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Abstract
We study the dynamics of a two-level impurity embedded in a two-dimensional Bose–Hubbard
(BH) model at zero temperature from an open quantum system perspective. Results for the
decoherence across the whole phase diagram are presented, with a focus on the critical region close
to the transition between superfluid and Mott insulator. In particular we show how the
decoherence and the deviation from a Markovian behaviour are sensitive to whether the transition
is crossed at commensurate or incommensurate densities. The role of the spectrum of the BH
environment and its non-Gaussian statistics, beyond the standard independent boson model, is
highlighted. Our analysis resorts on a recently developed method (2020 Phys. Rev. Res. 2 033276)
– closely related to slave boson approaches – that enables us to capture the correlations across the
whole phase diagram. This semi-analytical method provides us with a deep insight into the physics
of the spin decoherence in the superfluid and Mott phases as well as close to the phase transitions.

1. Introduction

Understanding the dynamics of an open quantum system, i.e. a quantum system coupled to its
environment, is relevant in a variety of domains including condensed matter physics, quantum computing,
quantum optics and ultracold gases [1–4]. When the open system and its environment are weakly coupled,
it is often a good approximation to describe the latter as a set of harmonic oscillators linearly coupled to the
system. This class of problems is well described by the so-called Caldeira–Leggett model, when the open
system is described in terms of continuous variables, or by the spin-boson model, when it is a discrete
system. In any of these models, the influence of the environment on the system depends only on a
single-particle spectral density, and this strongly simplifies the description of the system. The past few
decades have seen the development of a large variety of methods to describe the open system dynamics in
this context, including path integrals [5, 6], stochastic Schrödinger equations [7, 8], hierarchical systems of
equations [9, 10] or, when computing the full dynamics of both the system and its environment, chain
mapping representations [11, 12] or quantum Monte Carlo techniques [13, 14].

However, when the environment is strongly correlated or non-harmonic, the above picture may no
longer be accurate and more involved approaches are required to account for the resulting non-Gaussian
environment statistics. The state-of-the-art methods to numerically study these systems are based on
matrix-product states [15–18]; nevertheless, due to the rapid entanglement growth, these methods become
highly inefficient beyond one-dimensional cases or when approaching to a critical regime.

The recent advances in locally manipulating ultra-cold gases in optical lattices has made such a platform
ideal for the study of impurities coupled to a non-trivial bath [17, 19–23] either per se or as quantum
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simulators of toy models for less clean systems. In this paper, we analyze the pure dephasing dynamics of a
two-level impurity whose environment is represented by a single-band Bose–Hubbard (BH) model. This
problem has been recently analyzed for a one-dimensional BH environment away from its critical transition
[17]. Here we take a leap forward by considering a 2D BH model and characterizing the impurity dynamics
along the whole phase diagram, focusing on the critical regions. Our goal can be reached thanks to the use
of a Gutzwiller technique that we recently developed [24]. The method allows us to include the relevant
correlations of the bath – in particular the ones responsible for non-Gaussian effects – without being
computationally demanding.

One of the main findings of our study is the strong dependence of the dephasing dynamics on the
universality class of the Mott insulator–superfluid (MI–SF) transition of the BH environment. In particular,
we show that: (1) when the quantum phase transition is due to particle number change, also known as
commensurate–incommensurate (CI) transition, the impurity dynamics is perfectly Markovian, being the
environment dynamics dominated by single particle processes, despite the strong interactions; (2) on the
other hand, when the transition occurs at fixed (integer) density, the spectrum of the bath contains multiple
low-energy collective modes. Their presence leads to a non-Markovian dephasing dynamics, strongly
affected by two-particle processes in the environment, which make the standard Gaussian statistics fail.
Most importantly – in close analogy with the findings of a related work on one-dimensional quantum spin
baths [25] – we find that both the short and long-time behaviour of the dephasing dynamics are precise
detectors of the type of universality class of the transition.

The paper is organized as follows. Section 2 is devoted to introducing the pure dephasing model, the
quantum Gutzwiller (QGW) approach used to access the relevant BH correlations and the so-called Breuer,
Laine and Piilo (BLP) non-Markovianity measure of dephasing processes, which is taken as a reference for
our analysis. In section 3, we present our predictions for the dephasing dynamics across the phase diagram
of the BH environment, focusing on the intrinsic non-Markovian effects due to the lattice setting and the
consequences of the spectral properties of the bath. Specifically, the role of the SF–MI transition is
highlighted. We conclude in section 4 including an outlook on future studies of experimental interest.

2. Model and theory

2.1. Quantum impurity in a Bose–Hubbard bath
We consider a two-level impurity coupled to a two-dimensional single-band BH model [26, 27] with
Hamiltonian ĤBH, hereafter referred to as the bath. The total Hamiltonian of the system can be written as
Ĥ = ĤBH + Ĥimp + Ĥc with

ĤBH = −J
∑
〈r,s〉

(
â†r âs + h.c.

)
+

U

2

∑
r

n̂r (n̂r − 1) − μ
∑

r

n̂r,

Ĥimp =
�ω0

2
(1 + σ̂z) ,

Ĥc = g σ̂z n̂0,

(1)

where the operators âr

(
â†r
)

annihilate (create) a boson on the lattice site r, J is the hopping energy, U the
on-site bath interaction and μ the chemical potential, while 〈r, s〉 labels all pairs of nearest-neighbouring
sites. The impurity is assumed to be located at site 0 at the centre of a thermodynamically large BH lattice; it
is governed by the Hamiltonian Ĥ imp with a resonant frequency ω0 and is coupled to the bath density n̂0 via
a local interaction Ĥc with strength g.

We assume that initially the system’s state is separable ρ(t = 0) = ρ0
BH ⊗ ρ0

imp, where ρ0
BH is the

zero-temperature ground state of the BH Hamiltonian ĤBH and ρ0
imp is the initial state of the impurity. As

usual in the study of open quantum systems, we assume that the bath and the impurity are weakly coupled
so that the bath’s state is not too altered with respect to ρ0

BH. Under such approximation, it is well-known
that the impurity dynamics is fully characterized by the time correlation function of the environment
coupling operator, n̂0. We estimate the latter by using a recently developed QGW approach [24], that has
been proven to be very accurate to describe the quantum correlations of the BH model across the whole
phase diagram. We refer the reader to the original paper [24] and to appendix A where we briefly review the
method.
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Figure 1. Panel (a): mean-field phase diagram of the BH model around the Mott lobe with integer filling 〈n̂〉 = 1. The blue (red)
dashed line marks the path crossing the incommensurate (commensurate) MI–SF transition point considered in this work. The
two panels (b) and (c) at the right-hand side depict the energy dispersion at the points (1)–(4) represented in the phase diagram
(a). Panel (b), represents points (1) and (2) near and within the critical point at the edge transition, in dashed and solid lines
respectively. For these two points, the Goldstone and Higgs modes are represented in blue and light-blue lines respectively. Panel
(c) represents points (3) and (4) near and at the critical point at the tip transition, again in dashed and solid lines respectively.
Goldstone and Higgs modes are now represented in red and orange lines respectively.

2.2. The quantum Gutzwiller method
Within the QGW, the BH environment – aside from a constant energy term – can be recast as the quadratic
Hamiltonian

Ĥ(2)
QGW = �

∑
α

∑
k

ωα,k b̂†α,kb̂α,k, (2)

where the operator b̂α,k (b̂†α,k) annihilates (creates) an excitation in the branch α with momentum k, whose
energy is �ωα,k. The quadratic nature of the bath Hamiltonian allows us to easily estimate its quantum
correlations.

