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Abstract— Stroke is a leading cause for adult disability, which 

in many cases causes motor deficits. Despite the developments in 

motor rehabilitation techniques, recovery of upper limb functions 

after stroke is limited and heterogeneous in terms of outcomes, and 

knowledge of important factors that may affect the outcome of the 

therapy is necessary to make a reasonable prediction for 

individual patients. In this study, we assessed the relationship 

between quantitative electroencephalographic (QEEG) measures 

and the motor outcome in chronic stroke patients that underwent 

a robot-assisted rehabilitation program to evaluate the utility of 

QEEG indices to predict motor recovery. For this purpose, we 

acquired resting-state electroencephalographic signals from which 

the Power Ratio Index (PRI), Delta/Alpha Ratio (DAR), and Brain 

Symmetry Index (BSI) were calculated. The outcome of the motor 

rehabilitation was evaluated using upper-limb section of the Fugl-

Meyer Assessment. We found that PRI was significantly 

correlated with the motor recovery, suggesting that this index may 

provide useful information to predict the rehabilitation outcome.  

 
Index Terms— Chronic Stroke, Robot-assisted Rehabilitation, 

Quantitative Electroencephalography (QEEG), Outcome 

Prediction 

 

I. INTRODUCTION 

TROKE is one of the leading causes of long-term disability 

in adults [1]–[3]. It occurs when blood flow to an area of 

the brain is cut off, and brain cells deprived of oxygen begin to 

die. When brain cells die, the abilities controlled by that area of 

the brain, such as memory and muscle control, can be partially 

or totally lost. How a person is affected by stroke depends on 

where the stroke occurs in the brain and how much the brain is 

damaged [4]. Approximately two thirds of the stroke patients 

require rehabilitation and most of them present residual and 

disabling long-term deficits due to impaired motor function [5]. 

When the damage is in the motor areas of the brain, it can 

produce devastating motor deficits particularly for the upper 

limb. Upper limb weakness and loss of function is a significant 
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problem among survivors [6], [7]. In many cases, the severe 

disabilities affect their daily living activities, including 

activities of self-care, such as eating, washing and dressing, 

resulting in the loss of independence and causing major changes 

in the quality of life. Hence, rehabilitation of the impaired upper 

limb is of critical importance. Upper limb rehabilitation is 

generally focused on improving independent function on 

various daily activities, and it is considered effective if patients 

are able to transfer motor and functional improvements to their 

living environments [8].  

Physical therapy involving repetitive limb movement can 

stimulate damaged brain areas and lead to partial or full motor 

function recovery [9]–[13]. Moreover, it has been shown that 

upper limb exercises applied with functional tasks are more 

effective in improving functions and daily living activities 

compared to simple repetitive upper extremity exercises [14]. 

In traditional rehabilitation therapies, patients perform 

repetitive limb movements with the help of the physiotherapist. 

This approach, however, requires extensive training periods for 

patients, and intensive labor for therapist.  

Recently, robot-assisted rehabilitation has been used to 

promote motor recovery in stroke patients as an alternative to 

traditional therapy, and several studies have shown that it can 

be effective in both subacute and chronic patients [15]–[17]. 

Robot-based systems have the advantage to allow 

programmable movement patterns, control of movement 

repetitions, and real-time position and force measurement. 

Robots can be programmed to perform a wide variety of 

motions including functional movements, which allows the 

patient to perform autonomous and repetitive training on tasks 

simulating activities of daily living, even without the help of the 

therapist. Robot-based systems have also the advantage of 

possible cost reduction by automating the therapy procedure, 

allowing the therapist to work with many patients at the same 

time.  

To date, most of the robotic systems have been developed for 
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controlled supervised hospital-settings, requiring clinic visits 

for patients, and making it inconvenient or unaffordable for 

many patients. Recent studies have shown the feasibility of 

developing low-cost, easily transportable, wearable, automated 

and customizable robot-assisted rehabilitation system for home 

based rehabilitation [18]–[21]. Novel strategies also include the 

use of biofeedback, virtual reality, and haptics to improve 

patient motivation, engagement and adherence to the treatment 

[18], [22]–[27].  

Despite the developments in motor rehabilitation techniques 

[28], recovery from stroke is heterogeneous in terms of 

outcomes, which means that not all stroke patients achieve the 

same degree of motor recovery. A variety of clinical factors 

influences the efficacy of the therapy, including age, stroke 

severity, infarct location, and related complications. Patients, 

families, healthcare workers, and insurance providers often 

enquire the clinician for a prediction of the duration and 

efficacy of the rehabilitation program. Knowledge of important 

factors that may affect the outcome of the therapy is necessary 

to make a reasonable prediction for individual patients. Thus, 

there is a need for reliable markers to predict the efficacy of the 

therapy according to the individual level and type of 

impairment. 

