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Simple Summary: The vast majority of the world’s commercial fish stocks are considered overfished.
Among demersal species, in the Mediterranean Sea, the European hake (Merluccius merluccius) is
experiencing high fishing pressure, resulting in a critical overexploitation status. The reproductive
pattern of the male sex is poorly investigated. In order to provide scientific advice for its sustainable
management, this study gave, for the first time in the Central Mediterranean Sea, an overview of the
reproductive biology of male European hakes, by using a multidisciplinary approach. The sex ratio
throughout the three-year period and by length class showed that males dominated the population
from February to June and up to 24 cm, respectively. The reproduction occurred all year round with
a seasonal peak in spring/summer. The macroscopic and histological sizes at first maturity were
18.6 cm and 15.4 cm, respectively. The entire reproductive cycle was unequivocally identified by
five histological developmental stages of the testis. Finally, the molecular approach allowed us to
investigate endocrine regulation from the onset of puberty to the adult lifecycle.

Abstract: The improvement of scientific knowledge about overexploited fishery resources allow us to
provide scientific advice for their management and stock protection. By using a multidisciplinary
approach, the aim of the study was to characterize, for the first time in the Central Mediterranean Sea
(GSA 17), the reproductive biology of males of M. merluccius, currently highly exploited. A multi-year
sampling from January 2017 to December 2019 was performed to exhaustively evaluate the sex ratio
of the stock, while the 2018 annual sampling was selected to investigate the reproductive pattern
of males. Individuals in spawning conditions were found every month, proving that M. merluccius
is an asynchronous species, reproducing all year round, with a seasonal reproductive peak in
spring/summer, as indicated by GSI. Five gonadal development stages were defined to fully describe
the reproductive cycle of males. The macroscopic and histological L50, respectively 18.6 cm and
15.4 cm, were both below the Minimum Conservation Reference Size (MCRS). According to the
mRNA levels, fsh and lh played a significant role during spermiation, whereas the gnrhr2a was
involved at the beginning of sexual maturity. In the testis, fshr and lhr reached maximum expression
levels before the spermiation. The hormonal stimuli of 11-ketotestosterone and its receptor were
significantly higher when the specimen was in reproductive activity.

Keywords: Merluccius merluccius; male reproductive pattern; histological analysis; somatic indexes;
reproductive regulation; Central Mediterranean Sea
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1. Introduction

The Mediterranean Sea offers a wide variety of species of commercial interest, showing
high diversity in fishing patterns, with a vast geographical dispersion of landing sites and
islands [1]. It is considered one of the most economically important seas in the world [2].
Unfortunately, several factors such as the overexploitation of fishery resources, more and
more severe anthropic pressure and high demand for marine resources, bycatch, habitat
loss and degradation, the introduction of alien species, eutrophication, pollution, climate
change, and ghost fishing are threatening the marine diversity [3], resulting in a general
decline of resources [4].

In 2017, among the FAO’s 16 Major Fishing Areas, the Mediterranean and Black Sea
(Area 37 [5]) had the highest percentage (62.5%) of stocks fished at unsustainable levels [4].
Based on data collected up to 2016 in the same area (FAO37), 41 out of 47 examined stocks
resulted out of safe biological limits [6].

This panorama impelled countries and international organizations to act; in particular,
the General Fisheries Commission for the Mediterranean (GFCM) of the Food and Agri-
culture Organization of the United Nations (FAO) and all its members established a new
strategy to improve scientific knowledge and data collection to facilitate the adoption of
effective management measures [7]. According to their report, although 75% of fish stocks
still remain subject to overfishing, this percentage fell by more than 10% in 2014–2018,
demonstrating that the newly adopted strategy is successfully inducing a countertrend.

In particular, among demersal species, European hake (Merluccius merluccius, L. 1758),
which is highly exploited [8], had shown a marked reversal trend: its critical exploitation ra-
tio decreased by 39% since 2013 [7]. This species plays a fundamental role in Mediterranean
landings and is the second most important demersal fish species in terms of abundance and
economic value [9–12]. Italy is the country that mainly exploits this species; in particular,
Italian bottom trawl catches of the Northern and Central Adriatic Sea represent around
75% of the total Adriatic catches. In this area, landings present a fluctuating trend all over
the time series considered accounting for the highest value in 2006 and the lowest value in
2019 [13].

It is widely distributed and inhabits the waters of the Atlantic Ocean, the entire
Mediterranean Sea, and the southern waters of the Black Sea [14]. The bathymetric distri-
bution is between 25 and 1000 m deep, with the highest densities recorded between 100
and 300 m. It has been observed that colder and nutrient-rich waters, such as the Atlantic,
favour the existence of larger individuals that mature later than in warmer waters, such
as the Mediterranean Sea, and specifically in the Adriatic. In the Mediterranean Sea, the
size does not exceed 80–90 cm. In the northern and central Adriatic, females are already
predominant at length values between 30 and 33 cm and represent the entire population
when they reach 38–40 cm [15].

European hake is a gonochoristic species, multiple “spawner” with external fertil-
ization of the eggs, indeterminate fecundity, and pelagic and fractional deposition [16].
Reproduction takes place throughout the year, however, shows different intensities and
reproductive peaks that vary depending on the area.

Several studies on the reproductive biology of European hake have been conducted
in different areas [10,17–21], but generally on females, which define the spawning stock
biomass (SSB).

In the light of above, the aim of the current study is to characterize, for the first time
in the Mediterranean Sea, in the Northern and Central Adriatic Sea area (GSA 17 [22]) the
reproductive biology of males of M. merluccius, providing in-depth knowledge in basic
research and contributing to complete the picture of the species. To achieve this goal, a
multidisciplinary approach was used, from a macroscopic to a molecular point of view.
Reproductive parameters, such as sex ratio estimation, macroscopic maturity staging, and
somatic indices were assessed to obtain an overview of the reproductive traits of the male
European hake. The histological examination was performed in order to investigate the
reproductive cycle of the male and to verify the validity of the reference scale in use [23,24]
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or possibly modify it ad hoc for the species. The histological analysis was also used to
compare macroscopic and microscopic approaches, reliability, and accuracy, since the
macroscopic method gives a rapid and cheaper evaluation of the gonad, but suffers from
relatively high error rates in assigning the reproductive stage. Furthermore, macroscopic
and histological size at first maturity were evaluated and compared.

