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Abstract—There is a rising interest in studying the degree of
connection and the causal relationships between brain regions,
as a growing body of evidence suggests that features of these
interactions could play a role as markers in a host of neurological
diseases. The vast majority of brain connectivity studies treats
the brain network as stationary. New insights on the tempo-
ral behaviour of these connections could significantly improve
our understanding of brain networking in both physiology
and pathology. In this paper, we propose the application of
a computational methodology, named Particle Filter (PF), to
functional Magnetic Resonance Imaging (fMRI) data. The PF
algorithm aims to estimate time-varying hidden variables of a
given observational model through a Sequential Monte Carlo
approach. The fMRI data are represented as a first-order linear
time-varying Vector Autoregression model (VAR). On simulated
time series, the PF approach effectively detected and enabled to
follow time-varying hidden parameters and it captured causal
relationships among signals. The method was also applied to
real fMRI data and provided similar results to those obtained
by using a different proxy measure of causal dependency, that
is, correlation between delayed time series. Interestingly, the PF
approach also enabled to detect statistically significant changes
in the cause-effect relationships between areas, which correlated
with the underlying stimulation pattern delivered to subjects
during the fMRI acquisition.

Index Terms—brain connectivity, fMRI, sequential Monte
Carlo, Particle Filtering, VAR model

I. INTRODUCTION

To improve our understanding of brain functioning, it is
crucial to study the dynamic interplay among anatomically
segregated and functionally distinct brain areas.

While structural connectivity describes the anatomical con-
nection between brain regions, functional and effective con-
nectivity refer to two different ways to quantify the interaction
among brain regions [1].

Functional connectivity describes connections between
brain regions in terms of statistical codependency: it is non-
directional and model-free [2]. On the contrary, effective
connectivity describes the temporal relationship and causal

influence between brain regions included in a defined network
model [3].

Functional magnetic resonance imaging (fMRI) enables to
implement, in a non-invasive manner and with satisfactory
spatiotemporal resolution, all these complementary approaches
to study brain connectivity, in both physiology and pathology,
such as in Alzheimer’s disease [4]-[6], schizophrenia [7] and
Major Depression Disorder [8].

It has been proposed that brain dynamics, and in particular
effective connectivity, may constitute a biological marker for
specific brain diseases and could be used to monitor response
to treatment [9]-[12]. The most widespread methods to in-
vestigate effective connectivity are Granger Causality (GC)
and Dynamic Causal Modeling (DCM). GC is based on the
principle that if the knowledge of the temporal evolution of
a given brain region A improves the predictability of the
temporal evolution of another brain region B, A is said to
Granger-cause B [13]-[15]. Since this approach is based on
the evaluation of a linear codependence between time series,
it is limited by the assumption of stationarity in the coupling
between regions or by the need to employ a sliding-window
approach to address temporal variations. Differently, DCM
relies on the the use of a model describing the predicted
relationship between neural activity and observed fMRI signal
[16].

A different, promising approach to investigate time-varying
brain connectivity is the Sequential Monte Carlo (SMC)
methodology [17], [18]. SMC approaches aim to estimate the
internal, hidden states in dynamic systems when only partial
and noisy observations are available.

A specific SMC methodology which employs discrete ma-
jors to approximate density functions and updates the pos-
teriors with the arrival of each new sample using sequential
importance sampling is called Particle Filtering (PF).

Ahmad et al. [19] adopted a symmetric, linear, first-order,
time-varying auto-regressive (TVAR) model and used PF to
estimate the temporal relationships among fMRI time-series



representing four brain regions during resting state. The sym-
metric nature of their model enabled the use of a small set of
free parameters, which allowed them to achieve a satisfactory
description of the time-varying statistical relationship among
brain regions; however, it prevented the estimation of the
directional cause/effect dependencies, that is, their approach
cannot be used to investigate effective connectivity.

The backbone of the model and algorithm proposed in
our study is the recent SMC approach by Ancherbak et
al. [20], originally developed for time-varying gene network
modelling, which we adapted for studying brain connectivity
by using fMRI data. The feasibility and behaviour of the
proposed approach has been studied on synthetic data mim-
icking fMRI time-series. The method was also applied to real
fMRI datasets. Results were compared to a proxy measure of
effective connectivity, that is, delayed correlation.

