbit determination and dynamical models

The precise determination of the orbit followed by a satellite is a very common task

and basic to every space mission (for the relevant methods, see e.g. (Montenbruck &

Gill 2000, Tapley et al. 2004, Milani & Gronchi 2009)). Essentially, it amounts to using

some observable (it could be, e.g., instantaneous position or velocity) in order to obtain

position and velocity of the object as a function of time (the so-called ephemerides)

in a given time span. The tracking data (our observables) contain the information

associated with the orbit itself, as well as to the satellite dynamics, the measurement

procedure and the observational “constraints” (i.e., stations position, reference frames).

This information has to be extracted in some way from the data. The problem is not

trivial, considering the relative magnitudes of the effects involved (see Table 3) and the

fact that aliasing among parameter estimates has to be avoided as much as possible.

A direct comparison between the data precision (at the mm level), the orbit

reconstruction accuracy (at the cm level) and the expected magnitude of the effects being

sought for (see Section 3 and Table 4) shows that the measurements are feasible, given

a proper modellization of the satellite dynamics. At the end, the orbit determination

reduces to a proper estimation scheme, such as least squares, following the general

equations (22) introduced in Section 3 (see e.g. (Kaula 1966)).

A least-squares solution of Eq. (22) amounts to minimizing the residuals Oi − Ci,

at the same time solving for the corrections dPj (differential correction procedure).

This procedure leads, for each considered time period (arc), to estimates of both

the state vector (initial conditions: position x and velocity ẋ) and a selected set of

model parameters. Among several software packages developed for this purpose, we

use the NASA/GSFC GEODYN II (Pavlis & et al. 1998, Putney et al. 1990). This

software is dedicated to satellite orbit determination and prediction, geodetic parameters

estimation, tracking instruments calibration, and many other applications in the field

of space geodesy.

In LARASE, the analysis strategy is based on a multi-arc POD, in which the overall

time span of the analysis is divided into a number of successive (short) arcs, not causally

connected, and then, for each of them, the satellite state vector is estimated along with

a set of relevant model parameters. The arc length (dependent on the satellite being

analyzed) is chosen as a compromise between having a sufficient number of data points

and small not modelled effects not accumulating too much over this period, and, at the
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same time, long enough that the accumulated unmodelled secular relativistic effects are

larger than the corresponding error in the measurements and models.

A basic choice of our analysis is the use of the residuals in order to recover the

relativistic effects (or whatever physical quantity deemed useful for the purposes of the

analysis). The residuals provide a measure of the discrepancy between experimental

data (i.e., the SLR observations) and models; by purposely not including a selected

physical phenomenon into the modelling set, the residuals time series is expected to

contain signatures of the effect itself. Since the basic observable is distance, the residuals

are, naturally, on station-satellite distances. Being interested in the effects of GR

on the orbital elements of a satellite, we employ the method outlined in (Lucchesi &

Balmino 2006) in order to obtain, for each element, the time series of its corresponding

residuals. This is the method that has been used in the past in various tests of relativistic

dynamics (Ciufolini et al. 1996, Ciufolini, Lucchesi, Vespe & Chieppa 1997, Ciufolini

et al. 1998, Ciufolini & Pavlis 2004, Ciufolini et al. 2006) and, more recently, in (Lucchesi

& Peron 2010, Lucchesi & Peron 2014).

As well known in space geodesy studies, a non-negligible number of model

parameters are usually estimated in analyses which involve both geodetic and

geophysical applications. Conversely, in the case of measurements in the field of

fundamental physics, only a small number of model parameters are estimated, namely

those most directly related to the particular orbit of the chosen satellite. Consequently,

the other (environment related) parameters, are selected as consider parameters, i.e.,

the ones which are already known with sufficient accuracy from other sources. This

approach is in line with our strategy of recovering the sought-for signals from the orbital

residuals and, at the same time, it considerably simplifies the mathematical structure of

the problem being solved. In particular, we do not include (apart from some particular

case) the so-called empirical accelerations in the set of models used to fit the SLR

observations. Experience shows that these can bias the estimate procedure and corrupt

the residuals time series.

5.1. Dynamical models

Even though the geodetic satellites here considered are very simple ones, their orbits

nonetheless point — at the level of SLR NP precision — to a rather complex dynamics.

As described in Section 4, the effects at play can be broadly divided into gravitational

and non-gravitational ones. The main ones are listed in Table 3, along with their

magnitudes in the case of LAGEOS II and LARES; for extended discussions on them

see (Milani et al. 1987, Montenbruck & Gill 2000). Models for them must be included

in the satellite equation of motion for a precise determination of its trajectory, along

with a consistent description of the measurement procedure (observation equation) and

of the reference frames involved.

We are trying to follow as much as possible established modelling conventions and

resolutions, namely those from the International Earth Rotation and Reference Systems
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Table 5. Modelling setup as included in the analysis. Three groups are indicated:

gravitational effects, non-gravitational ones and reference frames.

Model for Model type Reference

Geopotential (static) EGM96, EIGEN-GRACE02S (Lemoine & et al. 1998, Reigber et al. 2005)

Geopotential (time-varying,

tides)

Ray GOT99.2 (Ray 1999)

Geopotential (time-varying,

non tidal)

IERS Conventions (2010) (Petit & Luzum 2010)

Third-body JPL DE-403 (Standish et al. 1995)

Relativistic corrections Parameterized post-Newtonian∗(Huang et al. 1990)

Direct solar radiation pres-

sure

Cannonball (Pavlis & et al. 1998)

Earth albedo Knocke-Rubincam (Rubincam et al. 1987)

Earth-Yarkovsky Rubincam (1987-1990) (Rubincam 1987, Rubincam 1988, Rubincam

Neutral drag NRLMSISE-2000 (Picone et al. 2002)

Spin LARASE (2014) To be published

Stations position ITRF2008 (Altamimi et al. 2011)

Ocean loading Schernek and GOT99.2 tides (Pavlis & et al. 1998, Ray 1999)

Earth Rotation Parameters IERS EOP C04 (International Earth Rotation Service n.d.)

