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Abstract: The accurate monitoring of soil salinization plays a key role in the ecological security and 

sustainable agricultural development of semiarid regions. The objective of this study was to achieve 

the best estimation of electrical conductivity variables from salt-affected soils in a south 

Mediterranean region using Sentinel-2 multispectral imagery. In order to realize this goal, a test was 

carried out using electrical conductivity (EC) data collected in central Tunisia. Soil electrical 

conductivity and leaf electrical conductivity were measured in an olive orchard over two growing 

seasons and under three irrigation treatments. Firstly, selected spectral salinity, chlorophyll, water, 

and vegetation indices were tested over the experimental area to estimate both soil and leaf EC using 

Sentinel-2 imagery on the Google Earth Engine platform. Subsequently, estimation models of soil 

and leaf EC were calibrated by employing machine learning (ML) techniques using 12 spectral 

bands of Sentinel-2 images. The prediction accuracy of the EC estimation was assessed by using k-

fold cross-validation and computing statistical metrics. The results of the study revealed that 

machine learning algorithms, together with multispectral data, could advance the mapping and 

monitoring of soil and leaf electrical conductivity. 

Keywords: Mediterranean region; olive orchard; soil and leaf electrical conductivity; Google Earth 

Engine; spectral vegetation indices 

 

1. Introduction 

Soil salinization is a critical environmental problem in arid and semiarid regions 

globally since it seriously affects the ecological sustainability of limited land resources. As 

a form of land degradation, soil salinization greatly impacts on ecosystem services [1]. 

Thus, soil salinization is restricting agriculture’s global development and affecting the 

social economy’s growth [2,3]. At the same time, soil salinization is one of the most 

important factors causing direct adverse effects on soil characteristics, as it gravely affects 

soil resources, decreases both soil fertility and soil microbial activity; all this results in a 

sharp decline of soil productivity and nutrient availability [4]. Meanwhile, soil 

salinization can accelerate the desertification process and inhibit plants’ absorption of 

water and nutrients, thereby affecting plants’ physiological status [5]. 

Semiarid and arid regions of the Mediterranean are facing extraordinary pressure on 

already-degraded land and water resources, while the need for irrigation is increasing 

sharply [6]. This is due to the scarcity of rainfall, massive evaporation, high water-soluble 
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salt content, and increasing demand for food, water, and living materials from the rapidly 

growing population [7,8]. A severe threat to the sustainable development of regional 

agriculture and the economy is imposed. The timely and accurate acquisition of soil 

salinization information has paramount practical significance for irrigation and drainage 

management, for setting water and environmental policies [4,9], and for a selection of the 

most appropriate and adapted crops to salinity challenges.  

Traditional methods for monitoring soil salinization rarely obtain large-scale 

distribution information [10]. It is always convenient to consider electrical conductivity as 

a standard measurement of salinity [11,12], since the electrical conductivity (EC) of a soil, 

vegetation, or water sample is influenced by the concentration and composition of 

dissolved salts [13,14]. Remote sensing techniques present great advantages in providing 

spectral soil property information at large spatial scales, and repeatedly with short 

temporal intervals [15]. In recent years, soil spectral characteristics have been used to 

estimate soil organic matter [16], total nitrogen, heavy metals [17], and soil moisture 

content [18]. Currently, there are many satellites with sensors with moderate to high 

spatial and temporal resolutions, which provide new opportunities for monitoring the 

spatial distribution of soil salinization using digital soil mapping techniques [15,16,19]. 

Indeed, the soil spectrum is a comprehensive reflection of various soil physical and 

chemical properties [17,18,20,21]. 

The theoretical basis for remote sensing monitoring is building upon the spectral 

characteristics of saline soils. The soil reflectance increases with the increase in soil 

salinization in visible, near-infrared, and shortwave infrared bands [22,23]. However, in 

practice, it is complicated to obtain the pure spectral information of saline soils using 

remote sensing due to interference from other factors, such as soil moisture, vegetation 

cover, and data acquisition time. Overall, the monitoring accuracy in the dry season is 

usually higher than in the wet season [24]. 

Various machine learning (ML) models are assessed to find the model that maximizes 

the prediction accuracy for a specific phenomenon. In this regard, Xu et al. [25] proposed 

a new method for simultaneously identifying the hyper-parameters and input features of 

the support vector machine regression algorithm based on an adaptive genetic algorithm 

for the quantitative evaluation of soil salinization. The authors of [3] combined Sentinel-2 

Multispectral Imager (MSI) data and MSI-derived covariates with measured soil salinity 

data and applied three machine learning algorithms (support vector machines, artificial 

neural network, and random forest) to estimate and map the soil salinity in a sample study 

area in China and provided a scientific basis for the simulation of soil salinization 

scenarios in arid areas. Recently, Xiao et al. [11] evaluated the performance of three 

machine learning models, i.e., random forest, support vector machine, and extreme 

gradient boosting, in predicting soil salinity variables (such as total dissolved ionic matter, 

potential salinity, sodium adsorption ratio, exchangeable sodium percentage, residual 

sodium carbonate, and magnesium adsorption ratio in soils) and thus optimized the 

variable input combinations. Furthermore, the main objective of [26] was to map soil 

salinity intrusion using Sentinel-1 Synthetic Aperture Radar C-band data combined with 

five machine learning models. The authors concluded that advanced machine learning 

models could be used for mapping soil salinity. 