The study was completed by deepening the understanding of the regulation of repro-
duction: gene expression profile in the pituitary and testis and 11-ketotestosterone levels in
plasma provided knowledge about the recurrence of the reproductive cycle in adults and
the onset of the critical phase of reproduction and puberty [25,26]. Both mechanisms are
determined by the functional competence of the brain-pituitary-gonad (BPG) axis [27].

2. Materials and Methods

Sampling. Wild European hakes (Merluccius merluccius) were sampled from January
2017 to December 2019 (except August due to the fishing ban) in the Northern and Central
Adriatic Sea (GSA 17) in order to investigate the reproductive biology of the species
(Figure 1).
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Figure 1. Map of the study area elaborated by Michela Martinelli, using the Manifold System 8.0
Universal Edition and list of the monthly sampling sites.

Our study was based on two sources of samples:

- random specimens were collected each month from all three years by professional
fishing trawlers on the landing port, then preserved on ice and transported to the
laboratory for analysis. The analysis performed on these specimens was finalized for
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macroscopic and histological investigations (both sex for sex ratio calculation, only
males for somatic indices evaluation, histological gonad assessment, and size at first
maturity estimation).

- three additional biological samplings were carried out by researchers onboard commer-
cial fishing trawl vessels, during the daily fishing activity, in June, July, and September
2018, in order to dissect some male specimens selected from the catch, collect fresh
tissues (pituitary and testis were preserved in RNA until later use) and drew blood
immediately after death from the caudal peduncle area, as required by the protocols of
hormonal and molecular analysis. The operator selected individuals in good condition
and at different sizes, in order to obtain a total sample that favored the male sex and
involved all length classes.

Sampling was carried out at a bathymetric layer of 0–200 m and accidental fishing un-
der the commercial size (total length < 20 cm) was also included, to more comprehensively
investigate the size at first maturity.

The sample collection was performed under the guidelines of the Data Collection
Framework Regulation (EU Reg.199/2008), establishing a community system for the con-
servation and sustainable exploitation of fisheries resources under the Common Fisheries
Policy (CFP). The procedures did not include any animal experimentation and ethics ap-
proval was therefore not necessary, in accordance with the Italian legislation (D.L. 4 of
March 2014, n. 26, art. 2)

Sex ratio. Males were distinguished from females by abdominal incision and gonad
macroscopic inspection. The sex ratio of the European hake population was estimated both
as the ratio between the total number of males and the total number of females [28,29]
and as the proportion of females to the total sample [30–34], computed with the following
equations:

Sex ratio = Male (n) : Female (n) (1)

Sex ratio =
Female (n)

(Female (n) + Male (n))
(2)

Female specimens were considered for the sex ratio evaluation, and all the subsequent
analyses only concerned males.

Somatic indices. Samples collected onboard were not used for somatic indices es-
timation, as it was not possible to carry out precise weighing for the gonad. The whole
commercial sample (N = 219) was taken into account, using the same animals both for GSI
and HSI. The total length of male specimens (Lt, cm) was determined from the snout to the
end of the caudal fin with an accuracy of 0.1 cm. The total weight (Wt, g) was measured
to the nearest 0.1 g. Testis, liver, and viscera were removed from each animal, and gonad
weight (Wgon, g), liver weight (Wl, g), and gutted weight (Wgut, g) were measured with an
accuracy of 0.001 g. Following the recommendation of Somarakis et al. [35], somatic indices
based on gutted, rather than total fish weight, were not influenced by the amount of food
in fish stomachs.

The monthly variation of the gonadosomatic index (GSI) and hepatosomatic index
(HSI) were evaluated according to the following equations:

GSI =
Gonad Weight (g)
Gutted Weight (g)

× 100 (3)

HSI =
Liver Weight (g)

Gutted Weight (g)
× 100 (4)

Histology. Male European hake, from different monthly sampling and with different
sizes, were randomly chosen to evaluate the gonadal developmental stage, compare it with
the macroscopic staging method, and validate the reference maturity scale generally used
for teleost males. Testis were fixed in 10% neutral formalin buffered with saline phosphate
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buffer, stored overnight at 4 ◦C, repeatedly washed with water and PBS 0.1 M, and finally
stored in 70% ethanol at 4 ◦C until analysis. Samples were dehydrated through increasing
ethanol concentrations and xylene, embedded in paraffin, and cut at a thickness of 4 µm
by microtome (model RM2125 RTS; Leica Biosystem, Wetzlar, Germany). Consecutive
sections were stained by Mayer’s hematoxylin and eosin method and examined under a
microscope (Axio Imager 2; Zeiss, Oberkochen, Germany) at different magnifications. An
assessment of the histological reproductive stage of samples was performed according to
the maturity scale of Brown-Peterson et al. [23] already adapted to the species M. merluccius
by Candelma et al. [24].

Size at first maturity (L50). The classification of the maturity stage for male European
hake was based on macroscopic and microscopic assessment in order to determine the
macroscopic and histological size at first maturity, respectively. L50 was estimated by the
logistic function according to Prager et al. [36]:

p = [1 + e− r (x− x50)− 1] (5)

where p is the proportion of mature males for each class of length, r is a fitted parameter,
x is the total length, and x50 is the total length at which 50% of the males are mature.
Specimens in the immature histological stage were classified as immature, and specimens in
the developing, early spermiogenesis, late spermiogenesis, and regenerating stages were classified
as mature.

Gene expression profile. Male selected specimens collected during the three bio-
logical samplings by researchers onboard commercial fishing trawl vessels were used
to investigate the expression levels of some pituitary and testis genes implicated in the
regulation of reproduction. Analyzed genes, primers, and their annealing temperature are
shown in Table 1.

Table 1. Analysed genes and primer sequences used for real-time quantitative PCR (qPCR).