In the acute phase, the most powerful predictors of functional 

recovery are the initial severity of the stroke and the patient's 

age [29], [30]. Other factors, such as the presence of finger 

extension and shoulder abduction within 72 hours after stroke 

can be used to predict functional recovery [31] in the acute 

phase. In the chronic phase, however, predicting the outcome 

of the therapy is more challenging as the motor recovery is not 

always related to the extent of the initial damage, and many 

complex dynamic neuroplasticity processes may occur since the 

initial stroke lesion. Hence, predicting motor function, 

particularly in the chronic phases, requires the use of 

complementary techniques. Different studies have shown that 

neuroimaging and neurophysiological techniques can provide 

useful information to predict clinical outcomes [32]–[35]. 

Among these, electroencephalography (EEG) is a low cost, 

noninvasive, and versatile technique to assess cortical function 

reorganization [35], suitable for measuring brain activity in 

both acute and chronic phases.  

The EEG is typically described in terms of rhythmic activity, 

and it is generally divided into frequency bands known as delta 

(1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (12-30 Hz). 

EEG is very sensitive in detecting abnormalities of cerebral 

rhythms that are typical of stroke. In particular, quantitative 

EEG (QEEG) indices based on the relationship between the 

power of slow (i.e. 1-7 Hz) and fast (i.e. 8-30 Hz) brain activity, 

estimated by resting-state EEG power spectrum analysis, have 

been shown to be useful to characterize the brain status after 

stroke. Several EEG studies in patients with acute stroke have 

shown that QEEG indices can offer valuable information for 

clinical decision-making, providing predictors of clinical 

outcomes [34], [36]–[40]. Specifically, the relationship 

between the power bands by means of the Power Ratio Index 

(PRI) [37], and the delta/alpha ratio (DAR) [41], as well the 

characterization of brain asymmetry via the Brain Asymmetry 

Index (BSI) [39], [40], [42], [43], have been used to predict and 

monitor the evolution of stroke in the acute phase. In this phase, 

an increase in PRI, DAR and BSI have been related to poorer 

functional outcomes, and can be associated with the severity of 

the initial damage.  

Most of the prior studies, however, have examined the QEEG 

predictors in the acute phase, and there are currently few studies 

investigating the relationship between the QEEG indices and 

the functional outcome after neurorehabilitation in chronic 

patients [35], [44]–[48]. Moreover, only one previous study 

investigated the QEEG indices as predictors of the 

rehabilitation outcomes in chronic patients; specifically, in that 

case, rehabilitation was multidisciplinary including both motor 

and cognitive functions [47]. On the other hand, regarding 

robot-assisted motor rehabilitation, several studies have 

examined EEG power modulations in alpha and beta bands 

during movement [49]–[51], and have explored the effects of 

rehabilitation using robot devices [48], but, to our knowledge, 

none of the previous studies has examined the QEEG indices as 

predictors of motor recovery.  

To fill this gap, the present study aimed to evaluate the 

possible relationship between the QEEG indices and the motor 

recovery measure in chronic stroke patients that underwent a 

robot-assisted motor rehabilitation program to evaluate the 

utility of QEEG indices to predict motor recovery, and guide 

rehabilitation strategies in chronic stroke patients.  

 

II. MATERIALS AND METHODS 

A. Patients 

Ten post-stroke patients in the chronic phase were recruited 

for the study. All patients had monolateral upper-limb deficits. 

The demographic and clinical characteristics of the patients are 

listed in Table 1. Written informed consent was obtained from 

each subject before inclusion in the study. The study was 

reviewed and approved by the local Ethics Committee at Como 

Valduce Hospital and was conducted in compliance with the 

Declaration of Helsinki. 

 

B. Rehabilitation System and Protocol 

The Mitsubishi Pa10-7 robot (Fig. 1) was used to perform 

upper-limb rehabilitation training sessions, based on the 

intensive execution of Reaching Movement (RM) and Hand-to-

Mouth Movement (HtMM) robot-assisted functional 

movements. The RM consisted in the flexion of the shoulder on 

the sagittal plane up to 90°, coupled with the complete 

extension of the elbow, mimicking the gesture of reaching for 

an object. The HtMM consisted in slightly flexing the shoulder 

while flexing the elbow to simulate the gesture of bringing 

objects to the mouth. These two movements were chosen 

because they resemble common actions performed during 

everyday life, like reaching for a desired object or eating, and 

because they engage most of the upper limb joints (mainly 

shoulder and elbow for the RM, and elbow and wrist for the 
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HtMM). Moreover, the RM trains movements directed away 

from the body, while HtMM movements towards the body; this 

particular feature is supposed to encourage the role of 

proprioception in motor recovery. 

