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Abstract
This work addresses the challenge of video violence detection in data-scarce scenarios, focusing on bridging the domain 
gap that often hinders the performance of deep learning models when applied to unseen domains. We present a novel 
unsupervised domain adaptation (UDA) scheme designed to effectively mitigate this gap by combining supervised learning 
in the train (source) domain with unlabeled test (target) data. We employ single-image classification and multiple instance 
learning (MIL) to select frames with the highest classification scores, and, upon this, we exploit UDA techniques to adapt 
the model to unlabeled target domains. We perform an extensive experimental evaluation, using general-context data as the 
source domain and target domain datasets collected in specific environments, such as violent/non-violent actions in hockey 
matches and public transport. The results demonstrate that our UDA pipeline substantially enhances model performances, 
improving their generalization capabilities in novel scenarios without requiring additional labeled data.

Keywords Video violence classification · Deep learning for video understanding · Unsupervised learning · Video 
surveillance · Domain adaptation · Deep learning with scarce data

Introduction

In recent times, there has been an increasing enthusiasm 
to create computer vision applications and services that 
enhance the lives of citizens. The swift advancement of 
deep learning (DL) techniques, combined with the wide-
spread presence of video surveillance cameras in modern 
cities, has given rise to intelligent applications designed for 
various purposes. These encompass face recognition [1, 2], 
crowd counting [3, 4], intelligent parking systems [5, 6], 
pedestrian detection and tracking [7, 8], among others. Such 
smart applications are now widely implemented worldwide, 
becoming pivotal in effectively managing public spaces and 
deterring criminal activities, and they are gradually replac-
ing human supervision for monitoring.

However, state-of-the-art performances of DL algorithms 
are usually achieved through supervised learning, which 

relies on two key assumptions [9]. Firstly, it assumes the 
availability of extensive labeled datasets, which are crucial 
for accurately training the models. Secondly, it assumes that 
the training (or source) and test (or target) datasets are i.i.d., 
i.e., they are independent and have identical distributions. 
While abundant annotated data may be available for cer-
tain predefined domains, such as ImageNet [10] for image 
classification or COCO [11] for object detection, obtaining 
manual annotations for every specific target domain or task 
is often impractical and costly. Consequently, models are 
often applied to target domains not encountered in the exist-
ing labeled training data, and exhibit a drop in performance 
at inference time due to the domain shifts, i.e., the domain 
gap between source and target data distributions [12].

Unsupervised domain adaptation (UDA) provides one 
possible solution to tackle this issue. Its primary goal is to 
mitigate domain gaps by leveraging labeled data from the 
source domain and unlabeled data from the target domain. 
In essence, UDA techniques use annotated data from the 
source domain, along with non-annotated data from the tar-
get domain, which can be easily collected without requir-
ing human effort for labeling. The key challenge here lies 
in automatically extracting knowledge from this latter 
data stream to narrow the gap between the two domains. 
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Specifically, the objective is to learn feature representations 
that are (i) discriminative for the primary learning task in the 
source domain and (ii) robust to the domain shift.

This paper focuses on detecting violent actions within 
trimmed videos, wherein the goal is to distinguish between 
violent and non-violent behaviors in clips that capture 
an exact action. Essentially, this task is a subcategory of 
human action recognition, with the objective of classify-
ing video clips into binary categories encoding the presence 
or the absence of violent actions. Despite its significance 
through real-world scenarios involving the warning/preven-
tion of criminal activities and public space management, 
this specific task has received relatively limited exploration 
compared to other action recognition tasks. Although some 
annotated datasets exist for general video violence detec-
tion, they suffer from shortcomings in terms of size and sce-
nario diversity. Consequently, existing deep learning-based 
solutions trained on these datasets often exhibit decreased 
performance when applied to specific contexts, such as vio-
lence detection in public transports [13]. To tackle these 
limitations, we introduce an end-to-end deep learning-based 
UDA approach designed for improving performance in tar-
get scenarios where annotated data is scarce or absent. Our 
baseline takes inspiration from [14], a video violence detec-
tion technique that performs single-image classification by 
randomly selecting frames from the video. We improve this 
straightforward approach by exploiting a multiple instance 
learning (MIL) technique that instead considers the frame 
with the best classification score. Then, upon this baseline, 
we integrate a set of UDA techniques into the training pro-
cess to automatically acquire knowledge from unlabeled 

data that pertains to the target domain. To the best of our 
knowledge, it is the first attempt at using a UDA schema for 
video violence detection. In our experiments, as the source 
domain, we utilize several annotated datasets of video vio-
lence detection in broader contexts. On the other hand, as the 
target domain, we exploit video clips in specific scenarios: 
the Hockey Fight dataset [15] containing violent/non-violent 
actions from hockey matches of the National Hockey League 
(NHL), and the recently introduced Bus Violence benchmark 
focusing on identifying violent behaviors occurring within a 
moving bus [13]. Figure 1 illustrates this experimental sce-
nario. The outcomes indicate that our UDA pipeline substan-
tially improves performance for the examined models. This 
suggests that these models exhibit enhanced generalization 
capabilities when adapting to this new scenario, all without 
the requirement of introducing new labels.

