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Abstract An important problem in the context of wireless sensor networks
is the Maximum Network Lifetime Problem (MLP): find a collection of subset
of sensors (cover) each covering the whole set of targets and assign them
an activation time so that network lifetime is maximized. In this paper we
consider a variant of MLP, where we allow each cover to neglect a certain
fraction (1−α) of the targets. We analyze the problem and show that the total
network lifetime can be hugely improved by neglecting a very small portion
of the targets. An exact approach, based on a Column Generation scheme,
is presented and a heuristic solution algorithm is also provided to initialize
the approach. The proposed approaches are tested on a wide set of instances.
The experimentation shows the effectiveness of both the proposed problems
and solution algorithms in extending network lifetime and improving target
coverage time when some regularity conditions are taken into account.
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1 Introduction

A wireless sensor network generally consists of a large number of sensors which
perform together a complex sensing task that can be spread on a wide geo-
graphical region. Each device has a maximum sensing range and can collect
information on a given subregion (sensing area). Depending on the application,
covering a specific region might imply covering its whole area (area coverage
problems) or specific target points inside it (target coverage problems). How-
ever, as shown in [7], an area coverage problem can always be transformed
into an equivalent target coverage problem in polynomial time. Therefore, in
the following, we will always consider target coverage problems.

The design and management of a wireless sensor network presents several
critical issues that can be effectively approached using optimization; for some
recent developments see [2] and [9]. One of these fundamental aspects is the
lifetime of the network, that is, the amount of time in which this monitoring
activity can be performed. An obvious constraint on this factor is the limited
power of the battery contained in the sensors, both for cost and size reasons.
The lifetime of the network can be maximized by individuating covers (subsets
of sensors that can cover the whole set of targets) and activating them subse-
quently for proper amounts of time. This problem is known as the Maximum
Network Lifetime Problem (MLP). MLP was proved to be NP-complete by
reduction from the 3-SAT problem in [4]. Many different solution approaches
have been proposed in the literature to solve it either exactly (see [6]) or
approximately ([1],[3],[4],[7]).

In this paper, we address a variant of MLP where we allow each cover to
neglect a certain fraction (1 − α) of the targets. We refer to these covers as
α−covers and to the resulting problem as the Maximum Network α−Lifetime
Problem (α−MLP).

The assumption to neglect the coverage of a portion of the area is not a
limiting one. First of all in some cases it could lead to better solutions both
in terms of network lifetime and targets coverage time. Consider the example
in Figure 1, with 6 targets and 5 sensors, where each sensor is represented
by its sensing area. Assume that the battery life of each sensor is normalized
to 1 unit of time. The maximum network lifetime is equal to 1, which is also
the coverage time of each target. For example, an optimal solution consists
in activating for one unit of time the cover {s1, s2, s4}. Assume now, to allow
each cover to neglect at most one of the six targets. We could choose two
α−covers, namely {s2, s4} and {s1, s3, s5}, and activate each of them for one
unit of time. With this solution, network lifetime is equal to 2 and coverage
time of the targets has doubled as well for all the targets but for target t5, for
which it is not changed and is equal to 1.

Even when situations as the one above described do not occur, the α−coverage
might be acceptable for various applications. For example, if we are monitoring
the average pollution level of a certain region, excluding a small percentage
of measurements each time the average is computed, could be practically ir-
relevant. In addition, by appropriately switching among the α−covers, the
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Fig. 1 A sensor network with 6 targets, T = {t1, . . . , t6} and 5 sensors, S = {s1, . . . , s5}.

uncoverage of the targets can be virtually invisible to the underlying appli-
cation. However, in some situations targets with unfortunate coverage levels
could be excluded by most or even each α−cover. The worst case scenario is
when the neglected set of targets never changes. For this reason, we investi-
gated some regularity conditions to guarantee a minimum coverage level to
the entire set of targets. The resulting problem is referred to as the Regu-
lar Maximum Network α−Lifetime Problem (α−RMLP). We will show that,
when α−covers are considered together with some regularity conditions, not
only the network lifetime could be increased, but also the total coverage time
of each target could be effectively improved as well.

There are very few contributions in the literature addressing α-coverage
problems. In particular, the authors in [10], defined the problem in terms of
area coverage, and presented two approaches to determine an upper bound to
the optimum network lifetime as well as a greedy heuristic to find a feasible
solution. In [5] and [8], the interest is focused in minimizing the number of
uncovered targets (breach).

The sequel of the paper is organized as follows. In section 2 we give the
needed notations. Section 3 formally defines the two problems studied in this
paper. Section 4 provides the mathematical formulations and some insights on
the computational complexity. Section 5 presents a Delayed Column Genera-
tion exact approach for α−MLP and α−RMLP. Section 6 describes a heuristic
algorithm we developed both to obtain fast feasible solutions and to initialize
our exact method. Experimental results are presented in section 7. Finally
section 8 summarizes our work and presents future research guidelines.