Patients interacted with the robot through the handle 

mounted as end-effector. Further, during the HtMM movement, 

patients had to actively orientate the robot handle, which was 

provided with a revolute joint to promote the correct orientation 

of the hand.  

Robot paths were rigidly imposed, i.e., the robot handle 

followed the predefined path and motion law regardless of the 

forces applied by the patient. Robot paths were created and 

customized to meet each patients’ needs; motion laws 

mimicked bell-shaped, physiological-like velocity profiles, 

executed smoothly [52] and at quasi-physiological velocity.   

The rehabilitation protocol consisted of 12 training sessions, 

each one lasting 40 minutes. Patients performed 3 sessions per 

week, thus the rehabilitation treatment lasted 4 weeks. Each 

session consisted in 20 minutes of intensive repetition of the 

RM and 20 minutes of intensive repetition of the HtMM. 

Patients were asked to change their level of engagement and 

participation every five movements by alternately relaxing 

during movement and actively participating. The operator, a 

specialized physiotherapist, could monitor on video the forces 

of interaction between the patient and the robot and, if 

necessary, could encourage the patient to try to participate 

more. 

 

C. Patient Clinical Evaluation  

Clinical evaluations were performed by a physical therapist 

before treatment (T0) and after one month of treatment (T1), 

using the Fugl-Meyer Assessment (FMA) [53], [54]. The FMA 

is a stroke-specific, performance-based impairment scale, 

belonging to the body function domain of the ICF model, 

designed to assess motor functioning, balance, sensation and 

joint functioning in patients with post-stroke hemiplegia. 

Specifically, in this study, we used only the upper extremity 

motor section of the FMA (scale 0-66, 66=no motor deficits), 

and, accordingly to previous studies [55]–[57], the primary 

measure of motor recovery ∆𝐹𝑀𝐴 was calculated as difference 

between the FMA measures at T1 (FMAT1) and T0 (FMAT0). 

Considering the variability in FMAT0 of the participants in this 

study, and with the twofold aim of keeping track of FMAT0 and 

preventing ceiling effects on mild patients, a secondary measure 

of the motor recovery, the ∆FMA% was also used, defined as 

the difference between the FMA measures at T1 and T0, 

divided by the FMA measure at T0. Such index expresses the 

amount of motor recovery relative to the condition at the 

beginning of the therapy (T0), or, more precisely, the 

percentage of increase (decrease) of the FMA score at the end 

of the rehabilitative treatment (T1) with respect to the clinical 

status at T0. 

 

D. EEG Recordings  

Resting state EEG recordings were performed before 

treatment (T0) and after treatment (T1), with the subject in a 

comfortable supine position. Patients were asked to keep the 

eyes closed and remain awake and relaxed for 3 minutes while 

the EEG was recorded. The signals were acquired using a cap 

with 64 Ag/AgCl scalp monopolar electrodes placed according 

to the International 10/20 system. Impedances were kept below 

5 kΩ. The online reference electrode was placed between Cz 

and Cpz. The EEG data were acquired using a Synamps 2/RT 

EEG system (Neuroscan) with a sampling frequency of 1 kHz. 

For one of the patients (patient G), the EEG signal at T1 had 

 

Fig. 1.   The Mitsubishi Pa10-7 robot platform 

TABLE I 
DEMOGRAPHIC AND CLINICAL DATA 

Patient Gender Age Years from Stroke Handedness Impaired hand Type of Stroke 𝐹𝑀𝐴𝑇0 𝐹𝑀𝐴𝑇1 

A Male 74 1 Right Left Hemorrhagic 56 57 

B Male 49 2 Right Right Ischemic 36 44 

C Male 51 10 Right Left Ischemic 11 12 

D Male 67 1 Right Right Ischemic 61 65 

E Male 31 4 Right Left Ischemic 17 17 

F Male 66 6 Right Left Ischemic 48 57 

G Female 46 14 Right Right Ischemic 61 64 

H Male 56 13 Left Right Hemorrhagic 46 50 

I Female 36 4 Right Right Ischemic 48 57 

J Male 81 2 Left Left Ischemic 40 47 
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many artifacts, and therefore only the EEG signal at T0 was 

considered for the analysis.  

