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Abstract

Flocking is a paradigmatic case of self-organized collective behavior
in biology and a living example of active matter. Several models and
theories have been developed in recent years to address these kinds
of systems. However, unlike granular materials and biological sys-
tems at the microscale, experiments have been scarce until recently,
preventing the necessary comparison between theory and data. In
this review, we discuss a novel approach to flocking, in which exper-
imental data are used as a starting point to empirically characterize
flocking as a collective phenomenon—as the term is understood in
statistical and condensed matter physics—and build models directly
from the data.
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1. INTRODUCTION

Collective behavior is a fundamental concept in physics, lying at the core of phase transitions in
condensed matter. The emergence of order and the progressive onset of long-range correlations
have been deeply investigated, and sophisticated theoretical approaches, experimental proto-
cols, and numerical techniques have been developed. This methodology represents a powerful
tool of investigation to also address collective phenomena in other fields, and physicists have
become progressively interested in applying the physics framework to problems of interdis-
ciplinary origins.

Biology presents unique challenges in this respect. Collective behavior is widespread in
biological systems, occurring at several scales and levels of complexity. Cooperative dynamics
has indeed been observed in such diverse systems as bacterial colonies, swimming cells, insect
swarms, fish schools, bird flocks, and wildebeest herds, spanning an enormous range of length
scales frommicrometers (bacteria) to kilometers (mammals) (1). Inmany cases, collective behavior
ariseswithout centralized control. There is no group leader, internal compass, or external stimulus
to guide individuals toward the common pattern. Rather, coordination occurs spontaneously as
a consequence of the local interactions between individuals. The example of flocking birds is
paradigmatic: Each individual bird flies in the same direction as its neighbors, and this local
tendency to align gives rise to a coherent moving flock. This mechanism, which produces global
patterns from local rules, is known in the biological literature as self-organization (2–5) and very
much resembles ordering in condensed matter systems.

Understanding the process of group formation, from individual dynamics to collective motion,
is a key issue in biology. Animal aggregations exhibit remarkable coordination and adaptability,
and group behavior is often important in biological functions, such as foraging, mating, anti-
predation, and migration (6, 7). Individuals in a group must interact in a relatively simple way,
determined by their limited sensory and cognitive abilities. How does self-organization emerge in
a population of simple interacting individuals? What are the dynamical rules followed by indi-
viduals that lead to global coordination? Towhat extent domutual interactions regulate collective
efficiency and group function? Beyond the biological aspects of collective animal behavior, these
questions are also relevant from a control point of view: Given a network of units, be they living,
natural, or artificial, how can we design an optimal distributed control protocol?

Unfortunately, there are not yet clear answers to these questions. The intriguing aspects of
collective animal behavior have fostered an intense interdisciplinary effort in the past ten years.
Many models and theories have been developed to describe these systems. Biologists (8–15) have
focused onmore-detailedmodels, which can better pinpoint the scaling of interactions from single
to multiple individuals in small groups. Physicists, on the contrary, used a different perspective by
looking at flocking as a case of nonequilibrium long-range ordering in a system of active inter-
acting units (see 16–18 for recent reviews). They introduced minimal models in which animals
are described as self-propelled particles and studied the statistical properties and the ordering
transition in fluids of such particles (19–25). Hydrodynamic theories have also been developed
that theoretically predict the large-scale, long-time behavior of self-propelled liquids (20, 26–34).
All these models and theories greatly improved our understanding of the mechanisms that lead to
ordering and information propagation in active systems, giving rise to a whole area of research in
which activematter, both living and inanimate (e.g., granular), is treatedwithinaunified framework.
Still, several problems remain unsolved when addressing animal groups.

All models and theories are based on assumptions about the microscopic interactions between
individuals. Themain ingredients (attraction, alignment, and self-avoidance between neighboring
individuals) are reasonable but generic. Very little is known about the sensory-cognitive processes
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that regulate mutual adaptation between animals in a group. As physicists, we can argue that the
complexity of individuals is redundant, and only a few features of mutual interactions are suffi-
cient to describe the collective behavior of large aggregations. We can expect, for example, that
coarse-grained models are correct at asymptotically large scales and lengths once the essential
interaction mechanisms and conservation laws are taken into account. However, we must not
forget that flocks are finite groups of thousands of individuals, and much of the interesting col-
lective phenomena occur on timescales of a few seconds. It is not evident that the asymptotic re-
gime in which standard hydrodynamic theories are valid is relevant in this case. There can be
quantities that are conserved on the scales of the flock dynamics and that must be accounted for.
Thus, understanding what is crucial and what is not is in fact not trivial in this case and represents
a major open issue.

In this respect, experiments represent an indispensable step in testing and validating theoretical
models against data and in inferring information about the microscopic rules obeyed by indi-
viduals. Although experiments have been performed extensively on granular materials and living
systemsat themicroscale (35–38), the same is not true for natural animal groups on themove. This
is particularly so for groups moving in three dimensions, where the most stunning examples of
collective behavior, such as bird flocking, fish schooling, and insect swarming, actually occur (see
Figure 1). Performing field experiments on three-dimensional (3D) animal aggregations is in
fact a formidable task and requires technical skills that go beyond a standard background in
biology. As a consequence, empirical studies have been limited for a long time to very small groups
(few tens of individuals), restraining the possibility of a reliable statistical analysis at the collective
scale. In away,we can say that the precious and fruitful interplay between physics andbiology, and
experiments andmodeling, which has marked the biophysics revolution at the molecular scale for
the past fifty years, only recently involved behavioral biology.

In this review, we describe and summarize a novel approach to collective animal behavior and
flocking that is based on experiments and empirically groundedmodeling. Themain philosophy is
to start from experimental data and quantify the collective patterns using concepts and method-
ologies from statistical and condensed matter physics. We then gather information, directly or

a b

Figure 1

Examples of animal groups. (a) A flock of starlings. Copyright FP6-NEST 12682 STARFLAG project,
INFM-CNR. (b) A swarm of midges. Copyright ISC-CNR.
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indirectly, on the microscopic interactions using techniques of statistical inference. Finally, we
build models based on these experimental findings.

The review is organized as follows. In Section 2, we summarize the state of the art of empirical
studies on animal aggregations, with particular focus on flocking behavior and recent experiments
on large groups. In Section 3, we describe how experimental data can be used to characterize
flocking from a statistical physics point of view. In Section 4, we introduce methods of statistical
inference to build models directly from the data. Next, we examine from a more abstract per-
spective the requirements needed for a good model. In the final section, we discuss how experi-
mental findings connect with existing theories of flocking, the novel theoretical features that
emerge from the data, and the open problems that remain to be addressed at the experimental and
theoretical levels.

2. EXPERIMENTS

Collective behavior is a qualitatively different phenomenon, with emerging patterns and statis-
tically stable properties, only when the system is large. For this reason, to investigate collective
animal behavior we need empirical data on large aggregations of individuals. This poses serious
technical issues, as appropriate experimental techniques must be developed. In standard con-
densed matter, where the number of particles is very large, collective properties are usually
characterized in Fourier space by scattering experiments. The same approach cannot be easily
applied to animal groups, where group sizes are orders of magnitude smaller, and movement
occurs on the macroscale. There is only one case in which experiments in Fourier space have been
performed (39), using acoustic wave-guide remote sensing on vast, oceanic shoals of fish.
However, the technique is specific to underwater probing and can hardly be exported. For most
animal groups, experimental investigations occur in real space. Experiments adopt a Lagrangian
perspective and consist of retrieving information (positions, velocities, trajectories, etc.) about
each individual organism in the group, much as is done in PTV (particle tracking velocimetry),
where passive tracer particles are used to study turbulence in complex fluid flows (40, 41).

