
Evaluation of the parallel performance of the TRIGRS 1

v2.1 model for rainfall-induced landslides 2

 3

M. Alvioli
*1

,

D. Spiga

2
, R. L. Baum

3
 4

5

1
CNR IRPI, via Madonna Alta 126, 06128, Perugia, Italy 6

2
INFN, Sezione di Perugia,via A. Pascoli 1, 06123, Perugia, Italy 7

3
US Geological Survey, P.O. Box 25046, Mail Stop 966, Denver, CO 80225-0046, USA

 8

* Massimiliano.Alvioli@irpi.cnr.it 9

 10

The widespread availability of high resolution digital elevation models (DEM) opens the 11
possibility of applying physically based models of landslide initiation to large areas. With 12
increasing size of the study area and resolution of the DEM, the required computing time for 13
each run of the model increases proportionally to the number of grid cells in the study area. 14

 15

The aim of this work is to present a new parallel implementation of TRIGRS (Alvioli and 16

Baum, 2016), an open-source FORTRAN program (software available for download at 17
http://geomorphology.irpi.cnr.it/tools/trigrs and https://github.com/usgs/landslides-trigrs) 18
designed for modeling the timing and distribution of shallow, rainfall-induced landslides, and 19

to discuss its parallel performance. The spatial distribution of landslides is obtained in 20
TRIGRS by computing transient pore-pressure changes, and attendant changes in the factor of 21

safety due to rainfall infiltration, and using a simple infinite-slope description on a cell-by-cell 22
basis. Time dependence is implemented in the model by time-dependent rainfall infiltration, 23

resulting from storms that have durations ranging from hours to a few days. 24

 25

The motivation for having a parallel, and substantially faster, code is generally found in the 26

need to perform multiple simulations, for example to calibrate parameters, or to increase the 27

spatial extent of simulations, or both (Alvioli et al., 2014; Raia et al., 2014; Mergili et al., 28
2014). In the specific case of TRIGRS, we have shown that the simulation of a large test area 29
is possible with great detail in many respects: the high resolution DEM, the dense rainfall 30
pattern in time, the number of output maps. Using the new version of the code, we were able 31
to reduce run time from about one day to about an hour for a 1340-km

2
 test area. This allowed 32

us to obtain a detailed time series of model outputs and match them with the field 33
observations, providing a robust understanding of landslide phenomena in the area (Alvioli 34
and Baum, 2016). 35

 36

The previous version of the code (Baum et al., 2008) was improved with new features 37
(Iverson, 2000; Baum et al., 2010) and parallelized within the Message Passing Interface 38
(MPI) framework (MPI forum, 2012). We show the performance gain with respect to the 39

serial code on commercial hardware (CNR IRPI, Perugia), on a high-performance multi-node 40
machine (Galileo cluster, CINECA, Bologna) and on the OpenStack cloud environment 41
(CERN, Geneva). The performance of the parallel code was assessed both measuring overall 42
running time TTot and using standard quantities such as speedup 43

 44

𝑆(𝑁𝑝) =
𝑇𝑇𝑜𝑡(𝑁𝑝=1)

𝑇𝑇𝑜𝑡(𝑁𝑝)
, (1) 45

 46

the ratio of serial (TTot(N=1)) to parallel (TTot(N)) running times as a function of the number of 47
processes Np, and efficiency 48

 49

𝐸(𝑁𝑝) =
𝑆(𝑁𝑝)

𝑁𝑝
=

𝑇𝑇𝑜𝑡(𝑁𝑝=1)

𝑁𝑝 𝑇𝑇𝑜𝑡(𝑁𝑝)
 . (2) 50

 51

For a better assessment of the parallel performance, we have split the overall running time 52

into three terms: the time required for data reading and scattering to all the computing 53
processes, TR, the time required for core computing and gathering of the partial results from 54
each computing process, TC, and time required from writing the results on disk, TW; this is 55
summarized in Fig. 1. The other quantities we have considered, speedup S and efficiency E, 56

Fig. 1. Decomposition of the overall running time TTot into three intervals, as described in the text.

have been calculated according Eq. (1) and (2), respectively, considering separately the 57
overall running time TTot and replacing TTot with the partial running time T = TTot - TW. The 58
corresponding results are shown in Fig. 2. When run on a single-mode, high-end multi-core 59

machine, the code offers performance gain up to about Np = 50, for our case study. The major 60

limitation for a further performance gain are the operations summarized with TR and TW, the 61
data read and scatter operations presenting the most severe drawback when Np increases over 62
50. When run on a multi-node, high-performance machine, the limitations due to read-write 63

and data scatter-gather operations are largely removed and we do not see performance 64
degradation within the 0 < Np ≤ 256 range. We conclude that the parallel performance is very 65

satisfactory, since the code provides sufficient performance improvement on a single node 66
machine with a number of computing cores which is well beyond the typical number of cores 67
available on common desktop machines. A further performance increase can be obtained 68

running the code on a large machine equipped with high-performance input-output devices 69
and high-speed interconnection network such as the Galileo cluster. 70

 71

We have investigated the dependence of the parallel performance upon the problem size, 72

which, in turn, is practically linearly proportional to the number of grid cells. We show in Fig. 73
3 the total computing time required for running the code with the study area used in Fig. 2, 74
and also with study areas of twice, one-half, one-fourth, one-eighth and one-sixteenth of the 75
original size. We find, as expected, that performance degradation when running on our single-76
node machine occurs for smaller Np in the larger problem with respect to the original one, 77

and we do not reach the point at which performance starts getting poorer for the smaller-size 78
cases. 79

Fig. 2. Results for the parallel performance of TRIGRS v2.1, as a function of the number of

processes in the MPI pool, Np. A: total (TTot), read + data scattering + compute + data

gathering (TTot - TW), write (TW) and read + data scattering (TR) running times. B: parallel

speedup with respect to TTot and TTot - TW running times. C: parallel efficiency with respect to

the same partial running times as in B. The left column refers to execution on a single-node

machine equipped with 64 computing cores, while the right column shows results of

execution on the Galileo cluster at CINECA; we considered Np ≤ 256; the results of the left

column are also shown for comparison. The 34 time-steps referred to in the Figures are the

number of time intervals of the storm considered in the simulation.