In order to assess the reliability of the QEEG measures, in six 

patients we performed an additional EEG recording 

approximately one hour after the first acquisition, under the 

same conditions as above and by the same operator. This was 

done at both T0 and T1, thus a total of twelve measures was 

considered for the reliability analysis. 

 

E. EEG Data Analysis  

Data analysis was performed offline in Matlab (R2015a, 

Mathworks, Natick, MA, USA) using the EEGLAB toolbox 

(Swartz Center for Computational Neuroscience, San Diego, 

CA, USA, http://sccn.ucsd.edu/). The EEG data were re-

sampled at 500 Hz, bandpass filtered (Least-square linear-phase 

FIR filter: 1) lowpass filter: cutoff frequency=45 Hz, filter 

order=33; 2) highpass filter: cutoff frequency=0.5 Hz, filter 

order=3000), and re-referenced to the common average 

reference. The ear channels (M1 and M2), bad channels and 

segments containing gross artifacts (identified by visual 

inspection), were excluded from further analysis (in the worst 

case, 4 channels were eliminated, thus 58 were considered for 

the analysis). Then, the signals were epoched into contiguous 

epochs of 1024 data points (approximately 88 epochs), and 

those exceeding ±100 μV were automatically rejected (worst 

case: 69 epochs were considered for the subsequent analysis). 

Other artifacts (e.g. ocular artifacts, muscle artifacts, lost 

electrode connections) were removed using Independent 

Component Analysis (ICA) [58]. The ICA decomposition was 

performed using the logistic infomax ICA algorithm [59], 

implemented in EEGLAB. The selection of the artefactual 

components was guided by automated rejection methods 

(ADJUST [60]; FASTER [61]; MARA [62]; SASICA [63]), 

and supervised by an expert user via visual inspection.  

Power spectral density was calculated for each channel using 

Welch’s periodogram with Hamming window without overlap. 

As done in previous studies [38], [64], [65], the absolute power 

was summed across the delta (0.98-3.91 Hz), theta (4.39-7.32 

Hz), alpha (7.81-12.21 Hz), and beta (12.70-29.79 Hz) bands. 

The relative power values for each frequency band were 

calculated as the ratio of summed absolute band-power to total 

summed power across the 0.98–29.79Hz range. All the indices 

were initially calculated for each channel, and then averaged 

across all electrodes.  

The absolute band-power values were used to calculate the 

following quantitative indices: 

1) Power Ratio Index (PRI) [66]: the ratio of ‘‘slow” to ‘‘fast” 

activity defined as the ratio of delta-plus-theta to alpha-plus-

beta absolute power: 

   
𝑃𝑅𝐼 =

𝛿 + 𝜃

𝛼 + 𝛽
 

(1) 

2) Delta/Alpha Ratio (DAR) [41]: defined as the ratio of delta 

to alpha absolute power: 

   
𝐷𝐴𝑅 =

𝛿

𝛼
 

(2) 

The power spectral density for each channel was also used to 

calculate the pairwise derived Brain Symmetry Index (pdBSI) 

[40], which estimates the global asymmetry along homologous 

channel pairs (right and left), in the 1–25 Hz range averaged for 

frequency range and the number of channel pairs: 

   

𝑝𝑑𝐵𝑆𝐼 =
1

𝑁𝑀
∑ ∑ |

𝑅𝑖𝑗 − 𝐿𝑖𝑗

𝑅𝑖𝑗 + 𝐿𝑖𝑗

|

𝑁

𝑖=1

𝑀

𝑗=1

 (3) 

with 𝑅𝑖𝑗 and 𝐿𝑖𝑗  being the power spectral density from right 

and left channels of a homologous channel pair (with 

i=1,2,…M) at frequency j=1,2,…,N. For our specific settings, 

M=27, which corresponds to the total number of channel pairs. 

All the QEEG indices where calculated for T0 and T1, to verify 

if there were any changes in the brain activity before and after 

treatment.  

 

F. Statistical Analysis  

Assuming a Spearman's rank correlation coefficient of 0.7 ± 

0.1 between the QEEG indices at T0 and motor outcome, the 

recommended sample size was 9-19 subjects to achieve 

statistical power of 80% with a significance level of 0.05. 

Power analysis was performed using the QFAB Bioinformatics, 

ANZMTG Statistical Decision Tree, Power Calculator, v 1.0.  