∗In fact, as explained in the text, these corrections have not been included in the modelization setup used

Service (IERS) and the International Astronomical Union (IAU). The IERS Conventions

(2010) (Petit & Luzum 2010) constitute the general framework for reference systems

related issues and measurement models. The IAU 2000 Resolutions (Soffel et al. 2003)

recommend the use of a well-defined relativistic framework in dealing with celestial

mechanics in the Solar System. We stress that such conventions and resolutions are

usually updated to cope with the state of the art in observation and theory. So, in

a sense, dealing with them is a continuous task: indeed, a non-negligible part of the

activities described in this article is related to having a modellization set as much as

possible in line with current research in the field.

In Table 5, the models currently implemented in GEODYN that we are going to use

in our data reductions are shown. These models include the GR corrections in the PPN

formalism discussed in Section 2. Of course, such corrections need to be removed from

the setup in order to recover the secular precessions provoked by GR in the residuals

time series. With regard to the perturbation provoked by the Yarkovsky-Schach effect

(see Section 6.2), we will take into account such effect a posteriori, when necessary,

with an ad hoc routine. Concerning the satellites spin vector evolution, we use our own

model, see Section 6.1.

In general, we have at our disposal a number of independent routines to model
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separately the main non-gravitational perturbations, namely for:

• direct solar radiation;

• Earth’s albedo radiation;

• Yarkovsky–Schach thermal effect;

• Earth–Yarkovsky thermal effect;

• asymmetric reflectivity.

With regard to the neutral drag perturbation, besides the models included in GEODYN,

in order to handle its disturbing effects we make use of the software SATRAP. This is

a dedicated code that is able to load (and easily handle) several models for the Earth’s

atmosphere; see Section 6.3 for details.

5.2. Preliminary orbit determination

In the context of the LARASE activities, we extended the time span for the analysis of

the orbit of the two LAGEOS satellites up to all 2014, starting from the October 24,

1992, two days after LAGEOS II launch. We started in parallel an analogous analysis

activity related to LARES data. Whenever possible, the analysis setup has been the

same for the three satellites. This is described with some detail in Section 5.1. We just

notice the update of the terrestrial reference frame to its ITRF2008 version (Altamimi

et al. 2011), including station eccentricities and discontinuities (due e.g. to earthquakes).

We also started an analysis with the goal to compare the gravity field models

from the GRACE and GOCE missions (Beutler et al. 2003), in order to select the

best solutions for the Earth’s gravitational field to be used in our future analyses of the

relativistic effects. The idea is to use the EIGEN-GRACE02S model, successfully used in

previous measurements of the relativistic effects (see (Ciufolini & Pavlis 2004, Lucchesi

& Peron 2014)), as a benchmark in order to compare the precision of the various models

in the satellites orbit reconstruction (via their statistics comparison) and to infer their

accuracy with an analysis of their systematic effects (role of the consider parameters).

Our preliminary analyses included a preparatory data reduction — over 14-day arcs

for LAGEOS and LAGEOS II and 7-day arcs for LARES — of the range data for all

three satellites, with a tailored modelling setup. Together with state vector and selected

station biases, the radiation coefficient CR and the corrections to polar motion (Xp, Yp)

and length of day (LOD) have been estimated; empirical acceleration components have

been also used. The results of these analyses (expressed as post-fit RMS) are shown in

Figure 3. LAGEOS and LAGEOS II orbits are recovered with a mean error roughly

between 1 and 1.5 cm, while LARES orbit has a slightly higher error, roughly .2 cm;

this is due to a currently non-optimal modelling for the dynamics of the newer satellite.

The decreasing trend of the RMS of the range residuals obtained for the two LAGEOS,

which approaches the 5 mm (mean) value at the end of the analyzed time span, is also

in quite good agreement with the results obtained from the data reduction of the orbit

of these satellites performed by the Analysis Centers of the ILRS network. We have
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to notice that these rather good figures are being possible thanks to the inclusion of

the empirical accelerations in the data reduction: corresponding analyses done without

these terms (and also estimating a lesser number of parameters) show a rather higher

error. This is not a surprise: it is an indication of the fact that some effect is still present

in the residuals after the data reduction.
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Figure 3. Data reduction outcome (expressed as post-fit RMS in cm) for LAGEOS,

LAGEOS II and LARES tracking data. The time is given in Modified Julian Date

(MJD). In the case of the two LAGEOS, the starting epoch (MJD 48919) corresponds

to October 24, 1992, while, in the case of LARES, the starting epoch (MJD 55975)

corresponds to February 18, 2012. The arc length is 14 days for LAGEOS and LAGEOS

II, and 7 days for LARES. Notice the higher uncertainty associated with the LARES

analysis, showing its currently non-optimal modelling.

The main purpose of the preliminary analysis has been obtaining a uniform and

consistent orbit for each of the satellites, starting point for subsequent analyses.

6. Models improvement

In previous sections, we have described the state of the art of relativistic measurements

with passive laser-ranged satellites, and we have highlighted the importance of having

good observations as well as good models for the several perturbations (both gravitational

and non-gravitational) on their orbit. Of course, the pair good observations and good

models guarantees, at least in principle and a posteriori, a motion along a geodesic for

the considered satellites.

In the following subsections we briefly focus on some of the aforementioned

perturbations, highlighting their main characteristics and the difficulties to be overcome
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in order to improve the current models. In so doing, we will outline some of the new

results that we obtained from this work in the context of the LARASE activities. More

details will be given in a number of forthcoming (and dedicated) papers.

6.1. Spin-axis

The rotational dynamics of passive satellites like the two LAGEOS has been deeply

investigated in the past by many authors ((Bertotti & Iess 1991, Habib et al. 1994,

Farinella et al. 1996, Vokrouhlický 1996, Williams 2002, Andrés et al. 2004, Andrés de

la Fuente 2007)). Indeed, in order to improve the fit of the SLR range residuals, i.e. to

obtain a precise solution for the orbit of a satellite, an accurate model of its spin vector

behavior is needed because some non-gravitational perturbations depend on both the

orientation and rate of the spin as previously highlithed, see also Section 6.2. This

aspect reflects the coupling between the translational and rotational dynamics of the

satellites.

The modelling of the spin vector evolution of the two LAGEOS satellites has

proven to be a very complex problem, and it still is. Once the main external torques

are identified, a correct mathematical formulation is needed that accounts for the

characteristic periods of the several variables that enter in the spin evolution, namely i)

the rotational period of the satellite, ii) its orbital period of revolution around the Earth,

and iii) the sidereal period of Earth. However, these are not the only characteristic time

scales to be considered. For instance, the thermal inertia τ of the satellite CCR plays

a crucial role (see Section 6.2)‖. The main torques that influence the spin evolution

of the two LAGEOS satellites are due to the Earth’s gravitational and magnetic fields,

respectively Γgrav and Γmag.