Collecting data of this kind on 3D animal groups is a difficult problem (7). Insects moving in
two dimensions are small and can be kept under laboratory control even in large numbers. The
same is true when working at the microscale, as with bacteria suspensions (38). However, when
dealing with animals moving in three dimensions, individuals often have larger sizes and naturally
move in a much larger environment. Laboratory control can be problematic, and techniques for
field observations may prove extremely complicated. Several empirical analyses in the past were
performed on fish because experiments could be performed in the laboratory under variable
conditions (42, 43). Obtaining data for birds is more difficult because thismust be done in the field
(44, 45, 46).

In all past experiments, the number of individuals in the group was rather small (a few tens),
and the group arrangements were often loose. The reason is essentially a technical one. To re-
construct the 3D position of an object, optical techniques (stereometry, orthogonal method,
shadow method, etc.) require putting in correspondence (matching) images of it (47). To better
understand the nature of these problems, let us consider in more detail the basic principles of
stereoscopy. The fundamental idea of stereoscopy is that by taking synchronous images of the
same object from two different positions in space, we have enough information to reconstruct its
3D coordinates, provided that we know the mutual position of the two cameras (see Figure 2a,b).
The case of flocks is, however, more complex because the system to be reconstructed is not a single
object but an ensemble of many objects: the individual birds. Given two (or more) images of the
flock taken from different points of view, every bird in one photograph must be matched with the
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corresponding bird in the second photograph. At this point, stereometric formulas can be applied
to recover from each pair of matched individuals in the photo the physical 3D coordinates of the
individual in space. This correspondence (or matching) problem becomes extremely severe when
groups are large and compact, as flying flocks are, causing photographic images to typically be very
dense sets of almost featureless points. An example is given inFigure 2c,d that shows two images of
a flock taken from different observation points. Telling which bird is which can be easily done for

d

Ω

z

uL uR

x

z

Left CCD Right CCD

a b
s = uL–uR = Ωd/z

c d e

Figure 2

Example of a stereoscopic experiment. (a) Simple scheme of a two-camera setup: z represents the distance of the object from the
observation point, V is the focal length of the lens, s is the stereoscopic shift, and d is the distance between the two cameras (51). (b)
Three-camera stereoscopic setup during real experiments on starling flocks performed by Cavagna & Giardina and their group.
Copyright ISC-CNR. (c, d) Stereoscopic images of one flock of 1,246 individuals. Cameras were 25 m apart and the flock was
approximately 80 m away from the observation points. Red boxes indicate the same birds in each one of the two images. Reprinted
from Reference 48. (e) Velocity field for the same snapshot as in c and d, as retrieved with the tracking algorithm. The red points
correspond to the 3D positions of the individual birds obtained from the processing of images c and d, and are displayed with
a similar perspective to the one of experiments. The blue points correspond to the 3Dpositions of the individual birds at the consecutive
instants of time. The arrows from red to blue points correspond to the dynamic links established by the tracking algorithm and identify
(once divided by the time interval) the individual velocities. In this example, the time resolution is 10 frames per second (fps).
Reconstruction of the full individual trajectories typically requires much larger frame rates to deal with occlusions (see Reference 49,
in which shootings at 80 and 170 fps were used).
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birds that appear isolated (e.g., on the boundary of the flock) but is impossible to dowith the naked
eye for individuals in the dense regions of the flock.

Additional problems are encountered in trajectory retrieval, in which the 3D positions of the
same individual at consecutive instants of time must be collated together in a unique sequential
path (see Figure 2e). Owing to these limitations, only small groups were analyzed until recently,
which is unfortunate in several respects. First, collective behavior is a truly emergent phenomenon
only in large aggregations. Second, the statistics for small groups are rather poor, and the surface-
to-volume ratio is very large, with many individuals on the border and very few inside. This
produces a strong bias in the statistical analysis, which does not allow pinpointing themicroscopic
origin of the observed collective behavior.

A step forward in this respect was obtained in References 48–52. In these works, the authors
performed stereoscopic photographic experiments on large starling flocks in the field and were
able to obtain the 3D reconstruction of individual coordinates, velocities, and trajectories in
groups of as many as 4,000 individuals. Interestingly, the manner in which the matching problem
was solved is another example of interdisciplinary application of physics methods. Standard
computer vision techniques address the stereo correspondence by looking for the mathematical
operator that transforms one point image into another (47). If the apparatus is perfectly calibrated
[i.e., one knows with infinite precision all the internal parameters of the cameras (focal length,
position of the image sensor, etc.) as well as the mutual distances and orientations between
different cameras], then this operator can be computed and the stereo match can be solved. In
practice, calibration is never achieved with infinite precision. Even with very good experimental
standards, the transformation operator is only roughly estimated. As a consequence, when there
are many objects to be retrieved, the transformation from image to image becomes ambiguous
because of noise, high density of points on the images, andmultiple occlusions: Typically, for every
individual on one photo, there are many possible candidates on the second photo. In this case any
naive or greedy approach fails miserably, and the stereo match must be addressed as a global
optimization problem. This is what was done in Reference 50. First, a measure was built on the
basis of a pattern-recognition principle and epipolar constraints, quantifying the likelihood of any
possible match between image points on the two photographs. Then, the matching problem
defined by this measure was solved using global assignment.

A further level of complexity arises when addressing 3D tracking, i.e., retrieving individual
trajectories in time: The above discussed stereo match intermingles with the matching problem
between temporal instances. It turns out that in this case the best performing strategy is also to
recast the full matching as a global optimization problem, in which the search space where op-
timization takes place is now the space of all possible trajectories. This can be done by building
a measure, this time between pairs of 2D trajectories, quantifying the likelihood that stereo, dy-
namical, and geometrical constraints are satisfied (53). The optimal matching is then found using
linear programming optimization methods.

3. DATA ANALYSIS

Stereoscopic experiments on flocks in the field provide detailed information on bird dynamics
during flocking. More precisely, one has access to the set of 3D positions, velocities, and trajec-
tories for all the individuals in large groups. This allows statistical characterization of the collective
properties of the group with the same approach one would adopt in a physical system of inter-
acting particles. Before describing the interesting results one can get in this way, let us make a few
methodological comments. Biologists looking at collective motion have mainly focused on ag-
gregate observables: the polarization of the group and its density and volume (everything that
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could quantify the global degree of ordering). However, we know from condensedmatter and off-
equilibrium systems thatmost of the nontrivial features that arise at collective levels are encoded in
multipoint functions and correlations, i.e., quantities that describe how a system is robust with
respect to ordering and how it reacts to perturbations. We must also keep in mind that for flocks
we do not know a priori what the microscopic interactions are. If we want to get information on
the interactions, we need to identify the observables that are most affected by them, and use these
observables to probe the interactions themselves.