Because of the small sample size, nonparametric tests were 

used for multivariate analysis. Non-parametric Spearman’s 

rank correlation coefficients were calculated to assess the 

correlation between the QEEG indices and outcome measures 

(ΔFMA and ΔFMA%), as well as the correlation between the 

values at T0 and T1. The comparisons between the QEEG 

values before and after treatment were performed using the 

Wilcoxon signed-rank test. The intraclass correlation 

coefficient (ICC) was used to assess the reliability of the QEEG 

measures. In all analysis, the level of significance was set at 

0.05. The statistical analysis was performed using the Statistics 

and Machine Learning Toolbox of Matlab (R2015a, 

Mathworks, Natick, MA, USA). 

 

III. RESULTS 

The correlation analysis between QEEG indices at T0 and 

motor outcome showed a significant negative correlation 

between PRIT0 and the ΔFMA (ρ=-0.77, P=0.009, Fig. 2(a)). 

DART0 also showed a negative relationship with ΔFMA, but 

was not statistically significant (ρ=-0.61, P=0.06, Fig. 2(b)). 

Similarly, we also observed a significant negative correlation 

between PRIT0 and the ΔFMA% (ρ=-0.69, P=0.03, Fig. 2(d)), 

and a trend to a negative correlation between DART0 and 

ΔFMA% (ρ=-0.54, P=0.11, Fig. 2(e)). As regards to the 

pdBSIT0, it did not correlate with neither the ΔFMA 

(ρ=-0.02, P=0.97, Fig. 2(c)), nor the ΔFMA% 

(ρ=-0.04, P=0.91, Fig. 2(f)). 

FMAT0 was not correlated with PRIT0 (ρ=-0.19, P=0.60), 

DART0 (ρ=-0.012, P=0.97), nor pdBSIT0 (ρ=0.45, P=0.19); 

analogously, FMAT1 was not correlated with PRIT1 

(ρ=-0.24, P=0.51), DART1 (ρ=-0.08, P=0.83), nor pdBSIT1 

(ρ=0.42, P=0.22). There was no statistical correlation between 

http://sccn.ucsd.edu/
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FMAT0 and ΔFMA (ρ=0.19, P=0.60), nor between FMAT0 and 

ΔFMA% (ρ=-0.23, P=0.53), suggesting that motor 

improvements were not related to initial condition (Fig. 3). In 

addition, the ΔFMA and ΔFMA% were not correlated with 

neither the age of the patients (ρ=0.12, P=0.74; 

ρ=-0.049, P=0.89) nor the time since injury 

(ρ=-0.052, P=0.89; ρ=0.009, P=0.98).  

We also tested whether the relative powers in each frequency 

band were correlated with the ΔFMA. We found a negative 

correlation between the ΔFMA and the relative power of the 

delta (ρ=-0.62, P=0.06) and theta (ρ=-0.68, P=0.03) bands, 

and a positive correlation between ΔFMA and the relative 

power of the alpha band (ρ=0.61, P=0.06). The relative power 

in the beta band did not correlate with the ΔFMA 

(ρ=0.14, P=0.7). 

 Fig. 4 shows the individual relative power values for each 

frequency band obtained from the analysis of the EEG signals 

at T0 and T1. When comparing the relative band powers 

between T0 and T1, we found no significant changes (P>0.5 

for all bands). Consequently, the comparison between T0 and 

T1 for PRI and DAR indices did not show any significant 

variation.  

The ICCs (95% CI) for PRI and DAR were 0.97 (0.92 to 

0.99) and 0.96 (0.88 to 0.99), respectively, indicating good 

agreement between measurements. 

IV. DISCUSSION 

Several studies have shown that the QEEG indices, in 

particular DAR, provide useful information to predict the 

functional recovery in acute stroke patients [34], [36], [38], and 

that they are useful to differentiate between stroke patients in 

the acute phase and healthy controls [64]. On the other hand, its 

usefulness in the chronic phase of stroke is still not well 

elucidated.  

