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ABSTRACT: The chemical functionalization of 2D exfoliated black
phosphorus (2D BP) continues to attract great interest, although a
satisfactory structural characterization of the functionalized material has
seldom been achieved. Herein, we provide the first complete structural
characterization of 2D BP functionalized with rare discrete Pd2 units,
obtained through a mild decomposition of the organometallic dimeric
precursor [Pd(η3-C3H5)Cl]2. A multitechnique approach, including
HAADF-STEM, solid-state NMR, XPS, and XAS, was used to study in
detail the morphology of the palladated nanosheets (Pd2/BP) and to
unravel the coordination of Pd2 units to phosphorus atoms of 2D BP. In
particular, XAS, backed up by DFT modeling, revealed the existence of
unprecedented interlayer Pd−Pd units, sandwiched between stacked BP
layers. The preliminary application of Pd2/BP as a catalyst for the hydrogen evolution reaction (HER) in acidic medium highlighted
an activity increase due to the presence of Pd2 units.

1. INTRODUCTION

The field of 2D materials has been continuously flourishing
over the last 10 years, leading to the discovery of many
graphene-related compounds, including MXenes,1 2D tran-
sition metal dichalcogenides,2 group 14 2D allotropes (silicene,
germanene, stannene),3 and layered pnictogens (phosphorene,
arsenene, antimonene, bismuthene).4,5 Black phosphorus (BP)
in particular has experienced a true renaissance since 2014,
when its exfoliation was simultaneously reported by the groups
of Zhang and Ye.6,7 The remarkable properties of BP include a
layer-dependent direct band gap (going from 0.35 eV in the
bulk to 2.2 eV in the monolayer “phosphorene”), an ultrahigh
carrier mobility (1000 cm2 V−1 s−1 at room temperature), and
a thermoelectric behavior.8−10 Several promising applications
have emerged in distinct fields, including microelectronics,11,12

sensor technology,13−15 energy conversion,16,17 catalysis,18−20

and nanomedicine.21−25

Unlike graphite, its carbon congener, the sp3 hybridization of
BP phosphorus atoms gives rise to a puckered layer
conformation, in which every P atom bears a lone pair,
suggesting a feasible functionalization of exfoliated BP (2D
BP). To date, great efforts have been made to modify the
surface of BP. Though surface decoration with metal
nanoparticles has been extensively developed,18,26−28 only a
few studies have addressed its reactivity with molecular
fragments, mainly organic molecules.29 Some established

protocols include edge functionalization with C60 buckyballs,
30

reductive activation with alkali metals followed by alkylation
with iodides,31 surface functionalization with nitrenes,32,33 and
arylation with diazonium salts,34,35 though the last has recently
been questioned.36 Even scarcer are functionalizations with
metal complexes, the main examples concerning the use of
TiX4

37 and LnX3
38 salts (Ln = lanthanide, X = sulfonate) as

surface modifiers. However, in those reports the structure and
bonding properties of the adduct between 2D BP and the
metal (M) were scarcely addressed, providing limited evidence
of direct P−M bonding and lacking deeper structural
investigations. More recently, some of us reported a detailed
computational study addressing both the steric and electronic
factors ruling the covalent functionalization of 2D BP with
different transition metal fragments and Lewis acids39 as well
as the reactivty with suitable chalcogen transfer reagents.40

Currently, major advances in solid state characterization
techniques (X-ray absorption spectroscopy, XAS) and local
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investigation (transmission electron microscopy, TEM, and
high-angle annular dark field−scanning TEM, HAADF-
STEM), together with ab initio modeling, allow an in-depth
structural knowledge of low-nuclearity systems, such as single-
and double-atom catalysts,41−45 rivaling the role of single-
crystal X-ray diffraction in molecular science. However, this
level of accuracy is seldom encountered within the field of 2D
materials, particularly with functionalized BP.
Herein, we investigated the functionalization of 2D BP

obtained through its reaction with the organometallic
precursor [Pd(η3-C3H5)Cl]2 (1). The latter is a well-known
air-stable dimeric organopalladium complex that easily under-
goes opening of the chloride bridge even in the presence of
weak σ-donor ligands, while strong donor abilities are
mandatory for the stabilization of the allylic moieties.46