II. METHODOLOGY
A. Model and algorithm

Particle filtering [20]-[23] is a sequential Monte Carlo
methodology based on the Bayes theorem on conditional
probability. Particle filters estimate the probability distribu-
tions of hidden variables of interest, modelled according to
a hypothesized state-space equation. Such probability distri-
butions are estimated from the data, modelled according to
a hypothesized observation equation. The probability density
function (pdf) is allowed to be time-varying and is therefore
sequentially updated when new data become available. In
brain connectivity studies based on fMRI data, the relationship
among the time-series of R different brain regions x can be
modelled as a first order linear Vector AutoRegression (VAR)
model [14], [23]-[26] as:

R
= ai()r;(t—1) +m(t) i=1--,R (1)
J

or in matrix notation:
Xt = &X¢—1 + Nt 2

which is employed as the observation equation describing the
relationship between the observations x; at time ¢ and those at
time t—1 (that is, x;_1); 7; is the observation noise; the hidden
parameters of interest a, represent the causal influence exerted
between different areas. In particular, it can be assumed that
a; are allowed to be time-varying:

aij(t) = aij(t — 1) + viz (1) 3)

where a;;(t) is the ij-th element of the coefficients matrix ay,
describing the influence of the j-th region over the i-th region,
and v;;(t) is the process noise (innovation) term.

The PF algorithm evolves from an initial probability distri-
bution for a;;(t — 1), which we chose to be uniform, and
through equation (3) it generates new possible values for
a;j(t); then, with equation (2), the PF algorithm generates
predicted values of the observations at time ¢. The desired

probability density function of the parameters of interest a;
can be estimated via Bayes theorem as follows:
p(xtlar)p(a]xi:i—1)
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and with the assumption of Gaussian noise we have
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where 2, are the data estimated through (1) at time ¢. In most
applications, (4) cannot be solved analytically [27], but it can
be computed through the Sequential Monte Carlo sampling
scheme, which consists in representing the pdf p(a;|x;.;) as
a discrete set of N weighted samples called particles:
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where w," are the weights associated to the n™ particle a;
The Sequential importance Sampling (SIS) [27] methodology
provides a strategy to compute the weights. It can be shown
[22] that the weights can be sequentially updated as follows:
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where the proportionality takes into account normalization
factors. With this approach, at each time instant t we have
a sample set {at"),wt(n)} for n = ., N which can
be used to estimate the pdf of the parameters and to infer
information about the network. However, sequential Monte
Carlo methodologies suffer from a problem called degeneracy:
after some iterations, most of the particles will have a very low
statistical weight, resulting in a lower exploration efficiency
of the algorithm. To overcome this problem a step called
resampling is performed at each time instant: if the number
of effective particles, introduced in [28] as

1
Nepf=———F—
Y )
is below a certain arbitrary threshold, particles with low
weight are substituted by copies of particles with high weight,
resulting in a more effective exploration of the solution space.
The resulting algorithm can be schematically expressed as

o Input the BOLD fMRI data series x;
o Initialize the parameters and a;—o = 0
e for t=1:T
— generate N particles from previous coefficients’ val-
ues through (3) (updating step)
— predict the values of the observations at time ¢ from
values at time ¢ — 1 with (2)
— compute the likelihood between predicted values and
observed values with (5)
— normalize the weights and resample

agn)) (6)

at|X1 it

e end for on t

This procedure is repeated N, times, all independent from
each other, to provide a better exploration of the solution



space. The final outputs of the algorithm are the a; computed
as the average of the [V, repetitions. The algorithm was
implemented in MATLAB (Mathworks, Natick, MA, U.S.A.)
R2017b.

B. Synthetic data

To validate the proposed approach, two different synthetic

brain networks were used.

e One network with R=6 nodes, each with T=100 time
points, stationary coefficients generated with the MAT-
LAB function VARM with a Signal-to-Noise (SNR) ratio
set to either oo (o, = 0, ideal case) or 6 dB (worst-case
scenario). To demonstrate that the proposed approach
reliably reflects the causal relationship between time
series, we computed the Pearson’s coefficients of linear
correlation between the a;; coefficients estimated by PF
and the coefficients used to generate the synthetic data.

o Another network with R=2 and T=250 was used to
assess the PF capability to capture time-varying hidden
parameters. In this case, a;; coefficients were zero except
for coefficient as1, whose value switched from 1 to —1
every 125 time points. The SNR was 10dB.