This research extends our previous work [16] by 
modifying the baseline architecture with a MIL approach, 
considering additional state-of-the-art models for 
performance comparison, and experimenting with an 
additional target dataset. The main contributions are 
summarized below:

• we present a novel UDA scheme for video violence 
detection to effectively reduce the domain gap between 
a labeled source dataset and an unlabeled target dataset;

• we perform an empirical assessment, using general vio-
lent/non-violent videos as the source domain and other 
clips designed for detecting violent behaviors in specific 
scenarios (such as hockey matches and public transports) 
as the target domain;

Fig. 1  The considered scenario. Our proposal introduces an unsu-
pervised domain adaptation approach for video violence detection, 
aiming to bridge the domain gap that separates the source domain 
(depicted on the left) from the target domain (shown on the right). 
The source domain encompasses three datasets containing annotated 

videos portraying both violent and non-violent scenarios in broad 
contexts. In contrast, the target domain comprises two sets of unla-
beled clips capturing instances of violent and non-violent actions 
within different and very specific scenarios, e.g., hockey matches and 
public transports
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• the outcomes reveal that our UDA approach enhances 
the performance of the examined models, enabling them 
to achieve improved generalization in situations where 
labels are unavailable, accommodating novel scenarios.

The paper’s structure is as follows: In Sect.  “Related 
Works”, we review related works. Section “Methodology” 
outlines our proposed methodology. Section “Experimental 
Analysis” presents the results from our experimental 
evaluation. Finally, Sect. “Conclusion” provides the paper’s 
conclusion.

Related Works

Numerous methods and datasets are explicitly designed for 
video violence detection within the existing literature. Many 
of these approaches are tailored to analyze trimmed clips [14, 
17–24], which capture precise actions, whether violent or non-
violent. Consequently, this task falls under the umbrella of 
action recognition, where the goal is to classify videos, pre-
dicting the presence or absence of violent human behaviors. 
However, a few studies also delve into the realm of untrimmed 
videos [25–27]. In this case, the objective expands beyond 
action recognition to include action localization, which entails 
identifying the temporal boundaries of the actions. This dis-
tinction is also reflected in the datasets used for model train-
ing: trimmed video datasets typically provide annotations 
at the video level, while untrimmed video datasets require 
frame-level annotations. Our effort focuses explicitly on video 
violence detection in trimmed videos, where we introduce 
a UDA scheme to tackle a scenario characterized by scarce 
annotated data. In the subsequent sections, we will explore 
some collections of trimmed clips and prominent techniques 
in the literature. Finally, we will conclude this section by 
reviewing some existing UDA approaches.

Video Violence Detection Datasets

Over the past few years, several benchmarks comprising 
trimmed video clips suitable for video violence detection have 
been introduced. There exist numerous challenges concern-
ing these collections of videos that consequently impact the 
performance of the video violence detection models, such as 
small amounts of data, video quality, and size. Some nota-
ble examples in the literature are (i) the Surveillance Cam-
era Fight (SCF) [24] dataset, a collection of 300 videos from 
surveillance camera footage, 150 of which describe fight 
sequences and 150 depict non-fight scenes, (ii) the Real-Life 
Violence Situations (RLVS) [17] dataset, a set of 2000 video 
clips of violent/non-violent actions in general real-world sce-
narios, and (iii) the RWF-2000 [28] dataset which includes 
2000 trimmed video clips from YouTube capturing violent/

non-violent scenes from surveillance cameras. Furthermore, 
some other datasets focus on specific environments, such as 
the Hockey Fight [15] dataset containing 1000 labeled “vio-
lent” or “non-violent” trimmed clips of actions from hockey 
matches of the National Hockey League (NHL), and the Bus 
Violence [13] benchmark which instead includes 1400 videos 
of violent/non-violent scenes from several cameras located 
inside a moving bus, representing the first public dataset for 
human violence detection in public transport. We report all 
these accounted benchmarks in Table 1, where details and 
sample frames are also given. In this work, we point out 
the difficulties concerning the generalization capabilities of 
the DL-based techniques for video violence detection when 
trained with general-context data [17, 24, 28] and applied to 
specific scenarios [13, 15], providing a solution to mitigate 
this issue without using further annotations.

Video Violence Detection Approaches

Many of the existing video violence detection methods 
follow an architecture comprising a series of convolutional 
layers to extract spatial features, one or more long short 
memory (LSTM) layers [29] (or some variants of it) to 
encode the long-term frame level changes from a temporal 
perspective, and, finally, a sequence of fully connected layers 
for the final video classification. Some notable works are 
[17, 18] where the authors proposed a pre-trained VGG-
16 on ImageNet as spatial feature extractor followed by 
LSTM as temporal feature extractor, or [19, 22, 23] that 
instead exploited ImageNet pre-trained AlexNet, VGG16, 
and ResNet50 as backbones, respectively, and convolutional 
LSTM (ConvLSTM) [30] for temporal feature encoding. 
Similarly, in [20], a spatio-temporal encoder built on a pre-
trained VGG13 combined with bidirectional convolutional 
LSTM (BiConvLSTM) has been introduced, while the 
authors in [24] proposed a combination of Xception and 
bidirectional LSTM (BiLSTM) layers. It is also worth 
noting that these latter three works [19, 20, 23] do not 
use the raw RGB video stream as input, but they instead 
employ the frame-difference video stream, i.e., the 
difference of adjacent frames; frame-difference represents a 
computationally efficient alternative for optical flow, and it 
has been successfully exploited to capture short-term frame 
level changes. On the other hand, in [31], the authors used 
a different architecture relying on 3D convolutional layers 
[32] to handle both spatial and temporal dimensions, while 
in [14], the videos have been classified using single frames 
randomly sampled within the clips.

Alternatively, methods suitable for human action rec-
ognition can also be exploited. In this case, fine-tuning is 
required to classify videos into two classes: violence and 
non-violence. For instance, the ResNet 2+1D network [21] 
treats actions as spatio-temporal objects using a sort of 3D 
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convolutional layer obtained by decomposing the convolu-
tions into separate 2D spatial and 1D temporal filters [33]. 
Another widely-used model is SlowFast [34]. This archi-
tecture incorporates two branches. The first branch aims 
to capture semantic information through images or a few 
sparse frames, operating at a low frame rate. In contrast, the 
second branch captures fast-changing motion by operating 
at a higher refresh rate. Lastly, recent advancements have 
introduced architectures based on Transformer attention 
modules. An example is the Video Swin Transformer [35], 
which extends the sliding-window Transformers proposed 
for image processing [36] to the temporal axis. This exten-
sion achieves an excellent balance between efficiency and 
effectiveness.