Thus, given the scarce Lewis basicity of phosphorus atoms in
2D BP,39 we speculated that 1 may pave the way to the
generation of isolated Pd(0) species (monoatomic or
polyatomic) located on the BP layers, upon the decomposition
of initially grafted {Pd(C3H5)Cl} units. A thorough structural
characterization of the functionalized material (named Pd2/
BP), backed up by a sound DFT analysis, revealed the
correctness of this hypothesis and corroborated the existence
of unprecedented interlayer Pd−Pd diatomic units bridging
two “phosphorene” layers.

2. RESULTS AND DISCUSSION
2.1. Structural Characterization. The functionalization

of 2D BP was carried out under mild reaction conditions,
working in dry dichloromethane (DCM) as solvent. The latter,
chosen for its innocent and negligible nucleophilic behavior,
provides stable dispersions of 2D BP and easily dissolves 1.
Remarkably, immobilization of Pd onto 2D BP occurs easily by
stirring a dispersion of the pristine material in DCM together

with 1 for 17 h (see the Supporting Information for details).
An inductively coupled plasma−atomic emission spectroscopy
(ICP-AES) analysis of the isolated material revealed a Pd
content of 3.3% (Pd/P mole ratio) when the reaction was
carried out at RT and 6.1% when it was performed under
reflux. The two samples were named Pd2/BP 3% and 6%,
respectively. Actually, the amount of Pd immobilized in 2D BP
seems inconsistent with a molecular surface functionalization,
as is easily explained. Our pristine exfoliated material (see the
Supporting Information) features flake thicknesses within the
range 2−30 nm (corresponding to ca. 5−58 layers). For an
ideal exfoliated material consisting of thin BP flakes with a
thickness of 10 nm (ca. 19 layers), the ratio between palladium
and surface phosphorus atoms (i.e. exposed external atoms,
Psurf) for an experimental metal loading of 3.3% would be Pd/
Psurf = 0.66: namely, two Pd atoms for every three Psurf atoms.
These values seem too high for a surface functionalization,
unless some Pd aggregate is also present (i.e. Pd nanoparticles
(NPs) or PdPx phases). Thus, to get insights into the
morphology of Pd2/BP, electron microscopy studies were
carried out on the material. Figure 1a−c shows Scanning
electron microscopy (SEM), TEM, and STEM images of Pd2/
BP, respectively. The BP flakes look perfectly intact after
functionalization, keeping their overall morphology unaltered.
Notably, no presence of Pd NPs could be detected via TEM.
Energy-dispersive X-ray spectroscopy (EDS) was used to

study the elemental composition of Pd2/BP on a nanometer
scale; the resulting EDS mappings are shown in Figure 1d. As
it turned out, Pd is homogeneously distributed within a flake,
pointing to a very dispersed form of the metal, possibly on the
atomic or polyatomic level. No presence of chlorine was
detected in the material, as its integrated EDS signal was below
the noise level, ruling out the presence of {Pd(C3H5)Cl}
fragments grafted on the 2D BP surface. Since exceedingly

Figure 1. (a) SEM and (b) TEM images of Pd2/BP 3%. (c) HAADF-STEM image of a flake aggregate drop-casted on a carbon grid. (d) EDS
mapping of the region highlighted in (c). The underlying carbon grid is visible in the C elemental mapping.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c01754
J. Am. Chem. Soc. 2021, 143, 10088−10098