Before proceeding, we briefly review the structure of the BH excitation spectrum ωα,k along the phase
diagram, since its knowledge gives important insights in the dephasing dynamics of the spin impurity, as we
show in section 3. The spectrum is well-known and can be obtained also from linear-response theory
applied to the time-dependent Gutzwiller approximation [24, 28]. For convenience, in figure 1 a summary
of the phase diagram and of the excitation spectra in different regimes is shown. The most relevant feature
of the BH model is the existence of a quantum phase transition between a MI – which favours localized
particles and occurs at integer fillings for U/J larger than a critical value – and a SF delocalized phase with
broken U(1) symmetry. The quantum criticality is characterized by two different universality classes
[26, 27], depending on whether the transition point is crossed by tuning the density to a commensurate (i.e.
integer) lattice filling – the so-called CI transition (at the edge of the Mott lobe: see point 2 on the blue
dashed line in figure 1(a)) – or it is crossed at a fixed commensurate filling (at the tip of the Mott lobe: see
point 4 on the red dashed line in figure 1(a)) – crossing the so-called O (2) transition.

In the MI incompressible phase, the two lowest excitation branches are the gapped particle and hole
excitations (not shown in figure 1). As the SF phase is approached along a CI transition line one of the
excitations becomes gapless and transforms into the SF gapless Goldstone mode. The low momentum
dispersion relation of the Goldstone mode becomes quadratic at the transition point, while is linear in the
SF phase (collisionless sound mode) (figure 1(b)). Therefore, at the CI critical point the BH system,
although strongly interacting, behaves as a free Bose gas of quasi-particles.

Instead, at the fixed-density O (2) critical point, both the lowest-energy modes are gapless (figure 1(c)),
and, in sharp contrast with the CI critical region, have a linear dispersion relation. In the SF phase only one
linear gapless mode is present with finite sound velocity (figure 1(c)). The other gapped excitation is often
referred to as the Higgs mode and it is related to the amplitude fluctuations of the order parameter [29, 30].

3
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The QGW approach provides a recipe to express operators and observables of the BH bath in terms of
the excitations operators b̂α,k (see [24] and appendix A). In particular, the impurity dynamics due to the
weak coupling with the bath as described by equation (2) is fully characterised by the time dependent
density correlation function at the impurity position. The expression for the density operator n̂0 can be
written within the QGW approach as

n̂0 ≈ n0 + δ1n̂0 + δ2n̂0, (3)

where n0 is the mean-field density and we separate the single quasi-particle contribution

δ1n̂0 (t) =
1√
V

∑
α

∑
k

Nα,k

(
e−iωα,kt b̂α,k + eiωα,kt b̂†α,k

)
, (4)

from the two-particle contribution

δ2n̂0 (t) =
1

V

∑
α,β

∑
k,p

[
Wαk,βp ei(ωα,k+ωβ,p)t b̂†α,k b̂†β,p + Wβp,αk e−i(ωα,k+ωβ,p)t b̂α,kb̂β,p

+ Uαk,βp ei(ωα,k−ωβ,p)t b̂†α,kb̂β,p + Vαk,βp e−i(ωα,k−ωβ,p)t b̂α,kb̂†β,p

]
,

(5)

where V is the lattice volume. The coefficients Nα,k and Wαk,βp, Uαk,βp, Vαk,βp are given explicitly in
appendix A and correspond to the spectral decomposition of the single and two-particle structure factors of
density correlations in the BH system.

It is worth noticing that the inclusion of two-particle processes due to δ2n̂ into the bath description
generalizes the independent boson model, where the impurity polarization σ̂z couples only to linear
contributions of the form (4) (see, e.g. [31]). Indeed, we underline that the two-particle contributions
dominate the density correlation functions in the MI phase and close to the MI–SF transition [24]. In the
following we show that this is the case also for the impurity dephasing, but not at the CI transition point.

Let us stress that, compared to other approaches like strong-interaction perturbative methods [32] and
the standard Bogoliubov approximation [33], the QGW approach provides a unified description from the
deep MI state to the weakly-interacting SFs. Moreover, it yields an insight into the spectral composition of
quantum expectation values.

2.3. Non-Markovianity measure of pure dephasing
Having reduced the BH environment to the effective quadratic model (2), the theoretical investigation of
pure dephasing dynamics becomes tractable in the limit in which the presence of the impurity does not
perturb significantly the behaviour of the environment, i.e. when the bath-impurity coupling g is small
compared to all the other energy scales of the problem. For the purpose of this study, we choose to work in
such weak coupling limit. Using the time-convolutionless projection operator technique up to second order
in the coupling constant g [1], the evolution of the density matrix of the impurity is proved to obey a
time-local master equation [34]

∂tρimp = −i
ω̃0

2

[
σ̂z, ρimp

]
+

g2

2�2
γ (t)

(
σ̂zρimpσ̂z − ρimp

)
, (6)

where ω̃0 = ω0 + g n0 is the impurity energy splitting renormalized by the mean local density of the BH
bath n0. As anticipated before, the dephasing rate γ (t) is completely determined by the time-dependent
correlations of the bath operator coupled to the impurity – local density fluctuations in the present case

γ (t) = Re

∫ t

0
dτ 〈n̂0 (τ) n̂0 (0)〉, (7)

where we have defined 〈· · ·〉 = Tr
{
· · · ρ0

BH

}
. We recall here that the derivation of (6) does not require any

assumption about the statistical properties of the environment, so that in principle the rate (7) can account
also for weak-coupling effects of non-Gaussian correlations. Now, we highlight that the integrated rate

Γ (t) =

∫ t

0
dτ γ (τ) , (8)

is key to understanding the dephasing dynamics, as it establishes a direct connection between the decay rate
γ (t) and the physical consequences of its non-Markovian features.

In the framework of the open quantum system formalism, BLP have proposed a rigorous definition for
non-Markovianity of a generic quantum channel [35]. Indeed, for the dephasing model studied in this

4
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work, the BLP non-Markovianity measure depends directly on the decoherence function Γ (t) via the
so-called Loschmidt echo [36, 37]

L (t) = exp
[
−2
(
g/�
)2
Γ (t)

]
, (9)

driving the off-diagonal evolution of the impurity state ρimp (t).7 In particular, the amount of
non-Markovianity corresponds to the information back-flow [37–39]

N− =
∑

i

[√
L (ti+1) −

√
L (ti)

]
, (10)

where the sum is taken over the set of time intervals [ti, ti+1] in which the echo increases, i.e. when
γ (t) < 0. During these intervals, some of the previously lost information regarding the state of the
impurity is temporarily recovered. Conversely, the Markovian character of the dynamics N+ is quantified
by summing

√
L (ti+1) −

√
L (ti) over the time intervals in which quantum information is lost. It is worth

underlining that, for the special open quantum system that we consider here, all non-Markovianity
measures agree in distinguishing Markovian from non-Markovian evolution [40, 41].

In the following sections, we will describe how a non-Markovian dephasing dynamics emerges due to
strong correlations in the BH environment, focusing on the role of the universality classes of the MI–SF
transition and on the importance of including non-Gaussian correlations beyond linear coupling between
the bath excitations and the impurity (two-particle contributions). In this regard, we start our analysis by
illustrating how the QGW approach provides semi-analytical expressions for the dephasing rate γ (t) and
the decoherence function Γ (t), with a clear distinction between single-particle and non-Gaussian
correlations.