C. Real fMRI data

The proposed approach was also retrospectively applied to
real fMRI data acquired on two healthy volunteers. Time-series
consisted of 240 time points with a temporal resolution of 2
s, acquired at isotropic spatial resolution of (1.5 mm)? on
a 7T MRI system. During acquisition, the subjects’ thumb-
and index-fingertips were stimulated via a pneumatic device

(Linari Engineering, Pisa, Italy). The subjects’ task was to

Figure 1. ROIs drawn on one representative subject, representing primary
somatosensory (S1), primary motor (M1), supplementary motor (SM) and
parietal (PAR) cortices. A, P, L, R indicate Anterior, Posterior, Left and Right
sides of the brain.

move the stimulated fingers whenever they were stimulated.
Networks of four nodes were studied: nodes consisted of vox-
els in Regions-of-Interest (ROIs) covering primary somatosen-
sory (S1), primary motor (M1), supplementary motor (SM)
and parietal (PAR) cortices. ROIs were manually drawn on
each subject on one slice only, to avoid potential slice timing

confounds (Fig. 1). The optimal order of the autoregressive
model describing the time series was 1, as estimated by
the Schwartz criterion [14]. In these fMRI datasets, the a;;
coefficients estimated by particle filtering were compared to
the delayed correlation c;; between signals x;; and x;; 1
which reflect the time-invariant causal influence exerted by
node j over node .

III. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Synthetic Data

Real vs Estimate

08

06

04

Real vs Estimate

02 4 02
© A ©
Qo Yx o o
© * /|4 ©
02 st 02
J*
0.4 / * 04
* A Y,
0.6 06
* *
0.8 # 08 . X
4 * % 4 * e
- 05 0 05 1 -1 05 0 05 1
a
est est

Figure 2. Scatter plots that relate PF estimates (x axis) and true values (y axis)
of the auto-regressive model for a six-node network with 100 time samples,
in the absence of noise (left) and with an additive noise (right) with SNR =
6 dB. The red lines are the results of a linear fit of the data: in the noiseless
case the slope m and the offset q were 1.39 and —1.62 - 10~ 2, respectively;
in the noisy case, m = 1.62 and q = 8 - 1073,

Scatter plots in Fig. 2 demonstrate that the causality coef-
ficients estimated by PF in a stationary network satisfactorily
correlate with the true coefficients, both in the noiseless
synthetic dataset (Pearson’s p = 0.96) and in the noisy
scenario with SNR = 6 dB (Pearsons’ p = 0.59).
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Figure 3. Time courses of the hidden parameters a;; in the case of a 2-node
network with non-stationary coefficient ag; alternating between 1 and —1.
Red lines represent the true values, while blue lines represent the estimates
obtained by PF.

The case of a network with one time-varying coefficient
is shown in Fig. 3. The PF tracks the changes of the non-
stationary coefficient a1, although the estimated values do
not immediately follow the abrupt changes between 1 and —1



and viceversa. All the other coefficients are correctly estimated
to be close to the nominal null value.

B. Real fMRI Data
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Figure 4. Scatter plot showing the relationship between mean PF estimates
(horizontal axis) and delayed correlation (vertical axis) on two sets of real
data. The Pearson’s correlation coefficient is 0.74, which corresponds to a
statistically significant correlation with p < 0.001. Slope and offset of the
linear fit were 0.83 and 0.24 respectively.
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Figure 5. Plots in blue color show the PF-estimated time courses of four
representative hidden parameters a;; in the case of a 4-node network,
estimated in real fMRI data in one subject. Top left panel depicts the
coefficient representing the influence of time point ¢ over time point ¢ — 1
within the primary motor area M1. Top right panel depicts the coefficient
describing the negligible causal effect exerted by the primary somatosensory
area S1 over the parietal cortex. Bottom panels represent the causal effect
exerted by the Supplementary Motor area SM over M1 and viceversa.