2 Notation

Let T={t1, .., tn} be the set of n target points and S={s1, .., sm} the set of
m sensors that constitute a wireless sensor network. For each sensor si ∈ S,
let Tsi ⊆ T be the subset of targets covered by si. Since the positions of all
the targets and sensors are fixed, we can assume each Tsi , ∀si ∈ S, is known
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in advance. Given a subset C ⊆ S of sensors, we define the set of targets
covered by C as TC =

⋃
si∈C Tsi . By extension, each target in TC is said to

be covered by C. A cover C ⊆ S is a subset of sensors such that TC ≡ T .
A cover C is minimal if there does not exist C′ ⊂ C such that TC′ ≡ T ,
that is C does not contain a proper subset that is a cover as well. Given, a
value α ∈ [0, 1], an α−cover Cα is a subset of sensors that covers at least Tα

targets, that is |TCα | ≥ Tα, where Tα = n × α. For example if we fix a value
of α such that Tα = 5, in the network of figure 1, then possible α−covers
are: Cα

1 = {s1, s2, s3} or also Cα
2 = {s1, s2, s4}. Obviously, every cover is an

α−cover, and, when α = 1 an α−cover is a cover. We define an α−cover Cα

to be minimal, if there does not exist C′ ⊂ Cα such that |TC′ | ≥ Tα. We
define an α−cover Cα to be target-minimal if it does not contain an α−cover
covering the same set of targets, that is, there does not exist C′ ⊂ Cα such that
TC′ ≡ TCα . We obviously have that a minimal α−cover is also target-minimal,
but the contrary is not always true. Consider again the network of figure 1 and
fix Tα = 4. The α−cover Cα

A = {s2, s3, s5} is not minimal, it contains, indeed,
the α−covers: Cα

B = {s2, s3}, C
α
C = {s2, s5} and Cα

D = {s3, s5}; however, it is
target-minimal, indeed TCα

A
6= TCα

B
, TCα

A
6= TCα

C
and TCα

A
6= TCα

D
.

In the next section we formally define our two variants of the Maximum
Network Lifetime Problem that use the concept of α−cover.

3 Problems Definition

We generally assume that all sensors are based on the same hardware, and
therefore they all have the same battery life that we assume to be normalized
and be equal to 1. The Maximum Network α-Lifetime Problem is defined as
follows:
Maximum Network α−Lifetime Problem (α−MLP)
Given a value α ∈ [0, 1], find a collection of pairs (Cα

j , wj), j = 1, 2, . . . , p,
where Cα

j is an α−cover and wj is its corresponding activation time, such

that the sum of the activation times
∑p

j=1 wj is maximized, and, each sensor
is used for a total time that does not exceed its battery:

∑
j∈{1,..p}|si∈Cα

j
wj ≤ 1

for each si ∈ S.
When α = 1 the α-MLP is exactly the MLP defined in [4].
As explained in the introduction, a solution to α−MLP could sometimes

provide irregular coverage of the targets. Therefore, we introduce the concept
of regularity of a collection of α−covers. In particular, given a collection of
α−covers Cα

j , j = 1, 2, . . . p, we say it is regular if each target is covered for a
total time that is not less than a predefined threshold wmin, i.e.,

∑

j|tk∈TCα
j

wj ≥ wmin ∀tk ∈ T (1)

Other regularity metrics could be considered, such as, for example, requir-
ing each target to be covered by a number of covers greater than or equal to a
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predefined threshold, or also, maximizing the minimum coverage time among
all the targets. We focus in this paper on the above definition of regularity,
the analysis of other metrics is object of further research as outlined in the
concluding section. Based on the above regularity definition, we can formally
state now, the Regular Maximum α−Lifetime Problem as follows:
Regular Maximum Network α−Lifetime Problem (α−RMLP)
Given a value α ∈ [0, 1], find a collection of pairs (Cα

j , wj), j = 1, 2, . . . , p,
where Cα

j is an α−cover and wj is its corresponding activation time, such that

the sum of the activation times
∑p

j=1 wj is maximized, each sensor is used for
a total time that does not exceed its battery, i.e.

∑
j∈{1,..p}|si∈Cα

j
wj ≤ 1 for

each si ∈ S, and the set of α−covers is regular.