The groundwater resources of Tunisia are of low quality, and only 50% of these 

resources have water salinity below 1.5 g/L. Tunisia is a country that faces the risk of soil 

salinization through the combination of its arid climate and the poor quality of its waters 

and soils [27]. Salt-affected soils cover about 1.5 million hectares (10% of the land) [28], 

which are located mainly in the central part of the country [29]. This risk will be 

aggravated in the upcoming years, along with increased water scarcity. In order to avoid 

the risk of salinization, it is important, on the one hand, to control the soil salinity and to 

keep it below plant salinity tolerance thresholds and, on the other hand, to 

comprehensively analyze the area where water is applied.  
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Even though previous studies [30,31] explored the ability of some models to estimate 

soil salinity, they have yet to be applied for soil and leaf EC prediction in the Tunisian 

case. In this study, we investigated the potential of recently developed retrieval 

algorithms designed to quantify EC traits from the spectroscopic imagery of the 

multispectral instrument Sentinel-2 (S-2 MSI) satellite in a southern Mediterranean 

country (central Tunisia). We selected an experimental agricultural area in the Kondar 

region and tested different processing approaches using parametric regression methods 

and machine learning algorithms. In this regard, this research performed three primary 

investigations, which comprise (i) an evaluation of the performance of a large number of 

machine learning algorithms; (ii) the use of the whole spectral band set of the 

multispectral imager satellite instead of a selection of specific wavelengths; and (iii) the 

retrieval of electrical conductivity at both the soil and leaf levels. 

2. Materials and Methods 

2.1. Study Area and Experimental Setup 

The experiments were conducted at the olive orchard of a Kondar farm, located in 

the Sousse region, Tunisia (35°56′ N, 10°14′ E). The climate is of the Mediterranean type, 

having an average annual rainfall of 271 mm. Average temperatures reach 20–21 °C. The 

soil is sandy loam, with a field capacity and wilting point of 15.6% and 8.6%, respectively, 

according to the USDA methodology and granulometric analysis conducted in the 

laboratory. 

The area of the experimental farm covers 30 ha. The olive orchard under study 

included 80 trees (Olea europaea cv. Koroneiki) with a spacing of 6 m × 7 m. Among them, 

48 trees were monitored for experimental measurements. Olive trees were cultivated in 

two growing seasons (March–November 2017 and March–November 2018) under three 

irrigation treatments: full irrigation (FI), deficit irrigation (DI), and rainfed treatment (RF). 

Each treatment was replicated four times. A completely randomized block design was 

adopted; the three irrigation treatments were randomly distributed in each block, which 

led to a total of twelve plots. Water was supplied to plots via a drip irrigation system. 

Irrigation water was withdrawn from a well within the farm with a water electrical 

conductivity equal to 7.3 mS/cm. The soil EC measured on the saturated paste extract was 

5 mS/cm. 

The crop water balance and irrigation scheduling were managed using an Excel-

based model [32]. The model estimates crop evapotranspiration, irrigation water 

requirements, and relative yield through the standard procedure proposed in FAO 

Irrigation and Drainage Paper 56 [33]. Water requirements were considered for the 

following fruit growth stages: cluster formation (stage C), full bloom (stage F1), fruit set 

(stage H), fruit growth stage 1 (stage I), and fruit growth stage 2 (stage I1) (Tables 1 and 

2).  

Table 1. Observed phenological stages during the growing season March–November 2017. 

Dates 8 April 2017 6 May 2017 21 May 2017 2 June 2017 23 July 2017 

Julian days 98 126 141 153 174 

Stage 
Cluster 

formation 
Full bloom Fruit set 

Fruit growth 

(stage 1) 

Fruit growth 

(stage 2) 

Symbol C F1 H I I1 
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Table 2. Observed phenological stages during the growing season March–November 2018. 

Dates 11 April 2018 25 April 2018 24 May 2018 25 June 2018 31 July 2018 

Julian days 101 115 136 144 176 212 

Stage Cluster formation Full bloom Fruit set 
Fruit growth 

(stage 1) 

Fruit growth 

(stage 2) 

Symbol C F1 H I I1 

Based on the soil water balance calculation, the effective net irrigation supply for the 

fully irrigated trees (FI) was 801 m3/ha and 620 m3/ha for 2017 and 2018, respectively. Half 

of these volumes were supplied in the case of deficit irrigation (DI).  

2.2. Ground-Based Field Measurements 

2.2.1. Soil Electrical Conductivity 

Soil electrical conductivity (ECSoil) measurements were performed periodically (once 

per week) throughout the irrigation season by collecting a composite sample for each 

experimental plot. The protocol followed involved collecting soil samples located within 

an Elementary Sample Unit (ESU) scheme set up to fit the Sentinel-2 spatial resolution, 

i.e., according to 10 by 10 m quadrats. Each ESU contained 5 sampling points, defined by 

establishing a 14 m transect (diagonal) in each plot (center of the plot and 4 points 

positioned 3.5 m away from the center). At each point, three soil samples were collected 

with an Ejkelkamp auger in the 0–40 cm depth layer. Soil samples were collected from a 

total of 12 ESUs for each  data set, which implies a total of 120 ESUs in the two growing 

seasons. Soil sampling was carried out to include the active layer affected by agricultural 

practices and was performed on dates close to the pass of the satellite.  

After the field work, soil electrical conductivity was measured in the laboratory 

through the saturated paste extract method. The soil samples were collected and dried in 

the air. The soil was sieved in the laboratory through a 2 mm mesh, and 200 g of soil for 

each sample was weighed for the preparation of the saturated paste. Subsequently, the 

saturated paste was introduced in a pressure pump for filtration, and soil electrical 

conductivity was measured through a portable conductivity meter [34]. 

2.2.2. Leaf Electrical Conductivity 

Leaf samples were periodically (once per week) collected throughout the irrigation 

season in four replicates for each treatment, which led to a total of twelve plants selected 

from the investigated plots. Data were taken across the experimental orchard from the 

cluster formation stage until the end of the harvest in both growing seasons. As a 

consequence, a total of 120 leaf samples were collected during both growing seasons. 

Measurements were made after the irrigation and on dates close to the pass of the satellite.  

The collection was carried out by sampling leaves from each plant at 1.5–1.8 m from 

the soil surface on the four sides, N-S-E-W. Leaves were fully intact, clean, dry, green, and 

free of signs of disease or damage.  