3.1. Topological Interactions

The statistical analysis of experimental data can conceptually be organized in steps. First, we can
look at the structural properties of flocks, namely at how birds are positionally arranged in space.
We find that flocks are sparse homogeneous systems with very low packing fractions and trivial
gas-likepair correlation functions (49, 51, 54). Thus, standard structural quantities that dependon
mutual distances are poorly sensitive to (and informative about) the nature of interactions: Judging
from the pair correlation function, a flock would appear more or less as a gas. However, there are
other observables, dependent on angles rather than distances, that very clearly characterize a flock
as a system of interacting units. For example, given a bird, the angular distribution of its closest
neighbor is strongly anisotropic, with the neighbor being more likely located on the sides than
along the direction of motion. The degree of this anisotropy can be quantified in a sharp way (48,
55) andmeasured for first, second, and third nearest neighbors, and so on. An example is shown in
Figure 3a, where one can see that anisotropy decays upon increasing the order of the considered
neighbors. Given that this anisotropy is a direct consequence of the interactions between indi-
viduals (the neighbors’ distribution is completely uniform for a noninteracting system), it can be
used as a proxy for the interaction itself. This allows an estimate of the range of the interaction as
the point—in terms of order of the neighbor (topological range) or, alternatively, of the distance
(metric range)—beyond which the anisotropy disappears. For a given flock, the topological and
the metric range are equivalent measures of the interaction decay. Indeed, in a homogeneous
system of density r, the distance r(n) of the nth neighbor is naturally related to the order n of the
neighbor as r(n) ∼ r�1/3n1/3 (see Figure 3b). However, the two ranges behave differently when
looking at flocks of different densities because, precisely owing to this relationship, either the
topological or themetric range can remain constant but not both of them.What the data show (see
Figure 3c,d and48, 55) is that the topological range does not dependondensity,whereas themetric
one does. In other words, in a flock, individuals interact with the same number of neighbors
(approximately seven) regardless of the density the flock.

This kind of topological, density invariant interaction is completely different from all inter-
actions usually studied in physical systems, where forces depend on metric distances. On the one
hand, we must not be surprised by this: Birds are not particles, and the way they interact with one
another is based on cognitive rather thanmerely physical processes. On the other hand, given that
these interactions are not defined by natural laws but are the outcome of long evolutionary pro-
cesses, one might wonder whether the topological nature of the interaction and even the value of
the range are somehow connected to beneficial behaviors at the collective or individual level. This
is certainly a difficult question, but some aspects of it can be quantitatively investigated. For ex-
ample, numerical analysis of self-propelled particle (SPP) models with either metric or topological
interactions shows that topological models are much more robust, in terms of cohesiveness and
resilience to fragmentation, to noise and external perturbations (25, 48, 56), a feature that is
crucial for antipredatory success. This result is quite natural. A metric interaction is not robust
under perturbations simply because each time a bird is driven out of the (metric) interaction range,
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it loses contact with the flock. It effectively evaporates. This evaporation causes a gradual loss of
cohesion of the flock, which is a distinct adaptive disadvantage. Indeed, the predation success rate
of a falcon against an isolated starling is much larger than against a united flock. Although the
reasons for this are not quite clear, that is a consolidated empirical fact (1, 57–59), showing that
cohesion is a strong antipredatory advantage. A topological interaction is ideal in this respect, as
interaction contact is not established by a criterion based on distance but on the number of
interacting neighbors. Hence, even if the bird is pushed farther from the flock by the perturbation,
it is always interacting, hence reuniting swiftly to the flock after the perturbation. Understanding
why the number of interacting neighbors is on the order of seven individuals requires more care.

3.2. Why Seven Neighbors?

Experiments on starling flocks not only reveal that interactions between individuals have a to-
pological nature but also seem to point out that starlings interact with (on average) seven
neighboring birds. Why seven? There are three possible explanations.

First, this number can be a cortical bottleneck. Interactingwith neighbors implies keeping track
of several individuals at the same time during the rather complicated business that flying in a flock
undoubtedly is. Hence, it is reasonable to expect that there is a cortical limit to the number of
neighbors that an individual bird can simultaneously track. Although interacting with more
neighborswould grant amore robust cohesion of the group, birdsmust stick to the largest number
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Figure 3

Evidence of topological interactions. (a) Degree of anisotropy versus order of neighbor for two different flocks:
flock 32-06 and flock 25-11 (numbers indicate the experimental session and event; see Reference 48). The
value for a noninteracting system is 1/3. (b) Average distance rn of the n

th neighbor plotted against n1/3.
(c) Topological interaction range nc versus sparseness r1 ∼ r�1/3. The red line corresponds to the average
value of nc over all events, i.e. nc¼ 6.5. (d)Metric interaction range versus sparseness. The red line is a linear fit
of the data. Reprinted from Reference 48.

190 Cavagna � Giardina

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
4.

5:
18

3-
20

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e 

(C
N

R
) 

on
 1

1/
26

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



they canmanage from a cognitive point of view.Whether this limit is due to prenumeric abilities or
other cognitive reasons, it is hard to say (60). Moreover, although seven seems a reasonable
number for a cognitive limit (61), we are certainly far from proving that it is the correct number.

A second hypothesis is that the optimal number of interacting neighbors is the product of
a trade-off between timeliness and accuracy of the received information (5, 62). According to this
hypothesis, interacting with many neighbors is good because each bird receives the information
(e.g., falcon attacking from a given direction) quickly. However, the information coming from a
few birds is averaged together with many uninformed correlated individuals who follow their
original polarized motion, so the information will be washed out due to this social force. Con-
versely, when interacting with only a few neighbors one gets very clear information but also very
late information. The idea is that there may be a number of interacting neighbors that optimizes
this balance. As in the previous hypothesis, though, it is very hard to provide hard proof that this
trade-off is optimized by seven neighbors in three dimensions. Again, it seems reasonable, but it is
definitely not the only possibility.

The third hypothesis, recently formulated in Reference 63, argues that there is another trade-
off, that being the trade-off between the advantage of interaction (fostering cohesion and ro-
bustness) and the cost of interaction (some cortical price, as in the first hypothesis). The benefit of
this third hypothesis is that, under some simplifying assumptions, calculations can actually be
made, and hard numbers can be worked out from the experimental data. The main reason why
birds within a flock interact is to create and strengthen consensus (in the direction of travel).
Without consensus there would be no flock, just total chaos. The first idea in Reference 63 then is
to define a mathematical metric that quantifies the disagreement within the network due to
disturbances and noise. The inverse of the expected disagreement owing to each node (bird), the
nodal robustness, is large when individuals contribute a small amount of disagreement and can be
measured in the empirical data of starling flocks. The second idea is to introduce the cost of
interaction: Each bird interacts with a fixed number of neighbors (nc), but each interaction poses a
cost because a bird must do several things beyond interacting with its neighbors, such as avoid
predators, check for the position of the roost, etc. The key idea of this approach is therefore to
compute the per-neighbor contribution to robustness as a function of nc. The result is quite
startling: The relative robustness is maximal between six and seven neighbors. Considering
how this approach is different from the anisotropy approach of Section 3.1, the agreement is
quite remarkable.

3.3. Scale-Free Velocity Correlations

As a further step in the investigation of collective behavior in flocks, we can look at velocities.
Flocks are very polarized groups, with a large degree of global alignment. This can be easily
quantified by looking at the so-called polarization, an analog of the global magnetization in fer-
romagnetic systems. Given that individual speeds can vary from individual to individual, polar-
ization is usually defined in terms of the individual flight directions:

F ¼
����1N

X
i

vi
jvij

����. 1:

Polarization is larger than 0.9 in natural flocks, indicating that ordering is very strong. More
interesting are the properties of fluctuations and, in particular, their mutual correlations. Fluc-
tuations can be defined in the usual way, i.e., by subtracting from each velocity the global velocity
of the flock ui ¼ vi � V. From a biological point of view, fluctuations describe how much the
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behavior (in this case,motion) of an individual differs from the behavior of the group. Snapshots of
fluctuation fields clearly show the presence of large correlated domains (see 52). A better de-
scription is encoded in the correlation of fluctuations as a function of distance,