Gene Name Accession
Number Primer Sequence (5′-3′) Orientation

Annealing
Temperature

(◦C)

Testis b-act EU022566 5′-GTCATGGACTCCGGTGATGG-3′ forward 60 ◦C

5′-GAGGTAGTCTGTGAGGTCGC-3′ reverse 60 ◦C

18S KF986702 5′-GAGGCCCTGTAATTGGAATG-3′ forward 60 ◦C

5′-CGCAAGACACTCAACCAAGA-3′ reverse 60 ◦C

fshr KY178270 5′-CATGGCCGTGCTCATCTTC-3′ forward 58 ◦C

5′-ATGAAGAGGAAGGGGTTGGC-3′ reverse 58 ◦C

lhr KY178271 5′-GTCAGCGAGTTGGACATGGA-3′ forward 61 ◦C

5′-ATGACCCAGGTGAGAAAGCG-3′ reverse 61 ◦C

ar-alpha ON736432 5′-AAGCCATACCAGGTTTCCGT-3′ forward 57 ◦C

5′-GATCAGGTCTGGAGCGAAGT-3′ reverse 57 ◦C

Pituitary b-act EU022566 5′-GTCATGGACTCCGGTGATGG-3′ forward 60 ◦C

gland 5′-GAGGTAGTCTGTGAGGTCGC-3′ reverse 60 ◦C

18S KF986702 5′-GAGGCCCTGTAATTGGAATG-3′ forward 60 ◦C

5′-CGCAAGACACTCAACCAAGA-3′ reverse 60 ◦C

fshb KX377614 5′-TCTGTCGCCCAGTCAACTTC-3′ forward 58 ◦C

5′-CCCACCGGACAGTCTTCAAA-3′ reverse 58 ◦C

lhb KX377615 5′-CAGCGGACACTGCATCAC-3′ forward 60 ◦C

5′-ACAGTCCGGCAGCTCAAA-3′ reverse 60 ◦C

gnrh-r2a ON736433 5′-CGTTCCTCAGTTGTTCCTCT-3′ forward 60 ◦C

5′-CCAGTGGGTGTCGAAGCTG-3′ reverse 60 ◦C
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RNA extraction and cDNA synthesis. Total RNA was extracted from testes and pituitary
glands using RNAzol RT Reagent (Sigma-Aldrich, St. Louis, MO, USA), following the
manufacturer’s protocol. All RNA samples were treated with DNase 1 (Sigma-Aldrich Co.,
LCC., St. Louis, MO, USA) to remove any traces of DNA. According to Candelma et al. [37],
a total amount of 1 µg per testis sample and 0.2 µg per pituitary gland sample were
used for cDNA synthesis, employing the High-Capacity cDNA Reverse Transcription Kit
(ThermoFisher Scientific, Waltham, MA, USA) and iQ5 iCycler thermal cycler (Bio-Rad).

Real-Time PCR. All qPCR assays were run in duplicate for each sample (both testis
and pituitary gland), using the CFX Connect Real-Time System thermal cycler (Bio-Rad,
San Diego, CA, USA). For each reaction, 1 µL of diluted (1/10) cDNA was combined with
0.2 µM forward primer, 0.2 µM of reverse primer, and 5 µL of 2X concentrated FluoCycle
II SYBR Master Mix (Euroclone, Milan, Italy), containing SYBR Green as a fluorescent
intercalating reagent. The thermal profile for all reactions was 3 min at 95 ◦C, 45 cycles
for 10 s at 95 ◦C, 20 s at primer annealing temperature, and 20 s at 72 ◦C. The reference
genes used to normalize data from cDNA were beta-actin (b-act) and 18S. No amplification
product was observed in non-template controls and no primer-dimer formations were
observed in the control samples.

The data obtained were analyzed using the iQ5 optical system software version 2.0
(Bio-Rad), including GeneEx Macro iQ5 Conversion and GeneEx Macro iQ5 files.

Steroid Immunoassay
The 11-ketotestosterone (11-KT) content in the plasma of male European hake was

evaluated by a conventional enzyme immunoassay (EIA) developed for the Siberian stur-
geon [38] and modified for its use in the sea bass [39].

Plasma from selected male specimens collected during the three biological sam-
plings by researchers onboard commercial fishing trawl vessels were briefly extracted
with methanol. The organic solvent was evaporated at 37 ◦C and the dry extract, visible as
a pellet, was reconstituted by vortexing in a volume of assay buffer (EIA buffer, Cayman
Chemical, Ann Arbor, MI, USA) equal to twice the initial volume of plasma. The assay
was carried out in a final volume of 150 µL in 96-well microtiter plates coated with mouse
anti-rabbit IgG monoclonal antibodies (Clone RG-16, Sigma-Aldrich, Inc., St. Louis, MO,
USA); it was performed by using an 11-KT acetylcholinesterase conjugate (11-KT-AChE,
Cayman Chemical, Ann Arbor, MI, USA) as tracer (0.1042 UE/mL), specific anti-11-KT
rabbit antiserum [39] (diluted to 1:200,000), 11-KT standards (ranging from 1.0 ng/mL
to 0.0005 ng/mL), or samples (50 µL). Plates were incubated overnight at 4 ◦C, under
shaking conditions (140 rpm), rinsed, and color development was performed by adding
200 µL/well of diluted (1:50) Ellmans’s reagent followed by incubation under shaking
conditions (140 rpm) for 4 h at 20 ◦C in the dark. Optical density was detected at 405 nm in
a microplate reader (Bio-Rad microplate reader model 3550). The sensitivity of the assay
was 0.002 ng/mL (Bi/B0 = 90%) and half-displacement (Bi/B0 = 50%) occurred around
0.015 ng/mL.

Data Analysis. All the statistical analyses were performed in the R environment,
using R software version 3.6.2 (R Core Team, 2020).

The Chi-square goodness of fit test was adopted to determine whether the sex ratio
monthly variation differed from the expected value (1:1). The null hypothesis (no difference
between the observed and expected proportions) was tested at p < 0.05.

Statistical differences in somatic indices variations, gene expression profile, and 11-
ketotestorerone plasma levels were checked by one-way analysis of variance (ANOVA)
followed by a post hoc Tukey’s multiple comparison test. The confidence interval was set
at 95% (p < 0.05) and results were expressed as mean value ± standard error of the mean (SEM)
for somatic indices, or mean value ± standard deviation (s.d.) for gene expression and 11-KT
plasma levels.