For each composite leaf sample, 2 g leaf discs 0.6 cm in diameter were prepared with 

a paper hole puncher and put in glass tubes in the laboratory. Then, 20 mL of distilled 

water was added to each tube, and the whole sample was left at ambient temperature for 

24 h. Afterward, leaf electrical conductivity (ECLeaf) (mS/cm) was measured using a 

portable conductivity meter [35]. 

2.3. Satellite Remote Sensing Analysis 

In order to obtain the corresponding spectral acquisitions for the in-situ data, 

Sentinel-2 Level-2A orthorectified atmospherically corrected surface reflectance (L2A) 

images were requested using the GEE catalog. Each Level 2A product is composed of 100 

× 100 km2 tiles in cartographic geometry (UTM/WGS84 projection). The Sentinel-2 
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products used in this study corresponded to the MSI covering 12 spectral bands (443–2190 

nm), with a swath width of 290 km and spatial resolutions of 10 m (four visible and near-

infrared bands), 20 m (six red-edge and shortwave infrared bands), and 60 m (coastal 

aerosol, water vapor, and cirrus bands).  

The processing and analysis steps of the remote sensing datasets were performed 

using a self-prepared script written on the Google Earth Engine platform. 

The web-based IDE for the Earth Engine JavaScript Application Programming 

Interface (API) package ee provides functions that allow the extraction of any available 

information layers over a specific area of interest (AOI; Kondar site) and the very efficient 

processing of the resulting datasets. In this regard, the shapefile of the trial, including 

plots with different water treatments, was uploaded using the Imports section of the GEE 

code. 

In all subsequent steps, all processing was bounded by the AOI.  

Sentinel-2 images for the study area should be selected on specific dates, considering 

the crop phenological stages (and in consequence, the ground sampling dates) on the 

Google Earth Engine (GEE) code editor platform for the period between 1 March 2017 and 

31 November 2018 (Table 3).  

Table 3. Selected dates (based on crop phenological stages) of Sentinel-2 images for the study area 

located in the south Mediterranean–Kondar, Tunisia. 

Sentinel-2 Selected Dates 

Agricultural Year 2016–2017 Agricultural Year 2017–2018 

01 April 2017 11 April 2018 

11 April 2017 06 May 2018 

31 May 2017 26 May 2018 

10 June 2017 30 June 2018 

25 July 2017 30 July 2018 

During this step, the satellite data (Sentinel-2) were imported using the 

ee.ImageCollection function, and a filter was applied to the image collection to include only 

relevant data that support the purpose of the research. The filter considers the dates 

(filterDate), cloud cover (Filter.lt), spatial extent (filterBounds), and selective bands (select). 

As a result, (i) ten out of all available Sentinel-2 MSI images were considered, (ii) a 

maximum of 20% cloud presence was set, and (iii) from the 12 available Sentinel-2 MSI 

bands, eight were employed for the calculation of the spectral indices, covering the visible, 

near-infrared (NIR), vegetation red-edge (VREdge 1 and VREdge 4), and shortwave 

infrared (SWIR1 and SWIR2) bands with central wavelengths of 490 nm, 560 nm, 665 nm, 

842 nm, 705 nm, 865 nm, 1610 nm, and 2190 nm. 

Since the selected bands have different spatial resolutions (10 m and 20 m), the 

corresponding 20 m bands were resampled to the 10 m band spatial resolution via the 

resample function.  

Furthermore, the study area was divided into two parts, (I) olive grove area and (II) 

non-olive-grove area, to separate the exposed olive trees and bare soil area from other 

land covers in the experimental site (e.g., uncultivated land). The outline of the olive area 

was defined using the land cover map of Tunisia coordinated by the Observatoire du 

Sahara et du Sahel. Maps of the different functional land cover traits were obtained by 

importing the corresponding shapes into the GEE environment. The other classes of maps 

were excluded. 
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2.4. Assessment of the Appropriate Spectral Indices for Electrical Conductivity Property 

Estimation 

A preliminary assessment of the most widely investigated spectral indices was 

carried out in order to select those that have already been recognized as good descriptors 

of salinity status. 

For this purpose, a set of different salinity-, chlorophyll-, vegetation-, and water-

related spectral index families were selected. Definitions, formulas, and references are 

summarized in Table 4. For each considered band, the specific central wavelengths are 

those indicated in the original formulation proposed. NDSI, S1, SI, NDVI, NMDI, SAVI, 

EVI, TCARI/OSAVI, MCARI, CVI, GDVI, SIWSI, and MSI were selected for the 

assessment of the EC property estimation using the available dataset.  

Table 4. List of selected spectral indices related to salinity estimation. 

Index  Formula Reference 

Salinity spectral indices 

NDSI Normalized 

Differential 

Salinity  

Index  

(𝑅665 − 𝑅842) (𝑅665 + 𝑅842)⁄  (𝑅𝑅𝑒𝑑 − 𝑅𝑁𝐼𝑅) (𝑅𝑅𝑒𝑑 + 𝑅𝑁𝐼𝑅)⁄  [36] 

S1 Salinity  

Index 1 

𝑅490/𝑅665 𝑅𝐵𝑙𝑢𝑒/𝑅𝑅𝑒𝑑 [37] 

SI Salinity  

Index 
√𝑅490 ∗ 𝑅665 √𝑅𝐵𝑙𝑢𝑒 ∗ 𝑅𝑅𝑒𝑑 [38] 

Vegetation spectral indices 

NDVI Normalized 

Difference 

Vegetation 

Index 

(𝑅842 − 𝑅665)

(𝑅842 + 𝑅665)
 

(𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑)

(𝑅𝑁𝐼𝑅 + 𝑅𝑅𝑒𝑑)
 

[39] 

SAVI Soil- 

Adjusted 

Vegetation 

Index 

1.5(𝑅842 − 𝑅665)

(𝑅842 + 𝑅665 + 0.5)
 

1.5(𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑)