CðrÞ ¼
X

ij
ui × ujd

�
rij � r

�
X

ij
d
�
rij � r

� , 2:

whichmeasures howmuch a behavioral change of state of an individual in one place of the flock
influences individuals locatedatdistance r from it.We know that in thermal equilibrium physics,
correlation functions are intimately connected to response: In this respect, by looking at the
correlations’ intensity, decay, and extension, we can understand how individuals influence each
other and how the group as a whole would react to either endogenous or external perturbations.
In flocks, the correlations of the velocity fluctuations decay almost linearly from strong cor-
relation at short distances to strong anticorrelation at large ones (see Figure 4a). The zero of the
correlation therefore quantifies the extension of the correlated domains and is a faithful finite
size estimator of the correlation length j. When looking at different flocks, one finds that the
correlation length j scales very neatly with the size of the flock (Figure 4c), indicating that

0 10 20 30 40

Distance, r (m)

–1.0

–0.5

0

0.5

1.0

C
o

rr
e

la
ti

o
n

 f
u

n
ct

io
n

ξsp

Speed

0 10 20 30 40
Distance, r (m)

–1.0

–0.5

0

0.5

1.0

C
o

rr
e

la
ti

o
n

 f
u

n
ct

io
n

ξ

Orientation

0 20 40 60 80

Flock size, L (m)

10

20

30

C
o

rr
e

la
ti

o
n

 l
e

n
g

th
, ξ

 (
m

) 

Orientation

0 20 40 60 80
Flock size, L (m)

10

20

30

C
o

rr
e

la
ti

o
n

 l
e

n
g

th
, ξ

sp
 (

m
)

Speed

a b

c d

Figure 4

Statistical properties of the velocity fields. (a) Correlations of the fluctuations of the velocity orientations as
a function of distance for a single instant of a single flock. The vertical line marks the distance where the
correlation function crosses the zero axis, and identifies the correlation length j. (b) Correlation of the
speed fluctuations as a functionof distance (same flock as in panel a). The vertical linemarks the distancewhere
the correlation function crosses the zero axis, and identifies the correlation length jsp. (c) Correlation length
of orientational correlations (see panel a) versus the flock’s size for 22 flocks. (d) Correlation length for
the speed correlations (see panel b) versus flock size. Reprinted from Reference 52.
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velocity correlations obey scale-free behavior (52). In other words, there is no intrinsic length
scale other than the size of the system, and correlations extend over the whole group. We know
that this kind of behavior corresponds asymptotically to a power-law decay of the correlation,
which is modulated by finite size effects in finite groups. A scaling analysis reveals that the
exponent g of this power-law decay is in fact very close to zero in flocks:Not only do correlations
extend over the whole system, but their intensity remains strong even at large distances. In-
terestingly, the same scale-free behavior and a similar value of the decay exponent are also found
when considering the correlations of the fluctuations of the speed (see Figure 4b,d).

From a biological point of view, these findings are telling us that individuals in a flock influence
each other very effectively and are fully consistent with the common observation that flocks ex-
hibit a remarkable collective response to attacks and disturbances. From a mechanistic point of
view, they are on one hand expected and on the other rather surprising. When thinking of birds
moving together, the first intuitive analogy with physical systems is the one of magnetism: There
are individual vectorial degreesof freedom, suchas thebirds’ velocities, that tend to alignwith each
other, much as spins in a ferromagnet. In fact, mutual alignment between neighbors is a crucial
ingredient of all models of collective motion (2), and imitative allelomimetic behavior1 is
unanimously considered the main mechanism for self-organized behavior (4). Alignment is
a rotationally invariant interaction, and we know from equilibrium statistical mechanics that
when a continuous symmetry is spontaneously broken, there are residual soft modes in the
system that behave in a scale-freemanner (64). For example, this iswhat happens in theHeisenberg
model: When the system orders at low temperature, fluctuations of the order parameter that are
perpendicular to the spontaneousmagnetization (the so-calledGoldstonemodes) aremassless and
decaywith a power law in thewhole ordered phase. This is preciselywhat happens in flocks: There
is spontaneous ordering (i.e., a finite polarization) and velocity fluctuations, which are mainly
perpendicular to the global direction of motion, are scale free. In other words, the scale-free
behavior that we observe experimentally in velocity correlations is a natural consequence of the
fact that flocks are ordered and rotational invariance is broken. This argument can be generalized
by taking into account the off-equilibrium nature of flocking, namely the fact that birds do not sit
on a static lattice like spins in a ferromagnet but actually move in space. Indeed, hydrodynamic
theories (20) have demonstrated that hybridized Goldstone modes also persist in moving fluids of
self-propelled particles.

Much less expected is, however, the scale-free behavior found in speed correlations. Speed is
not related to any evident symmetry of the interactions and is not a soft degree of freedom, as
orientation is. For a flock, all directions of motion are a priori equivalent, whereas not all possible
speeds are equally achievable. Energetic and aerodynamics criteria put strong constraints on in-
dividual and collective values of speed. For this reason, scale-free speed correlations cannot be
explained in terms of symmetry arguments. Some other mechanism must be at play. Hydrody-
namic theories of flocking (20) describe a coupling between local density and local speed, and
predict long-range fluctuations between densities that would therefore imply long-range speed
correlations. Existing analyses on flocks of hundreds to thousands of individuals indicate that such
flocks are rather homogeneous in density (54). However, natural flocks have a thin and irregular
shape, and available data correspond to short (a few seconds) flocking sequences: It is possible that
larger groups and/or longer sequences are necessary to reveal the occurrence of anomalous density

1In the behavioral sciences, allelomimetic behavior indicates a range of activities in which the performance of a behavior
increases the probability of that behavior being performed by other nearby animals. The term is commonly used to
describe imitative behavior in social animals (4).
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fluctuations, as those found in SPPmodels (25, 27). There is, however, another way to explain the
scale-free behavior in the speeds.We know from condensedmatter physics that scale-free behavior
is a signature of criticality. It is possible that in this case as well, some form of critical behavior is at
play. Understanding precisely how this might occur and what the control parameters are, are
interesting open issues (65).

Another surprising feature of correlations is the value of the decay exponent, which for
flocks is very close to zero for both orientations and speed. In equilibrium magnetic systems
in three dimensions, this exponent is equal to 1 (64), and in SPP systems it has been predicted
to be even larger [g ¼ 6/5 in D ¼ 3 (27)]. In both cases, it corresponds to a sharper decay of
correlation in space. What is the origin of this behavior? A possible mechanism is discussed in
Reference 66, where it is shown that off-equilibrium perturbations acting on the boundary of
the flock can enhance fluctuationmodes of longwavelengths, producing stronger correlations.
The premise of this work is that flocks are finite groups moving in a changing environment.
This makes a difference with respect to a bulk system. Although it is reasonable that indi-
viduals inside the group only regulate their behavior because of interactions with neighbors,
the same is not true for individuals on the border who are constantly exposed to external cues
or might have border-specific behaviors. In a system with a continuous spontaneously broken
symmetry, these border dynamics affect the behavior of the whole system. Thus, the corre-
lation that we observe may be a combined effect of a bulk standard correlation and non-
equilibrium (endogenous or exogenous) processes occurring at the boundary. In Reference 66,
a simple example of this interplay is given: An idealized flock is described as a sphere of
Heisenberg spins, and the perturbations at the boundary are modeled as a field evolving on the
surface of the sphere. If the field rearranges on fast-enough timescales and is strong enough, its
effect is to pin some long-range modes, making the spatial decay of the correlation slower (see
Figure 5a,b).
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Figure 5

