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Disease epidemics have been a constant 
threat to mankind

• Black death epidemics killed one third 
of europeans between 1347 and 1353

• In 1918 spanish flu killed 40-50 
million people, many more than 
world war I

• New epidemics constantly appear 
(HIV, SARS, Ebola...)
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Social contagion

Epidemic-like phenomena are ubiquitous

• Computer viruses

• Information diffusion

• Rumor spreading

• Adoption of innovations

• Fashion

• Behavioral contagion

• .....
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Epidemics and networks

Black death

H1N1 2009 pandemicsNetworks are relevant

Large-scale heterogeneous
transportation networks are relevant
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Epidemics and networks

Networks are relevant

Heterogeneous networks are relevant

HIV “patient zero” infected 40 of the 284 cases of AIDS in the USA

Also at the scale of individuals
interaction patterns are not regular
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Modeling epidemics on networks

• Practical interest

Crucial problem throughout human history

• Theoretical interest

Nontrivial dynamics (percolation, branching processes, 
absorbing phase transitions)

- What is the value of the epidemic threshold?

- How does the prevalence varies?

- Which immunization protocols control the epidemics?

- Which spreaders are most influentials?

- How can the origin of an outbreak be reconstructed?
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Classes of epidemics

• Permanent immunity 

• Individuals are infected 
at most once

• Outbreaks have finite 
duration

• Temporal/no immunity

• Individuals can be 
infected many times 

• Outbreaks can persist 
forever

SIR class SIS class
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• Two possible states: 

susceptible (S)

infected (I)

• Two possible events for infected nodes:

Recovery                       I → S           (rate µ=1)

Infection to neighbors     S+I → I+I     (rate λ)

• Order parameter                                                         
ρ = fraction of infected nodes                                       
in the stationary state

Susceptible-Infected-Susceptible (SIS) model
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Pastor-Satorras and Vespignani (Phys. Rev. Lett., 2001)
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• Standard MF theory:

• What happens for heterogeneous networks (P(k) ~ k-γ)?

• Assumption: degree determines the state of the node

• ρk = fraction of infected nodes of degree k

Pastor-Satorras and Vespignani (Phys. Rev. Lett., 2001)
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Heterogeneous Mean-Field theory (HMF) for SIS

• Standard MF theory:

• What happens for heterogeneous networks (P(k) ~ k-γ)?

• Assumption: degree determines the state of the node

• ρk = fraction of infected nodes of degree k

• In the limit of large system size

Pastor-Satorras and Vespignani (Phys. Rev. Lett., 2001)

⇥̇ = �⇥ + �k⇥(1� ⇥) �c =
1
k

⇥̇k = �⇥k + �k[1� ⇥k]
�

k�

P (k�|k)⇥k� �c =
�k⇥
�k2⇥

⇥c ⇥
�

0 � � 3
finite � > 3

Zero threshold for scale-free networks
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Beyond HMF: Quenched Mean-Field theory for SIS
Wang et al. (2003) Van Mieghem et al (2009), Gomez et al. (2010)

�c =
1

�N
⇤N = Largest eigenvalue of adjacency matrix

• Chung et. al., PNAS (2003)

�N =

�
c1
�

kmax
�

kmax > �k2⇥
�k⇥ ln2(N)

c2
�k2⇥
�k⇥

�k2⇥
�k⇥ >

�
kmax ln(N)
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Beyond HMF: Quenched Mean-Field theory for SIS
Wang et al. (2003) Van Mieghem et al (2009), Gomez et al. (2010)

�c =
1

�N
⇤N = Largest eigenvalue of adjacency matrix

• Chung et. al., PNAS (2003)

• QMF + Chung et al. formula

�N =

�
c1
�

kmax
�

kmax > �k2⇥
�k⇥ ln2(N)

c2
�k2⇥
�k⇥

�k2⇥
�k⇥ >

�
kmax ln(N)

⇥c �
�

1/
⇥

kmax � > 5/2
�k⇥
�k2⇥ 2 < � < 5/2

The epidemic threshold always goes to zero

Zero threshold has not to do with the scale-free property
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Beyond HMF: Quenched Mean-Field theory for SIS
(Castellano and Pastor-Satorras, Phys. Rev. Lett. 2010)
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Aij � Ā(ki, kj) =
kikj