The calculation of the histological sample size was performed by Cochran’s Formula,
in order to ensure reliable results for the gonad maturity stage assessment in the population.
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A contingency table was used to compare the macroscopic staging method used
during the commercial surveys with the histological staging method used in the laboratory.
The percentage of agreement was calculated by dividing the total number of samples for
which the methods agreed by the total number of specimens sampled during 2018. Cohen’s
k coefficient [40] was applied to assess the agreement between the five stages according
to the histological classification, considered as the reference baseline, and the five stages
according to the macroscopic classification.

The statistical significance (p < 0.05) of the estimated parameters for macroscopic
and histological L50 values was tested by the Wald test, the goodness of fit was assessed
using the McFadden pseudo-R square (R2

MF) [41] and the Cohen’s k coefficient [40] was
applied to assess the agreement between the histological estimation, considered as the
reference baseline, and the macroscopic estimation of L50. The likelihood ratio test was
performed to compare the L50 values obtained by the macroscopic approach and the
histology-based method.

3. Results

European hake specimens were monthly collected in the GSA 17 from January 2017 to
December 2019 by professional fishing trawlers on a landing port. A multi-year sampling
was available as the Institute for Marine Biological Resources and Biotechnology of the Na-
tional Research Council (CNR-IRBIM) of Ancona is involved in planned research activities
requested by the “Data Collection Framework-Biological Sampling of Commercial Catches”
(DCF, EU Regulation 2017/1004), since 2006.

A total of 1316 collected samples were used to exhaustively estimate the sex ratio of
the stock (females/males + females): 598 were males (45.44%) and 718 females (54.33%),
according to the macroscopic evaluation of the gonad. Therefore, in the population of
European hake during the three-year period, the sex ratio was biased towards females,
significantly differing from the expected value of 0.5 (male:female = 1:1), as indicated by
the Chi-square test of goodness of fit (sex ratio = 0.545; male:female = 0.83:1; χ2 = 10.942,
df = 1, p-value = 0.00094; Table 2).

Table 2. Summary of the Chi-square test of goodness of fit performed on the monthly sex ratio
throughout the three-year period of 2017–2019. Asterisks indicate a significant difference (p < 0.05) in
the sex ratio compared to the expected value.

MONTH N◦ of Fish N◦ of Males N◦ of
Females

Sex Ratio
(M:F)

Sex Ratio (Females/Males
+ Females) χ2 p-Value

January 122 37 85 0.44:1 0.697 18.885 1.388 × 10−5 *
February 123 64 59 1.08:1 0.480 0.20325 0.6521
March 122 69 53 1.30:1 0.434 2.0984 0.1475
April 133 79 54 1.46:1 0.406 4.6992 0.03018 *
May 142 78 64 1.22:1 0.451 1.3803 0.2401
June 113 70 43 1.63:1 0.381 6.4513 0.01109 *
July 95 38 57 0.67:1 0.600 3.80 0.05125
September 105 53 52 1.02:1 0.495 0.009524 0.9223
October 111 48 63 0.76:1 0.568 2.027 0.1545
November 117 26 91 0.29:1 0.778 36.111 1.864 × 10−9 *
December 133 36 97 0.37:1 0.729 27.977 1.227 × 10−7 *

TOTAL 1316 598 718 0.83:1 0.545 10.942 0.00094 *

The monthly analysis showed an average value of 0.547 ± 0.039 (mean ± SEM) and
the trend is reported in Figure 2: males slightly dominated the population from February
to June, while females did so during the second half of the year. The Chi-square test of
goodness of fit performed by months revealed that the sex ratio was significantly biased
towards males in April and June, and towards females in November, December, and
January (Table 2).
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Figure 3 shows the gender distribution by length class: in the range of 14–24 cm, the M.
merluccius population was dominated by males. At smaller sizes, only males were found,
whilst starting from 25 cm, females became prevalent to make up 100% of the population
from 31 cm onwards.
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In order to highlight the reproductive pattern of males and perform an in-depth study,
an annual smaller sample was selected from the total multi-year one, ensuring a homoge-
neous and reliable sub-population. Male specimens collected from January to December
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2018 turned out to be a sufficient number to guarantee a dependable representation of
the whole population, as shown by Cochran’s formula modified in the case of a smaller
population (ideal sample size = 234, from the total N = 598). A total of 318 M. merluccius
males, ranging from 13 cm to 29 cm, were sampled in 2018: 249 individuals were collected
from professional fishing trawlers on landing ports, and 69 individuals directly onboard
commercial vessels by researchers. The operator-on-board samplings were carried out
excluding females and selecting males since the aim was to collect fresh samples from
males to perform molecular and hormonal analysis.

Of the 249 samples collected from the landing port, 34 were excluded due to the
poor condition of the gonad, which did not allow for accurate assessment, reducing the
commercial sample size to N = 215 and the total one to N = 284 available for the further
analysis described in the present work.

3.1. Somatic Indices

Samples collected on board were not used for somatic indices estimation, as it was not
possible to carry out precise weighing for the gonad, and the whole commercial sample
(N = 215) was taken into account, using the same animals both for GSI and HSI. The
monthly variation of indices throughout 2018 is shown in Figure 4.
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mean; (B) HSI mean. Data are reported as mean ± standard error of the mean (SEM). Tables alongside
each graph indicate statistically significant differences between months evaluated by the one-way
ANOVA and the post hoc Tukey’s test.



Biology 2023, 12, 562 10 of 22

GSI mean values gradually increased from January to July, peaking between March
and July, and remarkably decreased in September, keeping minimum levels until December.
The hepatosomatic index (HSI) approximately kept constant levels throughout the year,
with maximum values in June and November. All statistically significant differences
detected in the GSI and HSI monthly values, evaluated by the one-way ANOVA and the
post hoc Tukey’s test, are shown in Figure 4.