Unsupervised Domain Adaptation Approaches

Traditional unsupervised domain adaptation (UDA) meth-
ods have predominantly focused on solving image classifi-
cation problems by aligning features between two domains. 
Prominent examples of these methods include [37, 38]. 
However, extending these approaches to different applica-
tions is not straightforward, as underscored by [39]. Conse-
quently, the existing literature provides a limited number of 
UDA techniques that are suitable for diverse tasks. Recent 

advancements have expanded the scope of UDA techniques 
to encompass areas like semantic segmentation [40, 41] and 
visual counting [42, 43]. This research introduces a UDA 
framework tailored specifically for video violence detection. 
To the best of our knowledge, this represents the first attempt 
to leverage UDA for this task.

Methodology

Background

In line with the notation introduced in [44, 45], we 
define a domain D consisting of two main components: 
a d-dimensional feature space X ⊂ ℝ

d , and a marginal 
probability distribution P(X), where X = {x1,… , xn} ⊂ X  
represents the set of feature samples. For a specific domain 
D = {X,P(X)} , we formulate a task T  , which is defined by 
a label space Y and the conditional probability distribution 
P(Y|X), where Y = {y1,… , yn} ⊂ Y corresponds to the set 
of labels associated with X. In a supervised setting, P(Y|X) 
can be learned from the provided feature-label pairs ⟨xi, yi⟩.

In the context of unsupervised domain adaptation, we are 
presented with two distinctive domains:

Table 1  Summary of datasets. We report statistics and sample 
frames of some collections of trimmed clips in the literature suitable 
for video violence detection. SCF, RLVS, and RWF-2000 comprise 

general-context data, while Bus Violence and Hockey Fight focus on 
specific environments

SCF [24] RLVS [17] RWF-2000 [28] Bus Violence [13] Hockey Fight [15]

# clips 300 2000 2000 1400 1000
FPS 25 Variable 30 30 25
Length/Clip 2 3–7 5 – 1.6−1.96
Resolution 480x360 Variable Variable Variable 360x288
Year 2020 2019 2020 2022 2011
Balanced ✓ ✓ ✓ ✓ ✓
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(i) a source domain D
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(ii) a target domain T = {T ,P(XT )}, with T = {T ,P(YT |XT )},
where YT is unknown, meaning that we do not have any 

labels available for the target samples. Due to the inherent 
differences between the two domains, the distributions 
are assumed to be distinct, i.e., P(XS) ≠ P(XT ) and 
P(YS|XS) ≠ P(YT |XT ) . The main goal of UDA is to train a 
model that exhibits decreased generalization error in the 
target domain, achieved through the effective reduction of 
domain discrepancy.

UDA for Video Violence Detection

In this work, the source domain DS comprises a labeled 
collection of highly diverse videos depicting both violent 
and non-violent everyday-life situations. Here, YS = 0, 1 
indicates whether violent actions are absent or present in 
these clips, respectively. In contrast, the target domain DT 
comprises an entirely separate set of videos lacking any 
annotations. These videos capture instances of violent 
or non-violent actions occurring in a distinct and unique 
context compared to the scenarios observed in the source 
domain. The main objective is to leverage knowledge from 
the unlabeled target domain in the training process, aiming 
to minimize the dissimilarity between the source and target 
domains. This adaptation enhances the model’s capacity to 
generalize effectively to scenarios where annotations are not 
available.

Our approach relies on a deep learning-based model, 
trained end-to-end with an attached UDA module. A 
distinctive feature of our UDA scheme is that it is based 
on single-image classification. We transform the task of 
video classification into image classification, as scenes with 
violent actions can be distinguished from non-violent scenes 
by classifying a sampled image from the entire video clip 
[14, 16]. Specifically, we improve the idea introduced in 
[14, 16] where the authors picked up a frame from a clip 
at random, and we propose a multiple instance learning 
(MIL) technique that instead considers the frame with the 
best classification score. MIL is a type of weakly supervised 
learning in which training instances are organized into 
groups, referred to as "bags", and a single label is assigned 
to the entire bag [46]; in our context, bags are represented 
by the trimmed videos while instances are the frames 
composing the clips themselves. A straightforward MIL 
approach involves applying a max pooling operator against 
the classification scores associated with the instances, 
therefore obtaining a single score associated with the bag. 
Building on this baseline, we incorporate into the training 
pipeline two UDA techniques initially designed for image 
classification, feeding them with images sampled from the 
target domain to facilitate inter-domain knowledge transfer.

More in detail, we utilize several convolutional neural 
networks (CNNs) as backbones for extracting features, 
excluding the final classification layers. We substitute the 
last classification head with a binary classification layer, 
which provides the probability of the presence (or absence) 
of violent actions in the given video. Additionally, we 
introduce an extra linear layer followed by a ReLU activation 
function to transform the feature maps originating from the 
feature extractor into a fixed-dimensional representation. 
This fixed-dimensional feature map is subsequently input 
into a UDA module.

