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Social contagion

Epidemic-like phenomena are ubiquitous
e Computer viruses
® |nformation diffusion
® Rumor spreading
® Adoption of innovations
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Social contagion

Epidemic-like phenomena are ubiquitous
e Computer viruses
® |nformation diffusion
® Rumor spreading
® Adoption of innovations
® Fashion

® Behavioral contagion
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Epidemics and networks

Networks are relevant HINI 2009 pandemics

1346

Stgc khoim Mgscow
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Parns Milan
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Marsailles,

>
Barcelona ) Rome

Black death

Fast and long-range travel is crucial

Large-scale heterogeneous
transportation networks are relevant
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Epidemics and networks

Networks are relevant

Also at the scale of individuals i !
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Heterogeneous networks are relevant

HIV “patient zero” infected 40 of the 284 cases of AIDS in the USA
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Modeling epidemics on networks

Practical interest
Crucial problem throughout human history
Theoretical interest

Nontrivial dynamics (percolation, branching processes,
absorbing phase transitions)

What is the value of the epidemic threshold?

How does the prevalence varies?

Which immunization protocols control the epidemics?
Which spreaders are most influentials?

How can the origin of an outbreak be reconstructed?
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Classes of epidemics

SIR class SIS class

® Permanent immunity

® |ndividuals are infected
at most once

® Qutbreaks have finite
duration
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SIR class

Permanent immunity

Individuals are infected
at most once

Outbreaks have finite
duration

Classes of epidemics

SIS class

Temporal/no immunity

Individuals can be
infected many times

Outbreaks can persist
forever
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Susceptible-Infected-Susceptible (SIS) model

® Jwo possible states:
O susceptible (S)
® infected (I)
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Susceptible-Infected-Susceptible (SIS) model

® Jwo possible states:

O susceptible (S)

1 A
® infected () / \

® J[wo possible events for infected nodes:
3¢ Recovery | = S (rate p=1)

3¢ Infection to neighbors ~ S+1 = [+]  (rate A)
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Susceptible-Infected-Susceptible (SIS) model

® Jwo possible states:

O susceptible (S)

1 A
® infected (l) / \

® J[wo possible events for infected nodes:
3¢ Recovery | = S (rate u=1)

3¢ Infection to neighbors S+l = 1+ (rate 1)

® Order parameter o8t
p = fraction of infected nodes gl
in the stationary state =l

0.2+ Absorbing
- phase

Active phase

A, 2
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Heterogeneous Mean-Field theory (HMF) for SIS

Pastor-Satorras and Vespignani (Phys. Rev. Lett., 2001)
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Heterogeneous Mean-Field theory (HMF) for SIS

Pastor-Satorras and Vespignani (Phys. Rev. Lett., 2001)

® Standard MF theory: p=—p—+ Xkp(1l—p) Ao = —
® What happens for heterogeneous networks (P(k) ~ k7)?
® Assumption: degree determines the state of the node

® ;= fraction of infected nodes of degree k

Pr = —pr + Ak[1 — pi] Y P(K'[k) pir
k/
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Heterogeneous Mean-Field theory (HMF) for SIS

Pastor-Satorras and Vespignani (Phys. Rev. Lett., 2001)

® Standard MF theory: p=—p—+ Xkp(1l—p) Ao = —
® What happens for heterogeneous networks (P(k) ~ k7)?
® Assumption: degree determines the state of the node

® ;= fraction of infected nodes of degree k

b = —pi + ML= o] S P K)o A, = L
k/
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Heterogeneous Mean-Field theory (HMF) for SIS

Pastor-Satorras and Vespignani (Phys. Rev. Lett., 2001)

e Standard MF theory: p=—p+ Akp(1l—p) A = %

® What happens for heterogeneous networks (P(k) ~ k7)?
® Assumption: degree determines the state of the node

® ;= fraction of infected nodes of degree k

b = —pi + ML= o] S P K)o A, = L
k/

(k%)
® In the limit of large system size o)
0 <3 C_O'(),
>\c — . 7= 0.4}
finite v > 3 |
0.2+ Absorbing _
~ phase Active phase