(𝑅𝑁𝐼𝑅 + 𝑅𝑅𝑒𝑑 + 0.5)
 

[40] 

EVI Enhanced 

Vegetation 

Index 

2.5
(𝑅842 − 𝑅665)

(𝑅842 + (6𝑅665) − (7.5𝑅490) + 1)
 2.5

(𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑)

(𝑅𝑁𝐼𝑅 + (6𝑅𝑅𝑒𝑑) − (7.5𝑅𝐵𝑙𝑢𝑒) + 1)
 

[41,42] 

GDVI 
Generalized 

Difference 

Vegetation 

Index 

𝐺𝐷𝑉𝐼𝑛 = (𝑅842
𝑛 − 𝑅665

𝑛)/(𝑅842
𝑛

+ 𝑅665
𝑛) 

 

𝐺𝐷𝑉𝐼𝑛 = (𝑆𝑅𝑛 − 1)/(𝑆𝑅𝑛 + 1) 

= (𝑅𝑁𝐼𝑅
𝑛 − 𝑅𝑅𝑒𝑑

𝑛)/(𝑅𝑁𝐼𝑅
𝑛 + 𝑅𝑅𝑒𝑑

𝑛) 

n: Power, an integer of the values of 1, 

2, 3, 4…n. 

GDVI ranges from −1 to 1. 

SR: simple ratio = 𝑅𝑁𝐼𝑅/𝑅𝑅𝑒𝑑 

[43] 

Water spectral indices 

NMDI Normalized 

Multiband 

Drought  

Index 

(𝑅860 − (𝑅1640 − 𝑅2130))

(𝑅860 + (𝑅1640 − 𝑅2130))
 

(𝑅VREdge4 − (𝑅SWIR1 − 𝑅𝑆𝑊𝐼𝑅2))

(𝑅VREdge4 + (𝑅SWIR1 − 𝑅𝑆𝑊𝐼𝑅2))
 

[44] 

SIWSI Shortwave 

Infrared  

Water Stress 

Index 

(𝑅1640 − 𝑅850)

(𝑅1640 + 𝑅850)
 

 

(𝑅SWIR1 − 𝑅VREdge4)

(𝑅SWIR1 + 𝑅VREdge4)
 

 

[45] 
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MSI Moisture Stress 

Index 

𝑅1600
𝑅820

 
𝑅SWIR1

NIR
 

[46,47] 

Chlorophyll spectral indices 

TCARI/OS

AVI 

Transformed 

Chlorophyll 

Absorption 

Reflectance 

Index/ 

Optimized Soil 

Adjusted 

Vegetation 

Index 

3(𝑅700 − 𝑅670) − 0.2(𝑅700 − 𝑅550)
𝑅700
𝑅670

(1 + 0.16)
𝑅800 − 𝑅670

𝑅800 + 𝑅670 + 0.16

 

3(𝑅𝑉𝑅𝐸𝑑𝑔𝑒1 − 𝑅𝑅𝑒𝑑) − 0.2(𝑅𝑉𝑅𝐸𝑑𝑔𝑒1 − 𝑅𝐺𝑟𝑒𝑒𝑛)
𝑅𝑉𝑅𝐸𝑑𝑔𝑒1
𝑅𝑅𝑒𝑑

(1 + 0.16)
𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝑒𝑑 + 0.16

 
[48] 

CVI Chlorophyll 

vegetation 

index 

(𝑅842 ∗ 𝑅665)

𝑅560
2  

(𝑅𝑁𝐼𝑅 ∗ 𝑅𝑅𝑒𝑑)

𝑅𝐺𝑟𝑒𝑒𝑛
2  

[49] 

MCARI Modified 

Chlorophyll 

Absorption in  

Reflectance 

Index 

[(𝑅700 − 𝑅670) − 0.2(𝑅700
− 𝑅550)](𝑅700/𝑅670) 

[(𝑅𝑉𝑅𝐸𝑑𝑔𝑒1 − 𝑅𝑅𝑒𝑑) − 0.2(𝑅𝑉𝑅𝐸𝑑𝑔𝑒1
− 𝑅𝐺𝑟𝑒𝑒𝑛)](𝑅𝑉𝑅𝐸𝑑𝑔𝑒1
/𝑅𝑅𝑒𝑑) 

[38] 

R: Reflectance for the specified spectral wavelength. 

Following the steps mentioned in Section 2.3, from the Sentinel-2 scenes, the spectral 

indices were extracted at the location of the ESUs, i.e., within a 10 × 10 m Sentinel pixel, 

by first defining the expression of each index on GEE and then mapping it for each 

Sentinel-2A image. The required indices were downloaded to a personal Google Drive 

account. 

Subsequently, simple linear regression models were computed with ECSoil and ECLeaf 

as response variables and the selected spectral indices as predictors. The optimal index 

was then deduced according to the maximum determination coefficient (R2), the lowest 

root-mean-square deviation (RMSE), and the probability level (P). Data were statistically 

analyzed using R (Auckland, New Zealand) (4.0.2, 2018) and the packages stats and 

metrics.  

Chlorophyll indices (TCARI/OSAVI and MCARI) based on 550 nm, 670 nm, 700 nm, 

and 800 nm were proposed here due to their sensitivity to salinity [50]. The chlorophyll 

indices were calculated by replacing the 550 nm, 670 nm, 700 nm, and 800 nm bands with 

the green, red, vegetation red edge 1, and NIR bands available in the Sentinel-2A band 

set, as was also confirmed by other authors for both TCARI/OSAVI [51–55] and MCARI 

[52,56–58] computation. 