Boundary perturbations: a sphere of Heisenberg spins is considered under the effect of a dynamical field acting on the boundary. The
field follows a uniform random walk on the surface of the sphere, and reverses its direction on a timescale, t ¼ Ra, with R being
the radius of the sphere. (a) Correlation function computed for a ¼ 2 at various values of the field intensity: The decay is slower the
larger the field (the arrow indicates the direction of increasing field). Inset: slope of the correlation in r ¼ j as a function of field
intensity. A finite size analysis shows that g¼ 1 for h¼ 0 (equilibriumHeisenberg), whereas g ∼ 0 for h¼ 0.5. (b) Correlation function
at different values ofa(the arrow indicates the direction of increasinga). Inset: fluctuations of themagnetization as a function ofa. Reprinted
with permission from Reference 67.
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3.4. Diffusion

The analyses of positions and velocity fields are the first important characterizations of collective
properties of flocks.However, one of the preeminent features of flocking is the fact that individuals
move, not only in an absolute reference frame butwith respect to each other.When naively thinking
ofbirdsas flyingmagnets,wearedisregarding the fact that the networkonwhich these“magnets” lie
is in fact a dynamical one, continuously changing in time according to the mutual movement of
individuals. The role of movement has been greatly investigated in self-propelled particle models
and in hydrodynamic theories of flocking. In fact, in two-dimensional SPP systems, movement of
individuals is crucial to produce polarized collectivemotion. Alignment between spins on a fixed 2D
lattice is not able to sustain long-range ordering because fluctuations of the order parameter are too
strong; however, in SPP systems, convection of individuals contributes to directly transporting
information, depressing fluctuations, and stabilizing order (26). This effect is certainly less important
in three dimensions, as ordering would be present anyway, but it can change the long-time, large-
scale exponents that govern dynamical correlation functions in a nontrivial way (27).

To investigate this issue in real flocks one needs to look at trajectories, which require a much
more complex stereodynamicalmatching thandopositionsor velocities.Workon this is still ongoing
(49); however, the first analysis on trajectory reconstructions (67) shows that reciprocal motion and
mutual diffusion are in fact present in natural flocks. Birds obey super-diffusive behavior both in the
center of mass reference frame and with respect to each other, with the mean-square displacement
growing as Æ(dx)2æ ¼ Dta with an exponent a ∼ 1.7 (Figure 6a). This suggests that on long time-
scales, the convective effect described by hydrodynamic theories is indeed present. However,
the diffusion coefficient D is very small, causing a very slow rearrangement of the network. For
example, in Figure 6b it is shown that in a few seconds approximately 70% of the first eight
neighbors of a given bird remain among that bird’s first eight neighbors. If we consider that birds
have a reaction timeofmilliseconds andmove at approximately 10m/s, a few seconds is a long time
lag, during which many processes take place. For example, turns typically occur on the order of
seconds (68). Someadditionalmechanismsmightbe required to explain informationpropagationon
such timescales. Further investigation on retrieved trajectories is awaited to elucidate this issue (68).

To summarize, experimental findings discovered so far indicate that flocks are sparse liquid-
like systems in which individuals move and exchange positions, coordinating with the first
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Figure 6

Diffusion of individual birds. (a)Mean-square displacement in the center of mass reference frame as a function
of time, in logarithmic scale. The diffusion exponent is a¼ 1.776 0.02. (b) Overlap, defined as the number of
birds that remain among the first M neighbors of a given individual after a time t, as a function of time.
Reprinted from Reference 65.
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nearest neighbors with a topological density invariant interaction. Results on velocity fields
support the idea that alignment and directional adaptation are key ingredients of the inter-
actions that produce scale-free velocity correlations, as expected in systems that break the ro-
tational symmetry. However, scale-free behavior in the speed fluctuations and the surprisingly
low decay exponent of correlations indicate that flocking is also driven by microscopic mech-
anisms that are novel, nontrivial, and yet to be explained.

4. FROM DATA TO MODELS

4.1. Analysis of Small Groups

Statistical analysis of empirical data allows characterizing collective patterns and indirectly in-
vestigating the nature of interactions between individuals. One can wonder whether a more sys-
tematic way exists of exploiting experimental information to develop better models of collective
behavior. Some interesting works in which experiments on animal groups were used to test and
calibrate reference models recently addressed this issue (69–73).

Theseworks certainly represent an important step forward in the dialectics between theory and
experiment. However, they are more similar to a model-fitting approach than to a true inference
procedure in the statistical sense. For example, in Reference 70 the authors collected data on
groups of surf scoters; they then considered an SPP model with attraction/alignment/repulsion
forces and optimized the parameters of the model by minimizing the mean-squared difference
between observed and predicted pair correlation function and angular density. In Reference 72,
after an analysis of the dependence of individual accelerations on the distances, angles, and speeds
of neighbors in groups of 2–3 fish, the authors looked at larger groups (10–30 individuals) using
the force matching method (74): A model is postulated for the force acting on the individuals,
and the optimal parameters are derived by minimizing the mean-squared difference between the
observed force and the one of the model. A very similar analysis is pursued in Reference 71, in
which amodel is proposed for the dynamics of the individual fishes, and the functions appearing in
the model are fit to data using an iterative expectation-maximization algorithm.

Inmany of the above cases, very small groups of individuals are considered,with the underlying
thinking that interactions that regulate coordination between a few individuals remain the same in
larger groups. This perspective is explicitly discussed in Reference 73, with the authors using an
incremental approach: First, they proposed a model for a single fish and fit it to single-fish
experiments, then they looked at a two-fish group and fit the pair-wise interaction parameters,
afterwhich they used this calibratedmodel for predicting behavior for larger groups and compared
the modeling to the data, and so on for up to 30 fish.

Although the scalability of the interactions is in fact true in physics, this hypothesis is much less
reasonable when dealing with behavior: Common experience tells us that individuals do not be-
have the same when alone, with only a few companions, and in crowds. For this reason, if one
wants to pinpoint the essential mechanisms (i.e., the effective interactions) that determine col-
lective behavior, it is important to focus on the large groups (i.e., hundreds rather than few tens of
individuals) in which these interactions are known to be at play.

4.2. The Maximum Entropy Approach

Inferring interactions from large data sets (i.e., the inverse problem) has become a major research
field in biophysics. Novel methods based on traditional Bayesian approaches (75) as well as
statistical physics (76–86) have been pursued to make sense of the huge amount of data now
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available on regulatory processes at the molecular scale. These methods also provide useful
schemes for behavioral biology, where much less has been done.

One approach that allows the building of models directly from the data is the maximum en-
tropy (ME)approach (76). Themain philosophy of thismethod is to assume nothing a priori about
the system and only use what we know from experiments. For example, consider the case in which
we have measured a set of observables, {O(x)}, that are functions of the microscopic degrees of
freedom x of the system. We can then ask, what is the least structured measure [P(x)] that is
consistent with the experiments? P(x) can be formally computed by maximizing the entropy
(i.e., imposing minimal structure) with the constraint that the expectation values for the
observables {O} given by P match the experimental ones, i.e.,

ÆOðxÞæP ¼ Oexp. 3:

Of course, the model delivered by theMEmethod strictly depends on the observables we consider
as inputs. The more observables with which the measure must be consistent, the more detailed the
model is and themore faithful its overall predictions. In this respect, the spirit of the approach is to
proceed in steps, providing at first the minimal amount of experimental information: If the
resulting model is not adequate to describe the statistical properties of the system beyond the
consistency enforced by construction, then additional information is needed. The aim is to arrive
at a model that is both minimal and predictive (more on this in Section 5).

ME has been successfully applied to a variety of problems in which networks of interacting units
produce nontrivial collective outcomes, such as neural populations (77, 78) and genetic (83) and
protein (84) networks. What is mostly appealing for physicists is that because of its mathematical
formulation, ME recasts an inference problem (retrieving interactions from data) in what is es-
sentially a statistical physics problem. To better understand how this occurs and how we can apply
ME to investigate collective animal behavior, let us now consider explicitly the case of flocking birds.