2.4. QGW expressions of γ (t) and Γ (t) and short-time behaviour of the Loschmidt echo L (t)
In this section we report for completeness the explicit expressions of the relevant quantities introduced
above within the QGW formalism. Inserting the expression of the density operator (3) into the definition of
the dephasing rate γ (t), we can distinguish two contributions γ (t) = γ1 (t) + γ2 (t). The first term is due
to the linear-order part of the density operator (4),

γ1 (t) = Re

∫ t

0
dτ 〈δ1n̂0 (τ) δ1n̂0 (0)〉 = 1

V

∑
α

∑
k

N2
α,k

sin
(
ωα,kt

)
ωα,k

, (11)

while the second contribution is generated by the two-particle density operator (5), in particular

γ2 (t) = Re

∫ t

0
dτ 〈δ2n̂0 (τ) δ2n̂0 (0)〉 = 1

V2

∑
α,β

∑
k,p

(
W2

αk,βp + Wαk,βp Wβp,αk

) sin
[(
ωα,k + ωβ,p

)
t
]

ωα,k + ωβ,p
(12)

at zero temperature. Analogously, the decoherence function is given by Γ (t) = Γ1 (t) + Γ2 (t) with
Γi (t)=

∫ t
0 dτ γi (τ), i = 1, 2.

The off-diagonal elements of the impurity density matrix will evolve according to the Loschmidt echo

L (t) = exp
[
−2
(
g/�
)2
Γ (t)

]
= exp

[
−2
(
g/�
)2
Γ1 (t)

]
exp
[
−2
(
g/�
)2
Γ2 (t)

]
. From equations (11) and

(12) we see that the expected short-time Gaussian behaviour exp
[
−λ
(

g/�
)2

t2
]

[42] of the Loschmidt echo

is recovered with

λ =
1

V

∑
α

∑
k

N2
α,k +

1

V2

∑
α,β

∑
k,p

(
W2

αk,βp + Wαk,βp Wβp,αk

)
. (13)

In the following we show how both λ and the BLP non-Markovianity measure are not only extremely
sensitive to the phase transition points, but behave differently depending on the universality class of the
phase transition.

3. Numerical results

In the following we present the numerical results obtained by computing the dephasing rate functions (11)
and (12) and the Loschmidt echo L (t). All the calculations have been performed on a 400 × 400 square
lattice, which well approximates the thermodynamic limit and is made possible by the low numerical
complexity of the QGW approach. Moreover, we have imposed periodic boundary conditions so as to make

7 See appendix B for a detailed definition of the BLP non-Markovianity measure and its calculation in the pure dephasing model
considered in this paper.
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the dephasing dynamics independent of the specific position of the impurity in the BH environment and
avoid boundary effects. For brevity, hereafter we will refer to the CI transition as edge transition, while the
O(2) critical point will be indicated as tip transition.

3.1. Dephasing in the superfluid phase
We start our analysis about the dephasing dynamics starting from the weakly-interacting limit (deep SF
phase) of the BH bath. In figure 2(a) we report the behaviour of the dephasing rate function γ (t) (black
solid line) for 2dJ/U = 1. As expected, in this regime the contribution from the single-particle gapless
Goldstone mode (red dashed line) saturates the time evolution of γ(t). The dephasing rate exhibits broad
oscillations around zero at short times, signalling the occurrence of non-Markovian effects, simply due to
the finite bandwidth of the model. Very small amplitude oscillations persist at long times, leading to an
essentially constant Γ (t) and therefore only to a partial decoherence of the impurity density matrix. For the
sake of clarity, we argue a little bit on such result, which can be better understood by expressing the
dephasing γ (t)=

∫∞
0 dω J (ω) sin (ω t) /ω [43] in terms of the single-particle spectral density

J (ω) =
∑
α,k

N2
α,kδ
(
ω − ωα,k

)
. (14)

This quantity for 2dJ/U = 1 is shown in figure 2(b). Being the Goldstone spectrum gapless and linear at
small momenta, the spectral density scales as J (ω) ∼ ωd at low frequencies8. Nevertheless, in contrast with
the non-Markovianity criterion generally adopted – obtained in [39] and fixing to d > 2 the necessary
condition for memory effects in gapless baths, we observe that γ (t) has negative values in our d = 2 model.
The reason is that usually an environment with infinite-bandwidth modes is considered in the literature
[39], resulting in a smooth cutoff of the spectral density. The finite bandwidth of the BH model excitations
implies a sharp frequency cutoff of J (ω) corresponding to the Goldstone mode energy at the edge of the
Brillouin zone, ωG,π . Correspondingly, we observe that the oscillations of γ (t) occur on a time scale
τG = 2π/ωG,π (vertical dotted line in figure 2(a)) set by the bandwidth of the Goldstone excitation9.

3.2. Dephasing dynamics at the MI–SF transition
Moving away from the deep SF phase and approaching the MI–SF critical region, the fate of the SF
non-Markovian dynamics turns out to strongly depend on the type of crossed critical point. In particular,
crossing the edge transition (blue dashed line in figure 1) the amplitude of memory effects decreases with
increasing interaction U/J until the dynamics becomes purely Markovian on the Mott boundary. On the
contrary, crossing the tip transition (red dashed line in figure 1(a)), the non-Markovianity is even more
enhanced by quantum fluctuations with respect to the deep SF phase.

In panel (c) of figure 2 we display the evolution of γ (t) for different values of 2dJ/U upon approaching

the edge transition. We observe that, close to the critical point
(
2dJ/U

)edge

c
= 0.08, γ (t) becomes strictly

positive and the dynamics slows down significantly, when compared with the evolution in the deep SF
regime shown in panel (a). Therefore, at the edge critical point the dephasing rate reaches a constant value
γ (t) ∼ η at asymptotically large times. Hence, a transition from a non-Markovian to a Markovian regime
occurs and, at the transition point, the Loschmidt echo acquires the typical exponential behaviour
L (t) ∼ exp

(
−2η g2t

)
of a Lindbladian evolution. The origin of the Markovian behaviour is due to the

peculiar spectral properties of the BH model on the edge of the Mott lobe. In particular, as illustrated in
subsection 2.2: (i) the Goldstone mode turns into an effective quasiparticle branch with quadratic energy
dispersion; (ii) the Higgs mode keeps a finite energy gap. It follows that the strongly-correlated SF sitting
close to the edge critical point can be described as a dilute free-boson gas with an effective mass
renormalized by the vicinity of the Mott phase [24, 27]. Indeed, it is easy to check that for a free Bose gas
– with or without a lattice – the Loschmidt echo decays always exponentially as L (t) ∼ e−βt for d = 2.10 As
in the deep SF case, the Goldstone single-particle contribution to γ (t) is the dominant one, but, in this
case, the two-particle contributions to γ (t) are non-negligible in the edge critical region. However, we find
that such a contribution integrates to zero identically in the time integral of the decoherence function
Γ (t)=

∫ t
0 dτ γ (τ). In this respect, the irrelevance of non-Gaussian bath correlations can be seen as a

natural consequence of the effective single-particle description when crossing the CI critical region.
The result is very different when approaching the commensurate transition at the tip of the Mott lobe,

as shown in panel (d). The dynamics appears to be always non-Markovian and the memory effects are

8 We refer the reader to appendix D for an analytical derivation of the low-frequency scaling of J (ω) in the deep SF phase.
9 See appendix D for an extensive discussion on the difference between lattice and continuous models at the level of the spectral density
J (ω) and the dephasing function γ (t).
10 We refer again the reader to appendix D for the explicit expressions of γ (t) and L (t) of a free boson gas on a lattice and on the
continuum. See also figure D1 for exact numerical results on the behaviour of γ (t) for lattice free bosons in one and two dimensions.
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Figure 2. (a) Black solid line: dephasing rate γ (t) at 2dJ/U = 1 and μ/U = 0.8 in the deep SF phase. Red dashed and blue solid
lines: one-particle contributions of the Goldstone and Higgs modes respectively. The vertical black dashed line highlights the
time scale τG. (b) Red points: sampling of the spectral density J (ω) given by equation (14) for 2dJ/U = 1 and μ/U = 0.8. Black
solid line: ω2 fit of J (ω) at low ω. (c) Change of γ (t) while approaching the edge transition in the SF phase at(