Water index retrieval from Sentinel-2A imagery for the study sites was carried out 

via the Sentinel-2A band set proposed in the literature specifically for NMDI [59–64], 

SIWSI [65–68], and MSI [69,70]. On the basis of calculating the existing hyperspectral 

indices, red edge band 4 of the Sentinel-2 imagery was introduced to replace the 860 nm 

band of the NMDI so as to calculate the water indices. The Shortwave Infrared Water 

Stress Index and Normalized Multiband Drought Index used the SWIR1 band instead of 

the 1640 nm band. Bands 820 nm, 850 nm, 1600 nm, and 2130 nm used bands 4, 8a, SWIR1, 

and SWIR2 of the Sentinel-2A band set, respectively, to replace the near-infrared, 

vegetation red-edge and shortwave infrared bands of the NMDI, SIWSI, and MSI. 

The calculation method of the relevant spectral indices is shown in Table 4.  
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2.5. Electrical Conductivity Variables’ Estimation Using Machine Learning Algorithms 

Electrical conductivity property estimation models were built starting from 

measured ECSoil and ECLeaf based on soil and plant ground sampling in the field and the 

spectral data acquired by the Sentinel-2 satellite MSI sensor (processed using the GEE 

code script).  

The spectral profiles of the corresponding Sentinel-2 satellite imagery were 

downloaded from the Google Earth Engine to a Google Drive account. Indeed, following 

the steps mentioned in Section 2.3, from the Sentinel-2 scenes, the reflectance was 

extracted at the location of the ESUs, i.e., within a 10 × 10 m Sentinel pixel, using the 

batch.Download.ImageCollection.toDrive function in GEE. 

All estimation models were calibrated by testing machine learning algorithms 

available in the Automated Radiative Transfer Models Operator (ARTMO) [71].  

ARTMO is a modular GUI toolbox developed in Matlab that embodies a suite of leaf 

and canopy radiative transfer models (RTMs), including PROSAIL and several retrieval 

toolboxes, i.e., a spectral indices toolbox [72], a machine learning regression algorithm 

toolbox [73], and a LUT-based inversion toolbox [74]. The full software framework can be 

freely downloaded from artmotoolbox.com. The machine learning regression algorithm 

(MLRA) assessment toolbox provides a suite of nonparametric techniques to enable 

semiautomatic mapping of the electrical conductivity variables.  

The input module is the first mandatory step to be configured. Two types of input 

data (TXT in a matrix format) were required within the same file: the parameters to be 

estimated, i.e., ECSoil and ECLeaf, and the related spectra. Once the input data had been 

configured, the MLRA scenarios were identified. Indeed, the capabilities of the following 

statistical non-parametric regression algorithms were computed for the evaluation: least-

squares linear regression, partial least-squares regression, regularized least-squares 

regression, principal component regression, Elastic Net regression, K-nearest neighbor 

regression, weighted k-nearest neighbor regression, regression tree, regression tree (LS 

boosting), boosting trees, bagging trees, Gradient Boosting/Boosted Trees, random forest 

(TreeBagger), Canonical Correlation Forests, Extreme Learning Machine, relevance vector 

machine, kernel ridge regression, kernel signal-to-noise ratio, Gaussian Process 

Regression, Sparse Spectrum Gaussian Process Regression, Warped Gaussian Process 

Regression, and VH Gaussian Process Regression. 

The next step was the configuration of the k-fold cross-validation (k = 10). Once the 

input data had been provided and the MLRA settings (single-input) had been configured, 

these scenarios were run. Once all scenarios had been analyzed, an overview table with 

the best validation results indicated the degree of association between estimated and 

observed values of the same variable. To compare the estimation accuracy, the metrics 

included the Mean Absolute Error (MAE), the root-mean-square error (RMSE), the 

coefficient of correlation (R), the coefficient of determination (R2), and the Nash–Sutcliffe 

efficiency (NSE). 

3. Results 

3.1. Descriptive Statistics of the Soil and Leaf Samples Electrical Conductivity (EC) Values 

The ECSoil for the whole dataset varied between 2.729 and 6.830 mS/cm. The mean 

and median values were 4.939 mS/cm and 4.800 mS/cm, respectively, with a standard 

deviation (SD) of 1.077 and a coefficient of variation (CV) of 21.805%. From a summary of 

the descriptive statistics of the dataset employed (Table 5), it appeared that a quite 

moderate variability in ECSoil was observed in the field. 
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Table 5. Descriptive statistics of the soil and leaf samples’ electrical conductivity (EC, mS/cm) 

dataset. 

Variable Min Max Mean Median SD CV (%) Skewness 

ECSoil 2.729 6.830 4.939 4.800 1.077 21.805 0.012 

ECLeaf 0.536 1.690 0.898 0.859 0.210 23.395 1.159 

Regarding the ECLeaf, the dataset varied between 0.536 and 1.690 mS/cm. The mean 

and median values were 0.898 mS/cm and 0.859 mS/cm, respectively, with an SD of 0.210 

and a CV of 23.395%. 

Due to the strong evaporation and low precipitation, it was difficult for salt to leach 

from the surface soil to soil layers below the 20 cm depth, and thus, the salts often 

accumulated on the soil surface. 

3.2. Assessment of the Spectral Indices for Electrical Conductivity Property Estimation 

The regression analysis was performed to examine the sensitivity of the Sentinel-2 

MSI-derived spectral indices to the soil and leaf EC. The results of the statistical analysis 

are presented in Table 6.  

Table 6. Coefficient of determination (R2), root-mean-square error (RMSE), and p-level statistical 

significance for soil (ECSoil) and leaf (ECLeaf) electrical conductivity and spectral indices derived from 

Sentinel-2 multispectral images. 

Spectral Indices 
ECSoil ECLeaf 

R2 RMSE p R2 RMSE p 

Salinity indices NDSI 0.157 5.30 *** 0.154 1.17 *** 

S1 0.702 4.07 *** 0.052 0.28 * 

SI 0.573 4.84 *** 0.263 0.72 *** 

Chlorophyll indices TCARI/OSAVI 0.314 4.17 *** 0.147 0.21 *** 

MCARI 0.357 4.11 *** 0.187 0.28 *** 

CVI 0.415 4.34 *** 0.030 0.29 n.s. 