In the previous section, we discussed one of the main experimental findings characterizing
flocking as a collective phenomenon: the presence of long-range correlations in the velocity
fluctuations. A good starting point is therefore to use the velocity correlationsCij ¼ vi × vj as input
observables for the ME approach (i.e., the observables O mentioned above) and compute the
maximum entropy distribution P

�fvig� consistent with experimental measurements of such
correlations. To simplify the problem even further, let us for the moment disregard the variability
of the speed from bird to bird and focus on flight direction only, i.e., let us indicate with vi the
normalized individual velocity. The ME principle tells us that to find P we must maximize the
entropy, enforcing a constraint on the correlations. Mathematically, this constrained maximi-
zation can be solved by introducing a generalized entropy

S
h
P,

n
Jij

oi ¼ S½P� �
X
ij

Jij
h
ÆCijæP � Cexp

ij

i
, 4:

where S½P� ¼ �
R
diPðviÞ lnPðviÞ is the Shannon entropy related to P (87, 88), and the {Jij} are

Lagrange parameters enforcing the constraints (89). The ME distribution can then be found by
maximizing the entropy of Equation 4 in the space of all possible distributions and with respect
to the parameters Jij. In this way, we get

P
�fvig� ¼ 1

Z
�n

Jij
o� exp

2
41
2

XN
ij¼1

Jijvi × vj

3
5, 5:

where Z({Jij}) is the normalization, and the {Jij} are determined by the set of coupled equations
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Ævi × vjæP ¼ Cexp
ij 6:

(85). The ME distribution of Equation 5 is easily recognizable as a Boltzmann distribution, cor-
responding to a Hamiltonian H ¼ �ð1=2ÞPij Jijvi × vj. This is a generalized Heisenberg model
describing the flock as a set of spin variables (the flight directions), which tend tomutually alignwith
interactions Jij. The set of Equations 5 and 6 allows us to infer these effective interactions, provided
that (a)weknowhow to compute the partition functionZ({Jij}) for every possible value of the Jijs and
that (b) we have reliable measurements of the correlations. In general these are not trivial problems.
On the one hand, computing pair-wise Hamiltonians on generic networks is not easy: In the case of
neural populations, for example, where one deals with Ising rather than continuous spins (77), this
must be done numerically. On the other hand, good experimental measurements of two-point
observables typically require a huge amount of independent experiments.

How can we handle these two issues for flocks? Concerning Z, we can exploit the large po-
larization of flocks and perform a low-temperature expansion of Equation 5, what is called the
spin-wave approximation inmagnets (90).We can express the individual flight directions in terms
of a longitudinal and a perpendicular component, i.e., vi ¼ vLi nþ pi, where n is the direction of
the motion of the group. Given that ordering is strong, the pis are very small, and we can
expand everything in the Hamiltonian, retaining only quadratic terms. The resulting Gaussian
theory can be solved explicitly as a function of the {Jij} (85).

The question ofmeasurements ismore subtle. Not only dowe have very few observations for the
correlation (corresponding to the number of snapshots available for a single flocking event), but on
top of that these observations correspond to different microscopic networks because the birds move
(even if notmuch) and exchangepositions. If twobirdswere close neighbors and strongly interacting
at a given time, they might not be so at a later one. Another way of saying this is that both the
correlations (Cij) and the interactions (Jij) are not stationary if defined in terms of the identities i and j
of thebirds. BecauseME looks for a stationarydistribution, this seems to be a serious problem. From
amathematical point of view, the inference Equation 6 cannot, in fact, be solved.Onewayout of this
is to get rid of bird identities: We know that interactions and correlations depend on the distances
between individuals rather than their identities. So instead of using a Jij interaction matrix, we can
parameterize itwith a distance-dependent function.The simplestway to do that is to characterize the
interaction with a scale and a range.We then consider in Equation 5 a matrix Jij, which is equal to J
if at least one of birds i and j is within the first nc neighbors of the other, and is zero otherwise.
Interestingly, this simplified distribution can be obtained directly from an ME procedure in which,
instead of using the full Cexp

ij as experimental input, we use a much simpler observable, i.e., the
average degree of correlation of an individual with its nc interacting neighbors:

Cint ¼ 1
N

X
i

1
nc

X
j2ni

c

vi × vj. 7:

Cint is a scalar, is averaged over all individuals in a flock, and, contrary to the full correlation
matrix, can be faithfully measured even in a single sample (snapshot). The ME model consistent
with it is mathematically well defined (the distribution of Equation 5with the parameterized Jij), is
very simple, and has only two unknown parameters, the scale J of the interaction and its range, nc.
To infer J, we use theME equation enforcing ÆCintæP ¼ Cint

exp (the analog of Equation 6), whereas to
retrieve nc, we use a maximum likelihood criterion and maximize the log likelihood (ln P) of the
data (75) (see Figure 7a,b).

Surprisingly, this very simple ME model with only two parameters provides excellent pre-
dictions. InFigure 7c, for example, we can see that the correlations of the fluctuations of the flight
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directions are well reproduced over all scales. This was not a priori evident because the input
experimental information used (Cint) measures correlation only at short scales (a fewmeters). The
same also holds for other multipoint correlations (85). From a statistical physics point of view this
result tells us that in a system that is regulated by short-range interactions, the fundamental
correlations are between birds/spins and their directly interacting neighbors; all more distant
correlations are derivable from these. The inference procedure allows retrieval of the effective
strength and range between individuals. Analysis of these parameters in 22 flocking events shows
that J and nc do not depend on size, indicating that there are no long-range effects. Looking at how
nc and its metric alternative definition, rc, depend on density, one finds a picture analogous to
Figure 3, confirming the topological nature of the interactions previously obtained with com-
pletely different structural investigations. The main conclusion is that flocks can be described in
terms of mutual alignment pair-wise interactions, with the interaction network being short range
and density invariant.

The application of the ME approach that we have described so far is only a first step. There are
several developments that can be considered. For example, one can look at the full velocities (flight
directions and speed) and investigate the mechanisms leading to the scale-free correlations in the
speed (65). More ambitiously, one can try to take into account the dynamical nature of the network
and look for a dynamical ME distribution instead of a static one (86). In all cases, the remarkable
featureof this approach is that it provides amathematicallywell-defined framework inwhichamodel
isbuilt from thedata according to a clear principle, entropymaximization.Experimental information
is in this sense exploited to sublimation because for any piece of experimental information the
minimal model consistent with that information is derived. As a result, if we get a model that works
well, it is clear that there areno redundancies andonly the effective necessary interactions arepresent.

5. WHAT IS A GOOD MODEL?

The maximum entropy model we presented in the previous section may seem crude to some bio-
oriented readers. Of all the beautiful complexity of a real flock of birds, only a very schematized
alignment interaction is described, and even this in a simplified way. Many ingredients have been
ignored, such as attraction and repulsion between birds, the role of the environment, the presence
of a roost, the aerodynamics of flight, and heterogeneity between individuals.
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Figure 7

Maximum entropy approach. (a) Inference of the parameter J: The predicted value of the correlation Cint (red line) is equated to the
experimental value (blue line). (b) Inference of the range nc: The log likelihood of the data Æln(P)æexp at a given instant of time is maximized
with respect tonc. Thedashed line indicates thepositionof themaximum. Inset: examples of the log likelihoodatother times. (c)Correlation
functionof the fluctuationsof the flightdirectionsaspredictedby themodel andmeasuredexperimentally. Inset: correlation lengthasa functionof
the flock size. All figures correspond to the same snapshot of the same flock. Reprinted from Reference 75.