The effect of the first torque is like that of the lunisolar (Hipparcos) precession of

the Earth’s axis produced by the Moon and Sun gravitational pull on the equatorial

bulge of the Earth’s figure:

Γgrav = −3

4

n2

L2
(Iz − Ix)(3 cos

2 θ − 1)(n̂ · L)(n̂× L), (46)

where n represents the satellite mean motion, n̂ the unit vector along the orbit normal, L

is the satellite angular momentum, the angle θ represents the tilt between the symmetry

axis of the satellite and its angular velocity direction, finally, Iz and Ix are the principal

moments of inertia of the satellite, with Iz < Ix. We note that Eq. (46) is averaged over

the proper rotation and precession of the satellite as well as over one orbital revolution;

see (Farinella et al. 1996) for further details.

This gravitational torque arises because of the oblateness of the satellite due to the

non-spherical distribution of its mass, of the order of a few % in the case of the two

LAGEOS. Therefore, the knowledge of the internal structure of the satellites, namely

of their moments of inertia along the principal axes, is of crucial importance in order

‖ In the literature of the LAGEOS satellites, the thermal inertia is also indicated as thermal lag time

or thermal relaxation time of the CCRs.
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to correctly model this effect. This gravitational torque produces a precession of the

satellite spin around the Earth’s rotation axis.

The torque produced by the Earth’s magnetic field B is the hardest to be correctly

modelled. This torque arises because the satellites are conductors moving in a variable

magnetic field. The field induces eddy currents (Foucault currents), thence a magnetic

moment µm(B) that in turn interacts again with the external field producing the

magnetic torque:

Γmag = µm(B)×B. (47)

This torque is responsible of two main effects: i) a drift of the satellite spin axis towards

the Earth’s magnetic dipole axis (this axis forms an angle close to 11◦ with respect to the

Earth (nominal) rotation axis and rotates around it with the period of one sidereal day);

ii) a despin of the satellite rate, i.e. an increase of the rotational period around the spin

axis. The problem of the spin modelling of the two LAGEOS satellites has been attacked

both using the full set of Euler equations, as in (Habib et al. 1994, Williams 2002),

and using averaged equations for the torques, as in (Bertotti & Iess 1991, Farinella

et al. 1996, Andrés et al. 2004). Very surprisingly, the best results have been obtained via

the averaged equations method. Indeed, in this case the various authors have obtained

a generally good agreement between the predictions of their model and the available

observations of the spin orientation and rate, especially in the case of LA GEOS II (see

e.g. (Andrés de la Fuente 2007)), in the (so-called) rapid-spin case approximation valid

when the rotation period Trot of the satellite is much smaller than its orbital period Torb.

In these models, following and extending the successful results of (Bertotti &

Iess 1991), the magnetic torque is modelled in the Landau-Lifshitz rotating frame where

the magnetic moment — more specifically the polarizability per unit volume — has been

determined for a uniform sphere of radius ρ in the low frequency limit (ρ ≪ δ, δ being

the penetration depth of the eddy currents), see (Landau & Lifshitz 1960). In particular,

the LageOS Spin Axis Model (LOSSAM), as described in (Andrés de la Fuente 2007),

is presently considered the best model for the prediction of the two LAGEOS satellites

spin axis evolution in the rapid-spin case.

However, these successful models are valid only in the rapid-spin case approximation

and their generalization to slow-spin rate regimes has never been done up to now.

Anyway, in Sections B and C of (Andrés de la Fuente 2007) a way to generalize the

spin model from the rapid-spin case to the slow-spin case is given in terms of both the

excitation field to be considered at different frequencies as well as the treatment of the

resonance condition between the proper rotation period of the satellite and its orbital

revolution period. Moreover, in the case of LAGEOS the fit to the available observations

is good but not so good as in the case of LAGEOS II; in the case of both satellites the

agreement with the observations is worse during the first 10 years for LAGEOS and

the first 3 years for LAGEOS II, see e.g. (Kucharski et al. 2013). This generalization

is important not only for the two LAGEOS satellites, which have entered a regime

that foresees a spin-orbit resonance condition, but also for the LARES satellite which

was placed into its orbit with a quite high rotational period, about 12 s (Kucharski
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et al. 2012), to be compared with about 1 s in the case of LAGEOS II and about 0.6 s

for the older LAGEOS.

In our recent work we have deeply reviewed the interaction responsible of the

magnetic torque that acts on the two LAGEOS satellites and the way the resultant

magnetic moment depends on the various time scales characterizing this (difficult to

model) disturbing effect. In particular, we have removed many of the simplifications

at the basis of previous models. Moreover, by working on the original drawings of the

LAGEOS II satellite and because we discovered that these are exactly the same as those

of LAGEOS, we concluded that the two satellites are practically identical, differing only

for the manufacturing tolerances and the material alloys. Therefore, we have been able

to re-compute the mass of the two satellites and their moments of inertia thanks to a

complete model of the two satellites at the finite elements. This enables us to obtain a

better modelling of the gravitational torque on the two satellites.

In figure 4 and figure 5 are shown our new results in the case of the older LAGEOS

satellite and their comparison with all the available observations: in red are shown

the observations used by (Andrés de la Fuente 2007) following (Sullivan 1980, Avizonis

1997), while in green are shown the observations as derived by (Kucharski et al. 2013)

from an a posteriori spectral analysis of LAGEOS range observations. The results are

plotted in the J2000 inertial reference frame starting from the date of launch of LAGEOS

up to May 16, 1998.
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Figure 4. LAGEOS spin model (continuous line) and its comparison with

observations: spherical coordinates (degrees) in the J2000 inertial reference frame.

The upper plot represents the right ascension of the spin, while the lower plot is

representative of its declination.