Vegetation indices NDVI 0.001 4.76 n.s.  0.308 0.70 *** 

SAVI 0.003 4.65 n.s.  0.341 0.59 *** 

EVI 0.004 4.20 n.s.  0.309 0.44 *** 

GDVI 0.310 5.19 *** 0.460 0.70 *** 

Water indices NMDI 0.002 4.45 n.s. 0.355 0.41 *** 

SIWSI 0.076 4.66 * 0.014 0.48 n.s. 

MSI 0.180 4.27 *** 0.450 0.32 *** 

* Significant at p ≤ 0.05. *** Significant at p ≤ 0.001. n.s. Not significant. 

The results of the regression analysis between the salinity indices and ECSoil were 

significant at p ≤ 0.001. The strongest relationship was obtained between S1 and ECSoil  (R2 

= 0.70). The regression models between the same electrical conductivity variable and the 

chlorophyll indices were also significant at p ≤ 0.001. However, for the vegetation and 

water spectral indices generated from Sentinel-2 MSI spectral data and ECSoil, significant 

relationships were observed only for GDVI, SIWSI, and MSI (Table 5). It is worth noting 

that chlorophyll indices (TCARI/OSAVI, MCARI, and CVI) showed better results than the 

broadband vegetation indices in estimating ECSoil, with R2 values ranging between 0.31 

and 0.41. 

The relationships between the same spectral indices and ECLeaf were significant at p 

≤ 0.001 and p ≤ 0.05. From a list of thirteen spectral indices, only two, namely, CVI and 

SIWSI, showed non-significant relationships. However, the four categories of indices 

presented low (for salinity and chlorophyll indices) to moderate (for vegetation and water 
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indices) relationships. The best model was obtained between GDVI and ECLeaf, with a 

coefficient of determination of 0.46. 

3.3. Electrical Conductivity Variables Estimation Using Machine Learning Algorithms 

The original Sentinel-2 MSI images and their spectral bands were adopted as remote 

sensing data sources to estimate both ECSoil and ECLeaf. With the use of 12 spectral bands 

as the independent variables and with the soil and leaf EC data as the dependent variables, 

machine learning regression algorithms (MLRAs) were constructed (Tables 7 and 8). In 

Table 7 and Table 8, we present only the statistical metric outputs of the machine learning 

algorithms with acceptable ranges. The models that presented very low performance are 

not shown. The predicted ECSoil and ECLeaf based on different tested models were validated 

against the measured ECSoil and ECLeaf to evaluate the modeling effect and accuracy. Five 

statistical metric parameters, namely, MAE, RMSE, R, R2, and NSE, were considered for 

the evaluation.  

Table 7. Estimation accuracy of the best-performing prediction models of ECSoil derived from 

Sentinel-2 spectra. MAE: Mean Absolute Error; RMSE: root-mean-square error; R: coefficient of 

correlation; R2: coefficient of determination; NSE: Nash–Sutcliffe efficiency. 

MLRA MAE RMSE R R2 NSE 

Sparse Spectrum Gaussian Process Regression 0.601 0.720 0.716 0.513 0.510 

Warped Gaussian Process Regression 0.620 0.762 0.716 0.4524 0.452 

Canonical Correlation Forests 0.634 0.764 0.673 0.4834 0.449 

Random forest (Tree Bagger) 0.614 0.766 0.695 0.4496 0.447 

Bagging trees 0.622 0.769 0.671 0.4523 0.442 

Gaussian Process Regression 0.651 0.794 0.673 0.4096 0.406 

Boosting trees 0.616 0.796 0.640 0.4673 0.402 

VH Gaussian Process Regression 0.664 0.796 0.684 0.4059 0.401 

Regression tree 0.616 0.803 0.634 0.4578 0.392 

Gradient Boosting/Boosted Trees 0.673 0.810 0.677 0.3981 0.381 

Regression tree (LS boosting) 0.637 0.855 0.631 0.4228 0.310 

Kernel signal-to-noise ratio 0.707 0.866 0.650 0.2995 0.293 

Relevance vector machine 0.700 0.878 0.547 0.2766 0.273 

Weighted k-nearest neighbor regression 0.712 0.879 0.526 0.2741 0.271 

Kernel ridge Regression 0.754 0.894 0.524 0.3027 0.245 

Elastic Net regression 0.770 0.944 0.550 0.1606 0.158 

K-nearest neighbor regression 0.777 0.974 0.401 0.1381 0.105 

Regularized least-squares regression 0.825 0.985 0.372 0.0966 0.084 

Extreme Learning Machine 0.792 1.148 0.311 0.1768 - 

Least-squares linear regression - - - - - 

Partial least-squares regression - - - - - 

Principal component regression - - - - - 

Adaptive Regression Splines - - - - - 

Support vector regression  - - - - - 

Twin Gaussian process - - - - - 
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Table 8. Estimation accuracy of the best-performing prediction models of ECLeaf derived from 

Sentinel-2 spectra. MAE: Mean Absolute Error; RMSE: root-mean-square error; R: coefficient of 

correlation; R2: coefficient of determination; NSE: Nash–Sutcliffe efficiency. 