Currently, only few clinical studies have investigated the 

relationship between the QEEG indices and the functional 

outcome after neurorehabilitation in chronic patients [35], [44]–

[48], and, to our knowledge, only one study has explored the 

utility of DAR and PRI indices as predictors of functional 

outcome [47]. In that study, the authors examined the 

relationship between three QEEG indices (DAR, PRI and BSI) 

and their association with the functional outcome of a 

multidisciplinary rehabilitation program on motor and 

cognitive functions. Their results showed that DAR index was 

correlated with the rehabilitation outcome, suggesting that it 

could play a role in predicting multidisciplinary rehabilitation 

outcomes. Nevertheless, none of the previous studies has 

reported the correlation between the above-mentioned QEEG 

indices and the motor recovery resulting from robot-assisted 

rehabilitation. To the extent of our knowledge, the present study 

is the first to evaluate the QEEG indices as predictors of motor 

recovery in chronic stroke patients that underwent a robot-

assisted rehabilitation program. 

Robot-assisted therapy has been shown to be promising in 

the rehabilitation of the upper limb in chronic stroke patients 

[15]–[17]. Robot systems allow the patients to train 

autonomously on tasks simulating activities of daily living [50]. 

Personalized therapy involving robot systems and virtual reality 

can be used to promote repetition, task oriented training, with 

appropriate feedback and motivation for under-supervised 

environments such as the home [18], [20], [27], [67], [68], 

making this approach an attractive alternative to traditional 

therapy. Predicting the possible success of the robotic 

 

Fig. 2.  Scatterplot showing the correlation between QEEG indices at T0 (PRIT0, DART0, and pdBSIT0) and the clinical outcomes (ΔFMA and ΔFMA%): (a) PRIT0 

vs ΔFMA;  (b) DART0 vs ΔFMA; (c) pdBSIT0 vs ΔFMA; (d) PRIT0 vs ΔFMA%; (e) DART0 vs ΔFMA%; (f) pdBSIT0 vs ΔFMA%. The Spearman correlation 

coefficient (ρ) and the P-value are indicated in each subfigure.      
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intervention becomes essential to select the possible candidates     

for the therapy, and to optimize the treatment according to the 

individual level and type of impairment. Within this context, 

our study investigated the QEEG indices as an objective 

automatic tool for predicting the motor recovery and supporting 

the treatment decision making.  

In this study, we examined a group of chronic stroke patients 

to evaluate the relationship between the QEEG indices and the 

motor outcomes after one month of robot-assisted 

rehabilitation. The correlation analysis showed a trend to 

negative relationship between the QEEG indices (PRI and 

DAR) and both measures of the motor outcome (ΔFMA and 

ΔFMA%), suggesting that high PRI and DAR values are 

associated to poorer outcomes in patients that underwent robot-

assisted therapy. Although the results of this study suggest that 

PRI and DAR values might be useful to predict the motor 

recovery, the statistical power of this study is low because of 

small sample size, and therefore our results should be 

considered as exploratory and deserve further investigation. 

Given the small size of our sample, we did not adjust the P-

values for multiple comparisons, which increases the 

probability of type I error.  

 The results of the present study are in line with the previous 

report on chronic patients [47]. As in the previous report, DAR 

and PRI correlated with the clinical outcomes, and no 

significant results were found regarding the pdBSI. Yet, there 

are some differences between this study and the previous report 

that should be elucidated. First, the previous study examined 

non-acute acquired brain injury patients (including traumatic 

brain injury and stroke, more than 6 months post-injury), 

whereas in the present study we studied a small population of 

patients in the chronic phase of stroke (including patients at 

more than one year from the stroke event). Second, in the 

previous study, patients underwent six months of 

comprehensive and multidisciplinary neurorehabilitation 

program, whereas in this study the rehabilitation was only 

focused on the motor recovery of patients that went through 

four weeks of robot-assisted motor therapy.  

Third, in the previous study the Functional Independence 

Measure + Functional Assessment Measure (FIM+FAM), a 

multi-dimensional outcome assessment scale which probe 

cognitive, behavioral, mobility, locomotion, self-care, 

communication and physical functions, was used to measure the 

outcome of the therapy, whereas in this study we used the FMA, 

which is focused on the motor outcome of the upper limb. The 

FMA is one of the most widely used quantitative measures of 

motor impairment [46] and it is applied both in clinical and in 

research environment to determine disease severity, to describe 

motor recovery, and to plan and assess treatment. Even in the 

robotic rehabilitation field, it has often been employed as a 

primary outcome measure [55], [56], [69]. The FMA has 

reliable psychometric measures, such as excellent test-retest 

reliability [70] and excellent interrater/intrarater reliability [71]. 