In figure 4 the spin orientation of LAGEOS (both right ascension and declination)

is shown, while in figure 5 it is shown the behavior of the satellite rotation period. For

a better comparison with the LOSSAM model, we have plotted our solution for the

rapid-spin case. In addition to the main torques related with the Earth’s gravitational

and magnetic fields, we have also included in our model the torque related with the
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Figure 5. LAGEOS spin model and its comparison with observations: rotation

period (seconds). The linear dependence on time in the semi–logarithmic scale is

representative of the exponential de–spinning due to the magnetic torque.

asymmetric reflectivity between the two hemispheres of the satellite and that due to the

offset between the satellite centre of mass and its geometrical center.

6.2. Thermal forces

Thermal forces are produced by an inhomogeneous temperature distribution over the

satellite surface resulting in a thrust force due to the emitted radiation. Practically,

these forces arise because of the finite thermal inertia of the satellite, especially of its

CCRs. The two main sources of thermal forces are the Sun visible radiation, modulated

by the satellite eclipses, and the Earth’s infrared radiation. We presently focus on the

first of the two cited forces, namely the Yarkovsky-Schach effect due to the Sun visible

radiation.

Thermal forces depend on the satellite spin vector as previously described, giving

different contributions on the satellite orbit as a function of both orientation and

spin rate. When the fast spin assumption is valid for the satellite, a latitudinal-like

distribution for the differential temperature across its surface can be assumed, and

the consequent net recoil force will be directed along the spin–axis direction, in the

“colder” pole direction (see e.g. (Afonso et al. 1989, Farinella et al. 1990, Scharroo

et al. 1991, Slabinski 1996, Rubincam et al. 1997, Métris et al. 1997, Métris et al.

1999, Lucchesi 2002)). Conversely, if the assumption of a comparatively fast rotation

of the spin is avoided, a longitudinal-like temperature distribution arises. Under this

approximation, the thermal force will tilt from the spin-axis direction giving rise to

additional “equatorial” components, and to more complicated equations to be solved,

see (Farinella & Vokrouhlický 1996).

The transition from the fast-rotation approximation to the slow-rotation one

is obviously dictated by the relationship among the three characteristic time scales

described in Section 6.1: i) the rotation period, ii) the CCR thermal inertia, and iii) the
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orbital period. In the case of the two LAGEOS satellites for the thermal inertia there are

estimates in the range 2000− 3000 s (Afonso et al. 1989, Slabinski 1996, Lucchesi 2002)

up to ≈ 9500 s (Andrés de la Fuente 2007), while their orbital period is about 13,300 s.

As soon as the rotation period of the satellite is less than the thermal inertia

of the CCRs, the diurnal thermal asymmetry is negligible and the rapid-spin case

approximation can be applied, as in (Afonso et al. 1989) or in (Slabinski 1996):

aYS
z = −16

9

A

m

ǫirσ

c
T 3
0∆T cos θsΓ(λ)ŝ (48)

where ẑ coincides with the satellite spin vector direction ŝ, ǫir represents the CCR

infrared emissivity, σ is the Stefan–Boltzmann constant, A and m are, respectively,

the satellite cross-section and mass, T0 is the average temperature of the satellite, ∆T

is the temperature difference between the hotter and colder poles of the satellite, θs
represents the angle between the spin vector direction and the Sun direction. Finally,

Γ(λ) represents the so-called physical shadow function of the satellite, with λ the satellite

longitude over the orbital plane (argument of latitude) measured from the ascending

node line. The purpose of this function is to model the decay of the sun radiation flux

when the satellite enters the Earths shadow as well as the increase of this flux and,

consequently, of the perturbative acceleration, when the satellite exits from the shadow.

We refer to (Afonso et al. 1989, Métris et al. 1997) for further details.

Conversely, when the fast rotation approximation is not valid, the model developed

by (Farinella & Vokrouhlický 1996) must be used because of its validity for any ratio

of the three basic timescales previously cited. Therefore, we have a seasonal-like

Yarkovsky-Schach effect when the fast spin approximation is valid, and a diurnal-like

Yarkovsky-Schach effect when the former approximation is not valid.

With our new work on the thermal thrust forces we reviewed the impact of

the Yarkovsky-Schach effect on the orbit of the two LAGEOS satellites — removing

the fast spin approximation — following and extending the results of (Farinella &

Vokrouhlický 1996). We have also started to review the entire thermal model of these

satellites beginning from the work and the results of (Slabinski 1996) and (Andrés

de la Fuente 2007). In particular, in the case of the Yarkovsky-Schach effect

perturbation the following improvements have been obtained with respect to (Farinella

& Vokrouhlický 1996):

(i) we completed their analysis on the LAGEOS satellite and considered the impact

of the disturbing effect on all the orbital elements (and not only in the eccentricity

excitations, orbit inclination and semimajor axis);

(ii) we extended the study to the LAGEOS II satellite;

(iii) we compared the two models (fast-rotation approximation vs. slow-rotation one,

i.e. the general model) from the epoch of launch of the two satellites up to 2008;

(iv) finally, we compared the impact of the perturbation on the various orbital elements

with the residuals of these elements independently obtained with GEODYN.



LARASE 41

In the case of the LAGEOS satellite, figure 6, figure 7 and figure 8 show the radial,

transversal and out-of-plane components of the perturbing acceleration — in the Gauss

co-moving frame with the satellite orbit (see (Milani et al. 1987)) — produced by the

Yarkovsky-Schach effect for the two analyzed models: the fast-rotation approximation

(red line) and the general model (blue line) for the slow-rotation. The starting epoch

is that of the satellite launch, May 14, 1976, and for the spin model we used our new

model described in section 6.1.
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Figure 6. LAGEOS radial acceleration (m/s2) due to the Yarkovsky-Schach effect

perturbation: rapid spin case (red) compared with the general model (blue) developed

by (Farinella & Vokrouhlický 1996).

As we can see, the two models give the same predictions for the three accelerations

in the Gauss reference frame for a considerable fraction of the analyzed time span. The

discrepancy between the two models starts to be apparent after 9000 days, i.e., around

the year 2000, that is when the rotational period of LAGEOS was probably of the order

of about 2000 s, see Figure 5, close to the lower limit estimated for the thermal inertia

of the satellite CCRs. This means that after this epoch the two equatorial components

of the thermal thrust acceleration start to produce a non-negligible contribution to the

magnitude of the perturbing effect because of the slowing down of the satellite spin

rate. Figure 9 shows the impact of the Yarkovsky-Schach perturbation on the rate of

LAGEOS argument of perigee over the same time span. Again, as for the components of

the perturbing acceleration, after the year 2000 the discrepancy between the two models

becomes apparent in the considered element.
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Figure 7. LAGEOS transversal acceleration (m/s2) due to the Yarkovsky-Schach

effect perturbation: rapid spin case (red) compared with the general model (blue)

developed by (Farinella & Vokrouhlický 1996).
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Figure 8. LAGEOS out-of-plane acceleration (m/s2) due to the Yarkovsky-Schach

effect perturbation: rapid spin case (red) compared with the general model (blue)

developed by (Farinella & Vokrouhlický 1996).