10089

https://pubs.acs.org/doi/suppl/10.1021/jacs.1c01754/suppl_file/ja1c01754_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c01754/suppl_file/ja1c01754_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c01754?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c01754?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c01754?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c01754?fig=fig1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c01754?rel=cite-as&ref=PDF&jav=VoR


small metal NPs and clusters could be missed under survey
TEM analysis, high-resolution morphological and structural
investigations were performed via annular dark field micros-
copy (HAADF-STEM). Figure 2 shows high-resolution
micrographs of Pd2/BP. The image in Figure 2d was FFT
(fast Fourier transform) filtered to reduce the noise, whereas
the image in Figure 2f was generated from the raw data of
Figure 2e upon FFT filtering and false-color display (warmer
colors correspond to higher Z). As can be observed, high-Z
domains (brighter areas) look dispersed in the region under
study. Remarkably, the lattice structure of BP is perfectly
distinguishable even within high-Z regions (i.e. with a higher
local concentration of palladium). This can be nicely
appreciated from Figure 2d. This finding would be consistent
with atomic or molecular functionalization of the flakes, ruling
out the presence of both Pd−Pd crystalline domains and Pd-
containing amorphous structures such as PdPx phosphide
species. The latter would otherwise appear superimposed on
the lighter BP lattice in the image, making it look distorted or
obscured. At the same time, this evidence proves the integrity
of the BP lattice upon functionalization.
Electron energy loss spectroscopy (EELS) is a powerful

technique for elemental microanalysis, particularly to detect
light elements. To further confirm the absence of chlorine in
Pd2/BP, comparative EELS measurements were carried out on
a nanometer scale on Pd-rich and Pd-free areas (see Figure
S1). The recorded EELS spectra are indistinguishable in the
region around 200 eV, corresponding to the expected value of
the Cl L-edge, which unquestionably rules out the presence of
chlorine in the palladated adducts with 2D BP.
Since electron microscopy provides information on the local

structure of the sample under investigation, to firmly exclude
the presence of nanoparticles and further assess the integrity of
the BP lattice, bulk techniques were also used. The powder X-
ray diffraction (XRD) spectrum of Pd2/BP (Figure 3a) features
the typical pattern of pristine 2D BP with intense (0k0)
reflections as an effect of preferential orientation in the sample.
In detail, the three main peaks located at 2θ° = 16.9, 34.2, and

52.3° correspond to the (020), (040), and (060) reflections of
BP, respectively, which suggests that BP retains its crystallinity
after functionalization. Furthermore, no presence of additional
phases could be observed in the XRD spectrum, in contrast to
previously reported Pd NPs/BP.26 Raman spectroscopy agreed
with XRD analysis. In particular, the Raman spectrum of Pd2/
BP (Figure 3b), averaged within a set of several flakes to
account for the polydispersity of the pristine material, features
the three characteristic peaks at 360.7, 436.6, and 466.8 cm−1,
corresponding to the A1

g, B2g, and A2
g phonon modes of

exfoliated BP, respectively. No relevant frequency shifts were
observed in comparison to pristine BP (see also Figure S2).
To probe the electronic state of phosphorus and palladium

in the material, XPS measurements were carried out at the Pd
3d and P 2p core levels. In the Pd 3d spectrum shown in
Figure 3c, a dominant spin−orbit component is present, with
Pd 3d5/2 = 336.5 eV. In comparison with the precursor 1
(Figure S3), the 3d5/2 component of Pd2/BP 3% is shifted to
lower binding energy (BE) by 0.7 eV, suggesting a more
reduced oxidation state of Pd in Pd2/BP. The observed BE
value is closer to that of bulk metallic Pd(0)47 than to those
typical of Pd(II) salts (see also Table S1), though it is clearly
distinguishable from both these extremes. An additional and
more oxidized Pd species (brown line in Figure 3c) is also
present, with Pd 3d5/2 = 338.1 eV, amounting to ca. 5% of the
whole Pd. This minor component is higher in BE in
comparison to the starting complex 1 and can be reasonably
accounted for with some oxidation of the main Pd(0)-like
species, a common feature in the XPS spectra of Pd(0)
systems.48,49 Notably, increasing the Pd loading from 3% to 6%
had no effect on the Pd 3d spectrum of Pd2/BP within the
experimental error (see Figure S4a), suggesting an equivalent
chemical state of Pd in the two samples. The P 2p core level
spectrum in Figure 3d features the two intense peaks of
pristine BP at 129.9 and 130.7 eV, corresponding to P 2p3/2
and P 2p1/2, respectively (see also Figure S5). In addition, two
components are present shifted to higher binding energies,
with P 2p3/2 and P 2p1/2 at 131.9 and 133.6 eV (with a small