⇥k⇤N

venerdì 26 settembre 14



• QMF is more accurate than HMF

Annealed network approximation:

 Inserting Aij into QMF equation for ρi  ⇒ HMF eqn. for ρk

• QMF and HMF coincide only for γ < 5/2

    

• QMF is not exact

Beyond HMF: Quenched Mean-Field theory for SIS
(Castellano and Pastor-Satorras, Phys. Rev. Lett. 2010)

HMF = QMF + annealed form of Aij

Aij � Ā(ki, kj) =
kikj

⇥k⇤N

⇢ij 6= ⇢i⇢j
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Triggering mechanisms

• The expressions for the thresholds are different for 
different ranges of γ. What triggers the transition? 

• For γ > 5/2 it is the largest hub 
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Influential spreaders for SIR
Kitsak et al., Nature Physics (2010)

k-core
decomposition

k-cores
matter for SIR
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Localized vs endemic activity 

• Eigenvector centrality of a node: component fi of the principal eigenvector 

• For γ > 5/2 the principal eigenvector is localized around the hub. 

- the epidemics above λcQMF  is localized (concentrated around the hub)

- vanishing global prevalence

- endemic (global) activity occurs only for  λ > λcHMF

• This picture is derived within QMF framework

Goltsev, Dorogovtsev, Oliveira and Mendes, Phys. Rev. Lett. (2012)
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A Griffiths phase?
Lee, Shim and Noh, Phys. Rev. E. (2013)
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A Griffiths phase?

• For isolated hubs fluctuations lead to the absorbing state over time eaki 
Global activity slowly decays over time (Griffiths like phase)

• If hubs are in directly contact with each other:                              
activity is maintained by mutual reinfection (endemic phase)

• For γ > 3 hubs are not in direct contact with each other:                  
Griffiths-like phase

Lee, Shim and Noh, Phys. Rev. E. (2013)
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A new analytical approach: Beyond QMF
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A new analytical approach: Beyond QMF

• QMF completely neglects dynamical correlations

• Lee et al. approach includes local dynamical correlations  
(reinfection between nearest neighboring hubs)

• New approach: take into account also dynamical correlations 
between distant neighbors (reinfection among distant hubs) 

On long time scales reinfections can happen over long distances

Boguna, Castellano and Pastor-Satorras, Phys. Rev. Lett.. (2013)
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New numerical simulations
Boguna, Castellano and Pastor-Satorras, Phys. Rev. Lett.. (2013)
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Eigenvector centrality localization 

• For  γ > 5/2: eigenvector localization around hub

Inverse participation ratio

Y⇤ =
X

i

f4
i (⇤)
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A different type of localization
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A new type of eigenvector centrality localization 

• Annealed network assumption implies
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Eigenvector centrality: problems

• Eigenvector Centrality (EC) encodes the intuitive notion: 
“Central nodes are those connected to other central nodes”

fi =
1

⇤N

X

j

Aijfj
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Eigenvector centrality: problems

• Eigenvector Centrality (EC) encodes the intuitive notion: 
“Central nodes are those connected to other central nodes”

• For γ > 5/2, EC is localized around the hub: the hub is central 
because of its neighbors, which are central only because of 
the hub.

• For γ < 5/2, EC is localized around a mesoscopic subgraph: 
the max K-core.                                                                 
It is just proportional to degree centrality:    fi ~ ki

fi =
1

⇤N

X

j

Aijfj
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An alternative centrality

• Martin, Zhang and Newman propose to use an alternative centrality, 
computed starting from the components of the leading eigenvector 
of the Non-Backtracking matrix

Bi!j,l!m = �i,m(1� �j,l)
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An alternative centrality

• Martin, Zhang and Newman propose to use an alternative centrality, 
computed starting from the components of the leading eigenvector 
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Take home message

• SIS epidemic threshold always vanishes in the large size limit

• Mean-field approaches capture only part of the picture

• Depending on heterogeneity

- Different mechanisms trigger the epidemic transition

- Different types of eigenvector centrality localization may occur

• Networks with γ < 5/2 are much different from those with γ > 5/2
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