4 Mathematical Formulation and Complexity

The mathematical formulation given in this section for α-MLP is the same
as the one proposed in the literature, for example in [6] for the MLP. This
formulation assigns a variable to each feasible cover (α-cover) representing its
activation time in the final solution, such that the total activation time of each
sensor is not greater than its battery life. When applied to a particular wireless
sensor network, the difference between the MLP and α-MLP formulation is
only in the total number of variables; in particular it will be the same if α = 1.
On the other hand, some modifications to the formulation are required in order
to model α-RMLP, as we will show in this section.

Let Cα
1 , ..., C

α
ℓ be the collection of all the possible feasible α−covers of

a given wireless sensor network. We define variables w1..., wℓ to denote the
activation time of each α−cover. Moreover, we consider, for each sensor si,
i = 1, 2, . . . ,m, and each α−cover Cα

j ,j = 1, 2, . . . , ℓ, the binary parameter
aij to be equal to 1 if si belongs to Cα

j , and 0 otherwise. The mathematical
formulation of α−MLP is the following:

[α−MLP] max

ℓ∑

j=1

wj (2)

s.t.

ℓ∑

j=1

aijwj ≤ 1 ∀i = 1, ...,m (3)

wj ≥ 0 ∀j = 1, ..., ℓ (4)

The sum of the activation times of all the α-covers determines the network
lifetime that is maximized by the objective function (2). Constraints (3) en-
sure the battery lifetime of each sensor is not exceeded. Since the number of
variables of the model is huge, to exactly solve it, we embedded the model into
a Delayed Column Generation approach that is described in section 5.

Let us consider regularity condition (1) to model α−RMLP. We need to
consider the additional binary parameter bkj , for each α−cover Cα

j and each
target tk, that is equal to 1 if target tk is covered by Cα

j , and 0 otherwise.
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Moreover, let wmin be the minimum coverage threshold value. The mathe-
matical formulation [α-RMLP] is obtained from [α−MLP] by adding the
following set of constraints that ensure the resulting collection of α−covers
satisfies the chosen regularity condition:

ℓ∑

j=1

bkjwj ≥ wmin ∀k = 1, ..., n (5)

Both the problems are NP-hard. Indeed, MLP is a special case of α−MLP
when α = 1, and α−MLP is a special case of α−RMLP when wmin = 0.

5 Column Generation Approach

In [6] the authors present a Delayed Column Generation (CG) approach for
MLP, here we present this method adapted to solve α−MLP and α−RMLP.

Consider the mathematical formulation [α−MLP], restricted only to a
subset of feasible α−covers. Let πi, i = 1, 2, . . . ,m, be the set of dual optimal
multipliers associated with each primal constraint (that is, with each sensor).
To check for optimality the following separation problem can be solved:

[S1] min

m∑

i=1

πixi (6)

s.t.

m∑

i=1

δkixi ≥ yk ∀k = 1, ..., n (7)

n∑

k=1

yk ≥ Tα (8)

xi ∈ {0, 1} ∀i = 1, ...,m (9)

yk ∈ {0, 1} ∀k = 1, ..., n (10)

where xi is a binary variable that is equal to 1 if sensor si is selected to
be in the α−cover, and is equal to 0 otherwise; yk is a binary variable that
is equal to 1 if target tk is covered by the α−cover, and is equal to zero
otherwise; δki is a binary parameter that is equal to one if target tk is covered
by sensors si and 0 otherwise. Objective function (6) ensures the returned
α−cover has the minimum reduced cost. Constraints (7) impose yk can be set
to one only if at least one of the sensors that covers target tk has been selected.
Constraint (8) ensures the total number of covered targets is at least Tα. This
separation problem differs from the one used in [6] for MLP since it uses
additional decision variables yk, ∀k ∈ 1, .., n, to identify covered targets, and
adds constraint (8) to check whether they are enough to obtain an α-cover.
If the optimal objective function value of [S1] is not less than 1, then the
solution of the restricted problem is optimal for the entire problem; otherwise,
the returned new column (defined by the optimal solution value of variables
xi) is introduced into the master problem and the process is iterated.
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The choice of the initial set of columns for the restricted master is impor-
tant for the convergence of the algorithm. In section 6 a heuristic procedure,
we developed to initialize the procedure, is described. Moreover, to avoid the
generation of already generated covers the following set of constraints can be
added to [S1]. Let Cα

1 , C
α
2 , . . . , C

α
u be the set of α−covers generated by the

algorithm so far:
m∑

i=1

aijxi ≤

m∑

i=1

aij − 1 ∀j = 1, ..., u (11)

Constraints (11) are the same as the ones applied to MLP in [6]. These in-
equalities ensure that the new α−cover returned by the separation problem
differs from the already generated α−covers in at least one sensor.