3.2. Histology

A total of 284 gonads were analyzed and 232 of them were histologically confirmed
to be testis at different maturity stages. The microscopic aspect of the 232 testes revealed
that the European hake has an unrestricted tubular testis. The reference scale, from Brown-
Peterson et al. [23] and Candelma et al. [24] was used as a guideline, and five stages were
distinguished in the present work by specific macroscopic and histological features: imma-
ture, developing, early spermiogenesis, late spermiogenesis, and regenerating. In immature testis
only primary spermatogonia are present and there is no lumen in lobules (Figure 5 A,B).
The developing stage displays evident spermatocytes along lobules that can contain sec-
ondary spermatogonia, primary and secondary spermatocytes, spermatids, and rarely,
spermatozoa still not released (Figure 5C,D). In early spermiogenesis testis, all germ cell
stages can be detected, with the dominance of spermatocytes and spermatids. Small clus-
ters of spermatozoa are found in the lumen of lobules and/or sperm ducts, after breaks of
spermatocytes (Figure 5E,F).
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stages of development: (A,B) immature stage with compact cavity-free and homogeneous tissue,
only spermatogonia are present; (C,D) developing stage spermatocysts containing spermatogonia
(Sg), primary spermatocytes (Sc1), secondary spermatocytes (Sc2), and spermatozoa (Sz), still not
released in lumen; (E,F) early spermiogenesis stage showing almost empty lumen (L), the dominance of
spermatocytes and spermatids (St), and small clusters of spermatozoa starting to be released, with
evident tails. Scale bar: 50 µm for (A,E); 20 µm for (B–D,F).

Late spermiogenesis stage is characterized by a more considerable number of sperma-
tozoa in the lumen of lobules and sperm ducts, compared to other stages (Figure 6A–D).
In the stage regenerating, spermatocytes consist of primary and secondary spermatocytes,
spermatogonia proliferate throughout the testis, the lumen of lobules and sperm ducts
contain residual spermatozoa, and the discontinuous germinative epithelium is evident
(Figure 6E,F). Individuals staged in regenerating showed some variability in characteristics,
based on the time since the last spawning.
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stages of development: (A–C) late spermiogenesis stage with the lumen of lobules totally full of sper-Figure 6. Representative histological photomicrographs of European hake testis at the last two stages
of development: (A–C) late spermiogenesis stage with the lumen of lobules totally full of spermatozoa
(Sz), discontinuous germinative epithelium (GE), and spermatocysts containing spermatocytes (Sc1,
Sc2) and spermatids (St); (D) late spermiogenesis showing the confluence of spermatozoa towards the
sperm duct; (E,F) regenerating stage when the reproductive cycle is just ended, mainly composed by
spermatogonia (Sg) proliferating throughout the testis and residual spermatozoa (Sz) in the lumen.
Scale bar: 200 µm for (D); 100 µm for (A,E); 50 µm for (B,C,F).
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The monthly distribution of maturity stages is shown in Figure 7. Not all stages were
found during monthly samplings. Immature individuals were sampled between June and
October, while the other stages had a larger distribution throughout the year. Specimens in
late spermiogenesis were found every month, from January to December, representing the
most abundant stage until July and decreasing in autumn and winter.
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Figure 7. Monthly incidence of different European hake maturity stages (immature, developing, early
spermiogenesis, late spermiogenesis, regenerating) assigned using a histological approach, during the
year 2018. N = 232. Bars show the relative frequency (%) of each stage by month.

The similarity percentage between the staging by the two different approaches (macro-
scopic and histological) was 18.1%. Considering the histological classification as the refer-
ence baseline, the percentage changed according to the maturity stage: the highest similarity
percentage was registered for the late spermiogenesis stage (93.3%), conversely, the lowest
values were recorded for immature (17.9%) and developing (0%) stages. In the cases of
early spermiogenesis and regressing, the similarity percentage was 3% and 20%, respectively.
Cohen’s k was 0.02 (95% confidence interval: −0.02–0.06), which corresponds to a “slight”
level of agreement [42].

3.3. Size at First Maturity (L50)

The L50 was estimated by using all the specimens for which both macroscopic and
histologic assessments of gonads were performed (N = 232). The size at first maturity based
on the macroscopic staging of the testis was found to be 18.6 cm (Figure 8A). The estimated
parameters of the logistic regression are summarized in Table 3, showing statistical signifi-
cance (p < 0.05). The shortest size at which male specimens reached sexual maturity was
17 cm. The value of R2

MF, which indicates the goodness of fit, was 0.71 (Table 4).



Biology 2023, 12, 562 13 of 22

Biology 2023, 12, x FOR PEER REVIEW 14 of 24 
 

 

estimated parameters of the logistic regression are summarized in Table 3, showing sta-

tistical significance (p < 0.05). The shortest size at which male specimens reached sexual 

maturity was 17 cm. The value of R2MF, which indicates the goodness of fit, was 0.71 (Table 

4). 

Table 3. Summary of the size at first maturity (L50) estimated based on macroscopic and histological 

classifications of gonadal maturity stages of European hake males. Logit regression and the Wald 

Test were performed in the R environment (R Core Team, 2020). 

L50 MACROSCOPIC 

Coefficient Estimate Std. Error (SE) z value p value 

a −21.08 3.14 −6.73 <0.0001  

b 1.13 0.17 6.81 <0.0001  

L50 HISTOLOGICAL     

Coefficient Estimate Std. Error (SE) z value p value 

a −22.13 6.02 −3.68 0.00023  

b 1.44 0.37 3.89 0.00010  

The same samples previously classified through a macroscopic analysis were vali-

dated by the histological approach and the logistic curve was computed (Figure 8B). The 

size at first maturity based on histological classification was found to be 15.4 cm. The es-

timated parameters of the logistic regression, summarized in Table 3, were statistically 

significant (p < 0.05), whereas the R2MF was 0.57 (Table 4). According to the histological 

analysis, the shortest length at which male specimens reached sexual maturity, starting 

spermatogenesis, was 14.5 cm. 

The macroscopic L50 and the histological L50 were significantly different (p < 0.05), 

according to the Likelihood ratio test (Table 4), the agreement between the two values was 

76.7 % and the Cohen’s k was 0.24 (95% confidence interval: 0.13–0.36) (Table 4), which 

corresponds to a “fair” level of agreement [42]. 

 

Figure 8. Estimated size at first maturity (L50) according to (A) macroscopic classification and (B) 

histological classification of European hake male specimens. The grey dashed lines correspond to 

the 95% confidence interval. N = 232. The estimation of L50 was performed using R statistical soft-

ware version 3.6.2 (R Core Team, 2020). 