Zero threshold for scale-free networks o

%, 2
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Beyond HMF: Quenched Mean-Field theory for SIS

Wang et al. (2003) Van Mieghem et al (2009), Gomez et al. (2010)
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Beyond HMF: Quenched Mean-Field theory for SIS

Wang et al. (2003) Van Mieghem et al (2009), Gomez et al. (2010)

_ N
D) = —pu(t) + N1 = (O] Y Aigo (1)

i=1

Ae = —— Ay = Largest eigenvalue of adjacency matrix
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Beyond HMF: Quenched Mean-Field theory for SIS

Wang et al. (2003) Van Mieghem et al (2009), Gomez et al. (2010)

_ N
P = —puft) + N1 - pu(] Y A5 1)

71=1
1

p— E
® Chung et.al., PNAS (2003)

An — { C1v kmaaz V kmaw > <<k]€>> 1I12 (N)
N — 2 2
cp 4 b > VEmaz In(N)

Ac

Ay = Largest eigenvalue of adjacency matrix
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Beyond HMF: Quenched Mean-Field theory for SIS

Wang et al. (2003) Van Mieghem et al (2009), Gomez et al. (2010)

_ N
P = —pult) + M1 - pu(] Y Ausps(0)

i=1

_ b
- i

e Chung et.al,, PNAS (2003)
A Cl1v kma,a: V kmaa: > <<k]€>> lIl2 (N)
N (k%)

Ac

Ay = Largest eigenvalue of adjacency matrix

€27y <<kk2>> > Vkmaz In(N)
o QMF + Chung et al. formula
/Vkmaz V> 5/2
CN{<@> 2 <y <5/2

The epidemic threshold always goes to zero

Zero threshold has not to do with the scale-free property
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Beyond HMF: Quenched Mean-Field theory for SIS

(Castellano and Pastor-Satorras, Phys. Rev. Lett. 2010)
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Beyond HMF: Quenched Mean-Field theory for SIS

(Castellano and Pastor-Satorras, Phys. Rev. Lett. 2010)

® QMF is more accurate than HMF

Annealed network approximation:
kik;
(k)N

Aij — A(ki kj) =
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Beyond HMF: Quenched Mean-Field theory for SIS

(Castellano and Pastor-Satorras, Phys. Rev. Lett. 2010)

® QMF is more accurate than HMF

Annealed network approximation:

kik;

(k)N

Inserting A;; into QMF equation for p; = HMF eqn. for p;

HMF = QMF + annealed form of 4;
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(Castellano and Pastor-Satorras, Phys. Rev. Lett. 2010)

® QMF is more accurate than HMF

Annealed network approximation:

kik;

(k)N

Inserting A;; into QMF equation for p; = HMF eqn. for p;

Aij — Alki, k) =

HMF = QMF + annealed form of A4;

o QMF and HMF coincide only for y < 5/2
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Beyond HMF: Quenched Mean-Field theory for SIS

(Castellano and Pastor-Satorras, Phys. Rev. Lett. 2010)

® QMF is more accurate than HMF

Annealed network approximation:

kik;

(k)N

Inserting A;; into QMF equation for p; = HMF eqn. for p;

Aij — Alki, k) =

HMF = QMF + annealed form of A4;

o QMF and HMF coincide only for y < 5/2

e QMF is not exact
Pij =+ PipPj
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Triggering mechanisms

® The expressions for the thresholds are different for
different ranges of y. What triggers the transition?
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Triggering mechanisms

® The expressions for the thresholds are different for

different ranges of y. What triggers the transition?