199www.annualreviews.org � Bird Flocks as Condensed Matter

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
4.

5:
18

3-
20

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e 

(C
N

R
) 

on
 1

1/
26

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



For the physicist, however, this very simplification is in fact a bonus. The maximum entropy
model has just two parameters, and they are fixed by the sharp mathematical requirement to
maximize the entropy consistently with the experimental observations. The model is simple and
limited in its scope, so we can understand what the model does: If a prediction is experimentally
verified, we can understandwhy this happens. If there is a problem, againwe can understandwhy.

This dichotomy, in various degrees and with obvious exceptions, is common when comparing
models developed by physicists with models developed by biologists. As a paradigmatic example,
we can consider the Vicsek model of flocking (19, 22) and the very detailed model of flocking
found in Reference 15. The first model, with only two parameters, has played a crucial role in
understanding what regulates ordering in systems of active individuals. However, it would
certainly offer poor quantitative predictions for real flocks of birds. The secondmodel has twenty-
four parameters, and numerical simulations produce synthetic flocks remarkably similar to
natural ones. However, the space of the parameters is far too large to assess the role of the various
ingredients included in the model.

We might say that physicists are not interested in reproducing reality if the price is to not
understandwhat is behind it. That is often the problem of very realistic and detailedmodels. In
short, the minimal models developed by physicists attempt to provide understanding rather
than realism.

As far as this discussion goes, however, it seems that the right balance between detail and
simplification and between realism and understanding is largely a matter of taste and of scientific
background. In fact, it is not so. Within the framework of Bayesian statistics, there is a way to
formally understand towhat extent the physicist’s feeling to “keep it simple” is reasonable. This is
what we discuss in the below sections.

5.1. Model Fitting

Imagine we have collected experimental data (D) that we want to use to test a model (H). Here
we do not discuss whereH is from: It is an arbitrary model (out of common sense, a theory, etc.)
that we had in mind before collecting the data. Let us call p the set of parameters of model H.
What we need to do is to fit the model to the data, i.e., to find the particular set of parameters p�

that makes the model’s prediction the closest to the experimental dataD. To do that we can use
Bayes formula on conditional probability (79),

PðpjD,HÞ ¼ PðDjp,HÞPðpjHÞ
PðDjHÞ , 8:

where

PðDjHÞ ¼
Z
dp PðDjp,HÞPðpjHÞ. 9:

The quantity at the left-hand side of Equation 8, P(pjD,H), is called posterior probability: It is the
probability of the parametersp, given the dataD and themodelH. This is the quantity wewant to
maximize with respect to p when we do model fitting: We must find the set of parameters p� that
maximizes the posterior probability. However, the quantity at the right-hand side, P(Djp, H), is
the probability of obtaining the dataD, given the modelH and the parameters p. Once expressed
as a function of the parametersp, this quantity is known as the likelihoodL(pjD,H)[P(Djp,H).
The other key quantity in the Bayes equation is P(pjH), which is called prior probability of the
parameters, given the model. This quantity expresses a possible bias of the scientist toward one
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particular set of parameterswith respect to another prior to receiving any experimental information.
The prior probability is the dark side of the Bayesian approach (79). Finally, the denominator in
Equation8 is knownas evidence, for reasons that are clearer below.The evidence doesnot containp,
so it is not crucial during model fitting.

If we have no prior knowledge about the parameters, we can assume that the prior probability
is constant,P(pjH) ∼ 1, so that Equation 8 tells us that maximizing the posterior probability is
the same as maximizing the likelihood. This is the maximum likelihood method for model
fitting in a nutshell. However, in general, the prior probability is not a constant. In the simplest
and yet nontrivial case, the prior probability may simply take into account the fact that there
may be some unphysical values of the parameters that wewant to exclude so that P(pjH)¼ 0 in
some regions and is constant in other regions of the parameter space. For example, if the
parameter v is the velocity of a bird in a flocking model, we certainly have v> 0 and v< vmax, an
arbitrarily large velocity (that of light, for example). In this case, using the normalization
condition

R
dp PðpjHÞ ¼ 1, we obtain P(pjH) ∼ 1/v(p), where v(p) is the volume of the region

a priori acceptable in the space of parameters. Imagine we have no data andwe formulate model
H. Its parameters will have a domain of a priori reasonability. The factor v(p) is the volume of
this domain.

5.2. Model Comparison

Now imagine that we have two different models,H1 and H2, and that we have fit both models to
the same set of dataD. We want to compare the two models and answer the following question:
What model is the best one, given the data? Here, biologists and physicists typically give different
answers. The biologist answers that the best model is the one that produces the best fit of the data.
The physicist answers that the best model is the one with the lowest number of parameters,
provided that the fit is not too poor. The first answer is very clear, whereas the second one seems
quite vague.However, the secondanswer hints at somekind of trade-off, which is absent in the first
answer. Let us see how the Bayesian framework answers this question. We want to calculate the
probability of a certain model H, given the data D. The Bayes formula at the level of model
comparison reads (75)

PðHjDÞ ¼ PðDjHÞPðHÞ
PðDÞ . 10:

Notice thatP(DjH) is the evidence defined inEquation 9.To compare twomodelsweneed to know
which model has the higher probability P(HjD), given the data. If we have no preference for one
model with respect to the other (fair, unbiased comparison), then we have equal priors, P(H1) ¼
P(H2), and we obtain

PðH1jDÞ
PðH2jDÞ ¼

PðDjH1Þ
PðDjH2Þ

. 11:

We therefore see that the best model is the onewith the highest evidence, given the data. This is the
origin for why P(DjH) is called “evidence.”

Let us nowmake the very reasonable hypothesis that the likelihood P(Djp,H) in the definition
of the evidence (see Equation 9) has one single maximum, p�, in the space of the parameters and
that P(Djp,H) is different from zero only in a certain portion of the parameter space around p�,
whose volume we call v(pjD). Recalling that we can write P(pjH) ∼ 1/v(p), we can then approx-
imate the integral in Equation 9 as
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PðDjHÞ∼PðDjp�,HÞ vðpjDÞ
vðpÞ ¼ Lðp�jD,HÞ vðpjDÞ

vðpÞ . 12:

This is an important formula. The first factor at the right-hand side is the likelihood, so the formula
tells us that the model is good if the likelihood is large, and this is basically the same as saying that
the model is good if the data fit is good. This is what the biologist suggests: Choose the model with
the best data fit, i.e., with the largest likelihood. However, the second factor at the right-hand side
also matters. This term v(pjD)/v(p) is the ratio between the volume of the reasonable domain of
the parameters after having knowledge of the data and the volume of the reasonable domain of the
parameters before having knowledge of the data. Clearly, this factor is smaller than one:
The experimental data will bring new knowledge, hence restricting the possible domain of the
parameters. Let us assume that our model has more than one parameter (this is the safest
assumption of all), and let us call k the number of parameters. Then we have

vðpjDÞ
vðpÞ ¼

Yk
a¼1

vðpajDÞ
vðpaÞ . 13:

Given that for each parameter pa, the volume reduction factor is smaller than one, we finally
understand the physicist’s point: The total volume reduction factor inEquations 12 and13decreases
exponentiallywith the number of parameterskof themodel. Increasing the number of parameters,
of course, gives a better fit, i.e., a larger likelihood L(p�jD, H), but the cost of increasing k is a
drastic decrease of the volume reduction factor v(pjD)/v(p). If we assume that the volume re-
duction is the same for all parameters, and we define r [ jlog(v(pjD)/v(p))j > 0, we can write
a simplified but very illuminating expression for the evidence of a model,

PðDjHÞ∼Lðp�jD,HÞe�kr. 14:

This is the crucial trade-off in model fitting: The improvement in the fit due to adding one extra
parameter to our model has to be significant to balance the sharp exponential decrease of the
volume reduction factor. This is the Bayesian meaning of the physicist’s answer. A highly detailed
model with many parameters can give an excellent fit of the data, and yet the probability of this
model being correct can bemuch smaller than the one of a simplifiedmodel with fewer parameters
providing a very crude fit. The volume reduction factor vðpjDÞ=vðpÞ∼ e�kr is sometimes called
Occam’s factor (75).We believe it is a good name: An exponential razor is definitely sharp enough.