To apply this approach to solve α−RMLP with regularity condition (1), we
need to take into account also the set of optimal dual prices associated with the
additional constraints (5). Let us denote these multipliers γk, k = 1, 2, . . . , n.
Note that all the dual prices are positive once [α-RMLP] is considered in
canonical form. The separation problem in this case is:

[S2] min

m∑

i=1

πixi −

n∑

k=1

γkyk (12)

s.t. (7)− (10)

This model differs from [S1] only in the objective function. Note that,
because of the regularity requirement, there could exist optimal solutions that
are not composed of minimal α-covers and therefore constraints (11) can not
be added to [S2] since they might exclude meaningful α-covers. However, it is
easy to show that, if the problem is feasible, there exists an optimal solution for
α−RMLP composed of only target-minimal α−covers. Therefore, we could add
a set of constraints that allows the generation of α−covers containing previous
ones only if they cover a wider set of targets. In particular, let Cα

1 , C
α
2 , . . . , C

α
u

be the set of α−covers generated by the algorithm so far. We need to introduce
an additional set of binary variables zj such that zj = 0 if the new α−cover
Cα

new being built does not contain more targets than Cα
j . We add the following

constraints to [S2]:
m∑

i=1

aijxi − zj ≤
m∑

i=1

aij − 1 ∀j = 1, ..., u (13)

(n+ 1)(1 − zj)− 1 ≥
n∑

k=1

bkj −
n∑

k=1

yk ∀j = 1, ..., u (14)

zj ∈ {0, 1} ∀j = 1, ..., u (15)

Constraints (13)-(14) are used instead of (11). If Cα
new does not cover more

targets than Cα
j , zj must be equal to 0 to satisfy (14) and the related constraint

in (13) is equivalent to the one in (11). Otherwise, zj can be equal to 1 and
Cα

new can be accepted even if it is not minimal.
If the optimal objective function value of [S2] is not less than 1 then the

final solution has been found, otherwise the new column defined by the solution
value of variables xi and yk is introduced into the master problem.



8

6 Heuristic approach

In this section we describe a greedy approach to find feasible solutions to
α−MLP. We also used these solutions to initialize the CG procedure, while
our method to initialize the exact approach for α-RMLP will be described in
the next section. Our algorithm (α-Greedy) is based on the heuristic Greedy-
MSC presented in [4] for MLP and introduces some greedy criteria aimed to
increase the regularity of the heuristic solutions, which experimentally proved
to improve the convergence of the exact procedure. After finding the set of
α-covers, their activation times are computed by solving the mathematical
formulation [α−MLP] restricted to this subset. An outline of the procedure
is presented in Algorithm 1; in the following we analyze this outline, describe
the greedy criteria and discuss the computational complexity of the procedure.

Line 1 contains the input parameters. Granularity factor gf ∈ (0, 1] rep-
resents a fixed amount of activation time assigned to each generated α−cover
during the algorithm execution.The SENSORS set initialized in line 2 con-
tains the list of sensors with a residual energy greater than 0. Parameters Rsi

initialized in lines 3-5 represent the amount of residual energy for each sensor
si. Line 6 checks whether the remaining sensors can be used to produce a new
α−cover. The loop in lines 9-16 iteratively selects critical targets (targets that
we want to be included in the current α-cover) and sensors with the greatest
contribution covering them, until a new α−cover is generated. Lines 17-22 de-
crease the lifetime of each sensor belonging to the new α−cover by a quantity
equal to gf and check whether the SENSORS set must be updated.

Critical Target : Cardei et al. [4] in their Greedy-MSC propose to select at
each iteration the most sparsely covered target as critical (either in terms of
number of sensors or their residual energy). In our algorithm instead, a critical
target is the target that, among the ones which are covered by sensors si with
Rsi > 0, has been covered for the shortest amount of time so far. Ties are
broken by selecting the one whose covering sensors have the smallest amount
of residual energy.

Sensor Contribution : In [4] the authors propose to use a contribution func-
tion that favors the selection of sensors with high residual energy and that
cover a large number of uncovered targets. Our contribution function fur-
ther addresses this second objective, by trying to favor sensors which cover
targets that have been covered for small amounts of time so far. During
the algorithm execution, let wt be the coverage time so far for a generic
target t and wmax be the maximum coverage time so far among all the
targets in the network. The contribution of each sensor s with Rs > 0 is
Contr(s) = Rs +

∑
t∈TARGETS|t∈Ts

(1 + wmax − wt).