MLRA MAE RMSE R R2 NSE 

Gaussian Process Regression 0.097 0.132 0.790 0.625 0.624 

Kernel ridge Regression 0.098 0.134 0.797 0.636 0.613 

Canonical Correlation Forests 0.101 0.134 0.813 0.661 0.597 

Relevance vector machine 0.106 0.140 0.761 0.579 0.577 

VH Gaussian Process Regression 0.098 0.140 0.761 0.579 0.576 

Kernel signal-to-noise ratio 0.104 0.146 0.740 0.547 0.541 

Sparse Spectrum Gaussian Process Regression 0.107 0.151 0.725 0.526 0.508 

Weighted k-nearest neighbor regression 0.116 0.164 0.662 0.439 0.415 

Extreme Learning Machine 0.128 0.172 0.627 0.393 0.362 

Adaptive Regression Splines 0.127 0.172 0.678 0.460 0.360 

Bagging trees 0.121 0.176 0.649 0.421 0.331 

Boosting trees 0.132 0.177 0.601 0.361 0.322 

Random forest (Tree Bagger) 0.119 0.177 0.574 0.330 0.319 

Gradient Boosting/Boosted Trees 0.127 0.183 0.572 0.327 0.278 

K-nearest neighbor regression 0.130 0.184 0.568 0.323 0.264 

Elastic Net regression 0.139 0.185 0.530 0.281 0.258 

Regularized least-squares regression 0.141 0.186 0.522 0.272 0.253 

Regression tree 0.165 0.267 0.090 0.008 - 

Warped Gaussian Process Regression 0.151 0.275 0.035 0.001 - 

Regression tree (LS boosting) 0.182 0.281 0.108 0.012 - 

Principal component regression - - - - - 

Least-squares linear regression - - - - - 

Partial least-squares regression - - - - - 

Support Vector Regression  - - - - - 

Twin Gaussian process - - - - - 

According to the prediction results, some machine learning algorithms exhibited 

good accuracy. Tables 7 and 8 indicate that Sparse Spectrum Gaussian Process Regression 

and Gaussian Process Regression were the most robust models among the twenty-five 

models tested for the estimation of ECSoil and ECLeaf, respectively. The statistical results of 

the model parameters showed that, regarding the Sparse Spectrum Gaussian Process 

Regression model for ECSoil estimation, the R and R2 values were equal to 0.72 and 0.51, 

respectively, while in the Gaussian Process Regression model for ECLeaf estimation, the 

MAE, R, and R2 were equal to 0.097, 0.79, and 0.62, respectively. 

Among the machine learning models for ECSoil estimation (Table 7), Canonical 

Correlation Forests (CCF), random forest (RF), and bagging trees (BT) exhibited high 

prediction accuracy, with the CCF model having a low RMSE (0.764), high R (0.673), and 

low MAE (0.634). The RF model was very close to BT (RF: RMSE = 0.766, R = 0.695, MAE 

= 0.614; BT: RMSE = 0.769, R = 0.671, MAE = 0.622). Warped Gaussian Process Regression 

also showed good fitting results, with a coefficient of correlation between predicted and 

observed values of 0.716. 

Regarding the estimation accuracy of the best-performing prediction models of ECLeaf 

derived from Sentinel-2 spectra (Table 8), Canonical Correlation Forests and Sparse 

Spectrum Gaussian Process Regression results slightly improved, whereas for bagging 

trees and random forest, the results were slightly worse. In more detail, in the case of CCF, 

the values of MAE, RMSE, R, and R2 were equal to 0.101, 0.134, 0.813, and 0.661, 

respectively, whereas RF presented MAE, RMSE, and R values of 0.119, 0.177, and 0.574, 

respectively. 
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Regarding the best-performing prediction models of ECSoil and ECLeaf derived from 

Sentinel-2 spectral bands (Sparse Spectrum Gaussian Process Regression and Gaussian 

Process Regression, respectively), in Figure 1 the relationships between measured and 

estimated values are reported.  

  
(a) (b) 

Figure 1. Best (a) soil and (b) leaf prediction models. 

4. Discussion 

Soil and leaf EC estimation models were established in this study based on the use of 

twenty-five machine learning algorithms. It was found that the Gaussian Process 

Regression models (Sparse Spectrum and Gaussian Processes) met the accuracy 

requirements and can be used for the quantitative estimation of the soil and leaf EC.  

The response of vegetation spectral indices to soil EC is generally affected by many 

factors, including vegetation cover, salt tolerance, soil moisture, and soil type [75]. The 

results varied markedly, especially for leaf EC estimation, with better performance 

obtained from “vegetation indices” [76]. Indeed, in many previous studies, using salinity 

indices (salinity indices 1, 2, and 3) and vegetation indices (normalized difference infrared 

index, green normalized difference vegetation index, and a simple ratio) to estimate ECSoil 

[77,78], the regions with vegetation coverage were directly identified as not salinized 

regions or slightly salinized regions [16,24,79]. As confirmed by [3], spectral indices are 

indispensable estimators for soil salinization monitoring. The relationship between 

spectral indices and electrical conductivity variables is established through fitting 

functions. However, the use of spectral indices is restricted to formulations that use only 

a few bands, with at most three or four bands, which implies a decrease in the complete-

spectrum dataset [80]. Nowadays, this limits the strength of the estimation methods, as 

tens or hundreds of spectral bands are available, respectively, in current superspectral [81] 

or spaceborne hyperspectral sensors [82,83]. 

Soils with different salinity have different spectral characteristics, which is the basis 

of the remote sensing monitoring of soil salinization. The key to successfully estimating 

the soil and leaf salt content using spectral variables is to choose an effective model. Non-

parametric regression algorithms (also referred to as machine learning regression 

algorithms—MLRAs) are data-driven approaches based on the definition of regression 

functions between the spectral information and the variables of interest. Machine learning 

algorithms are able to learn autonomously and can solve the problem of complex 
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nonlinear function approximation in estimation of soil and leaf electrical conductivity. 

The main use of these algorithms in this research is related to the possibility of training 

them with complete spectral information from the Sentinel-2 multispectral satellite. These 

adaptive algorithms can cope with the strong non-linearity inherent in remote sensing 

data [84,85]. As confirmed by [86,87], ML algorithms such as random forest (RF) [88] were 

demonstrated to be more robust to noisy features, small training sizes, and high 

dimensionality and collinearity. Indeed, in this case study, because the soil electrical 

conductivity dataset contains in situ sampling and the corresponding spectral 

characteristics, non-parametric regression models were applied. The methodology allows 

electrical conductivity prediction models adjusted to the input variables information and 

existing observations to be achieved.  