Figure 2. HAADF-STEM characterization of Pd2/BP at different Pd loadings. Flakes stacking from (a) Pd2/BP 3% and (b) Pd2/BP 6% obtained by
drop-casting DCM dispersions on a carbon grid. High resolution micrographs of flakes taken from (c) Pd2/BP 3% and (d) Pd2/BP 6% (FFT
filtered). The inset next to the scale bar in (d) shows the schematic atomic arrangement of the BP lattice. Pd-rich areas are distinguished by the
higher Z contrast (brighter areas). (e) Micrograph taken from a Pd2/BP 6% flake (raw data) and (f) corresponding image displayed in false colors
(warmer color = higher Z).
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variability, within 0.3 eV, depending on the measured sample),
respectively. The latter, shown by the brown line in Figure 3d,
is assigned to POx species, while the former, shown by a green
line and closer to BP peaks, is attributed to P−Pd. This
interpretation is strengthened by air exposure studies (see
Figure S6), showing that only the high-energy component
grows after 12 h of air exposure. Since, in contrast to previously
reported MPx−BP heterostructures (M = metal),50,51 no peaks
were observed at BE values lower than that of pristine BP,
PdPx phases could be firmly ruled out. Furthermore, the core
level Cl 2p XPS spectrum of Pd2/BP (Figure S7) confirmed
the absence of chlorine. This last finding, established via EDX,
EELS, and XPS, strongly questions the presence of the allylic
moiety as well. To further investigate this fundamental point,
13C MAS (magic angle spinning) NMR measurements were
carried out on 2D BP reacted with 1* (13C-labeled 1),
prepared by starting from 1-13C-allyl alcohol as described in the
Supporting Information. Interestingly, no signal consistent
with the isotopically enriched allyl ligand was detected in the
spectra between 30 and 140 ppm, definitely ruling out the
functionalization of 2D BP with Pd−allyl. The only observed
spectral feature was a broad signal in the 30−50 ppm region
having a very low signal to noise ratio (Figure S8a). Since
substantially the same spectrum was also obtained for 2D BP
and Pd2/BP 6% (Figure S8a), this signal can be reasonably
ascribed to minor amounts of alkylated species bound to 2D
BP, accidentally formed by a reaction with the solvents during
the exfoliation process (further details are reported in the
Supporting Information).
Since elemental analysis and 13C NMR spectroscopy

together ruled out the permanence of both chloride and allyl
ligands in the coordination sphere of Pd, it is likely that 1 has
undergone a reductive elimination of allyl chloride upon
interaction with 2D BP. The problem then arises to infer the
actual bonding situation of the Pd sites in the functionalized
material. Remarkably, XPS pointed to a well-defined Pd
environment. Since Pd aggregates were firmly excluded,
interlayer structures should be considered to account for the
high concentration of the metal, with Pd atoms lying amidst

two phosphorene layers. Indeed, BP intercalation compounds
have been reported for alkali metals, namely Li, Na, K, Rb, and
Cs,52−54 though these compounds are better described as
being formed by a reduced BP− lattice with intercalated M+

ions. In 2016 Özyilmaz et al. reported the doping of a BP flake
with Cu atoms via atomic layer deposition (ALD)55 and
showed with DFT calculations that single interlayer Cu atoms,
alongside surface adatoms, are a possible outcome of the ALD
process. To gain insights into the Pd coordination shell in our
system, XAS measurements were carried out at the Pd K-edge.
Figure 4a shows the XANES (X-ray absorption near edge
structure) spectra of Pd2/BP 3%, in comparison with some
reference materials. The relative positions of the rising edges
confirms that the oxidation state of Pd in Pd2/BP is closer to
Pd(0) than to Pd(II), in agreement with XPS findings.
However, in view of the low XANES energy resolution at the
Pd K-edge (about 6 eV56), as well as its dependence on the
coordination geometry, an accurate distinction between the
chemical state of Pd in Pd2/BP and 1 was prevented, in
contrast to XPS (see Table S1). The EXAFS (extended X-ray
absorption fine structure) k2-weighed spectrum and the
corresponding Fourier transform of Pd2/BP 3% are reported
in Figure 4b,c, respectively. Regardless of the metal loading
(see also Figure S10), the FT spectrum of Pd2/BP shows a
first-shell coordination just below R = 2 Å, which could be
fitted using Pd−P bonds, and a second-shell peak below R = 3
Å, safely assigned to Pd−Pd scattering. The accurate bond
distances obtained after data fitting and phase correction for
Pd2/BP and 1 are reported in Table 1. The structural
parameters of various reference materials are also shown for
comparison. Notably, Pd2/BP 3% and 6% look identical in
XAS analysis, suggesting that the coordination sphere of Pd is
the same in the two samples, in nice agreement with XPS
evidence.
The measured Pd−P distance of 2.34(1) Å in Pd2/BP