We have explored two distinct UDA approaches. The 
first approach is known as the Domain-Adversarial Neural 
Network - (DANN) [37], which involves a domain regressor 
engaged in an adversarial competition with the classifier. 
This method achieves UDA by connecting the domain 
classifier to the feature extractor through a gradient reversal 
layer. During training, this layer introduces an adversarial 
loss by reversing the gradient with a specific negative 
constant. Otherwise, the training process is standard for 
source examples, minimizing the label prediction loss, 
and includes domain classification loss for all samples. 
The adversarial loss ensures that the feature distributions 
between the two domains become as similar as possible, 
resulting in domain-invariant features. The second approach 
is referred to as the Minimum Class Confusion - (MCC) [38], 
a method that can be exploited as UDA without explicitly 
aligning domains. MCC is grounded in the concept of class 
confusion, where the classifier tends to confuse predictions 
between correct and ambiguous classes. Specifically, MCC 
operates on the class predictions made by the classifier for 
the target data, given the feature extractor. During training, 
MCC is optimized using standard backpropagation to reduce 
class confusion and enhance feature generalization.

Experimental Analysis

Experimental Setting

Experimental scenario. We exploited three datasets from 
existing literature as the source domain DS : Surveillance 
Camera Fight (SCF) [24], Real-Life Violence Situations 
(RLVS) [17], and RWF-2000 [28], which were previously 
mentioned in Sect. “Related Works”. These datasets comprise 
annotated videos captured by stationary security cameras, 
featuring a diverse array of trimmed violent and non-violent 
scenes that span various real-life situations. In contrast, we 
adopted the Hockey Fight [15] dataset and the Bus Violence 
dataset [13] as the target domains DT . The former consists 
of trimmed clips from National Hockey League (NHL) 
matches, while the latter includes trimmed clips recorded 
within a moving bus, featuring actors simulating both violent 
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and non-violent actions. These scenarios are notably more 
specific, involving instances of violence within the context 
of hockey matches or public transportation. More in detail, 
we divided the Hockey Fight and the Bus Violence datasets 
into two distinct splits: one has been used as the unlabeled 
set from which infer some domain-specific knowledge, while 
the second one served as testing grounds for evaluating the 
generalization capabilities of all the considered deep learning 
models.

We employed two popular CNNs, ResNet50 [47] and 
VGG16 [48], as the primary feature extraction backbones. 
We replaced their final classification head with a binary 
classification layer to adapt them for our video violence 
detection task. These networks served as our baseline models, 
as already did in our previous work [16] and in [14], and we 
used both without any UDA modules and as feature extractors 
and classifiers in our proposed UDA approaches. We also 
exploited these two feature extractors in our modified setting 
with the added MIL strategy, again, both with and without 
our UDA modules. Furthermore, to compare with existing 
literature, we considered other established methods tailored 
for video violence detection and video action recognition. 
Specifically, we leveraged architectures introduced in [17, 
19, 20, 24], which utilize LSTM, BiLSTM, ConvLSTM, and 
BiConvLSTM as spatio-temporal encoders, and the network 
proposed in [31] that exploits 3D convolutional layers. We 
also considered popular video action classifiers, including the 
ResNet 2+1D network [21], the SlowFast [34] architecture, 
and the Video Swin Transformer [35]. More information about 
these models can be found in Sect. “Related Works” and their 
respective papers. We initiated these models with pre-trained 
versions from ImageNet [10] or Kinetics-400 [49] datasets, 
with no additional external data.

Performance metrics. Consistent with previous research 
on video violence detection, we employed accuracy as the 
key metric to assess the performance of the methods being 
examined. It is defined as:

where TP represents true positives, TN stands for true 
negatives, FP denotes false positives, and FN represents 
false negatives. For a more comprehensive comparison of 
the results obtained, we also incorporated additional metrics, 
including the F1-score, false alarm (FA), and missing alarm, 
which are defined as follows:

(1)Accuracy =
TP + TN

TP + TN + FP + FN
,

(2)F1 = 2 ×
Precision × Recall

Precision + Recall
,

(3)FalseAlarm =
FP

TN + FP
,

where precision and recall are defined as TP

TP+FP
 and TP

TP+FN
 , 

respectively. Finally, we incorporated the area under the 
receiver operating characteristics (ROC AUC) metric to 
account for the probabilities associated with the detections. 
It is computed by measuring the area under the curve 
obtained by plotting the true positive rate (TPR) against the 
false positive rate (FPR) at various threshold settings.

Implementation details and evaluation protocol. 
We implemented our models using PyTorch. Training 
and inference of all models are performed on an NVIDIA 
GeForce RTX4090. We used SGD for training, setting the 
starting learning rate to 0.005, the momentum at 0.9, and 
the weight decay to 0.001. The number of epochs is set at 
60, 75, and 100 concerning the SCF, RLVS, and RWF-2000 
datasets, respectively. We consistently employed a uniform 
data augmentation strategy throughout the training phase 
that included horizontal flipping with a probability of 0.5 
and resizing to dimensions of 256 × 256 pixels.

To ensure the robustness of our results, we implemented 
the following evaluation protocol. Within each of the three 
selected source (training) domains, i.e., SCF, RLVS, and 
RWF-2000, we randomly partitioned the training and 
validation subsets three times. We then selected the best-
performing model based on accuracy and tested it on the 
target (test) domain, i.e., the splits of Hockey Fight and 
Bus Violence benchmarks selected as the performance 
testing ground. Our reported results represent the mean 
and standard deviation of these three independent runs. We 
repeated the experiments five times instead of three times 
for some of the results obtained in our previous work [16] 
that showed a high standard deviation.