  

Figure 8. Estimated size at first maturity (L50) according to (A) macroscopic classification and
(B) histological classification of European hake male specimens. The grey dashed lines correspond
to the 95% confidence interval. N = 232. The estimation of L50 was performed using R statistical
software version 3.6.2 (R Core Team, 2020).

Table 3. Summary of the size at first maturity (L50) estimated based on macroscopic and histological
classifications of gonadal maturity stages of European hake males. Logit regression and the Wald
Test were performed in the R environment (R Core Team, 2020).

L50 MACROSCOPIC

Coefficient Estimate Std. Error (SE) z Value p Value

a −21.08 3.14 −6.73 <0.0001
b 1.13 0.17 6.81 <0.0001

L50 HISTOLOGICAL

Coefficient Estimate Std. Error (SE) z Value p Value

a −22.13 6.02 −3.68 0.00023
b 1.44 0.37 3.89 0.00010

Table 4. Summary of L50 values and comparison between macroscopic and histological methods.
Likelihood ratio test and Cohen’s k coefficient of the agreement were performed in the R environment
(R Core Team, 2020).

Estimation of Size at First
Maturity Likelihood Ratio Test Cohen’s k Coefficient of Agreement

Value Conf.
Interval R2

MF LogLik Chi-sq p Value Value Conf.
Interval ASE z Value p Value

Macroscopic
Method 18.6 18.2–19.0 0.71 −59.42

73.63 <0.0001 0.24 0.13–0.36 0.06 4.10 0.000042
Histological

Method 15.4 14.6–16.1 0.57 −22.61

The same samples previously classified through a macroscopic analysis were validated
by the histological approach and the logistic curve was computed (Figure 8B). The size at
first maturity based on histological classification was found to be 15.4 cm. The estimated
parameters of the logistic regression, summarized in Table 3, were statistically significant
(p < 0.05), whereas the R2

MF was 0.57 (Table 4). According to the histological analysis, the
shortest length at which male specimens reached sexual maturity, starting spermatogenesis,
was 14.5 cm.
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The macroscopic L50 and the histological L50 were significantly different (p < 0.05),
according to the Likelihood ratio test (Table 4), the agreement between the two values was
76.7 % and the Cohen’s k was 0.24 (95% confidence interval: 0.13–0.36) (Table 4), which
corresponds to a “fair” level of agreement [42].

3.4. Gene Expression Profile

From the total of 69 available samples collected directly onboard, the expression of the
selected genes was evaluated only for those samples for which it was possible to obtain both
a good RNA extraction, a consistent quantification of expression, and a reliable histological
analysis to classify specimens according to the maturity stage of the gonad.

3.4.1. Pituitary Gland

The mRNA expression of the gonadotropin-releasing hormone receptor 2a (gnrhr2a)
showed the lowest value in the pituitary from immature specimens, gradually increased
in developing until reaching the peak in early spermiogenesis, which was significant only
compared to the immature stage (p < 0.05). The levels did not significantly decrease in late
spermiogenesis (Figure 9A). Gonadotropin (fsh and lh) expression levels were also checked
(Figure 9B,C). fsh gradually increased from immature to late spermiogenesis, where the peak
was recorded as significant only compared to immature (p < 0.05). The trend of lh showed
similar expression levels in immature, developing, and early spermiogenesis and sharply raised
in late spermiogenesis, peaking significantly compared to the other stages (p < 0.05).
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Figure 9. Relative mRNA expression levels of (A) gnrhr2a, (B) fsh, and (C) lh in the pituitary gland of
European hake specimens at different gonadal stages (N = 20). The abundance of gnrhr2a, fsh, and
lh transcripts was determined by qRT-PCR and normalized with b-actin and 18S. Letters represent
statistical significance (p < 0.05) among different maturity stages, as indicated by the one-way ANOVA
and the post hoc Tukey’s test, performed using Prism 6 (GraphPad Software, San Diego, CA, USA).
The values are mean ± standard deviation (s.d.). Imm = immature stage (N = 5); Dev = developing stage
(N = 3); ESp = early spermiogenesis stage (N = 5); LSp = late spermiogenesis stage (N = 7).

3.4.2. Testis

Transcripts of receptors for Fsh (fshr), Lh (lhr), and androgens (ar alpha) were detected in
the testis. Fshr had conspicuous expression from immature to early spermiogenesis, recording
statistical significance in this stage, compared to late spermiogenesis (p < 0.05), where the
expression remarkably decreased (Figure 10A). lhr showed the peak of expression in the
developing stage, significantly different compared to the sudden decline both in early and
late spermiogenesis testis (p < 0.05) (Figure 10B).
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Figure 10. Relative mRNA expression levels of (A) fshr, (B) lhr, and (C) ar alpha in the testis of
European hake specimens at different gonadal stages (N = 30). The abundance of fshr, lhr, and ar
alpha transcripts was determined by qRT-PCR and normalized with b-actin and 18S. Letters represent
statistical significance (p < 0.05) among different maturity stages, as indicated by one-way ANOVA
and post hoc Tukey’s test, performed using Prism 6 (GraphPad Software, San Diego, CA, USA). The
values are mean± standard deviation (s.d.). Imm = immature stage (N = 5); Dev = developing stage (N = 5);
ESp = early spermiogenesis stage (N = 7); LSp = late spermiogenesis stage (N = 13).

The trend of ar alpha showed low levels in immature, developing, and early spermiogenesis
testis compared to the significant peak in late spermiogenesis one (p < 0.05) (Figure 10C).

3.5. 11-Ketotestosterone Immunoassay

From the total of 69 available samples collected directly onboard, the plasma levels
of 11-ketotestosterone (11-KT) were evaluated only for those samples for which it was
possible to obtain both a good steroids extraction, a consistent quantification by ELISA,
and a reliable histological analysis to classify specimens according to the maturity stage of
the gonad.