suggests a quite strong interaction between Pd and BP,
consistent with the proven ability of BP to take part in
coordinative bonds. Remarkably, the second shell of Pd
features a Pd−Pd distance of 2.82(1) Å, appreciably larger in

Figure 3. Spectroscopic characterization of Pd2/BP 3%. (a) Powder XRD spectrum. The reference pattern at the bottom corresponds to
orthorhombic BP. The peak marked by an asterisk is a sample holder impurity. (b) Average Raman spectra of the functionalized material (top) and
pristine 2D BP (bottom). Core level Pd 3d (c) and P 2p (d) XPS spectra.
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comparison to metallic Pd(0) (2.751 Å),57 previously
measured by some of us in bulk Pd foil (2.74 ± 0.01 Å) and
Pd NPs/BP (2.73 ± 0.02 Å).26 This discrepancy allows the
presence of Pd NPs in Pd2/BP to be ultimately ruled out, in
agreement with all the other techniques, particularly HAADF-
STEM and XPS. The Pd−P distance of 2.34(1) Å in Pd2/BP
was significantly elongated in comparison to the value of
2.26(3) Å found in Pd(0) NPs/BP.26 Moreover, the observed
Pd−Pd separation (2.82 Å) does not agree with the
homologous distance determined in either PdP2 (3.10 Å)58

or PdP3 (3.85 Å),
59 thus excluding once more the formation of

Pd phosphide aggregates. The obtained coordination numbers
(CNs) associated with these bonds are extremely valuable to
infer a coherent structural model. Remarkably, Pd−P and Pd−
Pd CNs have almost integer values of 3 and 1, respectively,
nicely reproduced in the two samples Pd2/BP 3% and 6%. This
finding points to the existence of a well-defined Pd
environment, in which every Pd atom is bonded to three P
atoms, with an average Pd−P distance of 2.34(1) Å, and to a
second Pd center at 2.82(1) Å.
Since the overall integrity of the BP lattice is preserved after

functionalization, as pointed out experimentally, the candidate
structure of Pd2/BP should exhibit only slight distortions with
respect to pristine 2D BP. Different structural models featuring

a Pd2 dimer sandwiched between two phosphorene layers were
optimized by computational analysis. Obviously, in view of the
maintenance of the phosphorene lattice, the Pd2 unit must lie
parallel to the channel, since an orthogonal arrangement would
cause a severe elongation of the interlayer distance, which
contrasts with the experimental evidence. A computational
analysis also ruled out the potential localization of the Pd2
units on top of the BP surface (see Figure S11), in view of
disfavoring structural and energetic features, being less stable
than the intercalated Pd2 units by at least +35.0 kcal mol−1.
Different isomers were obtained with energy variations of