Results and Discussion

The results concerning the Hockey Fight target dataset are 
shown in Table 2. In general, all the models we examined 
demonstrate only moderate performance, highlighting the 
challenges in adapting their capabilities to detect violent 
actions in videos from the target domain effectively. Spe-
cifically, they particularly struggle when the considered 
source domain is the SCF dataset, while they exhibit better 
achievements with the RLVS data collection. However, 
our modified VGG16 architecture with our MIL-based 
approach together with the MCC UDA module stands 
out as the top performer in terms of the key metric, i.e., 
accuracy, in all the considered scenarios. More in detail, 
when compared to the same architecture without UDA, our 
proposed technique attains a gain of about 6% , 4% , and 3% 
in accuracy concerning the SCF, the RWF-2000, and the 
RLVS source domains, respectively. More importantly, it 

(4)MissingAlarm =
FN

TP + FN
,
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Table 2  Performance 
evaluation over the Hockey 
Fight dataset [15]. We report 
the obtained results considering 
the Hockey Fight benchmark 
as the target domain and three 
sets of clips for video violence 
detection in general contexts

Model Accuracy↑ F1↑ FA↓ MA↓ ROC AUC ↑

(a) Source Domain: Surveillance Camera Fight [24]
Hanson et al. [20] † $ 0.54 ± 0.05 0.67 ± 0.01 0.85 ± 0.08 0.05 ± 0.07 0.62 ± 0.07
Sudhakaran et al. [19] †$ 0.52 ± 0.02 0.67 ± 0.04 0.93 ± 0.05 0.02 ± 0.01 0.79 ± 0.05
Akti et al. [24] † 0.59 ± 0.01 0.61 ± 0.04 0.50 ± 0.08 0.29 ± 0.08 0.69 ± 0.08
Li et al. [31] ∗$ 0.52 ± 0.01 0.67 ± 0.01 0.93 ± 0.03 0.01 ± 0.01 0.65 ± 0.07
Soliman et al. [17] † 0.67 ± 0.01 0.63 ± 0.07 0.21 ± 0.05 0.43 ± 0.06 0.78 ± 0.05
ResNet (2+1)D [21] ∗ 0.62 ± 0.03 0.70 ± 0.01 0.64 ± 0.09 0.11 ± 0.03 0.77 ± 0.01
SlowFast [34] ∗ 0.68 ± 0.07 0.63 ± 0.04 0.21 ± 0.05 0.41 ± 0.08 0.79 ± 0.02
VideoSwinTransformer [35] ∗ 0.52 ± 0.03 0.67 ± 0.06 0.94 ± 0.08 0.01 ± 0.01 0.89 ± 0.04
ResNet50 [47] [14] † ‡ 0.56 ± 0.01 0.62 ± 0.06 0.60 ± 0.06 0.26 ± 0.08 0.60 ± 0.04
VGG16 [48] [14] † ‡ 0.54 ± 0.02 0.68 ± 0.01 0.89 ± 0.05 0.02 ± 0.01 0.69 ± 0.06
ResNet50-MIL † 0.70 ± 0.07 0.61 ± 0.06 0.12 ± 0.03 0.46 ± 0.07 0.84 ± 0.05
VGG16-MIL † 0.69 ± 0.06 0.75 ± 0.03 0.52 ± 0.07 0.07 ± 0.04 0.80 ± 0.05
ResNet50 † ‡ + DANN [37] 0.59 ± 0.02 0.64 ± 0.02 0.57 ± 0.04 0.25 ± 0.05 0.63 ± 0.03
ResNet50-MIL † + DANN [37] 0.72 ± 0.04 0.63 ± 0.03 0.13 ± 0.03 0.42 ± 0.02 0.85 ± 0.03
ResNet50 † ‡ + MCC [38] 0.61 ± 0.02 0.66 ± 0.01 0.56 ± 0.02 0.23 ± 0.02 0.66 ± 0.02
ResNet50-MIL † + MCC [38] 0.72 ± 0.02 0.62 ± 0.03 0.12 ± 0.02 0.41 ± 0.02 0.85 ± 0.02
VGG16 † ‡ + DANN [37] 0.56 ± 0.02 0.69 ± 0.01 0.86 ± 0.03 0.03 ± 0.01 0.70 ± 0.04
VGG16-MIL † + DANN [37] 0.71 ± 0.03 0.77 ± 0.02 0.50 ± 0.03 0.06 ± 0.02 0.82 ± 0.03
VGG16 † ‡ + MCC [38] 0.59 ± 0.02 0.71 ± 0.02 0.83 ± 0.02 0.03 ± 0.01 0.72 ± 0.03
VGG16-MIL † + MCC  [38] 0.73 ± 0.02 0.78 ± 0.02 0.48 ± 0.02 0.05 ± 0.01 0.84 ± 0.02

