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The widespread availability of high resolution digital elevation models (DEM) opens the 11 
possibility of applying physically based models of landslide initiation to large areas. With 12 
increasing size of the study area and resolution of the DEM, the required computing time for 13 
each run of the model increases proportionally to the number of grid cells in the study area. 14 

 15 

The aim of this work is to present a new parallel implementation of TRIGRS (Alvioli and 16 

Baum, 2016), an open-source FORTRAN program (software available for download at 17 
http://geomorphology.irpi.cnr.it/tools/trigrs and https://github.com/usgs/landslides-trigrs) 18 
designed for modeling the timing and distribution of shallow, rainfall-induced landslides, and 19 

to discuss its parallel performance. The spatial distribution of landslides is obtained in 20 
TRIGRS by computing transient pore-pressure changes, and attendant changes in the factor of 21 

safety due to rainfall infiltration, and using a simple infinite-slope description on a cell-by-cell 22 
basis. Time dependence is implemented in the model by time-dependent rainfall infiltration, 23 

resulting from storms that have durations ranging from hours to a few days. 24 

 25 

The motivation for having a parallel, and substantially faster, code is generally found in the 26 

need to perform multiple simulations, for example to calibrate parameters, or to increase the 27 

spatial extent of simulations, or both (Alvioli et al., 2014; Raia et al., 2014; Mergili et al., 28 
2014). In the specific case of TRIGRS, we have shown that the simulation of a large test area 29 
is possible with great detail in many respects: the high resolution DEM, the dense rainfall 30 
pattern in time, the number of output maps. Using the new version of the code, we were able 31 
to reduce run time from about one day to about an hour for a 1340-km

2
 test area. This allowed 32 

us to obtain a detailed time series of model outputs and match them with the field 33 
observations, providing a robust understanding of landslide phenomena in the area (Alvioli 34 
and Baum, 2016). 35 

 36 

The previous version of the code (Baum et al., 2008) was improved with new features 37 
(Iverson, 2000; Baum et al., 2010) and parallelized within the Message Passing Interface 38 
(MPI) framework (MPI forum, 2012). We show the performance gain with respect to the 39 

serial code on commercial hardware (CNR IRPI, Perugia), on a high-performance multi-node 40 
machine (Galileo cluster, CINECA, Bologna) and on the OpenStack cloud environment 41 
(CERN, Geneva). The performance of the parallel code was assessed both measuring overall 42 
running time TTot and using standard quantities such as speedup  43 

 44 

𝑆(𝑁𝑝) =
𝑇𝑇𝑜𝑡(𝑁𝑝=1)

𝑇𝑇𝑜𝑡(𝑁𝑝)
,                                                              (1) 45 



 46 

the ratio of serial (TTot(N=1)) to parallel (TTot(N)) running times as a function of the number of 47 
processes Np, and efficiency  48 

 49 

𝐸(𝑁𝑝) =  
𝑆(𝑁𝑝)

𝑁𝑝
=  

𝑇𝑇𝑜𝑡(𝑁𝑝=1)

𝑁𝑝 𝑇𝑇𝑜𝑡(𝑁𝑝) 
 .                                          (2) 50 

 51 

For a better assessment of the parallel performance, we have split the overall running time 52 

into three terms: the time required for data reading and scattering to all the computing 53 
processes, TR, the time required for core computing and gathering of the partial results from 54 
each computing process, TC, and time required from writing the results on disk, TW; this is 55 
summarized in Fig. 1. The other quantities we have considered, speedup S and efficiency E, 56 

 

Fig. 1. Decomposition of the overall running time TTot into three intervals, as described in the text. 