2dJ/U
)edge

c
= 0.08, with decreasing 2dJ/U from bottom to top. Magnification of γ (t) at lower 2dJ/U is applied. (d) Black solid

line: γ (t) at 2dJ/U = 0.18 and μ/U =
√

2 − 1, close to the tip critical point
(

2 d J/U
)tip

c
≈ 0.172 in the SF phase. Black

dashed-dotted line: fraction of γ (t) given by two-particle contributions involving the Goldstone and Higgs modes. The color
code for the single-particle contributions is the same as in panel (a).

amplified with respect to the deep SF regime. The dephasing rate γ (t) gets a relevant contribution from the
Higgs excitation and, most importantly, from the two-particle couplings (black dot–dashed line).
Specifically, the competition between the Goldstone and Higgs branches is evidently due to the closing of
the Higgs gap at the tip critical point. For the same reason, one gets a sizable contribution to the dynamics
from two-particle correlations due to the coupling between the Goldstone and Higgs modes encoded in the
structure factors WG,k;H,p and WH,p;G,k in the two-mode part of the density operator (5). Decreasing further
2dJ/U towards the critical point, non-Gaussian correlations eventually become the dominant contribution
to γ (t), since the order of magnitude of the single-particle weights Nα,k is totally suppressed on the brink of
the MI–SF transition [24].

In this respect, we want to stress that two-particle processes become the only non-vanishing
contributions to density correlations when the BH environment enters the MI phase [24]. Therefore, the
dephasing dynamics undergoes a substantial change across the edge transition, where the single-particle
picture is abruptly replaced by non-Gaussian correlations, while at the tip transition the single-to-two
particle transfer of spectral weight appears to be a smoother crossover.

3.3. Short-time dephasing process and non-Markovianity measure
A concise way to visualize the previous results is provided by inspecting the dephasing dynamics from the
point of view of the Loschmidt echo. Specifically, we focus our analysis on two complementary features of
the decoherence process, namely (i) the short-time behaviour of the impurity decoherence
L (t → 0) = exp

(
−λg2t2

)
and (ii) the estimation of the information back-flow N−. More precisely, we

renormalize the information back-flow by the overall coherence loss as R = N−/N+, which provides a
more effective measure of non-Markovianity while changing the bath parameters [44].

Our numerical results for the short-time decoherence rate λ, given by the expression (13), are reported
in panel (a) of figure 3. Reaching the MI–SF critical region from the deep SF phase, the decoherence rate λ
decreases as a consequence of the stronger non-Markovianity driven by interactions in the BH bath.
Reducing further the hopping energy, we observe that λ presents different behaviours depending on the
type of approached transition. At the CI critical points, the decoherence rate quickly drops to a small value
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Figure 3. Panel (a): short-time decoherence rate λ as a function of the rescaled hopping energy 2dJ/U across the edge (blue line)
and tip (red line) transition points (see the phase diagram cuts in panel (a) of figure 1). Panel (b): normalized information
back-flow R = N−/N+ for the same parameters. In both panels, the CI and O(2) critical points are indicated by blue and red
dashed–dotted lines respectively.

(decreasing by almost two orders of magnitude) entering the MI phase, where we find that λ ∝
(
J/U
)2

.
The first derivative of λ with respect to J/U presents a discontinuity at the critical point. Conversely, when
crossing the transition at the lobe’s tip, λ is a smooth function of the hopping energy. We notice that our
latter result nicely resembles what has been found for the impurity decoherence process in a d = 1
interacting quantum spin bath [25], which has a critical point of the same O(2) universality class.
Therefore, as for the static properties [24], our method is able to capture the strong correlation also in this
time dependent scenario, importantly beyond the one-dimensional case and without strong numerical
requirements.

The time-integrated dephasing dynamics, in the form of the non-Markovianity measure R, is even more
affected by the type of critical correlations than the short-time decoherence. Our numerical results for R
across the edge and tip transitions are reported in panel (b) of figure 3 with the same color code of panel
(a). In particular, for the calculation of R we have fixed g/U = 0.001 � 2dJ/U, μ/U coherently with the
weak-coupling condition.

In the deep SF limit J/U  1, we find that both the information flows N± tend to zero scaling as(
J/U
)−1

, such that their ratio R is a constant. This indicates that, when embedded in a weakly-interacting
gas, the impurity dephases according to a fixed fraction of information loss. When approaching the
strongly-interacting regime, the renormalized back-flow R reaches a maximal value well before the MI–SF
transition. This suggests that, away from critical region, the primary effect of stronger interactions is to
increase the amount of information recovered by the impurity during the dynamics. When approaching the
critical point the non-Markovianity measure R starts decreasing and its behaviour depends on how the
MI–SF is crossed.

Crossing the CI transition R rapidly vanishes, being zero within a small window in the SF region. This
result perfectly mirrors the non-Markovian to Markovian transition displayed in figure 2(c) and the
effective free-particle description of the SF at the CI critical points. The quantity R show a discontinuous
behaviour, when entering the insulating phase. This result finds a straightforward interpretation in terms of
the particle–hole excitations of the Mott phase [17]. Due to their incoherent character, these modes excite
doublon–holon pairs with a finite correlation length, so that density fluctuations are localized in real space.
Therefore, when particle–hole excitations couple to the impurity, the information flowing to the BH
environment remains localized in a small neighbourhood of the impurity and is likely to be restored after a
short time due to another particle–hole excitation. As the amplitude of density fluctuations in the Mott
phase increase with 2dJ/U, the absolute value of both the information flows N± increases accordingly; on
the other hand, the renormalized back-flow R decrease as a consequence of the increasing BH correlation
length, which prevent part of the lost information from flowing back to the impurity. However, since at the
edge transition either the particle or the hole branch remains gapped, a finite correlation length still
controls the dynamics exactly at the critical point [24, 27], before diverging in the SF phase. This
discontinuous behaviour of the correlation length is at the roots the finite jump in R across the
non-Markovian to Markovian transition.

The behaviour is different at the tip transition. As shown before, in this regime critical fluctuations are
mainly due to non-Gaussian correlations, whose main effect is to amplify the oscillation amplitude of the
dephasing rate γ (t). Therefore, the amount of total information flowing both from and to the impurity
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grows accordingly. Nevertheless, the renormalized backflow R still converges to zero at the critical point,
meaning that eventually the BH environment becomes effectively Markovian at the critical point. It follows
that, in contrast with the edge case, R is found to be a continuous function of the hopping 2dJ/U across the
tip transition, but with a very sharp non-monotonic profile (red line in figure 3(b)).

4. Summary and outlook

In this paper, we present an exhaustive account of the non-Markovian effects characterizing the dephasing
dynamics of an impurity embedded in a BH environment undergoing the SF–MI transition.

Our analysis addresses the impurity problem beyond the standard formalism of open quantum systems.
The two main new features are the inclusion of the effects of the strong correlations and phase transitions in
the environment and the extension beyond the one-dimensional case in a flexible and numerically cheap
way. Thereby, our method is, to the best of our knowledge, the first one that allows an efficient description
of an open system that is coupled to an environment undergoing a critical transition.

Strong signatures of deviation from a Markovian behaviour due to the spatial discreteness of the lattice
setup, not explicitly discussed in previous works, have also been highlighted in the interacting SF phase and
related to key features of the spectral density J (ω). This suggests the idea that the very same phenomenon
could take place in different lattice models whose dynamics is governed by common spectral properties.
Furthermore, we observed that the amount of non-Markovianity of the dephasing process is particularly
large when approaching the O(2) critical region, where two-particle effects become more relevant in the
physical picture and thus the environment differs more significantly from the standard spin-boson
description. This opens the path for further investigations into the role of strong non-Gaussian, i.e.
two-particle, correlations in the presence of strong memory effects.