Figure 11 shows that specimens in the immature stage had 11-KT values close to zero;
the levels increased in the other stages, with similar values between developing and early
spermiogenesis and maximum registered in late spermiogenesis, which is significantly different
compared to all the other stages.
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Figure 11. Levels of 11-ketotestosterone in plasma of European hake specimens at different gonadal
stages (N = 19). Letters represent statistical significance (p < 0.05) among different maturity stages,
as indicated by one-way ANOVA and post hoc Tukey’s test, performed using Prism 6 (GraphPad
Software, San Diego, CA, USA). The values are mean ± standard deviation (s.d.). Imm = immature stage
(N = 3); Dev = developing stage (N = 4); ESp = early spermiogenesis stage (N = 4); LSp = late spermiogenesis
stage (N = 8).
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4. Discussion

The overexploitation and the general decline of fishery resources caused by ever-
increasing food demand and by environmental degradation become worrisome and make
it urgent to take on management measures, supported by continuously updated scientific
knowledge. Due to the economic importance and the overfishing status of the stock [17],
the present study focused on the European hake (M. merluccius), providing for the first
time in the Mediterranean, an exhaustive investigation of the reproduction of males using
a multidisciplinary approach.

A first overview of the M. merluccius stock in GSA 17 was given by the sex ratio
analysis. A multi-year sampling (2017–2019) provided an exhaustive picture of the state of
the population. The sex ratio was slightly biased toward males from February to June and
in shorter total length specimens, in accordance with previous studies in the Mediterranean
Sea [19,43].

The spatial distribution of the population can be influenced by environmental factors
such as oceanographic features, temperature, and food availability [44–46], but no informa-
tion about possible sex-related differences in migration is available in the literature. The
total sex ratio biased toward females is caused by the clear prevalence of females from
October to January, while in the spawning season, this sex is outnumbered by males.

According to Soykan et al. [43], females generally dominate the stock, and males’
abundance declines after a certain size (>30 cm). Starting from 38–40 cm, in the Northern
and Central Adriatic Sea, the hake population is totally composed of females [47] and it
could be explained by the fact that the growth rate of European hake can be considered
similar between sexes during the first year of their life, i.e., up to 20 cm in the Mediterranean
area, as asserted by several studies focused on otolith microstructure analysis of juveniles.
In the Catalan Sea, seasonal growth rates yielded an approximated length of 20 cm at the
end of the first year [48]; this length was estimated to be 16 cm in the central Adriatic [49],
17 cm in the Aegean Sea [50], and 18 cm in the Tyrrhenian Sea [51]. After the first year of
their life, around about 20 cm, males slow down their growth [49]. These studies supported
our results, explaining why, in the sex ratio by length, males dominate the population up
to 25 cm, then their presence decreased until the females make it up completely, starting
from 31 cm.

The absence of differentiated females in the smallest class (13–14 cm) may be due
to a different development between sexes; females mature when they reach a bigger
size compared to males [20,21], and in such small sizes specimens could present a still
undifferentiated gonad that could convert in the ovary later.

M. merluccius is considered an asynchronous species, with a protracted spawning
season [52,53], reproductive all year round in the Atlantic Ocean and Mediterranean
Sea, since mature specimens were frequent throughout the year [54,55]. In general, two
spawning peaks were recognized: the first one occurs in winter, in deeper water, then
adults move to shallower waters, during the reproductive season, recording the second
peak in spring-summer [21,55–57]. However, depending on the geographical area, the
spawning pattern could change and only one peak [10,53,54,58,59] or more than two could
be recognized [60,61].

In the present study, the highest values of gonadosomatic index (GSI) were registered
between March and July, indicating that there is only one peak in the reproductive cycle
of males in GSA 17 during 2018 and it occurs in spring-summer. This result agrees with
our previous works [20,37], where the reproductive pattern of M. merluccius females was
investigated in the same geographic area and the GSI levels significantly increased in
summer (June and April–July, respectively). The absence of the winter peak may be caused
by the reduced bathymetry of the sampling carried out in the Adriatic Sea in the period in
which this species migrates to deeper waters [56,62]. Moreover, variation in the spawning
pattern of European hake could be merely attributable to regional discrepancies [43] or to a
natural certain interannual variability [43]. According to Recanses et al. [10], the influence
of temperature does not seem to be a key factor for the determination of spawning peaks



Biology 2023, 12, 562 17 of 22

of this species, but we do not exclude that in some areas with specific oceanographic
conditions, it may be crucial. Furthermore, the annual evolution of the somatic indices is
not as clear as in species with a shorter spawning season [43].

The reproductive activity requires energy, partly coming from ingested food, mainly
from reserves in the liver and muscles. Therefore, it is reasonable to expect that the weight
of the liver and muscle would reflect the accumulation and utilization of these energy
reserves [63]. In the European hake, lipids are stored mainly in the liver, confirming the
important role of this organ for energy storage [64]. In general, species adopt different
reproductive strategies according to their dependence on energy storage: capital breeders
build up reserves while resources are available and reproduce at a later time independently
of food availability; income breeders allocate ingested food directly to reproduction [65]; the
individual can also adopt a mixed strategy with income and capital co-occurring [66]. In the
present study, the HSI trend was the same as that shown by females from the same study
area [20]. There is no clear complementary pattern between GSI and HSI, suggesting that in
this area (GSA 17), European hake can be defined as both income and a capital breeder, as
argued by Carbonara et al. [21], in GSA 10, 18, and 19. Hake is such a plastic species that it
can adapt its breeding strategy to the particular biotic and abiotic factors that characterize
the geographical area [67]. In the Mediterranean Sea, considered a poorer sea compared to
the Atlantic Ocean, during summer when many more resources are available, hake changes
its reproductive strategy and behaves like an income breeder, i.e., the energy allocated to
reproduction comes from concurrent feeding [67] and supports a long reproductive cycle.
It could also be probable that this species feeds during the entire spawning period, as
supposed by other authors in different Mediterranean areas [21,68].

Although biometrics, sex ratio, macroscopic classification of the gonads, and somatic
indices trend estimation are the easiest, most rapid, and cheapest method to assess stock
and fish reproductive status [69], it often lacks accuracy and precision [70]. Therefore,
the histological approach allowed us to assign the stage of maturity to the gonad in an
unambiguous and unequivocal way [71] and compare the two investigation methods.