These features make the FMA the most suitable clinical scale 

for the designed work. Some studies suggest that a 10% 

recovery on the baseline of the FMA scale (6-7 points) is 

considered as clinically meaningful [69], but the magnitude of 

change in the FMA that is necessary to produce real-world 

effects for chronic patients may be smaller, especially for those 

with severe impairment [69]. Thus, in the literature, many 

studies suggest to take into account also initial condition 

(FMAT0) and the percentage of motor recovery in respect to the 

initial condition [72] for refined evaluation of motor recovery 

[73]. The previous study proposed a percentage of recovery 

potential index (PRP), indicating the amount of percentage 

recovery in respect to the possible achievable recovery. 

However, applied to the FMA, PRP may penalize severe and 

moderate impaired patients with respect to mild ones, whose 

motor recovery may show as ‘very high’ while not being 

associated to remarkable daily-life benefits because of ceiling 

effects [74] that intrinsically characterizes the PRP index. 

Lastly, the previous study [47] used a slightly different 

asymmetry index, the mean BSI (mBSI) defined as the mean of 

the absolute value of the difference in mean hemispheric power 

in the frequency range from 1 to 25 Hz. In this study we used 

the pdBSI, which has been introduced [40] as a slightly 

refinement of the revised BSI (rBSI), previously proposed by 

[43]. The pdBSI evaluates asymmetry along homologous, 

interhemispheric channels pairs instead of a global asymmetry 

as evaluated by the rBSI. Despite of the slightly differences in 

the definition of mBSI and pdBSI, our results are in line with 

[47], with no significant correlations between the pdBSI (or 

mBSI) and the clinical outcomes. In [47], the authors attributed 

the lack of significant results regarding mBSI to the possible 

 

Fig. 3.  Scatterplot showing the correlation between (a) FMAT0 vs ΔFMA; (b) FMAT0 vs ΔFMA%. The Spearman correlation coefficient (ρ) and the P-value are 

indicated in each subfigure.    
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interaction between the calculation of the index and the QEEG 

patterns of some patients (e.g. some patients could show similar 

impairment in homologous electrodes). Additionally, the 

authors also mentioned that the presence of breach rhythms in 

a given location might produce asymmetry between that 

location and the homologous pair, not necessarily related to 

brain damage. This effect is attenuated in PRI and DAR, 

because both are calculated as the average of all scalp channels.   

Other previous studies have reported that asymmetry index 

are sensitive in acute [39], [75] and subacute [40] stages to early 

brain changes and provide prognostic information. In [39] the 

authors showed that pdBSI obtained within 6 hours of stroke 

onset reflects early neurological outcome, while pdBSI from 

EEGs obtained between 6 and 72 hours after symptom onset 

correlate with functional outcome at month 6, suggesting that 

functional outcome is revealed once the brain changes are more 

or less stabilized. However, they did not find any significant 

correlation between the pdBSI from EEGs obtained between 72 

hours and 7 days after symptom onset and the functional 

outcome at month 6, suggesting that pdBSI might be especially 

useful as a marker of acute stroke, and should be pursued as 

soon as feasible to obtain prognostic information. Additionally, 

they suggested that the effects of stroke are local in the 72 first 

hours and become more global on longer times scales, and, in 

fact, they found that PRI (which is a global measure) obtained 

between 72 hours and 7 days after symptom onset showed 

higher correlation with the functional outcome at month 6 than 

the pdBSI. Moreover, in a more recent study [38], the authors 

compared subacute DAR and pdBSI, and reported that only  

DAR had significant correlations with functional outcomes.  

There are only a few studies reporting the asymmetry indices 

in chronic stroke patients [47], [76], and the results are 

inconsistent. In [76], the authors showed a significant 

correlation between rBSI and FMA improvements, and 

suggested that rBSI may be used as a prognostic measure for 

stroke rehabilitation. On the contrary, we and [47] found no 

significant correlation between pdBSI (or mBSI) and the 

outcomes of the rehabilitation therapy. Nevertheless, it is worth 

noting that the asymmetry index used in [76] (i.e. rBSI) is 

slightly different to the one used in the present study (i.e. 

pdBSI), but more importantly the experimental conditions of 

both studies were very different. In particular, in [76], rBSI was 

computed while patients were performing a task (Motor 

imagery brain computer interface with robotic feedback), 

whereas in our study, pdBSI was based on resting-state EEG 

signal. Given the inconsistent results found in literature, 

additional studies are necessary to investigate the potential 

value of the asymmetry indices (e.g. pdBSI, mBSI and rBSI) as 

a prognostic measure for chronic stroke rehabilitation.     