 80

Fig. 3. Dependence of the total running time on the size of the study area. “1” refers to the problem

size considered in Fig. 2, “2” refers to a problem with double size, “1/2” to one-half the size, and so

on.

Subsequently, we have investigated the parallel performance of the code on a typical cloud 81

environment setup. In particular, we have used virtual machines with sixteen computing cores 82
each, using the OpenStack cloud environment installed at CERN. Results for the total and 83
read-scatter running times are shown in Fig. 4, compared to the ones obtained on the single-84

node and the multi-node machines considered earlier. We find that the performance gain is 85
comparable to the single-node case when the code is run within one node. We find severe 86
limitations mostly due to the read-scatter fraction when the code is run across multiple nodes 87
in OpenStack: the performance appears to be degraded and depending on the network status 88
in each particular run, as expected. 89

 90

Fig. 4. Total (A, TTot) and read-scatter (B, TR) running times obtained on OpenStack cloud

environment compared to the ones obtained on the single-node and multi-node machines considered in

Fig. 2.

In conclusion, users of the code can run the new parallel version using any kind of multi-core 91

machine equipped with a modern FORTRAN compiler and MPI libraries. We have optimized 92

both the serial and parallel part of the code in a way that aims at improving performance 93

without requiring extra expertise from the users while keeping a simple, easy-to-maintain 94
code. In particular, we did not make use of native MPI I/O (Prabhat and Koziol, 2014), which 95

will require major code design revision, extra system requirements and user expertise; we 96
leave the MPI I/O implementation for a future release of the code. Performance results show a 97
nice balance between the point at which file input and output dominates parallel speedup and 98
the great performance improvement when using a high-performance machine. We show that 99

the performance on a general-purpose cloud environment might be limited by network 100
communications between the computing nodes, which should be tuned for this specific 101
purpose. Most users would find the possibility of running the code on demand on MPI-102
optimized cloud resources more appealing than on massively multi-core machines. 103
Availability of a parallel version of TRIGRS enables simulation of landslide initiation from 104

storm events affecting large heterogeneous regions. This greatly aids analysis of the effects of 105

rainfall patterns and terrain complexity on landslide initiation. 106

 107

Acknowledgments 108

 109

M. Alvioli acknowledges the CINECA award under the ISCRA initiative, for the availability 110
of high performance computing resources and support. M. Alvioli thanks CNR for a “Short 111

Mobility Grant”, 2014, during which part of this work was completed. 112

 113

 114

 115

Essential bibliography 116

 117

Alvioli, M., Guzzetti, F., Rossi, M., 2014. Scaling properties of rainfall-induced landslides 118
predicted by a physically based model. Geomorphology 213, 38-47; 119

doi:10.1016/j.geomorph.2013.12.039 120

Alvioli, M. and Baum, R.L., 2016. Parallelization of the TRIGRS model for rainfall-induced 121
landslides using the message passing interface. Environ. Modell. Softw. 81, 122-135; 122
doi:10.1016/j.envsoft.2016.04.002 123

Baum, R.L., Savage, W.Z., and Godt, J.W., 2008, TRIGRS—A Fortran program for transient 124

rainfall infiltration and grid-based regional slope-stability analysis, version 2.0: U.S. 125
Geological Survey Open-File Report, 2008-1159, 75 p; 126
URL:http://pubs.usgs.gov/of/2008/1159/ 127

Baum, R.L., Godt, J.W., Savage, W.Z., 2010. Estimating the timing and location of shallow 128

rainfall-induced landslides using a model for transient, unsaturated infiltration. J. 129
Geophys. Res. Earth Surf. 115 (F3), F03013; doi:10.1029/2009JF001321 130

Iverson, R.M., 2000. Landslide triggering by rain infiltration. Water Resour. Res. 36 (7), 131

1897-1910; doi:10.1029/2000WR900090 132

Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-Muntau, B., Rossi, M., Guzzetti, 133

F., 2014. A strategy for GIS-based 3-D slope stability modelling over large areas. 134
Geosci. Model Dev. 7, 2969-2982; doi:10.5194/gmd-7-2969-2014 135

MPI Forum, 2012. Message Passing Interface (MPI) Forum Home Page. 136
URL:http://www.mpi-forum.org/ (Sep. 2015). 137

Prabhat, Koziol, Q., 2014. High Performance Parallel I/O. Chapman and Hall/CRC, Boca 138

Raton, USA; ISBN-13:978-1466582347 139

Raia, S., Alvioli, M., Rossi, M., Baum, R.L., Godt, J.W., Guzzetti, F., 2014. Improving 140

predictive power of physically based rainfall-induced shallow landslide models: a 141
probabilistic approach. Geosci. Model Dev. 7, 495-514; doi:10.5194/gmd-7-495-2014 142

 143