6.3. Drag forces

The force due to the atmospheric drag represents one of the most difficult to model for

a satellite orbiting the Earth, also in case of spherical in shape and passive satellites
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Figure 9. LAGEOS argument of perigee rate (mas/yr) due to the Yarkovsky-Schach

effect perturbation: rapid spin case (red) compared with the general model (blue)

developed by (Farinella & Vokrouhlický 1996).

such as the two LAGEOS and LARES. The time dependence of the physical properties

of the atmosphere and of its main constituents, and the consequent complex interaction

between the physical constituents of the satellite surface and the atmosphere ones, are

responsible of the modelling difficulties of the drag perturbation. Indeed, the solar and

geomagnetic activities play a fundamental role in determining the atmosphere behavior.

The atmosphere constituents may be either neutral particles (as molecular nitrogen

N2, atomic O and molecular O2 oxygen, helium He, argon Ar and hydrogen H) or

charged particles (as ions of hydrogen H+, helium He+ and oxygen O+). Consequently,

the interaction may be either in the form of direct collisions with the neutral species

and the charged ones (in the case of no charging of the satellite surface), or via a more

complex interaction that arises from Coulomb’s long-range force between the charged

surface and the ion species in the satellite surroundings.

Finally, a significant key role is played by the illumination conditions of the satellite

surface and their modulation produced by the eclipses. In fact, the illumination

conditions influence the local atmosphere temperature and species concentration, as

well as the equilibrium potential of the satellite with respect to its environment and,

ultimately, the interaction between the satellite and the neutral and charged particles.

In the context of the LARASE experiment, we aim to estimate more accurately

the impact of both neutral and charged drag on the orbit of the two LAGEOS satellites

and on that of LARES. Obviously, because of its much lower orbit, we expect that this

disturbance will have a more profound impact on the orbit of LARES than on those of

the two LAGEOS satellites. This aspect is important for future measurements of the
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Lense–Thirring effect which involve the use of LARES ascending node as observable.

In the case of the two LAGEOS satellites, the impact of the drag perturbation

(neutral plus charged) is masked by larger unmodelled thermal effects, as those due to

the Yarkovsky-Schach effect and to the Earth-Yarkovsky effect (this effect, also known as

Rubincam effect, is a thermal drag perturbation due to Earth’s infrared radiation, and it

is responsible of about 70% of the observed decay of the LAGEOS satellites semimajor

axis), and by the perturbation provoked by the asymmetric reflectivity of their surface

(see (Scharroo et al. 1991, Métris et al. 1997, Lucchesi 2003b, Lucchesi 2004a)).

Usually, in case of studies and applications in the fields of geophysics and space

geodesy, all these unmodelled effects are handled — when possible — by a careful use

of empirical accelerations. However, in case of fundamental physics measurements, it

is preferable to use only marginally (and still carefully) these empirical accelerations,

as in (Ciufolini & Pavlis 2004, Ciufolini et al. 2006), or to entirely avoid their use, as

in (Lucchesi & Peron 2010, Lucchesi & Peron 2014).

Therefore, a refinement and an improvement in the modelling of these perturbations

— in particular of the thermal models — and their full inclusion in the software used

for the POD will allow the possibility to directly highlight the drag effects in the

orbital residuals of the considered satellite after the data reduction. This will be of

twofold importance: i) a more precise POD will be reached, which will be particularly

important in fundamental physics applications; ii) this result will improve, indirectly,

the atmospheric models up to an altitude close to 6000 km, by comparing for instance

the (extrapolated) predictions of these models for the mean density of the atmosphere

with the indirect measurements of this physical quantity that are derived from the final

POD.

Indeed, our orbit fit for the two LAGEOS satellites — in terms of the RMS of

the range residuals — is at a level of 1-2 cm over 14-day arcs, when the empirical

accelerations are used during the orbit fit in order to absorb the unmodelled effects; up

to about 10 cm when the empirical accelerations are not used and the thermal effects

and the drag effects are not included in the dynamical models (see e.g. (Lucchesi &

Peron 2010, Lucchesi & Peron 2014)). This means that the current orbit accuracy is

enough to highlight the neutral drag effects (once the thermal effects are modelled)

that are responsible — over a 14 days time span — of an along-track displacement of a

fraction of a meter.

A great difficulty — that directly impacts on our modelling capabilities — arises

from the absence of direct measurements of the atmosphere properties at the relevant

altitudes. In fact, the several models developed for the atmosphere, and applied for the

studies of Low Earth Orbit (LEO) satellites and satellites re-entry, are characterized by

a non-uniform set of measurements (usually obtained with different techniques) up to

an altitude of about 1000 km. With regard to the altitudes in the range between 1000

km and 2000 km, these are characterized by an even more sparse set of measurements

for the main parameters of the atmosphere. Consequently, we based our analysis of the

drag impact on the satellites orbit on extrapolations of these models at about 1450 km
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for LARES and at about 5900 km in the case of the two LAGEOS.

In particular, we took advantage of the software SATellite Reentry Analysis

Program (SATRAP) (Pardini & Anselmo 1994, Pardini et al. 2012) that is able to

load several different models for the Earth’s atmosphere together with the appropriate

geomagnetic and solar activities indices, while using the following dynamical models for

the orbit propagation of the satellite: i) Earth’s geopotential, ii) luni-solar perturbations,

iii) solar radiation pressure with eclipses and iv) neutral drag.

Therefore, with SATRAP — without prejudice to the above constraints and

limitations — we are able to directly investigate the impact of the neutral drag on

the satellites orbit using the current best available models for the atmosphere’s main

constituents. This is also the first step to be performed in order to distinguish the

orbital disturbing effects as due to neutral or charged particle drag.