As presented in the results (Section 3.3), the Gaussian Process Regression (GPR) 

models presented the best results and attained a higher performance and accuracy when 

estimating the electrical conductivity variables (ECSoil: RMSE = 0.132 and R = 0.790; ECLeaf: 

RMSE = 0.720 and R = 0.716). Indeed, GPR models are efficient machine learning 

regression algorithms for retrieving biophysical parameters [73]. GPR is based on a 

Bayesian approach for building generic regression models between the input (remote 

sensing data) and output (biophysical parameter) variables [81]. Gaussian Process 

Regression models are nonparametric as well as non-linear, while at the same time 

providing a ranking of relevant bands (features) from input spectral data obtained from 

remote sensing tools [89]. Gaussian Process Regression models are flexible enough to fit 

many types of data, including geospatial and time-series data. In the inference stage, every 

time a new observation is made, the model hypothesis (prior probability distribution) is 

updated considering the new observations [90]. For this reason, GPR was evaluated as 

top-performing in accurately reconstructing time-series datasets [91,92]. Our results agree 

with the findings of a previous study [26], revealing that GPR is a powerful tool that could 

be used for soil salinity mapping. 

Moreover, both boosting and random forest algorithms presented close statistic 

results in the range of 0.7 and 0.6 for RMSE and R, respectively, when estimating ECSoil 

and at the range of 0.2 and 0.6 for RMSE and R, respectively, when predicting ECLeaf. From 

this perspective, some authors believed that the Gradient Boosting (GB) model added 

regularization terms, which were beneficial in reducing model complexity, avoiding the 

overfitting phenomenon, and increasing the generalization ability of the model [93]. In 

addition, GB supports the parallel splitting process, which improves the efficiency of 

model construction, optimizes the objective function, and ensures prediction accuracy 

[94]. As one of boosting algorithms, the GB model places more weight on more important 

factors in the training–testing process [95]. Therefore, this model shows a minimal 

reduction in model accuracy. Many studies concluded that the accuracy of the predictions 

of boosting algorithms depended mainly on the relevance of input parameters [96–98]. 

Our results agree with the findings of [2], in which the authors compared three machine 

learning models (RF, SVM, and GB) to predict soil salinity parameters. These authors 

found that GB and RF models showed good prediction ability for some salinity 

parameters, with a slightly higher performance of the GB model. The same research also 

showed that all models underestimated salinity variables for high salinity values, which 

may result in more challenging predictions in soils with higher potential salinity values 

However, [99] still recommended GB models for extreme values. Moreover, the authors 

of [100] found that the boosting model performed best, but the simulation results of the 

RF model were also acceptable.  

On the other hand, the accuracy of the random forest model was high. Generally, 

decision-tree-based algorithms (e.g., RF) require no assumptions about the data 

distribution, adapt to outliers by isolating them in small regions of the feature space [101], 

have no hidden layers in their structure, and use tree algorithms for estimation on the 

basis of pattern recognition [102]. Our finding confirmed previous studies that indicated 

superior estimation capacity of tree-based models [103,104]. Indeed, due to the nonlinear 
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nature of many environmental phenomena, more flexible models with non-linear structures 

will yield better results [105].  

From this perspective, among the tested machine learning algorithms, the results 

revealed that RF performed better than support vector regression (SVR), with higher 

accuracy and a lower root-mean-square error. Our results agree with those of [106]. Indeed, 

in their research, [106] combined a dataset consisting of Landsat 5 Thematic Mapper and 

ALOS L-band radar data acquired at the same time as field-measured salinity and used the 

support vector regression and random forest algorithms for salinity prediction. The results 

revealed that RF performed better than SVR. The SVR model showed low performance in 

learning with values of EC greater than 7 mS/cm [26]. These samples caused the low degree-

of-fit of the model, and consequently, the model lacked the sensitivity required to predict 

values with high EC.  

Generally, decision-tree-based algorithms (e.g., RF) perform better, particularly in 

comparison to data-intelligence algorithms with hidden layers in their structures [102]. 

Hence, GPR, GB, and RF are recommended for soil salinity estimation and mapping.  

Recently, the increasing accessibility of the new generation of hyperspectral satellite 

sensors and the operational enhancements in the retrieval methods are forging the 

opportunity to attain up-to-date knowledge about the variability in salinity characteristics 

throughout the Earth system. With the upcoming stream of imaging spectroscopy data with 

the new, already-launched PRISMA and EnMAP hyperspectral satellites, there is a rising 

need to differentiate between methodologies, tools, and software applications exploiting the 

spectral possibilities to extract relevant information on an operational basis to quantify 

electrical conductivity variables. The quantitative estimation of soil traits considerably relies 

on the retrieval approach. Moreover, according to the literature, hybrid algorithms, in most 

cases, are more flexible and can enhance the prediction power of standalone models [107–110].  

5. Conclusions 

The results of this research provide a further contribution to the ability of Sentinel-2 

spectral data to predict soil and leaf electrical conductivity in an agricultural area in central 

Tunisia. The performance of twenty-five regression algorithms for estimating electrical 

conductivity at the soil and vegetation levels was compared and quantitively assessed. Our 

results indicate that the combined use of machine learning algorithms and Sentinel-2 whole 

multispectral band set improved the accuracy of the electrical conductivity estimation. 

An additional key goal of this research was to investigate the potential of recently 

developed retrieval regression methodologies for quantifying electrical conductivity not 

only at the soil level but also at the vegetation (leaf) level.  

For future perspectives, the higher spectral resolution of newly launched hyperspectral 

satellites (e.g., PRISMA and EnMAP) will be a great tool to exploit narrow absorption 

spectral features in the Vis-NIR and SWIR spectral ranges associated with salinity 

estimation. Therefore, combining data from hyperspectral sensors with the most advanced 

machine learning algorithms could represent an innovative and robust strategy for 

improving the mapping and monitoring of soil and vegetation salinity properties.  
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