Complexity Analysis: We do not consider line 24, where a linear program-
ming model is solved by means of the simplex method. Critical target selection
requires to check the residual energy of the covering sensors of each candidate
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Algorithm 1 α−Greedy algorithm
1: input: wireless network (T, S), granularity factor gf ∈ (0, 1]
2: SENSORS = S
3: for each si ∈ SENSORS do
4: Rsi = 1
5: end for
6: while |TSENSORS| ≥ Tα do
7: Create a new empty α−cover Cl

8: TARGETS = TSENSORS

9: while |TCl
| ≤ Tα do

10: Find a critical target tr ∈ TARGETS
11: Select su ∈ SENSORS s.t. tr ∈ Tsu and su has the greatest contribution
12: for each ti ∈ TARGETS s.t. ti ∈ Tsu do
13: TARGETS = TARGETS \ {ti}
14: end for
15: Cl = Cl ∪ {su}
16: end while
17: for each si ∈ Cl do
18: Rsi = Rsi − gf
19: if Rsi = 0 then
20: SENSORS = SENSORS \ {si}
21: end if
22: end for
23: end while
24: solve [α−MLP] restricted to the generated covers, find activation time wl for each Cl

25: return the collection of pairs (Cl, wl)

target and sensor contribution evaluation considers for each sensor the cover-
age time so far of its targets: therefore, each of these operations require O(nm)
time at most. Every other operation requires O(n) or O(m) at most. The loop
in lines 9-16 is executed O(n) times at most since at each iteration at least
a new target is covered. The loop in lines 6-23 is executed O( m

gf
) times at

most since at each iteration we lower the battery life of at least one sensor of
a quantity gf . Therefore, the worst case complexity of the algorithm, without

considering the computational complexity of the final step, is O(n
2m2

gf
).

7 Computational Results

In this section we describe our computational experiments and the related
results. All tests were performed on a workstation with Intel Core 2 Duo
processor at 2.4Ghz and 3GB of RAM. All the procedures have been coded in
C++, using IBM ILOG CPLEX 11.2 and the Concert Technology library to
solve the mathematical formulations. After a preliminary experimental phase
we chose a granularity factor equal to 0.25 for the heuristic algorithm and a
1-hour time limit for the exact algorithms.

Instances are divided into two groups. The instances of the Group 1 have
been created according to the description given in [4]. These are random in-
stances containing a limited number of targets (m = 15 targets) and a con-
siderably higher number of sensors (we set n = 25, 50, 100, 150). Sensors and
targets are randomly disposed on a grid with size 500m x 500m and the sens-
ing range of each sensor is 200m. We generated 5 instances for each value of n.
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For experiments on Group 1, we considered α = 1, 0.85, 0.75, 0.5, which means
(by rounding up) that each α−cover must contain Tα = 15, 13, 11, 8 targets
respectively, for a total of 16 scenarios and 80 instances.

Instances in Group 2 were used in [6]. Each of these instances contains 100
targets. Instead of a predefined number of sensors, an additional d = 3 depth
parameter has been used, representing the minimum number of sensors cover-
ing each target. Moreover, these instances are divided into two subgroups. In
the Scattering subgroup, sensors are considered to be inexpensive and there-
fore randomly disposed as in the instances of Group 1. In the Design sub-
group, sensors are installed only where needed to reach the depth. Each sub-
group contains 30 instances. For experiments on Group 2, we considered α =
1, 0.99, 0.97, 0.95, 0.93, 0.85, 0.75, 0.5 (that is, Tα = 100, 99, 97, 95, 93, 85, 75, 50
respectively), for a total of 16 scenarios and 960 instances.

For each instance we fixed the regularity threshold wmin for α−RMLP
equal to the optimum objective function value of MLP on the same instance
(that is, the result of α−MLP when α = 1). Therefore each target is guaranteed
to be covered for at least as long as it was in the original problem.

The Column Generation applied to solve α−MLP is initialized with the
solutions provided by the heuristic described in Section 6. On the other hand,
the CG for α−RMLP is initialized using the optimal solution of MLP on the
same instance. In this way, we are guaranteed to have feasible initializations
due to the chosen value for parameter wmin.

The results of our experiments are contained in next subsections.

7.1 Heuristic results for α−MLP

We compare the results of α-Greedy with the related optimal solutions of
α−MLP. Tables 1-2 contain average values for the instances of Group 1 and
Group 2. Optimal solutions have been computed using our Column Generation
with heuristic initializations.

In Group 2 five instances violated the 1-hour time limit when solved opti-
mally (see Table 2). The averages of the related scenarios are evaluated only
on the instances which run to completion for both procedures. Computational
times of α−Greedy are negligible, while those of the CG are discussed in the
next subsection and are not reported in these tables.