More importantly, we have found that, when the BH environment approaches the SF–MI criticality, the
dephasing dynamics is extremely sensitive to the universality class of the SF–MI transition. In this regard,
we have shown that not only the deviation from Markovianity, but also the short-time behaviour of the
dephasing dynamics carries strong signatures of the type of criticality approached by the environment. This
remarkable result agrees with similar findings for interacting quantum spin baths [25] with a
complementary approach, suggesting a generality which goes beyond the precise nature and the
dimensionality of the bath.

Finally, from an experimental perspective, the sharp difference between the dephasing processes at the
different SF–MI transitions discussed in this work identifies the study of the decoherence dynamics and, in
particular, non-Markovianity measures of impurity dephasing as an unambiguous probe of the type of
critical behaviour experienced by the environment.
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Appendix A. Quantum Gutzwiller approach in a nutshell

The QGW approach combines the successful features of the Gutzwiller approximation [45] and the
Bogoliubov theory of weakly-interacting gases [33] in order to develop a robust quantum many-body
theory of a generic interacting lattice model. Building on the solution of the time-dependent Gutzwiller
approximation [46], fluctuations on top of the mean-field ground state are quantized in terms of the
elementary many-body excitations of the system and systematically included in the calculation of ground
state expectation values. In spite of the local nature of the underlying Gutzwiller ansatz – see equation (A.1)
below, the QGW approach accurately reproduce both local and non-local correlations across the different
phases of the BH model with minimal numerical effort, showing a remarkable agreement with quantum
Monte Carlo predictions concerning density correlations. Let us also mention that the QGW, when only
quadratic fluctuations are considered, coincides essentially with including quantum fluctuations by slave
boson approaches (see in particular [47], where the slave boson approach has been applied to the BH
Hamiltonian to determine its entanglement entropy along its phase diagram).
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Following the main derivation steps of [24], in this appendix we briefly review the essential features of
QGW technique, that we employ for a systematic evaluation of quantum correlations in the BH
environment.

Our starting point is the Gutzwiller ansatz

|ΨG〉 =
⊗

r

∑
n

cn (r) |n, r〉, (A.1)

where the wave function is site-factorized and the complex amplitudes cn (r) of each local Fock state |n, r〉
are variational parameters with normalization condition

∑
n|cn (r)|2 = 1. In our specific case, we draw on

the simple form of (A.1) to reformulate the BH model in terms of the following Lagrangian functional

L
[
c, c∗
]
=
〈
ΨG |i�∂t − ĤBH |ΨG

〉
=

i�

2

∑
r,n

[c∗n(r)ċn(r) − c.c.] + J
∑
〈r,s〉

[
ψ∗ (r) ψ (s) + c.c.

]
−
∑

r,n

Hn|cn (r)|2. (A.2)

In the previous equation, the dot indicates the temporal derivative,

Hn =
U

2
n (n − 1) − μ n (A.3)

are the matrix elements of the on-site terms of the BH Hamiltonian ĤBH in Fock space and

ψ (r) = 〈âr〉 =
∑

n

√
n c∗n−1 (r) cn (r) (A.4)

is the mean-field order parameter. In this formulation, the conjugate momenta of the parameters cn (r) are
c∗n (r) = ∂L/∂ ċn (r). The classical Euler–Lagrange equations associated to Lagrangian (A.2) are the so-called
time-dependent Gutzwiller equations as derived, e.g. in [28, 48]. In a uniform system, the stationary
solutions are homogeneous: in particular, the system is in a MI state if ψ (r) = 0 and in a SF state otherwise.

In order to go beyond the Gutzwiller approximation introduced above, it is natural to consider how
quantum effects populate the excitation modes of the system and to investigate how they affect the
observable quantities. We include quantum fluctuations by building a theory of the excitations starting
from Lagrangian (A.2) via canonical quantization [49, 50], namely promoting the coordinates of the theory
and their conjugate momenta to operators and imposing equal-time canonical commutation relations[

ĉn (r) , ĉ†m (s)
]
= δr,s δn,m. (A.5)

In analogy with the Bogoliubov approximation for dilute Bose–Einstein condensates [51, 52], we expand
the operators ĉn around their ground state values c0

n, obtained by minimizing the energy
〈
ΨG |ĤBH |ΨG

〉
, as

ĉn (r) = Â (r) c0
n + δĉn (r) . (A.6)

The normalization operator Â (r) is a function of δĉn (r) and δĉ†n (r) and ensures the proper normalization∑
nĉ†n (r) ĉn (r) = �̂�. By restricting to local fluctuations orthogonal to the ground state

∑
nδĉ†n (r) c0

n = 0
one has

Â (r) =

[
1 −
∑

n

δĉ†n (r) δĉn (r)

]1/2

. (A.7)

In a homogeneous system, it is convenient to work in momentum space by writing

δĉn (r) ≡ V−1/2
∑
k∈BZ

eik·r δĈn (k) . (A.8)

where V is the lattice volume. Inserting equation (A.8) in 〈ΨG|ĤBH |ΨG〉 and keeping only terms up to the
quadratic order in the fluctuations, we obtain

Ĥ(2)
QGW = E0 +

1

2

∑
k

[δĈ
†

(k) ,−δĈ (−k)] L̂k

[
δĈ (k)

δĈ
†

(−k)

]
, (A.9)

where E0 is the mean-field ground state energy, the vector δĈ(k) contains the components δĈn(k), and L̂k

is a pseudo-Hermitian matrix, for the explicit expression of which we refer the interested reader to [24]. A
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suitable Bogoliubov rotation of the Gutzwiller operators in terms of the fundamental excitation modes of
the system

δĈn (k) =
∑
α

uα,k,nb̂α,k +
∑
α

v∗α,−k,nb̂†α,−k, (A.10)

recasts the quadratic form (A.9) into the desired diagonal form

Ĥ(2)
QGW =

∑
α

∑
k

ωα,kb̂†α,kb̂α,k, (A.11)

where each b̂α,k corresponds to a different many-body excitation mode with frequency ωα,k, labeled by its
momentum k and branch index α. Bosonic commutation relations between the annihilation and creation
operators b̂α,k and b̂†α,k, [

b̂α,k, b̂†
α′,k′

]
= δk,k′δα,α′ , (A.12)

are enforced by choosing the usual Bogoliubov normalization condition

u∗
α,k · uβ,k − v∗

α,−k · vβ,−k = δαβ , (A.13)

where the vectors uα,k (vα,k) contain the components uα,k,n (vα,k,n).
The effective, quadratic description of the BH environment in terms of its collective modes (A.11)

provided the QGW not only allows for a direct reinterpretation of the pure dephasing model (1), but also
opens a simple route to the calculation of any expectation value of the bath operators. Based on the

quantization procedure outlined before, the evaluation of average value of any observable
〈

Ô
(
â†r , âr

)〉
consists in applying a four-step procedure that we summarize as follows:

(a) Determine the expression O [c, c∗] =
〈
ΨG |Ô |ΨG

〉
in terms of the Gutzwiller parameters cn and c∗n;

(b) Create the operator Ô
[
ĉ, ĉ†
]

by replacing the Gutzwiller parameters in O [c, c∗] by the corresponding
operators ĉn (r) and ĉ†n (r) without modifying their ordering;

(c) Expand the operator Ô order by order in the fluctuations δĉn and δĉ†n, taking into account the
dependence of the operator Â on the fluctuation operators. The contribution of Â may be of
fundamental importance when higher orders in the fluctuations become relevant;

(d) Taking advantage of the quadratic character of the QGW Hamiltonian, invoke Wick theorem to
compute the expectation value of products of operators on Gaussian states – such as ground or thermal
states obtained from H(2)

QGW.