The following activities have been started concerning the impact of the neutral drag

perturbations on the satellites orbit:

(i) comparison of the different atmospheric models at the altitudes of interest;

(ii) estimate of the perturbing accelerations in the Mean Of Date (MOD) and Gauss

reference systems;

(iii) estimate of the disturbing effects on the orbital elements of the satellites.

Among the many models that SATRAP can include for the modelling of the

Earth’s atmosphere, in our evaluations we considered the following: the Jacchia-

Roberts 1971 (Cappellari et al. 1976), the Mass Spectrometer and Incoherent Scatter

1986 (Hedin 1987), the Mass Spectrometer and Incoherent Scatter Radar Extended

1990 (Hedin 1991), the Naval Research Laboratory MSISE-2000 (Picone et al. 2002), the

Empirical Russian model GOST-2004 (Volkov 2004) and, finally, the Jacchia-Bowman

2008 (Bowman et al. 2008).

In figure 10, figure 11 and figure 12 are shown — in the case of the NRLMSISE-2000

model — the neutral drag accelerations (in the Gauss co-moving frame) for LAGEOS as

obtained by SATRAP over an 11 years time span, i.e., over an entire solar cycle starting

from January 1, 1993.

Such accelerations have been computed also for LAGEOS II and LARES. In table 6

are shown the results for the three components of the accelerations (averaged over the

time span of our current analysis: about 4017 days for the two LAGEOS and about 764

days for LARES) of the neutral drag effects for the three satellites. As we can see, despite

its smaller value for the area-to-mass ratio, in the case of LARES the accelerations are

much larger than those obtained for the two LAGEOS. This is of course due to the

higher values for the density at the height of LARES with respect to the density “felt”

by the two LAGEOS, at their much higher altitude. Indeed, in figure 13 are shown the

density profiles for the three satellites over a common time span, hence under the same

conditions for the solar and geomagnetic activities.

As we can see from the results of our simulation, the density at the height and

inclination of LARES is on the average about 80 times larger than the (almost equal)
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Figure 10. LAGEOS radial acceleration (m/s2) due to the neutral drag perturbation

as obtained from SATRAP over an entire solar cycle using NRLMSISE-2000 to model

the Earth’s atmosphere.

0 500 1000 1500 2000 2500 3000 3500 4000
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1
x 10

−13

Time [days]

T
ra

ns
ve

rs
al

 a
cc

el
er

at
io

n 
[m

/s
2 ]

Figure 11. LAGEOS transversal acceleration (m/s2) due to the neutral drag

perturbation as obtained from SATRAP over an entire solar cycle using NRLMSISE-

2000 to model the Earth’s atmosphere.

density experienced by the two LAGEOS. These results have been obtained applying

the NRLMSISE-2000 model for the Earth’s atmosphere behavior over the considered

time span.
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Figure 12. LAGEOS out-of-plane acceleration (m/s2) due to the neutral drag

perturbation as obtained from SATRAP over an entire solar cycle using NRLMSISE-

2000 to model the Earth’s atmosphere.

Table 6. Average accelerations [m/s2] in the Gauss reference system for the two

LAGEOS and LARES. In the case of the two LAGEOS, the average has been computed

over a time span of about 4017 days, starting from January 1, 1993. In the case of

LARES, the average has been computed over a time span of about 764 days, starting

from March 10, 2012.

Acceleration component LAGEOS LAGEOS II LARES

Radial 9.5× 10−18 7.5× 10−18 −1.3× 10−15

Transversal −3.1× 10−13 −2.6× 10−13 −1.3× 10−11

Out-of-plane −1.7× 10−16 7.1× 10−18 −1.8× 10−14

6.4. Tidal perturbation

With regard to the gravitational perturbations acting on the orbit of a satellite around

the Earth, not only the static part of the geopotential plays a significant role, but

also the periodic variations in the gravitational attraction of the planet on the satellite

have to be carefully accounted for. Therefore, both solid and ocean tides due to the

combined attraction of the Moon and Sun on our planet (see (Melchior 1978)) have to

be modelled in order to reduce as much as possible their impact on the satellite orbit

reconstruction, especially in the right ascension of the ascending node Ω and in the

argument of pericenter ω because of their relevance for relativistic measurements. Solid

tides account for about 90% of the total response to the Moon and Sun tidal disturbing

potential and are responsible for the larger tidal effects on the orbit of a satellite.

A convenient way to describe the deformations of the Earth due to tidal effects
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Figure 13. LAGEOS, LAGEOS II and LARES orbit air density [kg/m3] variation

due to the neutral drag as obtained from SATRAP using NRLMSISE-2000 to model

the Earth’s atmosphere. The time span covers two years since March 10, 2012, a few

days after LARES launch. The average densities over the analyzed time span are:

5.6 · 10−16 kg/m3, 6.6 · 10−18 kg/m3 and 7.1 · 10−18 kg/m3, respectively for LARES,

LAGEOS and LAGEOS II.

is through the Love numbers (kf
2,m ≃ 0.30, where f represents the frequency of the

tidal wave), which measure the ratio between the response of the real Earth and the

theoretical response of a perfect fluid sphere. The Love numbers are determined with

high accuracy because of their long–term effects on geodetic satellites, as in the case

of the two LAGEOS (see e.g. (Cheng et al. 1997, Wu et al. 2001)). In particular, in

the case of solid tides, the degree ℓ = 2 terms, i.e., those due to the quadrupole tidal

potential, are the most important to be considered.

Ocean tides are difficult to be modelled because of the greater complexity of the

involved phenomena. Indeed, even if ocean tides account for about 10% only of the

total response to the cited external potentials, because of their greater complexity, their

uncertainties are a factor of 10 larger than those of solid tides.

Tidal effects are important to be considered because they influence the satellite

orbit under three main aspects:

(i) kinematic effect : because they produce periodic pulsations of the Earth and, as a

consequence, of the on–ground tracking stations;

(ii) dynamic effect : because they cause a time variation of the geopotential, that affects

the satellite orbit;

(iii) reference system effect : because they perturb the Earth rotation, thus affecting the

reference systems used in the orbit computation.