For the first time in the Mediterranean geographic area, a deep investigation on the
gonadal development of M. merluccius male throughout the life cycle was obtained by
using a histological approach. The reference scale [23], already adapted to the species
M. merluccius by Candelma et al. [24], did not turn out to be completely suitable for describ-
ing the entire reproductive cycle of males, as the characteristics shown in this study by the
testis at different times of the year were not perfectly faithful to the reference description.
For this reason, the existing reference scale was modified ad hoc, and five stages were
recognized and distinguished by specific macroscopic and histological features. The stages
in this work are defined as immature and developing perfectly coincide with the immature and
developing described by Brown-Peterson et al. [23]. For the other stages, some differences
were recorded and the regressing stage was not recognized, because males can reproduce
throughout the year. There is no resting time, the latency period is so short that the last
phase of one reproductive cycle coincides with the first phase of the next cycle, as other
authors asserted in previous works [72]. Further confirmation is given by the presence
of reproductive fish, specifically late spermiogenesis specimens, both before and after the
reproductive peak (March–July), proving that for male European hake, the spermiation
occurs throughout the year.

Histological validation is strongly recommended to ensure a proper calibration be-
tween visual and microscopic staging [73–75]. In this study, it is proved that European hake
males’ maturity staging necessarily requires histological analysis and that the macroscopic
classification causes many evaluation errors in all stages. Indeed, the similarity percentage
between histological and macroscopic approaches was 18.1% and the Cohen’s k corre-
sponded to a “slight” level of agreement [42]. Moreover, the highest level of discrepancy
was recorded for the first two developmental stages, and it could be explained by the fact
that small size testis displayed the typical macroscopic appearance of the immature stage
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(small, clear, threadlike testis), but in the histological investigation they showed advanced
maturity stages.

The assessment of the maturity stages of the gonad is a crucial step for the estimation of
L50. Fish population dynamics studies required several parameters, such as the size at first
maturity, which allows for the management and protection of stocks, defining the minimum
catch size. Little is known about the size at first maturity for M. merluccius males: in the
Atlantic Ocean, the estimated L50 is 32.8 cm [54] and 28.6 cm [55], in the Sea of Marmara and
Aegean Sea L50 is 22.5 and 25.6 cm, respectively [43]. In the Adriatic Sea, values fluctuate
in a range of 20–28 cm [9,22]. The present study confirms that in the Adriatic Sea, the
European hake reaches maturity earlier than the other areas and therefore a smaller size.
Indeed, the macroscopic L50 was estimated to be 18.6 cm, differently the histological L50
estimated was 15.4 cm. This result is related to an incorrect classification of macroscopically
immature individuals, as confirmed by the 76.7% percentage of agreement and the “fair”
level of agreement expressed by Cohen’s k [42]. Unlike European hake females [20,21],
males are protected by Annex IX of the Council Regulation (EC) No 2019/1241 of 20th
of June 2019 [76], in which the Minimum Conservation Reference Size (MCRS) is 20 cm.
However, the protection of these species is not guaranteed because the females are still
immature at 20 cm, the fishing activity could lead to a decrease in this resource with the
collapse of the stock in upcoming years. Accordingly, the ability of exploited species to
survive annual environmental variation can be negatively affected by the reduction of age
and the average body size of the stock [77].

A series of internal and external factors stimulate and/or modulate the activation of
the brain-pituitary-gonad (BPG) axis [27], a complex physiological mechanism of regulation
that determines the ability to reproduce for the first time, or to enter puberty [25], once fish
reach a certain size, and the recurrence of the reproductive cycle during the life, once fish
became adults.

The present study investigated the role of the pituitary and gonad in the molecular
regulation of reproduction. The gnrhr2a gene expression levels in the pituitary revealed an
increase during the progress of the reproductive cycle peaking in the early spermiogenesis
stage. This result suggests the involvement of the gene in the control of the early phase of
sexual maturation, playing a key role in the reproductive cycle, as previously evidenced
in seabass females [78]. The regulatory mechanism of gonadotropins is still unclear in
asynchronous species. The fshb gene gradually increased from the immature stage, acting
from the beginning of the cycle, and reaching the peak in the late spermiogenesis stage.
This result can suggest that this hormone plays an ongoing role, probably because gonads
contain all cell stages at the same time [24,79]. lhb reached the maximum level in the late
spermiogenesis stage as fshb, but it probably acts subsequently, since in the previous stages
the values are low. Overall, the gonadotropin trends are similar to other studies performed
on multiple spawners [80–82]. In the testis, fshr and lhr showed earlier expression with
respect to their ligands, a different kinetic of translation between mRNA codifying for the
gonadotropins and their receptor may be hypothesized to guarantee the presence of the
receptor upon arrival of the gonadotropins. Gonadotropins control steroidogenesis thus
through androgens, whose mechanism of action is still an enigma in the reproduction of
fish males, when sperm production occurs. In this study, the ar alpha receptor showed the
highest expression level in the late spermiogenesis stage, that is when the animal is in full
reproductive activity.

This result is supported by the profile of 11-ketotestosterone, the androgenic hormone
that plays a key function in the endocrine control of male reproduction. A significant
increase in this hormone in the late spermiogenesis stage explained the peak of ar alpha
mRNA: in the last reproductive stage the testis is provided with the maximum availability
of receptors in order to better respond to the paracrine hormonal stimuli of 11-KT.
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5. Conclusions

The overexploitation status of the European hake stock makes it necessary to deepen
the knowledge of the species, in particular focusing on reproductive biology. Unlike
females, the male counterpart of M. merluccius stock in the Central-North Adriatic Sea
is still protected by the Minimum Conservation Reference Size (20 cm), but the closed
season [82] does not preserve the stock, since it is after the seasonal reproductive peak
(March-July). The rapid and inexpensive overview of the reproductive cycle given by the
macroscopic evaluation of gonad is not sufficiently appropriate for this species and the
histological approach is essential to avoid bias in maturity stage assessment. Finally, the
molecular and hormonal investigation can support the analysis of somatic indices and the
macroscopic and histological L50 estimations to complete the scenario on the reproductive
physiology of M. merluccius male. In conclusion, the multidisciplinary approach provided
a deep knowledge of the reproductive biology of male European hake, furnishing further
scientific information required to protect the stock and guarantee sustainable exploitation
of this fishery resource.
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