The very same protocol determines the expansion of the BH local density operator (3) in terms of single
(4) and two-particle (5) operator-valued expressions of the collective modes b̂α,k, from which the bath
correlation functions are systematically extracted. For the sake of completeness, we report the exact
expressions of the one and two-particle structure factors of the density channel,

Nα,k =
∑

n

c0
n

(
uα,k,n + vα,k,n

)

Wαk,βp =
∑

n

(n − n0) uα,k,nvβ,p,n

Uαk,βp =
∑

n

(n − n0) uα,k,nuβ,p,n

Vαk,βp =
∑

n

(n − n0) vα,k,nvβ,p,n

(A.14)

whose derivation is extensively discussed in [24].

Appendix B. Pure dephasing and BLP non-Markovianity measure

The definition of the BLP measure [35] derives from considering non-Markovian those systems in which a
back-flow of information from the environment to the open system occurs during the dynamics. This
information recovery is formally identified by an increase in the distinguishability of pairs of evolving
quantum states of the system.
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In detail, a system is non-Markovian if there is a pair of system initial states ρ(1)
S (0) and ρ(2)

S (0), such
that for certain times t > 0 their distinguishability grows, namely

σ
[
ρ(1)

S (0) , ρ(2)
S (0) ; t

]
=

d

dt
D
[
ρ(1)

S (t) , ρ(2)
S (t)

]
> 0, (B.15)

where σ
[
ρ(1)

S , ρ(2)
S ; t
]

is called the information flux at time t and

D
[
ρ(1)

S (t) , ρ(2)
S (t)

]
.
=

1

2

∣∣∣∣∣∣ρ(1)
S (t) − ρ(2)

S (t)
∣∣∣∣∣∣

1
=

1

2
Tr

{√[
ρ(1)

S (t) − ρ(2)
S (t)

]† [
ρ(1)

S (t) − ρ(2)
S (t)

]}
(B.16)

is defined to be the distinguishability of ρ(1)
S and ρ(2)

S . Since density matrices are Hermitian, we have that

D
[
ρ(1)

S (t) , ρ(2)
S (t)

]
=

1

2
Tr

{√[
ρ(1)

S (t) − ρ(2)
S (t)

]2
}

=
1

2

∑
i

|λi| , (B.17)

where λi are the eigenvalues of the matrix ρ(1)
S − ρ(2)

S . The physical interpretation of the trace distance
(B.16) is that it is related to the maximum probability of distinguishing between two quantum states. In an
open quantum system, this probability in general tends to decrease in time, as the system information is lost
to the environment, except when the dynamics is non-Markovian. In this case, the system regains part of
the previously lost information. According to the BLP criterion, the amount of non-Markovianity of a
quantum process Λ can be quantified through the measure

N− (Λ) = maxρ1,2(0)

∫
σ>0

dt σ
[
ρ(1)

S (0) , ρ(2)
S (0) ; t

]
, (B.18)

which reflects the maximum amount of information that can flow back to the system for a given process. As
proven in [53], for all finite-dimensional quantum systems the evaluation of (B.18) can be optimized by
considering initial states ρ(1)

S (0) and ρ(2)
S (0) that are orthogonal and lie on the boundary of the subset of

physical states.
In the case of the two-level impurity undergoing pure dephasing studied in this paper, the open system

dynamics is driven by the master equation (6), which allows for a simple rewriting in the vector
representation of the density matrix,

d

dt

⎛
⎜⎜⎝
ρ11

ρ12

ρ21

ρ22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 0 0

0 −
(
g/�
)2
γ (t) 0 0

0 0 −
(
g/�
)2
γ (t) 0

0 0 0 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝
ρ11

ρ12

ρ21

ρ22

⎞
⎟⎟⎠ , (B.19)

where we have defined ρij = TrS {ρS (t) |i〉 〈j|}, with |i〉 = |1〉 , |2〉 standing for the two possible states of the
impurity, and neglected the unitary evolution terms set by the renormalized transition frequency ω̃0. The
analytical integration of (B.19) yields

ρS (t) = φt [ρS (0)] =

(
ρ11 (0) ρ12 (0)

√
L (t)

ρ21 (0)
√

L (t) ρ22 (0)

)
, (B.20)

where φt is the dynamical map of the system density matrix associated to the pure dephasing dynamics. The
function

L (t) = exp

[
−2
(
g/�
)2
∫ t

0
dτ γ (τ)

]
(B.21)

coincides with the so-called Loschmidt echo [37], defined as L (t) = |〈ψ (t) |ψ0 (t)〉|2, where |ψ0 (t)〉 is the
bath ground state evolved according to its own Hamiltonian, while |ψ (t)〉 is the time-evolved bath state in
presence of the open system. Indeed, the off-diagonal matrix elements of the system density matrix ρS are
given by

√
L (t) exactly.

Choosing two initial states that are orthogonal and lie on the Bloch sphere of the two-level system

ρ(1)
S (0) =

1

2

(
1 1
1 1

)
ρ(2)

S (0) =
1

2

(
1 −1
−1 1

)
, (B.22)
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Figure C1. Detail of the mean-field phase diagram of the BH model [see panel (a) of figure 1] showing typical constant-density
lines (black solid lines) in the SF phase. Non-integer filling lines connect the hard-core regime

(
2dJ/U � 1

)
to the deep SF

phase at 2dJ/U�1.

we find that the trace distance (B.16) reads

D
[
ρ(1)

S , ρ(2)
S

]
=

1

2

∣∣∣∣∣∣ρ(1)
S (t) − ρ(2)

S (t)
∣∣∣∣∣∣

1
=

∣∣∣∣∣
∣∣∣∣∣
(

0
√

L (t)√
L (t) 0

)∣∣∣∣∣
∣∣∣∣∣

1

=
√

L (t). (B.23)

Therefore, we obtain that the distinguishability rate is given by

σ
[
ρ(1)

S , ρ(2)
S ; t
]
=

dD
[
ρ(1)

S , ρ(2)
S

]
dt

= −
(
g/�
)2
γ (t)

√
L (t) (B.24)

and σ
[
ρ(1)

S , ρ(2)
S ; t
]
> 0 for some t when the dephasing rate γ (t) is negative, leading to non-Markovian

dynamics. Finally, it is straightforward to deduce that the non-Markovianity measure (B.18) is provided by
the values of the Loschmidt echo L (t) at the boundaries of those time intervals

[
ti, ti+1

]
over which

γ (t) < 0, namely

N− =

∫
σ>0

dt σ
[
ρ(1)

S (0) , ρ(2)
S (0) ; t

]
= −

∫
γ<0

dt
(
g/�
)2
γ (t)

√
L (t) =

∑
i

[√
L (ti+1) −

√
L (ti)

]
(B.25)

by the definition of L (t). On an equal footing, we can also quantify the amount of information that flows
from the open system to the environment by defining a Markovianity measure

N+ =

∫
σ<0

dt σ
[
ρ(1)

S (0) , ρ(2)
S (0) ; t

]
= −

∫
γ>0

dt
(
g/�
)2
γ (t)

√
L (t), (B.26)

which takes into account time periods for which γ (t) > 0.

Appendix C. Dephasing dynamics at incommensurate filling

In this Appendix, we report and discuss the quantitative evolution of the dephasing rate γ (t) and of the
Loschmidt echo L (t) as the BH bath becomes strongly-interacting without entering the Mott phase and, on
the contrary, retaining a SF character. Specifically, this corresponds to reach the hard-core boson limit of the
BH model by increasing the boson interaction U at fixed non-commensurate density. Typical
constant-density contours in the strongly-interacting SF phase are shown in figure C1.