(b) Source Domain: RWF-2000 [28]
Hanson et al. [20] †$ 0.65 ± 0.03 0.64 ± 0.07 0.31 ± 0.04 0.38 ± 0.03 0.69 ± 0.05
Sudhakaran et al. [19] †$ 0.63 ± 0.02 0.63 ± 0.06 0.40 ± 0.05 0.32 ± 0.03 0.72 ± 0.04
Akti et al. [24] † 0.70 ± 0.03 0.71 ± 0.03 0.30 ± 0.02 0.20 ± 0.02 0.79 ± 0.03
Li et al. [31] ∗$ 0.69 ± 0.03 0.71 ± 0.03 0.21 ± 0.03 0.40 ± 0.03 0.78 ± 0.04
Soliman et al. [17] † 0.62 ± 0.04 0.46 ± 0.03 0.08 ± 0.05 0.66 ± 0.03 0.69 ± 0.03
ResNet (2+1)D [21] ∗ 0.73 ± 0.01 0.69 ± 0.02 0.14 ± 0.01 0.39 ± 0.02 0.79 ± 0.01
SlowFast [34] ∗ 0.63 ± 0.02 0.44 ± 0.03 0.01 ± 0.03 0.71 ± 0.02 0.69 ± 0.04
VideoSwinTransformer [35] ∗ 0.63 ± 0.03 0.68 ± 0.02 0.51 ± 0.01 0.22 ± 0.03 0.69 ± 0.03
ResNet50 [47] [14] † ‡ 0.65 ± 0.01 0.71 ± 0.02 0.54 ± 0.06 0.13 ± 0.08 0.75 ± 0.03
VGG16 [48] [14] † ‡ 0.75 ± 0.01 0.79 ± 0.01 0.43 ± 0.02 0.05 ± 0.01 0.87 ± 0.01
ResNet50-MIL † 0.68 ± 0.03 0.73 ± 0.02 0.53 ± 0.04 0.11 ± 0.03 0.79 ± 0.02
VGG16-MIL † 0.77 ± 0.01 0.80 ± 0.01 0.41 ± 0.02 0.05 ± 0.04 0.89 ± 0.01
ResNet50 † ‡ + DANN [37] 0.66 ± 0.02 0.71 ± 0.01 0.52 ± 0.03 0.13 ± 0.04 0.77 ± 0.01
ResNet50-MIL † + DANN [37] 0.70 ± 0.02 0.74 ± 0.01 0.52 ± 0.02 0.10 ± 0.01 0.81 ± 0.02
ResNet50 † ‡ + MCC [38] 0.68 ± 0.02 0.73 ± 0.02 0.51 ± 0.02 0.11 ± 0.02 0.79 ± 0.02
ResNet50-MIL † + MCC [38] 0.71 ± 0.02 0.76 ± 0.01 0.50 ± 0.01 0.10 ± 0.01 0.82 ± 0.01
VGG16 † ‡ + DANN [37] 0.76 ± 0.01 0.81 ± 0.02 0.40 ± 0.02 0.04 ± 0.01 0.89 ± 0.02
VGG16-MIL † + DANN [37] 0.79 ± 0.01 0.81 ± 0.01 0.39 ± 0.01 0.05 ± 0.02 0.90 ± 0.01
VGG16 † ‡ + MCC [38] 0.78 ± 0.01 0.82 ± 0.02 0.38 ± 0.02 0.05 ± 0.01 0.90 ± 0.01
VGG16-MIL† + MCC  [38] 0.81 ± 0.02 0.82 ± 0.01 0.38 ± 0.01 0.04 ± 0.01 0.91 ± 0.01

(c) Source Domain: Real-life Violence Situations [17]
Hanson et al. [20] †$ 0.67 ± 0.04 0.65 ± 0.01 0.27 ± 0.14 0.38 ± 0.05 0.75 ± 0.08
Sudhakaran et al. [19] †$ 0.53 ± 0.02 0.67 ± 0.03 0.91 ± 0.03 0.03 ± 0.02 0.81 ± 0.04
Akti et al. [24] † 0.77 ± 0.01 0.78 ± 0.01 0.28 ± 0.09 0.16 ± 0.09 0.87 ± 0.02
Li et al. [31] ∗$ 0.54 ± 0.06 0.49 ± 0.05 0.37 ± 0.06 0.54 ± 0.07 0.56 ± 0.06
Soliman et al. [17] † 0.59 ± 0.01 0.68 ± 0.01 0.71 ± 0.02 0.10 ± 0.04 0.69 ± 0.02
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overcomes all the other considered state-of-the-art meth-
ods present in the literature, and it gains about 35% , 8% , 
and 9% of accuracy when compared with the single-image 
classification-based method proposed in [14] and that con-
stitutes the baseline of our previous work [16].

Regarding the Bus Violence target dataset, we illustrate 
the results in Table 3. In general, all the models exhibit 
very poor performances, pointing out more challenges 
in this recently established scenario compared with the 
Hockey Fight dataset. However, even in this case, our 
UDA scheme can mitigate the difficulties arising from 
the generalization capabilities. In this setting, the best 
performer in terms of accuracy is our modified ResNet50 
architecture with our MIL-based technique and the MCC 
UDA module. Specifically, compared with the same 
architecture without UDA, we gain about 9% , 5% , and 
14% in accuracy concerning the SCF, the RWF-2000, and 
the RLVS source domains, respectively. Furthermore, it 
is worth noting that, even in this case, we overcome the 
other considered state-of-the-art techniques, gaining about 
11% , 13% , and 16% of accuracy when compared against our 
baseline in [16].

Taking into account missing alarms, it’s noticeable that 
our UDA module can increase the performance compared 
with the same architecture without UDA, considering both 
the target domains. MAs are particularly critical in video 
violence detection as they signify instances of violent 
actions that occurred but went undetected. Approaches that 
struggle with this metric represent a significant limitation 

for violence detection systems; therefore, this represents 
an added value to our proposal.

Conclusion

In this research, we addressed the challenge of video vio-
lence detection within the context of limited data avail-
ability. The current state of deep learning solutions heavily 
relies on abundant labeled data for effective supervised 
learning. However, these models tend to struggle when 
applied to new, previously unseen scenarios that were not 
part of their training data. Consequently, a model trained 
on one domain, referred to as the source, often experi-
ences a significant performance decline when deployed in 
another domain, known as the target. To address this issue, 
we introduced an unsupervised domain adaptation (UDA) 
approach for identifying violent and non-violent actions 
within trimmed videos. Our method combines supervised 
learning in the source domain with the utilization of an 
unlabeled target dataset. This combination aims to reduce 
the domain shift between the two datasets. Our proposed 
solution is based on single-image classification, where 
a simple multiple instance learning (MIL) approach is 
responsible for taking frames from video clips having the 
maximum classification score. The feature representations 
extracted from the target images are passed through a UDA 
module, in charge of making them domain-indiscriminate 
by minimizing the shift between the domains. To the best 
of our knowledge, this is the first attempt to employ a UDA 