5.3. Predictive Power versus Understanding

This dialectic between highly detailed versus ultrasimplified models is a very typical trait of the
somewhat complicated relationship between biology and physics. In our opinion, the core of the
problem is that there is a sort of trade-off between predictive power and understanding. Let us
make an example. Imagine that Harpo (a physicist) is severely ill and needs a life-saving drug. If he
does not take the drug, he dies. However, the drug is nasty (as are all powerful drugs), so if he takes
too much, he also dies. Harpo has to choose a model to make a simulation of his health condition
to decide howmuchdrug he should take. In this case, despite being a physicist,Harpo does not give
a damn about understanding, but he is very concerned with prediction. Hence, he does not want
the smart simple model that makes it clear why the drugworks but rather themost detailedmodel,
with a surplus of parameters. Because what Harpo really wants is to stay alive and to do that he
needs a good fit for his health condition. In his particular condition, he does not care aboutwhy the
drug works; he only wants to make it work right here, right now. A wrong model that gives an
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excellent fit is great for Harpo. Basically, Harpo wants a simulation so detailed and realistic as to
be just as good as another Harpo, which he can then use as a virtual guinea pig.

However, this trade-off between prediction and understanding only holds up to a point, as in
the long runbetter understanding also brings better predictive power. Understanding needs a small
and simplified arena to be developed and consolidated. In such a simplified arena, of course,
prediction is typically quite poor. This fact, which is regularly criticized by somebiologists, is really
obvious: A simplified arena is not established for providing a detailed prediction but rather to
develop a clear idea about the essential mechanisms that cause a certain phenomenon. Attacking
the crude nature of this simplified arena is as good as criticizing a child’s tricycle as an unsuitable
means of transportation in city traffic. The tricycle is neither a real bike nor a real toy. It is
a precious training tool. Once the understanding developed within the simplified arena is tested
and consolidated, one can insert it into amore structured and detailedmodelwhose predictionwill
be significantly better than the old one. The point is that a wrong model can make a reasonable
prediction, or even quite a good one, but it cannot compete with an equally realistic model that is
right. However, to reach the understanding necessary to develop the right model, crude and
sometimes extreme simplifications are first needed.

6. CONCLUSIONS

To conclude this longmarathon on flocking, let’s summarize the understanding gathered so far on
natural flocks and discuss how it connects to existing research in active matter. When looking at
flocks as condensed matter systems, there are two main paradigms that come to mind: the
paradigm of liquids and particles interacting with attraction-repulsion potentials and the para-
digm of ferromagnetism, in which vectorial degrees of freedom (spins) try to align with neighbors.
These two paradigms are in fact beautifully integrated in the modeling approaches that have been
developed in the past ten years to treat active matter systems. In self-propelled particle models,
particles move in space while obeying dynamical equations that update the individual velocity
according to an alignment forcewith neighbors and to attraction-repulsion forces. Hydrodynamic
theories that look at the large-scale, long-time properties of flocking fluids describe the hybrid-
ization of these two aspects through mixed modes that couple density and orientational fluc-
tuations, resulting in new propagation laws and correlation exponents.

These two paradigms have also proven extremely helpful when looking at data from real
flocks. As briefly illustrated in this review, the concepts and the methodology used to characterize
flocks directly come from the analogy with physical systems. Structure in space was investigated
using generalizations of the structural observables used in liquids, whereas properties of the ve-
locity fields were addressed using fluctuation correlations and scaling arguments. From this
perspective, the ME approach provides a clear and rigorous way to bridge the gap between real
experimental data and statistical physics models of the kindwe have inmindwhenwe think about
flocks. The findings and the understanding that this approach brought us in part confirm our
intuitions and are consistent with theoretical results in the active matter literature and in part
reveal novel features that demand further investigation.

Flocks of birds can be seen as very sparse liquid-like systems in which particles/birds move and
diffuse, there is almost no structure in absolute distances beyond a neat hard-core repulsion, and
strong angular anisotropies are present. Mutual alignment with neighbors is certainly a crucial
ingredient driving coordination between the individuals and is able to account for some of the
statistical properties of the velocity fields.

One of the first and most surprising results coming from data analysis is that the interaction
between individuals in a flock is topological, i.e., density invariant. As we discussed, this kind of
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interaction grants more robustness in cohesion and is therefore biologically more efficient than
ametric one. Topological interactions were not fully addressed inmodels of flocking prior to these
findings. In fact, some models had topological ingredients (for example, see 22), but the role of
invariance with respect to density was neither realized nor investigated. Interestingly, the results
of Reference 48 triggered a novel interest in this problem. SPP models of particles interacting in
a purely topological way were studied numerically (25), revealing how the topological nature of
the interaction suppresses the coupling between local density and local order present in standard
metric SPPmodels andmaking the order-disorder transition continuous rather than discontinuous
(see Figure 8a,b). Continuous theories were also derived with a kinetic approach (91), confirming
numerical results and showing that the structure of the hydrodynamic equations for the ordered
phase is the same as that found in Reference 26.

When comparing results from real flocks with the predictions of the hydrodynamic theory (27,
31), one finds some qualitative agreements and several differences. For example, when looking at
diffusion of individuals in the flock, one finds that birdsmove superdiffusively and anisotropically,
as predicted in Reference 27, but with a different diffusion exponent. The velocity correlation
functions decay with a power law but with an exponent that is significantly smaller than the one
predicted in Reference 27. There are several possible origins for these discrepancies. First, hy-
drodynamic theories have been originally formulated for fluids of active particles, whereas real
flocks are finite, with sharply defined borders. In other words, a flock is more like a drop of fluid
than a bulk fluid (as first discussed in Reference 22). We have argued that the coming of in-
formation through the boundary can explain the small value of the decay exponent of the cor-
relations. Therefore, the most appropriate comparison of experimental results would in fact be
with a hydrodynamic theory of active drops. Some recent progress in this respect has been achieved
in a Stokesian context in Reference 92, where drops of active gel are studied numerically, and in
Reference 93, where a theory for drops of apolar active fluid is presented. Another point to be
considered is that in real flocks, rearrangements of individuals are very slow; as a consequence, the
scales over which hydrodynamic effects become truly visible might be beyond the ones present in
current experiments. Finally, recent results on turns (68) suggest that for birds there are conservation
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Figure 8

Two-dimensionalVicsekmodel of self-propelled particleswith topological interactions. (a) Binder cumulantG
versus noise intensity h for different system sizes (colors): The dip of the cumulant increases with system
size, indicating that the transition is continuous. The arrow indicates the directionof increasing sizeL. (b) Local
order parameter fl (average polarization in a box of size l ¼ 16) versus local density rl. In the metric
original version of the model, these two quantities are coupled, whereas polarization does not depend on
density in the topological case. Reprinted with permission from Reference 25.
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laws, which are not considered in existing hydrodynamic theories and are crucial to quantitatively
describing transport of information in flocks. Adding these novel ingredients opens new stimulating
possibilities for theoretical developments in active matter.
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