In the case of LARES, due to its (much) lower height with respect to that of

the two LAGEOS, the perturbation provoked by the tides has a larger impact on its

orbit. Therefore, in this case we expect a larger impact of the tides uncertainties on the

accuracy of the orbit determination, especially in the case of the ocean tides. Concerning

the impact of these uncertainties on the orbit of a satellite, the tidal perturbations
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may be divided into two classes: i) those with periods P shorter than the observation

period T we consider for the analysis of the relativistic effects, and ii) those with longer

periods. The former ones, P ≤ T , even if not modelled, tend to average out because

they perform full cycles or quasi full cycles during the observation period. Conversely,

the tides with P > T are more dangerous, because they mimic a pseudo-secular trend

that superimposes to the relativistic secular effect to be recovered. However, this last

sentence is true if phase and period of the tide are unknown, which is not the case.

Indeed, tides with periods longer than the observational time span may be fitted and

removed from the residuals if their periods and phases are known.

As part of the activities of LARASE, on one side we reviewed the impact of both

solid and ocean tides on the orbit of the two LAGEOS, completing and extending

previous studies (see (Bertotti & Carpino 1989, Iorio 2001, Pavlis & Iorio 2002)), and,

on the other side, we estimated their impact on the orbit of LARES.

For instance, by using the Lagrange equation for the perturbation of the right

ascension of the ascending node, where the perturbing function is given by the potential

with which the Earth responds to the tidal perturbations of Moon and Sun, the

amplitude of the rate of advance of the nodes of the satellites at a given degree in

the expansion of the tidal potential and at a given frequency can be computed:

∆Ωf =
g

na2
√
1− e2 sin i

ℓ
∑

m=0

(

R⊕

a

)ℓ+1

Aℓm

ℓ
∑

p=0

+∞
∑

q=−∞

dFℓmp

di
Gℓpq

k
(f)
ℓmHm

ℓ

fI
(49)

where

g =
GM⊕

R2
⊕

(50)

and

• ℓ,m: degree and order in the expansion of the tidal potential;

• p, q: auxiliary indices of the expansion of the tidal potential;

• Fℓmp, Gℓmp: inclination and eccentricity functions (Kaula,1966);

• k
(f)
ℓm : Love numbers;

• Hm
ℓ : amplitudes in the expansion of the tidal potential.

In table 7 and table 8 are shown the results (amplitude and period) we obtained for

a few solid tides in the case of the ascending node of the three satellites. We considered

the degree ℓ = 2 terms, which are the most important to be modelled. In particular,

in table 7 are shown the results for the main solid zonal tides (j1 = m = 0), while in

table 8 are shown the results we obtained in the case of the main solid tesseral tides

(j1 = m = 1). As we can see, in the case of LARES the amplitudes obtained for the

angular displacement of the satellite ascending node are larger than those obtained for

the two LAGEOS satellites.

In conclusion, considering the values of the amplitudes of the tides shown in table 7,

we can state that the uncertainties for the amplitudes of the main solid and ocean tides
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Table 7. Impact of the Earth’s solid zonal tides (ℓ = 2 and m = 0) on the right

ascension of the ascending node Ω of the two LAGEOS and LARES. The periodicities

are in days while the amplitudes are in mas. The positive sign (+) of the period refers

to westward tidal waves, while the negative sign (−) refers to eastward ones.

Tide Period LAGEOS LAGEOS II LARES

055.565 6798.38 −1080.22 1976.46 5332.68

055.575 3399.19 −5.23 9.57 25.81

056.554 Sa 365.25 9.97 −18.24 −49.20

057.555 Ssa 182.625 31.15 −56.99 −153.75

Table 8. Impact of the Earth’s solid tesseral tides (ℓ = 2 and m = 1) on the right

ascension of the ascending node Ω of the two LAGEOS and LARES. The periodicities

are in days while the amplitudes are in mas. The positive sign (+) of the period refers

to westward tidal waves, while the negative sign (−) refers to eastward ones.

Tide Period LAGEOS Period LAGEOS II Period LARES

165.545 1232.95 −40.95 −525.23 7.33 −225.77 35.74

165.555 K1 1043.67 1738.57 −569.21 −398.25 −223.53 −1853.77

165.565 904.77 202.12 −621.22 −58.29 −241.84 −257.44

163.555 P1 −221.36 135.76 −138.26 35.62 −102.48 299.51

that influence the long-term evolution of the right ascension of the ascending node of the

LARES satellite could impact in a non-negligible way on the recovery of the relativistic

precession of the satellite node and, as a consequence, on the precision and accuracy

of a new measurement of the Earth’s gravitomagnetic field. Conversely, the long-term

analysis of the orbit of LARES, in particular of its inclination, eccentricity and node,

will help to improve current models for Earth’s tides, especially for the ocean ones.

7. Conclusions and recommendations

Einstein’s general relativity is today considered as the standard theory for the

description of the gravitational interaction, both at low and high energies scales.

However, several modern theories of physics — not only new gravitational theories,

but also those that aim to include general relativity into the realm of quantum theories

— suggest the existence of additional fields in mediating the gravitational interaction to

complement the spacetime tensor of general relativity. These fields may have a scalar

or vector character, as well as a tensorial one.

Therefore, under the very significant implications that follow from the above

considerations, such as the possibility of a violation of the inverse square law and/or

of the Einstein Equivalence Principle, new and more refined tests and measurements

of gravitation are needed. Of course, it will be extremely important that these new

measurements are reliable in terms of precision and accuracy of the results obtained.
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The new experiment denominated LARASE (LAser RAnged Satellites Experi-

ment), that we have described in the previous sections, aims to contribute to these

new measurements of relativistic gravity in the WFSM limit of general relativity. In

particular, we have described the main measurements to be performed in the future, with

the state of the art of their results and constraints in term of precision and accuracy.

The test masses of the LARASE experiment are passive satellites tracked by the

ILRS network, in particular the two LAGEOS and the new LARES. Therefore, in order

to reach a precise orbit determination for these satellites, it is necessary to develop, for

each of them, dynamical models able to take into account very small effects, such as

those predicted by Einstein’s geometrodynamics, and also as small as those that the

powerful SLR technique allows to measure.

In this context, within LARASE we started an activity to review previous models

developed for the two LAGEOS, in particular those related to the non-conservative

forces. This activity is also very important in the case of LARES. In particular, we

must verify how well the previous models can be applied to LARES, what new aspects,

if any, are to be considered, and whether new dedicated models need to be built up.