Table 2  (continued) Model Accuracy↑ F1↑ FA↓ MA↓ ROC AUC ↑

ResNet (2+1)D [21] ∗ 0.79 ± 0.02 0.78 ± 0.01 0.14 ± 0.06 0.26 ± 0.01 0.86 ± 0.03
SlowFast [34] ∗ 0.61 ± 0.01 0.71 ± 0.01 0.75 ± 0.02 0.03 ± 0.01 0.92 ± 0.01
VideoSwinTransformer [35] ∗ 0.57 ± 0.01 0.69 ± 0.01 0.84 ± 0.01 0.02 ± 0.01 0.92 ± 0.01
ResNet50 [47] [14] † ‡ 0.75 ± 0.02 0.78 ± 0.01 0.38 ± 0.09 0.10 ± 0.04 0.86 ± 0.01
VGG16 [48] [14] † ‡ 0.78 ± 0.01 0.81 ± 0.01 0.35 ± 0.01 0.07 ± 0.01 0.89 ± 0.01
ResNet50-MIL † 0.79 ± 0.05 0.76 ± 0.07 0.13 ± 0.05 0.28 ± 0.06 0.90 ± 0.03
VGG16-MIL † 0.82 ± 0.01 0.81 ± 0.01 0.13 ± 0.01 0.22 ± 0.02 0.89 ± 0.01
ResNet50 † ‡ + DANN [37] 0.75 ± 0.01 0.79 ± 0.01 0.37 ± 0.04 0.12 ± 0.02 0.87 ± 0.01
ResNet50-MIL † + DANN [37] 0.79 ± 0.04 0.77 ± 0.05 0.11 ± 0.02 0.23 ± 0.03 0.90 ± 0.02
ResNet50 † ‡ + MCC [38] 0.77 ± 0.01 0.80 ± 0.02 0.36 ± 0.02 0.11 ± 0.01 0.89 ± 0.02
ResNet50-MIL † + MCC [38] 0.80 ± 0.02 0.79 ± 0.02 0.11 ± 0.02 0.20 ± 0.02 0.90 ± 0.01
VGG16 † ‡ + DANN [37] 0.79 ± 0.02 0.82 ± 0.02 0.34 ± 0.01 0.07 ± 0.01 0.90 ± 0.02
VGG16-MIL † + DANN [37] 0.82 ± 0.01 0.82 ± 0.02 0.12 ± 0.02 0.20 ± 0.02 0.91 ± 0.02
VGG16 † ‡ + MCC [38] 0.80 ± 0.01 0.83 ± 0.02 0.32 ± 0.01 0.07 ± 0.01 0.90 ± 0.01
VGG16-MIL† + MCC  [38] 0.85 ± 0.01 0.84 ± 0.01 0.12 ± 0.02 0.17 ± 0.02 0.92 ± 0.01

Best results in terms of accuracy are marked in bold
* Pretrained on Kinetics-400 [49]. † Pretrained on ImageNet [10]. $ Input modality: frame-difference. ‡ 
Input modality: single-frame
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Table 3  Performance 
evaluation over the Bus 
Violence dataset [13]. We 
report the obtained results 
considering the Bus Violence 
benchmark as the target domain 
and three sets of clips for video 
violence detection in general 
contexts

Model Accuracy↑ F1↑ FA↓ MA↓ ROC AUC ↑

(a) Source Domain: Surveillance Camera Fight [24]
Hanson et al. [20] †$ 0.54 ± 0.02 0.19 ± 0.11 0.04 ± 0.03 0.89 ± 0.07 0.68 ± 0.02
Sudhakaran et al. [19] †$ 0.52 ± 0.01 0.27 ± 0.18 0.16 ± 0.17 0.79 ± 0.18 0.55 ± 0.02
Akti et al. [24] † 0.48 ± 0.03 0.31 ± 0.06 0.28 ± 0.07 0.73 ± 0.06 0.48 ± 0.03
Li et al. [31] ∗$ 0.58 ± 0.01 0.66 ± 0.01 0.68 ± 0.02 0.11 ± 0.01 0.71 ± 0.01
Soliman et al. [17] † 0.50 ± 0.02 0.45 ± 0.03 0.40 ± 0.01 0.59 ± 0.03 0.52 ± 0.02
ResNet (2+1)D [21] ∗ 0.52 ± 0.02 0.44 ± 0.06 0.52 ± 0.05 0.44 ± 0.07 0.54 ± 0.05
SlowFast [34] ∗ 0.55 ± 0.03 0.40 ± 0.04 0.27 ± 0.05 0.62 ± 0.05 0.62 ± 0.03
VideoSwinTransformer [35] ∗ 0.52 ± 0.01 0.65 ± 0.01 0.86 ± 0.01 0.10 ± 0.01 0.50 ± 0.01
ResNet50 [47] [14] † ‡ 0.54 ± 0.02 0.52 ± 0.06 0.44 ± 0.08 0.48 ± 0.08 0.55 ± 0.03
VGG16 [48] [14] † ‡ 0.51 ± 0.01 0.45 ± 0.07 0.39 ± 0.07 0.59 ± 0.08 0.51 ± 0.02
ResNet50-MIL † 0.55 ± 0.02 0.54 ± 0.02 0.40 ± 0.03 0.47 ± 0.03 0.60 ± 0.02
VGG16-MIL † 0.52 ± 0.01 0.46 ± 0.03 0.38 ± 0.01 0.57 ± 0.02 0.64 ± 0.01
ResNet50 † ‡ + DANN [37] 0.55 ± 0.01 0.52 ± 0.04 0.44 ± 0.03 0.47 ± 0.06 0.56 ± 0.03
ResNet50-MIL † + DANN [37] 0.57 ± 0.02 0.54 ± 0.02 0.39 ± 0.02 0.46 ± 0.04 0.61 ± 0.02
ResNet50 † ‡ + MCC [38] 0.58 ± 0.01 0.52 ± 0.03 0.45 ± 0.05 0.47 ± 0.04 0.63 ± 0.01
ResNet50-MIL† + MCC  [38] 0.60 ± 0.01 0.55 ± 0.02 0.38 ± 0.01 0.44 ± 0.01 0.68 ± 0.01
VGG16 † ‡ + DANN [37] 0.53 ± 0.01 0.51 ± 0.04 0.49 ± 0.06 0.46 ± 0.05 0.51 ± 0.01
VGG16-MIL † + DANN [37] 0.54 ± 0.02 0.51 ± 0.02 0.39 ± 0.05 0.54 ± 0.04 0.53 ± 0.02
VGG16 † ‡ + MCC [38] 0.53 ± 0.01 0.43 ± 0.01 0.28 ± 0.03 0.64 ± 0.01 0.52 ± 0.01
VGG16-MIL † + MCC [38] 0.56 ± 0.02 0.53 ± 0.02 0.37 ± 0.03 0.50 ± 0.03 0.57 ± 0.02