less than 2 kcal mol−1, suggesting a substantial flatness of the
potential energy surface (PES) associated with the hosting of
Pd2 between two layers. All of the isomers feature a Pd−Pd
distance in the range 2.8−3.0 Å, Pd−P distances of 2.3 Å, and
Pd−P coordination numbers between 3 and 4, in fair
agreement with XAS structural parameters. For the sake of
clarity, Figure 5 shows one of the most stable optimized
isomers, with a Pd1−Pd2 distance of 3.01 Å and a trigonal-
planar coordination of phosphorus around each metal center,
typically associated with Pd(0), with a staggered conformation
of the Pd−P bonds. Notably, such an arrangement does not
significantly perturb the lattice of phosphorene, the interlayer
distance being elongated by ca. 0.55 Å. A flatness of the PES
with respect to the metal−metal distance is not completely
unknown, and a previous experimental and computational
investigation60−62 highlighted a similar behavior for some Pt
clusters, in which large variations of the Pt−Pt bonds were
induced by small changes in the chemical conditions, such as
the nature of the crystallization solvent. Remarkably, a related
arrangement of Pd2 units sitting amidst layers of carbon nitride
was recently described by Peŕez-Ramiŕez et al., featuring a
broad range of structural isomers associated with the Pd−Pd
distance.43

Indirect confirmatory evidence for the low accessibility of
the sandwiched Pd2 units has been acquired experimentally by
testing the catalytic performance of Pd2/BP in the hydro-
genation of unsaturated organic substrates, such as 1-octene
and phenylacetylene (see the Supporting Information). In

Figure 4. XAS characterization of Pd2/BP 3% at the Pd K-edge. (a) Normalized XANES spectra of Pd2/BP and Pd reference materials. (b) EXAFS
k2-weighed spectrum of Pd2/BP and (c) magnitude of its Fourier transform. Dots are experimental data; continuous lines correspond to the best
calculated fit.

Table 1. Interatomic Distances and Coordination Numbers
Extracted from EXAFS Data Analysisa

sample path CN r (Å) σ2 (Å2)

Pd2/BP 3% Pd−P 2.8(2) 2.34(1) 0.0076(7)
Pd−Pd 0.8(2) 2.82(1) 0.011(2)

Pd2/BP 6% Pd−P 2.7(2) 2.34(1) 0.0078(7)
Pd−Pd 1.1(3) 2.83(1) 0.012(2)

Pd NPs/BPb Pd−P 1.7(6) 2.26(3) 0.0018(6)
Pd−Pd 8(2) 2.73(2) 0.0016(4)

Pd foilb Pd−Pd 12 2.74(1) 0.0059(4)

aValues in parentheses represent the error on the last digit. bData
from ref 26.
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agreement with the inaccessibility of the metal centers, no
catalytic activity was observed with Pd2/BP despite Pd-based
systems being usually very active in these processes.63−69

In order to further characterize the Pd−P binding, 31P MAS
NMR spectra were recorded on both Pd2/BP 3% and 6% and
compared with that of pristine 2D BP. The signal of 31P nuclei
bonded and/or in proximity to one or two Pd atoms, in
addition to exhibiting a different chemical shift, should show a
complex shape due to the effects of direct dipolar and indirect
(J) couplings with 105Pd nuclei. 105Pd, the only isotope of Pd
with nonzero spin, is a nucleus with 22.3% natural abundance,
spin 5/2, and a sizable quadrupolar moment.70 31P MAS NMR
spectra generally show a multiplicity of lines arising from J and
residual (not averaged out by MAS) dipolar couplings with
105Pd.71 In Pd2/BP several situations might occur for those 31P
nuclei bonded and/or spatially close to Pd atoms depending
on the Pd isotope distribution, the number of bonds, and the
distance between P and Pd atoms, ultimately leading to a
composite signal with multiple and broad components.72

Moreover, the interaction with 105Pd is expected to
significantly shorten the 31P spin−lattice relaxation time.
Surprisingly, for Pd2/BP 3% and 6% the 31P MAS spectra

acquired under quantitative conditions (Figure 6a) substan-
tially show only an intense and slightly asymmetric peak typical
of bulk and exfoliated BP73−75 (only for Pd2/BP 3% additional
weak resonances are observed at 11.5 and 2.4 ppm, accounting
for about 1.5% of the whole spectral intensity, arising from
products of accidental BP oxidation, i.e. variously protonated
PO4