In previous sections, we focused on some of the activities we started and we also

provided some new results. We went back to the thermal effects on the two LAGEOS,

and in particular we focused on the transition from the fast spin approximation to the

slow spin one in the case of the Yarkovsky–Schach effect. Regarding this issue, we deeply

reviewed previous models for the spin axis evolution of the satellites and we highlighted

some of our results for LAGEOS in the rapid spin case. Moreover, we have removed all

the semplifying hypotheses at the basis of previous models and we have found a general

solution not restricted to averaged equations for the various torques involved.

Another issue that we analyzed, still dealing with the modelling of the non-

gravitational perturbations, has been the neutral drag acceleration, particularly

important for LARES due to its lower altitude with respect to that of the two LAGEOS.

Indeed, beside the use of GEODYN, which is our reference software for the data

reduction of the SLR NP and, consequently, for the POD of the satellites, we used

a dedicated software (SATRAP) which is able to easily handle the various atmospheric

models developed by the research community which is involved in this field. We have

computed, for the various atmospheric models, the neutral drag accelerations in the

Gauss frame and we compared the results so obtained. We also determined the long-

term effects of the various models on the orbit of the satellites and, despite the small

value for the area-to-mass ratio of LARES, we have seen that the drag effect has a

significant impact on the orbit of the satellite.

Finally, we started an activity for reviewing the gravitational dynamic models and

the estimate of the main systematic errors associated with them. We have shown

some of our results on the impact of the Earth’s solid tides on the nodes of the

considered satellites. Again, in the case of LARES the effects are significant because of

its small height. This will constitute a significant issue, to be carefully considered in

the perspective of future relativistic measurements with LARES, in particular for the
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ocean tides, which are characterized by much larger uncertainties with respect to those

of the solid tides. This work on tides revisits and extends the previous studies of the

tidal effects on the orbit of the two LAGEOS.

Concluding, with LARASE we want to provide new and refined measurements

of gravitation in the field of the Earth. These measurements should be reliable,

i.e., they should be unassailable concerning their precision and the estimate of their

systematic uncertainties. This objective can be achieved only through a significant

revision of existing dynamical models for the description of the orbit of the satellites

and the consequent development of new and more accurate models, especially for non-

gravitational forces. This activity is ongoing.
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Reigber C, Lühr H & Schwintzer P 2002 Adv. Space Res. 30, 129–134.

Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer K H, Schwintzer P & Zhu S Y

2005 J. Geodyn. 39, 1–10.

Reigber C, Schwintzer P, Neumayer K H, Barthelmes F, König R, Förste C, Balmino G, Biancale

R, Lemoine J M, Loyer S, Bruinsma S, Perosanz F & Fayard T 2003 Adv. Space Res.

31, 1883–1888.

Ries J C & Eanes R J 2012 in ‘American Astronomical Society Meeting Abstracts #219’ Vol. 219

of American Astronomical Society Meeting Abstracts p. 122.04.

Ries J, Eanes R & Tapley B 2003 World Scientific Publishing chapter Lense-Thirring precession

determination from laser ranging to artificial satellites, pp. 201–211.

Ries J, Eanes R & Watkins M 2008 in ‘16th International Workshop on Laser Ranging’ p. 19.

Riess A G, Filippenko A V, Challis P, Clocchiatti A, Diercks A, Garnavich P M, Gilliland R L,

Hogan C J, Jha S, Kirshner R P, Leibundgut B, Phillips M M, Reiss D, Schmidt B P,

Schommer R A, Smith R C, Spyromilio J, Stubbs C, Suntzeff N B & Tonry J 1998 Astron.

J. 116, 1009–1038.

Rosen N 1973 Gen. Relativ. Gravit. 4, 435–447.

Rosen N 1978 Gen. Relativ. Gravit. 9, 339–351.

Rubincam D P 1977 Celest. Mech. 15, 21–33.

Rubincam D P 1987 J .Geophys. Res. 92, 1287–1294.

Rubincam D P 1988 J. Geophys. Res. 93, 13805–13810.

Rubincam D P 1990 J. Geophys. Res. 95, 4881–4886.

Rubincam D P, Currie D G & Robbins J W 1997 J. Geophys. Res. 102, 585–590.

Rubincam D P, Knocke P, Taylor V R & Blackwell S 1987 J. Geophys. Res. 92, 11662–11668.



LARASE 57

Ruhl J E, Ade P A R, Bock J J, Bond J R, Borrill J, Boscaleri A, Contaldi C R, Crill B P, de

Bernardis P, De Troia G, Ganga K, Giacometti M, Hivon E, Hristov V V, Iacoangeli A,

Jaffe A H, Jones W C, Lange A E, Masi S, Mason P, Mauskopf P D, Melchiorri A, Montroy

T, Netterfield C B, Pascale E, Piacentini F, Pogosyan D, Polenta G, Prunet S & Romeo G

2003 Astrophys. J. 599, 786–805.

Scharroo R, Wakker K F, Ambrosius B A C & Noomen R 1991 J. Geophys. Res. 96, 729–740.

Schiff L I 1960 Physical Review Letters 4, 215–217.

Schlamminger S, Choi K Y, Wagner T A, Gundlach J H & Adelberger E G 2008 Phys. Rev. Lett.

100(4), 041101.

Schmidt M 1963 Nature 197, 1040.

Schwartz H M 1977 Am. J. Phys. 45, 899–902.

Shapiro I I 1990 in N. Ashby, D. F. Bartlett, & W. Wyss, ed., ‘General Relativity and Gravitation,

1989’ p. 313.

Shapiro I I, Pettengill G H, Ash M E, Ingalls R P, Campbell D B & Dyce R B 1972 Phys. Rev.

Lett. 28, 1594–1597.

Sinclair A T 1997 ‘Data Screening and Normal Point Formation — Re–Statement of Herstmonceux

Normal Point Recommendation’.

*http://ilrs.gsfc.nasa.gov/productsformatsprocedures/normalpoint/npalgo.html

Slabinski V J 1996 Celest. Mech. Dyn. Astron. 66, 131–179.

Soffel M H 1989 Relativity in Astrometry, Celestial Mechanics and Geodesy.

Soffel M, Klioner S A, Petit G, Wolf P, Kopeikin S M, Bretagnon P, Brumberg V A, Capitaine N,

Damour T, Fukushima T, Guinot B, Huang T Y, Lindegren L, Ma C, Nordtvedt K, Ries
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