(b) Source Domain: RWF-2000 [28]
Hanson et al. [20] †$ 0.51 ± 0.01 0.07 ± 0.03 0.01 ± 0.01 0.96 ± 0.02 0.67 ± 0.05
Sudhakaran et al. [19] †$ 0.51 ± 0.01 0.08 ± 0.08 0.03 ± 0.03 0.95 ± 0.05 0.52 ± 0.02
Akti et al. [24] † 0.52 ± 0.02 0.53 ± 0.03 0.49 ± 0.07 0.46 ± 0.04 0.50 ± 0.02
Li et al. [31] ∗$ 0.55 ± 0.02 0.19 ± 0.02 0.01 ± 0.01 0.89 ± 0.02 0.85 ± 0.04
Soliman et al. [17] † 0.50 ± 0.02 0.02 ± 0.02 0.01 ± 0.01 0.99 ± 0.02 0.52 ± 0.03
ResNet (2+1)D [21] ∗ 0.53 ± 0.03 0.43 ± 0.05 0.29 ± 0.01 0.64 ± 0.05 0.54 ± 0.03
SlowFast [34] ∗ 0.53 ± 0.03 0.40 ± 0.08 0.26 ± 0.08 0.67 ± 0.07 0.55 ± 0.03
VideoSwinTransformer [35] ∗ 0.53 ± 0.02 0.52 ± 0.04 0.45 ± 0.04 0.49 ± 0.08 0.57 ± 0.03
ResNet50 [47] [14] † ‡ 0.54 ± 0.01 0.49 ± 0.04 0.34 ± 0.05 0.56 ± 0.06 0.58 ± 0.01
VGG16 [48] [14] † ‡ 0.54 ± 0.01 0.41 ± 0.03 0.25 ± 0.06 0.67 ± 0.04 0.54 ± 0.01
ResNet50-MIL † 0.56 ± 0.02 0.51 ± 0.04 0.32 ± 0.02 0.54 ± 0.02 0.63 ± 0.02
VGG16-MIL † 0.55 ± 0.01 0.42 ± 0.01 0.23 ± 0.01 0.65 ± 0.02 0.59 ± 0.03
ResNet50 † ‡ + DANN [37] 0.55 ± 0.01 0.52 ± 0.01 0.33 ± 0.01 0.50 ± 0.01 0.60 ± 0.01
ResNet50-MIL † + DANN [37] 0.58 ± 0.01 0.52 ± 0.02 0.30 ± 0.02 0.52 ± 0.01 0.66 ± 0.02
ResNet50 † ‡ + MCC [38] 0.56 ± 0.01 0.59 ± 0.02 0.49 ± 0.05 0.37 ± 0.05 0.62 ± 0.02
ResNet50-MIL† + MCC  [38] 0.61 ± 0.02 0.61 ± 0.01 0.47 ± 0.03 0.35 ± 0.02 0.67 ± 0.01
VGG16 † ‡ + DANN [37] 0.55 ± 0.02 0.52 ± 0.03 0.24 ± 0.02 0.65 ± 0.02 0.55 ± 0.01
VGG16-MIL † + DANN [37] 0.57 ± 0.02 0.44 ± 0.02 0.21 ± 0.02 0.62 ± 0.03 0.58 ± 0.02
VGG16 † ‡ + MCC [38] 0.55 ± 0.01 0.51 ± 0.02 0.20 ± 0.05 0.69 ± 0.06 0.55 ± 0.01
VGG16-MIL † + MCC [38] 0.60 ± 0.03 0.48 ± 0.02 0.20 ± 0.02 0.58 ± 0.02 0.62 ± 0.03

(c) Source Domain: Real-life Violence Situations [17]
Hanson et al. [20] †$ 0.58 ± 0.02 0.49 ± 0.07 0.26 ± 0.07 0.57 ± 0.08 0.61 pm 0.03
Sudhakaran et al. [19] †$ 0.52 ± 0.01 0.45 ± 0.02 0.35 ± 0.04 0.61 ± 0.04 0.55 ± 0.02
Akti et al. [24] † 0.52 ± 0.01 0.39 ± 0.01 0.27 ± 0.04 0.68 ± 0.03 0.55 ± 0.01
Li et al. [31] ∗$ 0.51 ± 0.03 0.43 ± 0.02 0.35 ± 0.05 0.62 ± 0.06 0.50 ± 0.03
Soliman et al. [17] † 0.55 ± 0.03 0.53 ± 0.03 0.43 ± 0.05 0.45 ± 0.03 0.58 ± 0.02
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framework for video violence detection. Our experiments 
used three source datasets comprising videos depicting 
violent and non-violent scenes in various general contexts. 
On the other hand, the target domains consisted of collec-
tions of clips capturing violent and non-violent actions in 
very specific environments, such as hockey matches and 
public transport. The obtained results indicate that our 
UDA scheme can enhance the generalization capabilities 
of the models considered by mitigating the domain gap.
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