3− and HPO3
2− groups, respectively73,76). It must be

observed that, while in these spectra signals attributable to P
atoms bonded to Pd are not distinguished, the chemical shift of
BP in Pd2/BP 6% is slightly lower than that in 2D BP and Pd2/
BP 3% (18.3 vs 18.8 ppm). On the other hand, selective 31P
MAS NMR spectra, recorded with short recycle delays for
highlighting signals from faster-relaxing 31P nuclei (Figure 6b
and Figure S8d), show a weak shoulder at about 38 ppm for
Pd2/BP 3% and a complex signal covering a wide frequency
range for Pd2/BP 6% (see an example in Figure 6b). The latter
signal can be phenomenologically described as a superposition
of a peak at 26 ppm, a broad peak at 33 ppm, and weak bumps
at higher frequencies (Figure S8g). This composite signal, also
investigated at variable MAS frequency and temperature
(Figure S8e,f), is ascribable to 31P nuclei interacting with
105Pd nuclei in the complex spin system of Pd2/BP. Moreover,

Figure 5. (a) DFT optimized model of Pd2/BP featuring a trigonal-planar ligand geometry around Pd. Different views of the same model along the
zigzag (b) and armchair (c) directions are shown. Interatomic distances (Å) in (c): Pd1−Pd2 = 3.015; Pd2−P1 = 2.372; Pd2−P2 = 2.345; Pd2−P3
= 2.367.

Figure 6. 31P MAS NMR spectra of 2D BP, Pd2/BP 3%, and Pd2/BP 6%, recorded at a MAS frequency of 20 kHz, using the direct excitation (DE)
pulse sequence with a recycle delay between consecutive transients of (a) 200 s (quantitative spectra) and (b) 0.2 s (selective spectra). Asterisks
indicate spinning sidebands.
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its contribution to the quantitative spectrum of Pd2/BP 6% can
be estimated to be about 3%, in good agreement with the Pd
content, the Pd2/BP hypothesized structure, and the 105Pd
natural abundance. When the broadness and the expected very
low intensity are taken into account, the lack of a clear
observation of the same signal in the spectrum of Pd2/BP 3% is
not surprising. All this considered, it can be inferred that the
signal of P atoms interacting with zero-spin Pd nuclei underlies
the main signal of BP, likely determining its different chemical
shift in Pd2/BP 6%.
2.2. Electrocatalytic Studies. Black phosphorus, as a 2D

semiconductor, has received much attention for its application
in energy conversion,77 including electrochemical energy
storage and electrocatalysis.78,79 Notably, 2D BP drop-casted
on a glassy-carbon electrode (GCE) was shown to promote the
HER, though pristine 2D BP does not behave as an efficient
catalyst, its performance being highly affected by the
morphology and dimensions of the flakes.80,81 Pd2/BP was
tested to see whether the interlayer coordination of Pd2 units
could be a way to enhance the HER activity of 2D BP. The
catalyst evaluation was carried out using a three-electrode cell
with a rotating-disk working electrode (RDE), a commercial
Ag/AgCl reference electrode, and Au gauze as a counter
electrode. The catalyst material was drop-casted above the
glassy-carbon (GC) surface of the RDE, and then a thin Nafion
film was applied with a 0.5%w Nafion solution in 2-propanol to
ensure a better adhesion to the GC surface. As shown in Figure
S12, our 2D BP has a poor activity for the HER in 0.5 M
H2SO4. The reaction Eonset is −0.13 V vs RHE, and the
maximum current density recorded at −0.6 V vs RHE is about
−500 μA cm−2.
In contrast, Pd2/BP shows a superior activity for HER in

comparison to pristine 2D BP, as shown in Figure 7a. Both

Pd2/BP 3% and 6% have the onset potential Eonset = −0.1 V vs
RHE, similar to that recorded for 2D BP, but these samples
reach current densities one order of magnitude higher than
that of the pristine material, namely −110 mA cm−2 at 0.4 V vs
RHE and −75 mA cm−2 at −0.4 V vs RHE for the 6% and 3%
catalysts, respectively. Thus, the presence of discrete interlayer
Pd2 units has an active role in promoting the hydrogen
evolution reaction.
Since the metal loading is related to the current density

recorded during the measurements, the LSV (linear sweep
voltammetry) voltammograms in Figure 7b were normalized to
the palladium content of each catalyst (mass activity). Upon
normalization, the two catalysts Pd2/BP 3% and 6% show very
similar activities, suggesting that the HER is limited solely by
the number of Pd active sites on the catalyst. This observation
provides an indirect confirmation of their structural analogy, in
accordance with previous characterizations.
The catalyst stability during hydrogen evolution was