Despite the differences mentioned above, both the study 

presented in [47] and the present study indicate that there is a 

tendency of better outcomes for patients that have low DAR and 

PRI values. In this study, reduced delta and theta activity and 

increased alpha and beta activity seemed to be associated with 

favorable outcomes, suggesting that better clinical outcomes 

come from higher frequency bands in brain activity, which can 

be related to better reactivity and receptiveness of the patient 

[77]. Our findings are also consistent with the results of 

previous studies in acute stroke patients [34], [36]–[40], in 

which decreases in delta activity and increases in alpha activity 

were associated with better outcomes. Previous studies [47], 

[64] showed a stronger correlation between DAR and the 

functional outcome, whereas in this study, the stronger 

correlation was found for PRI. This observation, together with 

the significant negative correlation between the relative power 

in the theta band and the motor recovery found in this study, 

suggests that theta band might also add value to the prediction 

when pure motor recovery is considered. However, this 

particular finding deserves further investigation in order to 

provide a solid pathophysiological interpretation.  

A recent study [64] showed that DAR could be used to 

differentiate acute stroke patients from healthy controls, and in 

particular a threshold of 3.7 demonstrated maximal accuracy for 

classifying all participants as acute stroke or control. In this 

study, all of the chronic stroke patients had DAR values lower 

than 3, and the relative power values for each of the four 

classical frequency bands bear a closer resemblance to the 

reported [64] bandpowers for the control participants than for 

the acute stroke patients. Given that DAR values of the chronic 

stroke patients examined in this study, as well as their relative 

band-powers, were in the range of values previously reported 

for healthy subjects [64], we did not expect substantial changes 

in the QEEG measures before and after treatment, and in fact, 

our results showed no significant changes. Our results suggest 

 
Fig. 4.  Bar graphs plotting relative power values for each of the four classical frequency bands in each patient before (T0) and after (T1) treatment.    
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that PRI and DAR (based on resting-state eyes-closed EEG 

signal) in chronic patients are stable, even after motor 

rehabilitation.  

In this study, we did not expect to find a correlation between 

the QEEG indices and a neurologic recovery in chronic 

patients, but rather to show that QEEG could be useful to assess 

the tendency of a chronic patient to improve (re-learn) the 

execution of upper limb movements. Our results are in line with 

a previous study [78], which suggested that enhanced alpha 

bandpower may be related to better movement performance, 

and better reactivity and receptiveness [77]. Following this line 

of reasoning, a patient with high alpha power (thus low PRI and 

DAR) could be more receptive to relearn movement, and make 

better use of the therapy, and thus, pre-therapy (T0) QEEG 

indices could be useful to predict the outcome of motor 

rehabilitation.  

The main limitation of the present study is the small number 

of subjects due to the complexity and length of the study 

protocol (i.e. patient selection, evaluation pre-treatment, robot-

assisted rehabilitation, evaluation post-treatment). 

Nevertheless, it is worth noting that, even if small, the sample 

of this study was diverse and covered a wide range of FMA 

values (11-61, pre-treatment), as well as years after stroke (1-

14), and thus, it could be considered as representative of the 

chronic stroke patient population. Despite of the small sample 

size, we believe our results showed interesting trends on 

chronic patients, and are still appealing considering the lack of 

studies in this field of research, and the contradictory results 

found in the literature. Our results showed interesting 

tendencies that have not been investigated before on chronic 

patients, which are usually considered as having low potential 

improvement. Yet, the results of this study should be considered 

as a first exploratory insight about the predictive use of QEEG 

indices in the motor rehabilitation outcomes in chronic stroke 

patients, and prospective experiments with a bigger sample size 

are needed to confirm our results.  

Finally, the purpose of the present study was to demonstrate 

that simple QEEG indices could predict the outcomes of motor 

rehabilitation in chronic stroke patients. PRI and DAR indices 

are simple numerical values that are easy to calculate, and 

relatively straightforward to interpret, and thus may provide 

valuable information for clinical decision-making. However, 

further complementary EEG measures, such as those derived 

from resting-state connectivity analysis should provide a more 

comprehensive overview of brain status, and additional 

prospective studies shall evaluate its usefulness to predict the 

success of rehabilitation in chronic stroke patients. 

V. CONCLUSION 

The results of this study suggest that QEEG indices may be 

useful to predict motor outcomes, offering valuable information 

for clinical decision-making. This kind of information is of 

critical importance when selecting the possible candidates for 

robot-assisted rehabilitation. While the results of this study 

suggest that patients with low PRI e DAR values are more prone 

to motor improvements, further studies in larger samples are 

needed to validate the role of QEEG in predicting motor 

recovery.  
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