Figure C2(a) shows the change in the dephasing rate γ (t) for decreasing hopping energy 2dJ/U at fixed
density 〈n̂〉 = 0.6 (see the corresponding solid black line in figure C1). We observe that, upon approaching
the hard-core limit 2dJ/U → 0 from the deep SF phase, the order of magnitude of γ (t) increases
significantly, while the time scale of the dephasing dynamics slows down, in such a way that the profiles of
γ (t) at different values of 2dJ/U are related by a simple scaling relation. On the other hand, the
strongly-correlated SF regime still exhibits an evident non-Markovian character, as recognizable also in the
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Figure C2. (a) Dephasing rate γ (t) given by equation (11) at constant density 〈n̂〉 = 0.6 in d = 2 dimensions for decreasing
2dJ/U (from red to black solid line) on approaching the hard-core limit of the SF phase. (b) Loschmidt echo L (t) corresponding
to the dephasing rates in panel (a). (c)–(d) Dephasing rate and Loschmidt echo for the same values of 2dJ/U at a larger,
non-integer filling 〈n̂〉 = 0.8.

oscillating behaviour of the Loschmidt echo L (t), see figure C2(b). Here, we can appreciate how
non-Markovianity and the overall magnitude of γ (t) compete in controlling the amount of dephasing of
the impurity. However, at very small 2dJ/U, the strong enhancement of the amplitude of γ (t) wins over
revival effects and induces almost complete dephasing in a small time interval.

These results find an intuitive explanation in the physical properties of the hard-core SF state. For
t � 1/J, strong bath correlations prevent the density excitations induced by the presence of the impurity
from leaving a neighbourhood of the impurity itself, therefore leading to the strong-positive density
correlations observed in figure C2(a). However, being the hard-core phase still coherent in character,
hopping process are favoured at larger times and invert the sign of γ (t) in analogy with what we observe in
the deep SF regime. Therefore, the total amount of dephasing depends on whether local density correlations
are sufficiently strong to overcome non-Markovian effects due to long-range coherence.

The dependence of the dephasing rate on the lattice filling can be understood by looking at figures C2(c)
and (d), referring to a larger filling 〈n̂〉 = 0.8. In particular, we notice that the oscillation amplitude of γ (t)
and the speed of the dephasing process decreases as the bath density is increased towards the integer value
〈n̂〉 = 1 required for crossing the MI–SF transition.

Finally, we report the remarkable fact that, upon reaching the hard-core SF regime, the Goldstone mode
alone still provides the most important part of γ (t), which is essentially given by its Gaussian contribution
γ1 (t) (see the discussion of section 2.4). This implies that a single-particle description of the BH bath is a
good approximation for the dephasing dynamics when the impurity is embedded in a strongly-interacting
SF away from the MI–SF criticality.

Appendix D. Dephasing dynamics in free and weakly-interacting boson baths

The free boson spectrum on the continuum is the Galilean quadratic dispersion relation

ε0 (k) =
�

2k2

2m
, (D.27)

so that the spectral function of density correlations scales as J0 (ω) ∼
∫

ddk δ [ω − ε0 (k)] ∼ ω(d−2)/2 at
small frequencies in d dimensions. It follows that the dephasing rate and decoherence function behave as

γ0 (t) =

∫
dω

J0 (ω) sin (ωt)

ω
∼ t(2−d)/2 Γ0 (t) =

∫
dω

J0 (ω) [1 − cos (ωt)]

ω2
∼ t(4−d)/2 (D.28)

at large times, suggesting that free bosons lead to total dephasing exp [−Γ0 (t →∞)] = 0 if d < 4. Indeed,
the asymptotic behaviour of the dephasing rate γ0 (t) ∼ const. in d = 2 resembles the Markovian behaviour
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Table D1. � In the case of free bosons loaded on a 1D lattice, the dephasing rate behaves as
γ (t) = t [sin (2Jt) J1 (2Jt) + cos (2Jt) J0 (2Jt)] ∼

√
t on a coarse-grained time scale (i.e. for t  1/J), modulated by small

oscillations due to the lattice discretization (see figure D1(a)). Therefore, in the long-time limit, the pure dephasing dynamics in a
free-boson environment is insensitive to the spatial discretization due to the lattice. We report the same dynamical behaviour for
d > 1.

J (ω) γ (t) = dΓ (t) /dt

Continuum free bosons ω(d−2)/2 t(2−d)/2 for 0 < d < 4

Lattice free bosons (1D)
[
ω
J

(
1 − ω

4J

)]−1/2

t [sin (2Jt) J1 (2Jt) + cos (2Jt) J0 (2Jt)] ∗
Lattice free bosons ω(d−2)/2 forω � J t(2−d)/2 for 0 < d < 4 ∗

Continuum weakly interacting bosons

[√
(ρ0 U)2

+ω2−ρ0U

]d/2

2
√

(ρ0U)2
+ω2

t−d for t  m/�2

Lattice weakly interacting bosons (1D)

√√
(ρ0U)2

+ω2−ρ0U

(ρ0U)2
+ω2

1√
1− 1

4J

[√
(ρ0U)2

+ω2−ρ0U

] t−1 for t  1/J

Lattice weakly interacting bosons

[√
(ρ0U)2

+ω2−ρ0U

]d/2

√
(ρ0U)2

+ω2
forω � J t−d for t  1/J

Figure D1. (a) Dephasing rate γ (t) for a 1D bath of lattice free bosons (solid line) and weakly-interacting bosons on the
continuum (dashed line). Notice the

√
t growth for free particles and the t−1 decay for weak interactions. (b) The same quantities

calculated for d = 2. Notice the constant-value asymptotics of γ (t) in presence of free bosons and the t−2 decay for weak
interactions.

Table D2. A summary of the long-time behaviour exhibited by the decoherence function γ (t) and the Loschmidt echo L (t)
for the relevant cases analysed in table D1.

Γ (t) L (t)

Continuum free bosons t(4−d)/2 for 0 < d < 4 exp
[
−βt(4−d)/2

]
for 0 < d < 4

Lattice free bosons (1D) t3/2 exp
(
−βt3/2

)
Lattice free bosons t(4−d)/2 for 0 < d < 4 exp

[
−βt(4−d)/2

]
for 0 < d < 4

Continuum weakly interacting bosons
ln (t) for d = 1

t1−d for d > 1
for t  m/�2

t−α with α > 0 for d = 1

exp
(
−βt1−d

)
for d > 1

for t  m/�2

Lattice weakly interacting bosons (1D) ln (t) for t  1/J t−α withα > 0 for t  1/J
Lattice weakly interacting bosons t1−d for t  1/J exp

[
−βt1−d

]
for t  1/J

that we observe at the edge transition described in figure 2(c), where an effective free-particle description of
the SF phase holds [24, 27]. A similar result applies to the case of lattice free bosons, for which the spatial
discretization introduces only a small, fast-oscillating modulation of γ0 (t).

As regards the case of a weakly-interacting gas either on the continuum or on a lattice, within the
Bogoliubov approximation the single-particle spectral amplitude of density fluctuations reads
Nbog,k =

√
ρ0 (uk + vk), where ρ0 is the condensate fraction and uk (vk) is the particle (hole) excitation

amplitude of the Goldstone mode. Since N2
bog,k ∼ |k| at small momenta, we obtain that the low-energy

behaviour of the spectral density is controlled by the spatial dimension only,

Jwi (ω) =

∫
ddk N2

bog,kδ
(
ω − ωbog,k

)
∼ ωd, (D.29)
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apart from subdominant corrections depending on the concavity of the Goldstone spectrum ωbog,k.
Equation (D.29) leads to

γwi (t) =

∫
dω

Jwi (ω) sin (ωt)

ω
∼ t−d Γwi (t) =

∫
dω

Jwi (ω) [1 − cos (ωt)]

ω2
∼ t1−d (D.30)

for large times. Therefore, a weakly-interacting bath induces only partial dephasing, namely
exp [−Γwi (t →∞)] �= 0, at least for d > 1.