® For y>5/2itis the largest hub

UCM
y=2.75
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le-06 :
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Star graph
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Influential spreaders for SIR

Kitsak et al., Nature Physics (2010)

a b
k-core Node A
5. 0 k-=63
decomposition ‘
| = d 50 -
25
k-cores
Py s matter for SIR
ko= 26 ke =63
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Castellano and Pastor-Satorras, Sci. Rep. (2012)

e
| ' 1/Ay = 0.00735
001 1/v/kmaz = 0.03163
ao,oo(n§ _ (k) /{k*) = 0.00745
1e-()6§ k Transition governed
: by the maximum k-core
le-08
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Castellano and Pastor-Satorras, Sci. Rep. (2012)

UCM
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1 |
1/Ax = 0.00735
001}
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o0
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1e-06] - Transition governed
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Localized vs endemic activity

Goltsev, Dorogovtsev, Oliveira and Mendes, Phys. Rev. Lett. (2012)

venerdi 26 settembre 14



Localized vs endemic activity

Goltsev, Dorogovtsev, Oliveira and Mendes, Phys. Rev. Lett. (2012)

® Eigenvector centrality of a node: component f; of the principal eigenvector
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® For y > 5/2 the principal eigenvector is localized around the hub.
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® Eigenvector centrality of a node: component f; of the principal eigenvector

® For y > 5/2 the principal eigenvector is localized around the hub.

- the epidemics above A.2M" is localized (concentrated around the hub)
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Goltsev, Dorogovtsev, Oliveira and Mendes, Phys. Rev. Lett. (2012)

® Eigenvector centrality of a node: component f; of the principal eigenvector

® For y > 5/2 the principal eigenvector is localized around the hub.
- the epidemics above A.2MF is localized (concentrated around the hub)
- vanishing global prevalence

- endemic (global) activity occurs only for 1> A/MF
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Localized vs endemic activity

Goltsev, Dorogovtsev, Oliveira and Mendes, Phys. Rev. Lett. (2012)

® Eigenvector centrality of a node: component f; of the principal eigenvector

® For y > 5/2 the principal eigenvector is localized around the hub.
- the epidemics above A.2MF is localized (concentrated around the hub)
- vanishing global prevalence

- endemic (global) activity occurs only for 1> A/MF

® This picture is derived within QMF framework
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A Griffiths phase?

Lee, Shim and Noh, Phys. Rev. E. (2013)
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A Griffiths phase?

Lee, Shim and Noh, Phys. Rev. E. (2013)

® For isolated hubs fluctuations lead to the absorbing state over time e%;
Global activity slowly decays over time (Griffiths like phase)

10’E
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® For isolated hubs fluctuations lead to the absorbing state over time e;
Global activity slowly decays over time (Griffiths like phase)

10’E

® |f hubs are in directly contact with each other:
activity is maintained by mutual reinfection (endemic phase)
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A Griffiths phase?

Lee, Shim and Noh, Phys. Rev. E. (2013)

® For isolated hubs fluctuations lead to the absorbing state over time e;
Global activity slowly decays over time (Griffiths like phase)

® |f hubs are in directly contact with each other:
activity is maintained by mutual reinfection (endemic phase)

® For y> 3 hubs are not in direct contact with each other:
Griffiths-like phase
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A new analytical approach: Beyond QMF

Boguna, Castellano and Pastor-Satorras, Phys. Rev. Lett.. (2013)
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® QMF completely neglects dynamical correlations

® | ee et al. approach includes local dynamical correlations
(reinfection between nearest neighboring hubs)
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A new analytical approach: Beyond QMF

Boguna, Castellano and Pastor-Satorras, Phys. Rev. Lett.. (2013)

® QMF completely neglects dynamical correlations

® | ee et al. approach includes local dynamical correlations
(reinfection between nearest neighboring hubs)

® New approach: take into account also dynamical correlations
between distant neighbors (reinfection among distant hubs)

On long time scales reinfections can happen over long distances
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New numerical simulations

Boguna, Castellano and Pastor-Satorras, Phys. Rev. Lett.. (2013)
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Eisenvector centrality localization
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Eisenvector centrality localization

® For y> 5/2: eigenvector localization around hub
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Eisenvector centrality localization

® For y> 5/2: eigenvector localization around hub

Inverse participation ratio

Ya = fol(A)
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Eisenvector centrality localization

® For y> 5/2: eigenvector localization around hub

Inverse participation ratio

Ya = Zf;l(A)

Y, (N)

10 F

10
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Eisenvector centrality localization

® For y> 5/2: eigenvector localization around hub

Inverse participation ratio

Ya = fol(A)

® For y<J5/2:

eigenvector delocalization !