In the tables, Column α reports the different values of parameter α, Column
Tα is the total number of targets to be covered by each α-cover and it is such
that Tα = n × α. Columns heuristic and exact contain the average heuristic
and exact solution value, respectively, computed on the instances of the same
scenario. Column gap reports the average gap between the optimal solution

and the heuristic one. The gap is computed as (exact − heuristic)
heuristic × 100. It can

be noticed that the average gap can be up to 38.96% for Group 1 and up
to 66.82% for Scattering instances in Group 2 (see Table 2 with α = 0.85),
therefore more complex approaches (e.g. metaheuristics) should be considered
for accurate heuristic results on each scenario.
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7.2 Exact results for α−MLP and α−RMLP

We compare exact solutions for both problems returned by our CG algorithms.
Tables 3-4 contain average solution values and average computational times.

Times are expressed in seconds. In each table the row corresponding to α = 1
gives the optimal solutions for the original problem MLP on each scenario.

In the tables, for each value of α (and the corresponding Tα) the results for
α-MLP and α-RMLP are reported. Average solution values and computational
times of both the problems are given in Columns sol and time. Column gap
reports the average percentage gaps between the objective function value of the
original problem MLP and of the two new problems. The gap is computed as
(α-MLP value − MLP value)

α-MLP value ×100 for the α−MLP and similarly for the α−RMLP.
Hence, the greater the value of the gap, the greater the increment in the
network lifetime. Finally, for each value of α (and the corresponding Tα),
the values contained in Row ratio show average percentage gaps between α-
MLP and α-RMLP, both in terms of solution values and computational times.
These values give a measure of the impact of regularity requirement. The ratio

is computed as (α-RMLP value − α-MLP value)
α-RMLP value × 100 to compare the objective

function values and similarly for the computational times.
A common subset of 5 instances belonging to two different scenarios of

Group 2 was not solved by both procedures in the 1-hour time limit, as re-
ported in Table 4. Average values and gaps for the related scenarios are eval-
uated only on the instances which run to completion for all the procedures.

Let us compare the optimal value of the original MLP and of the α−MLP.
Introducing α−coverage has a very high impact on the objective function
value. On Group 1 (Table 3), neglecting 2 targets for each cover (α = 0.85)
increases the average objective function value from 48.19% (for 50 sensors) to
106.88% (for 150 sensors) with respect to the original problem. The average
gap increases up to 277.78% with α = 0.5 and 25 sensors. For every instance
in Group 2 (Table 4), the MLP solution is 3. When α-coverage is taken into
account, the behavior on Scattering instances is very similar to the one ob-
served for Group 1. Neglecting one target out of 100 for each cover (α = 0.99)
already brings an average optimal solution improvement of 27.67% and the
average gap increases up to 583.33% for α = 0.5. As expected, the impact
of α−coverage is not so high for Design instances but even in this case large
improvements can be noticed for low enough values of α (e.g., about 50%
improvement when neglecting 15 targets). Let us now compare the objective
function values for α−MLP and α−RMLP. On all instances of Group 1 and
Scattering instances of Group 2, the regularity requirement has no effect on
the objective function. On Design instances, slight decrements can be noticed
in 5 out of 7 scenarios when regularity is imposed (highest average gap 1.1%).
Overall, on the considered datasets, regularity proves to be highly acceptable.

In Tables 5-6, averages of the minimum and maximum coverage time for
the targets are reported. Columns gap report the percentage gaps of these val-
ues with respect to the corresponding value of the original problem obtained
when α = 1 (where every target has the same coverage). It can be seen that
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regularity is always reached without being required in 10 out of 12 scenarios
for Group 1 (see the values corresponding to α−MLP), and the maximum av-
erage decrement in the minimum coverage level for the remaining 2 is 1.17%.
Regularity is also always reached without being imposed in 3 out of 7 scenarios
for Scattering instances in Group 2, and the maximum average decrement for
the remaining 4 is 3.33%. This shows that besides being a desirable condition
regularity is also often a valid criterion to effectively use the sensors energy,
giving numerical justification to the regularity-oriented choices we introduced
in our heuristic. There are no Design scenarios where regularity is reached
without being imposed, however average gaps are never higher than 21% (see
α = 0.97). Moreover, a comparison of the maximum coverage levels and the
related objective function values for every scenario of every group shows that
targets in fortunate conditions are generally covered for most of the network
lifetime. Finally, go back to Tables 3-4 to evaluate the computational times
of the algorithms. The α−RMLP procedure performs on average worse than
the α-MLP algorithm in 11 out of 12 scenarios in Group 1 and in 11 out of 14
scenarios in Group 2. This can be explained with the generally weaker initial-
ization, the additional complexity of the problem and the smaller number of
α−covers which can be discarded during the execution. However, on more dif-
ficult instances (those where computational times increase) the gap decreases.
Indeed, considering the two scenarios which require on average more than 200
seconds (see the Scattering instances with α = 0.75 in Table 4) the maximum
gap is 2.74%, and in the single scenario which requires on average more than
300 seconds (see the Scattering instances with α = 0.85) it is 0.4%. Overall,
once the five instances which proved to be difficult to solve are removed, the
highest average computational time is 302.91 seconds.

