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Preface

This volume contains the papers presented at the 23rd Symposium on Formal Methods
(FM 2019), held in Porto, Portugal, in the form of the Third World Congress on Formal
Methods, during October 7–11, 2019. These proceedings also contain five papers
selected by the Program Committee (PC) of the Industry Day (I-Day).

FM 2019 was organized under the auspices of Formal Methods Europe (FME), an
independent association whose aim is to stimulate the use of, and research on, formal
methods for software development. It has been more than 30 years since the first VDM
symposium in 1987 brought together researchers with the common goal of creating
methods to produce high-quality software based on rigor and reason. Since then the
diversity and complexity of computer technology has changed enormously and the
formal methods community has stepped up to the challenges those changes brought by
adapting, generalizing, and improving the models and analysis techniques that were the
focus of that first symposium. The theme for FM 2019, “The Next 30 Years,” was a
reflection on how far the community has come and the lessons we can learn for
understanding and developing the best software for future technologies.

To reflect the fact that it has been 20 years since FM 1999 in Toulouse and 10 years
since FM 2009 in Eindhoven, FM 2019 was organized as a World Congress, and we
composed a PC of renowned scientists from 42 different countries spread across all
continents except for Antarctica. We originally received a stunning total of 185 abstract
submissions, which unfortunately resulted in ‘only’ 129 paper submissions from 36
different countries. Each submission went through a rigorous review process in which
95% of the papers were reviewed by four PC members. Following an in-depth dis-
cussion phase lasting two weeks, we selected 37 full papers and 2 short tool papers, an
acceptance rate of 30%, for presentation during the symposium and inclusion in these
proceedings. The symposium featured keynotes by Shriram Krishnamurthi (Brown
University, USA), Erik Poll (Radboud University, The Netherlands), and June
Andronick (CSIRO-Data61 and UNSW, Australia). We hereby thank these invited
speakers for having accepted our invitation. The program also featured a Lucas Award
and FME Fellowship Award Ceremony.

We are grateful to all involved in FM 2019. In particular the PC members and
subreviewers for their accurate and timely reviewing, all authors for their submissions,
and all attendees of the symposium for their participation. We also thank all the other
committees (I-Day, Doctoral Symposium, Journal First Track, Workshops, and
Tutorials), itemized on the following pages, and particularly the excellent local orga-
nization and publicity teams. In addition to FM 2019 they also managed the FM week
consisting of another 8 conferences, 17 workshops, and 7 tutorials, as well as ‘X’, the
secret project of a colloquium in honor of Stefania Gnesi based on a Festschrift to
celebrate her 65th birthday.

We are very grateful to our platinum sponsors: Amazon Web Services (AWS),
Google, and Sony; our gold sponsors: Springer, Semmle, ASML, and PT-FLAD Chair



in Smart Cities & Smart Governance; our silver sponsors: Oracle Labs, Runtime
Verification Inc., Standard Chartered, GMV, United Technologies Research Center
(UTRC), and Efacec; our bronze sponsors i2S, Foundations of Perspicuous Software
Systems Collaborative Research Center, and the Mathematical research center of the
University of Porto (CMUP); and our basic sponsors: Natixis and Neadvance.

Finally, we thank Springer for publishing these proceedings in their FM subline and
we acknowledge the support from EasyChair in assisting us in managing the complete
process from submissions to these proceedings to the program.

August 2019 Maurice H. ter Beek
Annabelle McIver
José N. Oliveira
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Formal Methods for Security Functionality
and for Secure Functionality

(Invited Presentation)

Erik Poll

Digital Security group, Radboud University Nijmegen, The Netherlands
erikpoll@cs.ru.nl

With cyber security becoming a growing concern, it has naturally attracted the attention
of researchers in formal methods. One recent success story here is TLS: the devel-
opment of the new TLS 1.3 specification has gone hand-in-hand with efforts to verify
security properties of formal models [5] and the development of a fully verified
implementation [3]. Earlier well-known success stories in using formal methods for
security are the verifications of operating system kernels or hypervisors, namely seL4
[7] and Microsoft’s Hyper-V [10].