Most importantly, the frequency dependence of Jwi (ω) on the continuum assures that non-Markovian
effects do not occur in any dimension. For instance, for a d = 1 gas we find

J1D,cont.
wi (ω) =

√
2m

�2
ρ0

√√
(ρ0U)2 + ω2 − ρ0U

(ρ0U)2 + ω2
∼
√

mρ0

�2 U
ω for ω → 0 (D.31)

which is a monotonous smooth function of ω. On the other hand, for weakly-interacting bosons loaded on
a one-dimensional lattice, the spectral density

J1D,latt.
wi (ω) =

√
1

J
ρ0

√√
(ρ0 U)2 + ω2 − ρ0U

(ρ0U)2 + ω2

1√
1 − 1

4 J

[√
(ρ0U)2 + ω2 − ρ0U

]

∼
√

ρ0

2JU
ω for ω → 0

(D.32)

presents a van Hove singularity where the dispersion relation of the Goldstone mode reaches a stationary
point, namely at the boundary of the Brillouin zone k = π, where ω =

√
2J (2J + 2ρ0U). This change in the

high-energy structure of Jwi (ω) is a genuine effect of the absence of full Galilean invariance due to spatial
discreteness inherent to the lattice: in fact, the lattice setting introduces an additional energy scale fixed by
the bandwidth of the Goldstone excitation, approximately proportional to the hopping energy J in the
weakly-interacting limit J/U  1. Consequently, passing from the continuum to the lattice, in the SF phase
the dephasing function γ (t) acquires an oscillating behaviour whose period is set by the hopping time scale,
as we observe e.g. in the 2D result shown in figure 2(a). On the other hand, the amplitude of the oscillations
of γ (t) at large times is always controlled by the power-law decay (D.30) seen on the continuum.

Table D1 summarises the previous discussion and reports the expressions of J (ω) and γ (t) for the most
relevant cases and limits. For the sake of completeness, figure D1 reports the behaviour of the dephasing
rate γ (t) for a bath of free (weakly-interacting) bosons loaded on a square lattice (on the continuum), to be
compared with our results for the critical SF phase of the BH bath at the edge transition. Finally, table D2
displays the long-time behaviour of the decoherence function Γ (t) and of the Loschmidt echo L (t) for the
same reference cases.
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[47] Fŕerot I and Roscilde T 2016 Phys. Rev. Lett. 116 190401
[48] Sheshadri K, Krishnamurthy H R, Pandit R and Ramakrishnan T V 1993 Europhys. Lett. 22 257
[49] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1997 Photons and Atoms: Introduction to Quantum Electrodynamics (New

York: Wiley)
[50] Blaizot J-P and Ripka G 1986 Quantum Theory of Finite Systems (Cambridge: The Massachusetts Institute of Technology Press)
[51] Pitaevskii L P and Stringari S 2016 Bose–Einstein Condensation and Superfluidity (New York: Oxford Science Publications)
[52] Castin Y 2001 Coherent Atomic Matter Waves ed R Kaiser, C Westbrook and F David (Berlin: Springer) pp 1–136
[53] Wißmann S, Karlsson A, Laine E-M, Piilo J and Breuer H-P 2012 Phys. Rev. A 86 062108

17

https://doi.org/10.1016/j.chemphys.2005.07.025
https://doi.org/10.1016/j.chemphys.2005.07.025
https://doi.org/10.1088/0034-4885/75/9/094501
https://doi.org/10.1088/0034-4885/75/9/094501
https://doi.org/10.1103/revmodphys.77.259
https://doi.org/10.1103/revmodphys.77.259
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/physreva.97.040101
https://doi.org/10.1103/physreva.97.040101
https://doi.org/10.1103/physreva.101.012101
https://doi.org/10.1103/physreva.101.012101
https://doi.org/10.1103/physreva.94.053634
https://doi.org/10.1103/physreva.94.053634
https://doi.org/10.1103/physrevlett.115.165301
https://doi.org/10.1103/physrevlett.115.165301
https://doi.org/10.1103/physreva.94.063618
https://doi.org/10.1103/physreva.94.063618
https://doi.org/10.1002/andp.201900307
https://doi.org/10.1002/andp.201900307
https://doi.org/10.1103/physrevlett.119.016802
https://doi.org/10.1103/physrevlett.119.016802
https://doi.org/10.1103/physrevresearch.2.033276
https://doi.org/10.1103/physrevresearch.2.033276
https://doi.org/10.1103/physreva.75.032333
https://doi.org/10.1103/physreva.75.032333
https://doi.org/10.1103/physrevb.40.546
https://doi.org/10.1103/physrevb.40.546
https://doi.org/10.1103/physreva.84.033602
https://doi.org/10.1103/physreva.84.033602
https://doi.org/10.1103/physrevb.75.085106
https://doi.org/10.1103/physrevb.75.085106
https://doi.org/10.1103/physrevlett.120.073201
https://doi.org/10.1103/physrevlett.120.073201
https://doi.org/10.1103/physreva.70.053609
https://doi.org/10.1103/physreva.70.053609
https://doi.org/10.1088/0953-4075/36/5/304
https://doi.org/10.1088/0953-4075/36/5/304
https://doi.org/10.1016/j.chemphys.2007.09.003
https://doi.org/10.1016/j.chemphys.2007.09.003
https://doi.org/10.1103/physrevlett.103.210401
https://doi.org/10.1103/physrevlett.103.210401
https://doi.org/10.1103/physreva.89.042120
https://doi.org/10.1103/physreva.89.042120
https://doi.org/10.1103/physreva.85.060101
https://doi.org/10.1103/physreva.85.060101
https://doi.org/10.1103/physreva.84.031602
https://doi.org/10.1103/physreva.84.031602
https://doi.org/10.1103/physreva.87.012127
https://doi.org/10.1103/physreva.87.012127
https://doi.org/10.1103/revmodphys.88.021002
https://doi.org/10.1103/revmodphys.88.021002
https://doi.org/10.1103/physreva.90.012310
https://doi.org/10.1103/physreva.90.012310
https://doi.org/10.1103/physreva.30.1610
https://doi.org/10.1103/physreva.30.1610
https://doi.org/10.1103/physreva.98.053608
https://doi.org/10.1103/physreva.98.053608
https://doi.org/10.1103/physrevb.44.10328
https://doi.org/10.1103/physrevb.44.10328
https://doi.org/10.1016/j.physrep.2015.10.004
https://doi.org/10.1016/j.physrep.2015.10.004
https://doi.org/10.1103/physrevlett.116.190401
https://doi.org/10.1103/physrevlett.116.190401
https://doi.org/10.1209/0295-5075/22/4/004
https://doi.org/10.1209/0295-5075/22/4/004
https://doi.org/10.1103/physreva.86.062108
https://doi.org/10.1103/physreva.86.062108

	Impurity dephasing in a Bose–Hubbard model
	1.  Introduction
	2.  Model and theory
	2.1.  Quantum impurity in a Bose–Hubbard bath
	2.2.  The quantum Gutzwiller method
	2.3.  Non-Markovianity measure of pure dephasing
	2.4.  QGW expressions of and and short-time behaviour of the Loschmidt echo 

	3.  Numerical results
	3.1.  Dephasing in the superfluid phase
	3.2.  Dephasing dynamics at the MI–SF transition
	3.3.  Short-time dephasing process and non-Markovianity measure

	4.  Summary and outlook
	Acknowledgments
	Appendix A.  Quantum Gutzwiller approach in a nutshell
	Appendix B.  Pure dephasing and BLP non-Markovianity measure
	Appendix C.  Dephasing dynamics at incommensurate filling
	Appendix D.  Dephasing dynamics in free and weakly-interacting boson baths
	Data availability statement
	ORCID iDs
	References