investigated through galvanostatic experiments, applying to
the working electrode a constant current load of −1 mA (5 mA
cm−2) for 3600 s. As reported in Figure 7c, Pd2/BP is stable
during 1 h of electrolysis, with no electrochemical evidence of
catalyst alteration under working conditions. To better assess
this point, the exhaust Pd2/BP 3% catalyst was recovered by
cleaning the working electrode in 2-propanol with ultrasound
and its morphology was studied via TEM and HAADF-STEM.
As it turned out, the catalytic process does not affect the
overall morphology of the material (Figure 7d,e and Figures
S13 and S14), which still features intact flakes with Pd
homogeneously dispersed (see also the EDS map in Figure
S13) and the absence of metal aggregates, as also revealed by
high-resolution imaging, in nice agreement with the electro-
chemical evidence. In addition, an ICP-AES analysis of the

Figure 7. Electrocatalytic activity of 2D BP and Pd2/BP in HER from 0.5 M H2SO4. (a) Comparison of the linear sweep voltammetry (LSV)
activity of 2D BP, Pd2/BP 3%, and Pd2/BP 6% (scan rate 1 mV s−1, 1600 rpm RDE rotations). (b) LSV normalized to the Pd content. (c)
Chronopotentiometryat −1 mA (−5 mA cm−2) for 3600 s (1600 rpm RDE rotations). (d) Flakes of Pd2/BP 3% exhaust catalyst recovered after
chronoamperometric measurements, drop-casted on a carbon grid. (e) High-resolution HAADF-STEM micrograph taken from the flake in (d).
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exhaust solution recovered after the galvanostatic experiment
confirmed the absence of Pd leaching and the catalyst stability
for promoting the HER at a constant current load of −1 mA.
In order to preliminarily investigate the catalyst durability,

two consecutive sets of 90 cyclic voltammetry (CV) scans were
performed between 0 and −0.325 V vs RHE at a scan rate of
20 mV s−1 (Figure S15). Moreover, the Pd2/BP 6% reusability
was investigated by recovering the electrode after the first set
of CV scans; the electrode was washed with distilled water,
dried, and stored in air for 3 h before performing the second
set of CV scans. A negligible current density drop of 11 mA
cm−2 among 180 CV scans was recorded (8 mA cm−2 in the
first batch, Figure S15a, and 3 mA cm−2 in the second batch,
Figure S15b); thus no massive catalyst decomposition occurs
during the accelerated durability test. In addition, the
unchanged catalyst activity observed between the 90th (first
batch of CVs, Figure S15a) and the 91st cycle (second batch of
CVs, Figure S15b) highlighted the strong stability of Pd2/BP
6% and adhesion to the glassy-carbon electrode, which are two
important features for making the catalyst recyclable in
principle and therefore useful for assembling real electrolysis
cells.

3. CONCLUSIONS
In summary, we have successfully decomposed the
organopalladium(II) complex 1 in the presence of 2D BP to
provide BP flakes functionalized with rare discrete Pd−Pd
units, using a mild synthetic protocol. A variety of solid-state
characterization techniques such as EXAFS, HAADF-STEM,
XPS, and NMR spectroscopy have been used to ascertain the
structure of Pd2 sites. In particular, EXAFS investigations,
backed up by DFT modeling, were crucial to highlight an
unprecedented interlayer coordination of Pd2, sandwiched
between stacked BP layers. Remarkably, the BP lattice retains
its overall integrity upon functionalization, while phosphorus
atoms efficiently stabilize the Pd2 units, preventing nano-
particle formation. This study represents the first full structural
elucidation of low-nuclearity metal sites in functionalized BP. A
preliminary electrochemical study confirmed a notably higher
activity of Pd2/BP in the HER from acidic medium in
comparison to pristine 2D BP. Further studies aimed at
exploring the reactivity of the dipallada units and their possible
replacement by other transition metals are in progress.
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