have been calculated according Eq. (1) and (2), respectively, considering separately the 57 
overall running time TTot and replacing TTot with the partial running time T = TTot - TW. The 58 
corresponding results are shown in Fig. 2. When run on a single-mode, high-end multi-core 59 

machine, the code offers performance gain up to about Np = 50, for our case study. The major 60 

limitation for a further performance gain are the operations summarized with TR and TW, the 61 
data read and scatter operations presenting the most severe drawback when Np increases over 62 
50. When run on a multi-node, high-performance machine, the limitations due to read-write 63 

and data scatter-gather operations are largely removed and we do not see performance 64 
degradation within the 0 < Np ≤ 256 range. We conclude that the parallel performance is very 65 

satisfactory, since the code provides sufficient performance improvement on a single node 66 
machine with a number of computing cores which is well beyond the typical number of cores 67 
available on common desktop machines. A further performance increase can be obtained 68 

running the code on a large machine equipped with high-performance input-output devices 69 
and high-speed interconnection network such as the Galileo cluster. 70 

 71 

We have investigated the dependence of the parallel performance upon the problem size, 72 

which, in turn, is practically linearly proportional to the number of grid cells. We show in Fig. 73 
3 the total computing time required for running the code with the study area used in Fig. 2, 74 
and also with study areas of twice, one-half, one-fourth, one-eighth and one-sixteenth of the 75 
original size. We find, as expected, that performance degradation when running on our single-76 
node machine occurs for smaller Np in the larger problem with respect  to the original one, 77 

and we do not reach the point at which performance starts getting poorer for the smaller-size 78 
cases. 79 



  

Fig. 2. Results for the parallel performance of TRIGRS v2.1, as a function of the number of 

processes in the MPI pool, Np. A: total (TTot), read + data scattering + compute + data 

gathering (TTot - TW), write (TW) and read + data scattering (TR) running times. B: parallel 

speedup with respect to TTot and TTot - TW running times. C: parallel efficiency with respect to 

the same partial running times as in B. The left column refers to execution on a single-node 

machine equipped with 64 computing cores, while the right column shows results of 

execution on the Galileo cluster at CINECA; we considered Np ≤ 256; the results of the left 

column are also shown for comparison. The 34 time-steps referred to in the Figures are the 

number of time intervals of the storm considered in the simulation. 

 80 

 

Fig. 3. Dependence of the total running time on the size of the study area. “1” refers to the problem 

size considered in Fig. 2, “2” refers to a problem with double size, “1/2” to one-half the size, and so 

on. 



Subsequently, we have investigated the parallel performance of the code on a typical cloud 81 

environment setup. In particular, we have used virtual machines with sixteen computing cores 82 
each, using the OpenStack cloud environment installed at CERN. Results for the total and 83 
read-scatter running times are shown in Fig. 4, compared to the ones obtained on the single-84 

node and the multi-node machines considered earlier. We find that the performance gain is 85 
comparable to the single-node case when the code is run within one node. We find severe 86 
limitations mostly due to the read-scatter fraction when the code is run across multiple nodes 87 
in OpenStack: the performance appears to be degraded and depending on the network status 88 
in each particular run, as expected.  89 

 90 

  

Fig. 4. Total (A, TTot) and read-scatter (B, TR) running times obtained on OpenStack cloud 

environment compared to the ones obtained on the single-node and multi-node machines considered in 

Fig. 2.   

In conclusion, users of the code can run the new parallel version using any kind of multi-core 91 

machine equipped with a modern FORTRAN compiler and MPI libraries. We have optimized 92 

both the serial and parallel part of the code in a way that aims at improving performance 93 

without requiring extra expertise from the users while keeping a simple, easy-to-maintain 94 
code. In particular, we did not make use of native MPI I/O (Prabhat and Koziol, 2014), which 95 

will require major code design revision, extra system requirements and user expertise; we 96 
leave the MPI I/O implementation for a future release of the code. Performance results show a 97 
nice balance between the point at which file input and output dominates parallel speedup and 98 
the great performance improvement when using a high-performance machine. We show that 99 

the performance on a general-purpose cloud environment might be limited by network 100 
communications between the computing nodes, which should be tuned for this specific 101 
purpose. Most users would find the possibility of running the code on demand on MPI-102 
optimized cloud resources more appealing than on massively multi-core machines.  103 
Availability of a parallel version of TRIGRS enables simulation of landslide initiation from 104 

storm events affecting large heterogeneous regions.  This greatly aids analysis of the effects of 105 

rainfall patterns and terrain complexity on landslide initiation. 106 
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