
Maurice H. ter Beek
Annabelle McIver
José N. Oliveira (Eds.)

Third World Congress, FM 2019
Porto, Portugal, October 7–11, 2019
Proceedings

Formal Methods –
The Next 30 YearsLN

CS
 1

18
00

Fo
rm

al
 M

et
ho

ds

 123

Lecture Notes in Computer Science 11800
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK
Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany
Annabelle McIver, Macquarie University, Sydney, NSW, Australia
Peter Müller, ETH Zurich, Switzerland
Erik de Vink, Eindhoven University of Technology, The Netherlands
Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Maurice H. ter Beek • Annabelle McIver •

José N. Oliveira (Eds.)

Formal Methods –
The Next 30 Years
Third World Congress, FM 2019
Porto, Portugal, October 7–11, 2019
Proceedings

123

Editors
Maurice H. ter Beek
Consiglio Nazionale delle Ricerche
Pisa, Italy

Annabelle McIver
Macquarie University
Sydney, NSW, Australia

José N. Oliveira
University of Minho
Braga, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-30941-1 ISBN 978-3-030-30942-8 (eBook)
https://doi.org/10.1007/978-3-030-30942-8

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2930-6367
https://orcid.org/0000-0002-2405-9838
https://orcid.org/0000-0002-0196-4229
https://doi.org/10.1007/978-3-030-30942-8

Preface

This volume contains the papers presented at the 23rd Symposium on Formal Methods
(FM 2019), held in Porto, Portugal, in the form of the Third World Congress on Formal
Methods, during October 7–11, 2019. These proceedings also contain five papers
selected by the Program Committee (PC) of the Industry Day (I-Day).

FM 2019 was organized under the auspices of Formal Methods Europe (FME), an
independent association whose aim is to stimulate the use of, and research on, formal
methods for software development. It has been more than 30 years since the first VDM
symposium in 1987 brought together researchers with the common goal of creating
methods to produce high-quality software based on rigor and reason. Since then the
diversity and complexity of computer technology has changed enormously and the
formal methods community has stepped up to the challenges those changes brought by
adapting, generalizing, and improving the models and analysis techniques that were the
focus of that first symposium. The theme for FM 2019, “The Next 30 Years,” was a
reflection on how far the community has come and the lessons we can learn for
understanding and developing the best software for future technologies.

To reflect the fact that it has been 20 years since FM 1999 in Toulouse and 10 years
since FM 2009 in Eindhoven, FM 2019 was organized as a World Congress, and we
composed a PC of renowned scientists from 42 different countries spread across all
continents except for Antarctica. We originally received a stunning total of 185 abstract
submissions, which unfortunately resulted in ‘only’ 129 paper submissions from 36
different countries. Each submission went through a rigorous review process in which
95% of the papers were reviewed by four PC members. Following an in-depth dis-
cussion phase lasting two weeks, we selected 37 full papers and 2 short tool papers, an
acceptance rate of 30%, for presentation during the symposium and inclusion in these
proceedings. The symposium featured keynotes by Shriram Krishnamurthi (Brown
University, USA), Erik Poll (Radboud University, The Netherlands), and June
Andronick (CSIRO-Data61 and UNSW, Australia). We hereby thank these invited
speakers for having accepted our invitation. The program also featured a Lucas Award
and FME Fellowship Award Ceremony.

We are grateful to all involved in FM 2019. In particular the PC members and
subreviewers for their accurate and timely reviewing, all authors for their submissions,
and all attendees of the symposium for their participation. We also thank all the other
committees (I-Day, Doctoral Symposium, Journal First Track, Workshops, and
Tutorials), itemized on the following pages, and particularly the excellent local orga-
nization and publicity teams. In addition to FM 2019 they also managed the FM week
consisting of another 8 conferences, 17 workshops, and 7 tutorials, as well as ‘X’, the
secret project of a colloquium in honor of Stefania Gnesi based on a Festschrift to
celebrate her 65th birthday.