8 Conclusions

In this paper we introduced two variants of the well known Maximum Net-
work Lifetime Problem where partial coverage of the targets is allowed. The
two resulting problems are the Maximum Network α−Lifetime Problem and
the Regular Maximum Network α−Lifetime Problem. We analyzed their com-
plexity and provided a Column Generation exact approach and a heuristic
algorithm. We tested our approaches on a wide set of benchmark instances to
better understand the trade-off between the network lifetime and the coverage
percentage. Our experiments show that, with a very small percentage of ne-
glected targets not only the network lifetime is hugely improved, but also, the
total coverage time of the targets is increased. That is, the overall performance
of the monitoring activity of the sensor network is largely improved by consid-
ering α−covers instead of covers. Further steps of research are focused on the
analysis of the performance of the sensor network when different measures of
regularity are considered. Moreover, more efficient metaheuristic approaches
will also be investigated to solve the problem on larger instances in reasonable
time.
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number of sensors
25 50

α Tα heuristic exact gap heuristic exact gap

1 15 3.6 3.6 0% 9.2 9.4 2.17

0.85 13 5.1 6.6 29.41% 11.33 13.93 22.95%

0.75 11 7.83 10.4 32.82% 16.1 19.4 20.5%

0.5 8 11.6 13.6 17.24% 23.2 27.23 17.37%
number of sensors

100 150
α Tα heuristic exact gap heuristic exact gap

1 15 15.4 15.4 0% 25 25 0%

0.85 13 23.29 30.4 30.53% 37.22 51.72 38.96%

0.75 11 29.95 41.49 38.53% 50.59 66.98 32.4%

0.5 8 44.35 54.9 23.79% 76.03 87.6 15.22%

Table 1 Exact and heuristic solution comparisons for Group 1.

instances type
Scattering Design

α Tα heuristic exact gap heuristic exact gap

1 100 2.87 3 4.53% 2.36 3 27.12%

0.99 99 3.28 3.83 16.77% 2.45 3 22.45%

0.97 97 3.68 5.37 45.92% 2.72 3.04 11.76%

0.95 95 4.24 6.64 56.60% 2.76 3.34 21.01%

0.93 93 4.44 7.38∗ 66.22% 2.82 3.65 29.43%

0.85 85 6.33 10.56⋄ 66.82% 3.48 4.5 29.31%

0.75 75 8.66 13.36 54.27% 4.27 5.42 26.93%

0.5 50 16.08 20.5 27.49% 6.83 8.32 21.82%

Table 2 Exact and heuristic solution comparisons for Group 2. ∗Scenarios where 3 instances
out of 30 violated the time limit. ⋄Scenarios where 2 instances out of 30 violated the time
limit.
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number of sensors
25 50

α Tα prob sol gap time sol gap time

1 15 MLP 3.6 0.01 9.4 0.01

0.85
α−MLP 6.6 83.33% 0.11 13.93 48.19% 0.39

13 α−RMLP 6.6 83.33% 0.13 13.93 48.19% 0.45
ratio 0% 18.18% 0% 15.38%

0.75
α−MLP 10.4 188.89% 0.44 19.4 106.38% 0.68

11 α−RMLP 10.4 188.89% 0.22 19.4 106.38% 1.01
ratio 0% -50% 0% 48.53%

0.5
α−MLP 13.6 277.78% 0.26 27.23 189.68% 1.11

8 α−RMLP 13.6 277.78% 0.46 27.23 189.68% 1.79
ratio 0% 76.92% 0% 61.26%

number of sensors
100 150

α Tα prob sol gap time sol gap time

1 15 MLP 15.4 0.02 25 0.02

0.85
α−MLP 30.4 97.4% 2.74 51.72 106.88% 9.79

13 α−RMLP 30.4 97.4% 3.33 51.72 106.88% 12.31
ratio 0% 21.53% 0% 25.74%

0.75
α−MLP 41.49 169.42% 8.03 66.98 167.92% 13.90

11 α−RMLP 41.49 169.42% 8.64 66.98 167.92% 22.73
ratio 0% 7.6% 0% 63.53%

0.5
α−MLP 54.9 256.49% 5.95 87.6 250.4% 15.24

8 α−RMLP 54.9 256.49% 8.76 87.6 250.4% 22.2
ratio 0% 47.23% 0% 45.67%

Table 3 Exact solutions comparisons for Group 1.