These examples – security protocols and OS kernels – are applications whose
primary purpose is to provide security. It is natural to apply formal methods to such
systems: they are by their very nature security-critical and they provide some security
functionality that we can try to specify and verify.

However, we want all our systems to be secure, not just these security systems.
There is an important difference between secure functionality and security function-
ality, or – given that most functionality and most security problems are down to
software – between software security and security software [11]. Many, if not most,
security problems arise in systems that have no specific security objective, say PDF
viewers or video players, but which can still be hacked to provide attackers with
unwanted functionality they can abuse.

Using formal methods to prove security is probably not on the cards of something
as complex as a PDF viewer or video player. Just defining what it would mean for such
a system to be secure is probably already infeasible. Still, formal methods can be
useful, to prove the absence of certain types of security flaws or simply find security
flaws. Successes here have been in the use of static analysis in source code analysers,
e.g. tools like Fortify SCA that look for flaws in web applications and tools like
Coverity that look for memory vulnerabilities in C(++) code. Another successful
application of formal methods is the use of symbolic (or concolic) execution to generate
test cases for security testing, as in SAGE [6] or, going one step further, not just
automatically finding flaws but also automatically generating exploits, as in angr [16].

Downside of these approaches is that they are post-hoc and can only look for flaws
in existing code. The LangSec paradigm [4, 9], on the other hand, provides ideas on
how to prevent many security problems by construction. Key insights are that most
security flaws occur in input handling and that there are several root causes in play
here. Firstly, the input languages involved (e.g. file formats and network protocols) are
complex, very expressive, and poorly, informally, specified. Secondly, there are many



of these input languages, sometimes nested or stacked. Finally, parsers for these lan-
guages are typically hand-written, with parsing code scattered throughout the appli-
cation code in so-called shotgun parsers [12]. With clearer, formal specifications of
input languages and generated parser code much security misery could be avoided.
(Recent initiatives in tools for parser generation here include Hammer [1] and Nail [2].)
Given that formal languages and parser generation are some of the most basic and
established formal methods around, it is a bit of an embarrassment to us as formal
methods community that sloppy language specifications and hand-coded parsers should
cause so many security problems.

Some security flaws in input handling are not so much caused by buggy parsing of
inputs, but rather by the unexpected parsing of input [13]. Classic examples of this are
command injection, SQL injection, and Cross-Site Scripting (XSS). Tell-tale sign that
unwanted parsing of input may be happening in unexpected places is the heavy use of
strings as data types [14].

Information or data flow analysis can be used to detect such flaws; indeed, this is a
standard technique used in the source code analysis tools mentioned above. These
flaws can also be prevented by construction, namely by using type systems. A recent
example of this is the ‘Trusted Types’ browser API [8] by Google, where different
types are used to track different kinds of data and different trust level of data to prevent
XSS vulnerabilities, esp. the DOM-based XSS vulnerabilities that have proved so
difficult to root out.

To conclude, formal methods cannot only be used to prove security of
security-critical applications and components – i.e. the security software –, but they can
be much more widely used to improve security by ruling out of the root causes behind
security flaws in input handling, and do so by construction, and hence improve soft-
ware security in general. Moreover, some very basic and lightweight formal methods
can be used for this: methods that we teach – or should be teaching – our students in the
first years of their Bachelor degree, such as regular expressions, finite state machines,
grammars, and types. Indeed, in my own research I have been surprised to see how
useful the simple notion of finite state machine for describing input sequences is to
discover security flaws [15].

That we have not been able to get these basic techniques into common use does not
say much for our success in transferring formal methods to software engineering
practice. Still, looking at the bright side, it does suggest opportunities for improvement.
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