The PF captured causal interactions between brain areas,
which significantly correlated with a proxy measure of ef-
fective connectivity, that is, delayed correlation (p < 0.001,
Pearson’s correlation coefficient p = 0.74, Fig. 4). In particular,
in both subjects, the highest a;; coefficients in both PF and
delayed correlation were those which represent the causal
influence exerted by the primary motor and somatosensory

areas, in agreement with current knowledge of brain function-
ing during a sensory-motor task. Fig. 5 exemplifies the brain
connectivity temporal evolution through four representative
a;; coefficients in Subject 2: the top left panel depicts the
coefficient representing the influence of area M1 at time
t — 1 over itself at time t. Crucially, this coefficient also
exhibits statistically significant oscillations (t-test between
coefficient values depending on the presence or absence of the
sensorymotor task, p < 0.05) that vary with the same timing
of the sensory-motor task. The top right panel displays one
representative coefficient involving the parietal cortex, which
is approximately 0 in accordance with the predictable non-
involvement of this area in the task used here. Last, the two
bottom panels demonstrate the expected reciprocal influence
between M1 and SM areas.

Other studies previously proposed to apply SMC methods
to fMRI data. Murray and Storkey [29] proposed a forward-
backward Particle Filter using, as observation equation, a
stochastic extension of the balloon model, which was proposed
by Buxton et al. [30] to describe the haemodynamics that
follow brain activity. In their study, the hidden parameters
of the model resulted approximately constant, probably as
a consequence to the complexity of the model itself. In a
different study by Ahmad et al. [31] a Gibbs sampler in a
VAR model with stationary coefficients was applied to fMRI
data acquired during periodic visual stimulation alternating
between on and off periods. The time series were artificially
cut and recombined in order to form separate time series
representing either the rest or the stimulated condition. The
hidden model parameters of the network were found to be
different between the two cases, however each time course
representing each condition were considered stationary. The
same group also described the use of a symmetric VAR model
and a Rao-Blackwellized Particle Filter to study fMRI data
acquired during resting state [19]. This assumption allowed
to reduce the model complexity, because in the case of a
symmetric model the number of degrees of freedom for R
regions decreases from R? to R(R — 1)/2 for every time
point ¢, however this approach did not permit to infer neither
the directionality of the network nor any possibly asymmetric
cause/effect interaction between brain areas. The variations
through time of the estimated coefficients were interpreted as
actual variations in brain connectivity, however these results
were not validated with different analyses.

Our implementation of the PF algorithm enabled to retrieve
the hidden parameters in synthetic data mimicking a real
network of fMRI time series. In particular, a convincing agree-
ment with ground truth was demonstrated in the stationary
case, and in the non-stationary case the estimated coefficients
followed the time-varying hidden variables. In real fMRI
data, the time-averaged PF estimates were in agreement with
a proxy measure of causality, that is, delayed correlation.
Part of the mismatch between the proposed method and
delayed correlation could be explained by the fact that the
PF algorithm studies the network as a whole and produces
estimates of a;; coefficients that update at every time instant,



while delayed correlation is a measure of pair-wise causality
that does not take into account possible non-stationarities and
spurious cause-effect relationships mediated by other nodes of
the network.

IV. CONCLUSIONS

We utilized Particle Filtering to test and identify the time-
varying brain connectivity as evidenced in fMRI images. Our
experiments confirmed the hypothesis of time-varying brain
connectivity pattern and gave evidence for non-symmetric
connectivity. To the best of our knowledge, this is the first time
that it was possible to detect, with a PF approach, statistically
significant changes in cortical cause-effect relationships cor-
related with the underlying task-rest pattern during the fMRI
acquisition.

Future studies should test the performance of the proposed
algorithm in fMRI experiments with higher time resolution,
possibly < 1 s, and they should aim to unveil possibly
asymmetric changes in effective connectivity among brain
regions. Also, to minimise the impact of vascular dynamics
and highlight neural ones, future studies should use more
sophisticated experimental designs that enable a better con-
trol over the non-uniformity of brain haemodynamics across
different areas [32]—-[34].
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