instances type
Scattering Design

α Tα prob. sol gap time sol gap time

1 100 MLP 3 0.05 3 0.21

0.99
α−MLP 3.83 27.67% 0.56 3 0% 0.59

99 α−RMLP 3.83 27.67% 0.59 3 0% 0.1
ratio 0% 5.36% 0% -83.05%

0.97
α−MLP 5.37 79% 2.01 3.04 1.33% 1.43

97 α−RMLP 5.37 79% 2.03 3.03 1% 2.13
ratio 0% 1% -0.33% 48.95%

0.95
α−MLP 6.64 121.33% 8.02 3.34 11.33% 2.68

95 α−RMLP 6.64 121.33% 8.88 3.31 10.33% 3.45
ratio 0% 10.72% -0.9% 28.73%

0.93
α−MLP 7.38∗ 146% 36.18∗ 3.65 21.67% 7.03

93 α−RMLP 7.38∗ 146% 44.1∗ 3.61 20.33% 6.51
ratio 0% 21.89% -1.1% -7.4%

0.85
α−MLP 10.56⋄ 252% 302.91⋄ 4.5 50% 11.46

85 α−RMLP 10.56⋄ 252% 304.12⋄ 4.48 49.33% 15.58
ratio 0% 0.4% -0.44% 35.95%

0.75
α−MLP 13.36 345.33% 216.98 5.42 80.67% 13.94

75 α−RMLP 13.36 345.33% 222.93 5.41 80.33% 12.89
ratio 0% 2.74% -0.18% -7.53%

0.5
α−MLP 20.5 583.33% 11.13 8.32 177.33% 3.2

50 α−RMLP 20.5 583.33% 23.85 8.32 177.33% 4.7
ratio 0% 114.29% 0% 46.88%

Table 4 Exact solutions comparisons for Group 2. ∗Scenarios where 3 instances out of 30
violated the time limit. ⋄Scenarios where 2 instances out of 30 violated the time limit.
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number of sensors
25 50

α Tα prob. min gap max gap min gap max gap

1 15 MLP 3.6 3.6 9.4 9.4

0.85 13
α−MLP 3.6 0% 6.6 83.33% 9.29 -1.17% 13.93 48.19%
α−RMLP 3.6 0% 6.6 83.33% 9.4 0% 13.93 48.19%

0.75 11
α−MLP 3.6 0% 10.3 186.11% 9.4 0% 19.15 103.72%
α−RMLP 3.6 0% 10.4 188.89% 9.4 0% 19.09 103.09%

0.5 8
α−MLP 3.6 0% 12.3 241.67% 9.4 0% 23.23 147.13%
α−RMLP 3.6 0% 12.1 236.11% 9.4 0% 23.2 146.81%

number of sensors
100 150

α Tα prob. min gap max gap min gap max gap

1 15 MLP 15.4 15.4 25 25

0.85 13
α−MLP 15.4 0% 30.4 97.4% 24.94 -0.24% 51.72 106.88%
α−RMLP 15.4 0% 30.4 97.4% 25 0% 51.72 106.88%

0.75 11
α−MLP 15.4 0% 40.46 162.73% 25 0% 66.17 164.68%
α−RMLP 15.4 0% 40.71 164.35% 25 0% 65.78 163.12%

0.5 8
α−MLP 15.4 0% 46.19 199.94% 25 0% 76.1 204.4%
α−RMLP 15.4 0% 45.92 198.18% 25 0% 75.6 202.4%

Table 5 Max/Min target coverage time comparisons for Group 1.

instances type
Scattering Design

α Tα prob. min gap max gap min gap max gap

1 100 MLP 3 3 3 3

0.99 99
α−MLP 2.9 -3.33% 3.83 27.67% 2.53 -15.67% 3 0%
α−RMLP 3 0% 3.83 27.67% 3 0% 3 0%

0.97 97
α−MLP 2.91 -3% 5.37 79% 2.37 -21% 3.04 1.33%
α−RMLP 3 0% 5.37 79% 3 0% 3.03 1%

0.95 95
α−MLP 2.99 -0.33% 6.64 121.33% 2.62 -12.67% 3.34 11.33%
α−RMLP 3 0% 6.64 121.33% 3 0% 3.31 10.33%

0.93 93
α−MLP 2.99∗ -0.33% 7.38∗ 146% 2.69 -10.33% 3.65 21.67%
α−RMLP 3∗ 0% 7.38∗ 146% 3 0% 3.61 20.33%

0.85 85
α−MLP 3⋄ 0% 10.56⋄ 252% 2.9 -3.33% 4.5 50%
α−RMLP 3⋄ 0% 10.56⋄ 252% 3 0% 4.48 49.33%

0.75 75
α−MLP 3 0% 13.36 345.33% 2.86 -4.67% 5.42 80.67%
α−RMLP 3 0% 13.36 345.33% 3 0% 5.41 80.33%

0.50 50
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