Y, (N)

10 F

10
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Eisenvector centrality localization

® For y> 5/2: eigenvector localization around hub

Inverse participation ratio
10 F

Y, (N)

Ya = fol(A)

10

® For y<J5/2:

eigenvector delocalization !

Y, (N)
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A different type of localization
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A different type of localization

Nodes in max K-core have large centrality
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A different type of localization

Nodes in max K-core have large centrality

0.5
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Max K-core is subextensive
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A different type of localization

Nodes in max K-core have large centrality

- 0.5
5...
8 04
4+ 203
— | f
o | o2
ﬁ.3_ 0.1
N--
w }
2

Max K-core is subextensive

Ni,, ~ NGB=7)/2

Finite normalization weight in max K-core
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eoy=21|1
0,90 HY=22 _
+oy=23

0,50 ]
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A different type of localization

Nodes in max K-core have large centrality

Max K-core is subextensive

Ni,, ~ NGB=7)/2

Finite normalization weight in max K-core

l,UU IIII Ll Ll Ll LI ||||
eoy=21|1
0,90 H'Y=22 _
+oy=23

0,50 1 Ll 1 vl

Y, (Ng )

L ocalization on the max K-core
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A new type of eigenvector centrality localization
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A new type of eigenvector centrality localization

® Annealed network assumption implies

fi X kz — YA ~ 1/N(3_7)/2
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A new type of eigenvector centrality localization

® Annealed network assumption implies

ff,; X kz — YA ~ 1/N(3_7)/2
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Eisenvector centrality: problems
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Eisenvector centrality: problems

® FEigenvector Centrality (EC) encodes the intuitive notion:
“Central nodes are those connected to other central nodes”

1
fi = E %:Aijfj
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Eisenvector centrality: problems

® FEigenvector Centrality (EC) encodes the intuitive notion:
“Central nodes are those connected to other central nodes”

1
fi = E zj:Aijfj

® Fory>5/2, EC is localized around the hub: the hub is central

because of its neighbors, which are central only because of
the hub.
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Eisenvector centrality: problems

® FEigenvector Centrality (EC) encodes the intuitive notion:
“Central nodes are those connected to other central nodes”

1
fi = E %:Az’jfj

® Fory>5/2, EC is localized around the hub: the hub is central
because of its neighbors, which are central only because of

the hub.

® Fory<J35/2, EC is localized around a mesoscopic subgraph:

the max K-core.
It is just proportional to degree centrality: f;i ~ k;
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An alternative centrality
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An alternative centrality

® Martin, Zhang and Newman propose to use an alternative centrality,
computed starting from the components of the leading eigenvector
of the Non-Backtracking matrix

Bi—>j,l—>m — 5z,m(1 — 5j,l)
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An alternative centrality

® Martin, Zhang and Newman propose to use an alternative centrality,
computed starting from the components of the leading eigenvector
of the Non-Backtracking matrix

Biii—m = 0im(1—10;)

® The Non-Backtracking matrix counts the number of non-
backtracking walks in a graph and hence removes the self-feedback
mechanism in the calculation of the centrality
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® Martin, Zhang and Newman propose to use an alternative centrality,
computed starting from the components of the leading eigenvector
of the Non-Backtracking matrix

Biji—m =0im(1—105)

® The Non-Backtracking matrix counts the number of non-
backtracking walks in a graph and hence removes the self-feedback
mechanism in the calculation of the centrality
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Real Networks
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® SIS epidemic threshold always vanishes in the large size limit

® Mean-field approaches capture only part of the picture

® Depending on heterogeneity

Different mechanisms trigger the epidemic transition

Different types of eigenvector centrality localization may occur

® Networks with y <5/2 are much different from those with y > 5/2
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