We are very grateful to our platinum sponsors: Amazon Web Services (AWS),
Google, and Sony; our gold sponsors: Springer, Semmle, ASML, and PT-FLAD Chair

in Smart Cities & Smart Governance; our silver sponsors: Oracle Labs, Runtime
Verification Inc., Standard Chartered, GMV, United Technologies Research Center
(UTRC), and Efacec; our bronze sponsors i2S, Foundations of Perspicuous Software
Systems Collaborative Research Center, and the Mathematical research center of the
University of Porto (CMUP); and our basic sponsors: Natixis and Neadvance.

Finally, we thank Springer for publishing these proceedings in their FM subline and
we acknowledge the support from EasyChair in assisting us in managing the complete
process from submissions to these proceedings to the program.

August 2019 Maurice H. ter Beek
Annabelle McIver
José N. Oliveira

vi Preface

Organization

General Chair

José N. Oliveira University of Minho and INESC TEC, Portugal

FM Program Chairs

Maurice H. ter Beek ISTI–CNR, Italy
Annabelle McIver Macquarie University, Australia

Industry Day Chairs

Joe Kiniry Galois Inc., USA
Thierry Lecomte ClearSy, France

Doctoral Symposium Chairs

Alexandra Silva University College London, UK
Antó nia Lopes University of Lisbon, Portugal

Journal First Track Chair

Augusto Sampaio Federal University of Pernambuco, Brazil

Workshop and Tutorial Chairs

Emil Sekerinski McMaster University, Canada
Nelma Moreira University of Porto, Portugal

FM Program Committee

Bernhard Aichernig TU Graz, Austria
Elvira Albert Complutense University of Madrid, Spain
María Alpuente Polytechnic University of Valencia, Spain
Dalal Alrajeh Imperial College, UK
Mário S. Alvim Federal University of Minas Gerais, Brazil
June Andronick CSIRO-Data61, Australia
Christel Baier TU Dresden, Germany
Luís Barbosa University of Minho and UN University, Portugal
Gilles Barthe IMDEA Software Institute, Spain
Marcello Bersani Polytechnic University of Milan, Italy
Gustavo Betarte Tilsor SA and University of the Republic, Uruguay

Nikolaj Bjørner Microsoft Research, USA
Frank de Boer CWI, The Netherlands
Sergiy Bogomolov Australian National University, Australia
Julien Brunel ONERA, France
Néstor Catañ o Universidad del Norte, Colombia
Ana Cavalcanti University of York, UK
Antonio Cerone Nazarbayev University, Kazakhstan
Marsha Chechik University of Toronto, Canada
David Chemouil ONERA, France
Alessandro Cimatti FBK–IRST, Italy
Alcino Cunha University of Minho and INESC TEC, Portugal
Michael Dierkes Rockwell Collins, France
Alessandro Fantechi University of Florence, Italy
Carla Ferreira New University of Lisbon, Portugal
João Ferreira Teesside University, UK
José L. Fiadeiro Royal Holloway University of London, UK
Marcelo Frias Buenos Aires Institute of Technology, Argentina
Fatemeh Ghassemi University of Tehran, Iran
Silvia Ghilezan University of Novi Sad, Serbia
Stefania Gnesi ISTI–CNR, Italy
Reiner Hähnle TU Darmstadt, Germany
Osman Hasan University of Sciences and Technology, Pakistan
Klaus Havelund NASA Jet Propulsion Laboratory, USA
Anne Haxthausen TU Denmark, Denmark
Ian Hayes University of Queensland, Australia
Constance Heitmeyer Naval Research Laboratory, USA
Jane Hillston University of Edinburgh, UK
Thai Son Hoang University of Southampton, UK
Zhenjiang Hu National Institute of Informatics, Japan
Dang Van Hung Vietnam National University, Vietnam
Atsushi Igarashi Kyoto University, Japan
Suman Jana Columbia University, USA
Ali Jaoua Qatar University, Qatar
Einar Broch Johnsen University of Oslo, Norway
Joost-Pieter Katoen RWTH Aachen University, Germany
Laura Kovács TU Vienna, Austria
Axel Legay UCLouvain, Belgium
Gabriele Lenzini University of Luxembourg, Luxembourg
Yang Liu Nanyang Technical University, Singapore
Alberto Lluch Lafuente TU Denmark, Denmark
Malte Lochau TU Darmstadt, Germany
Michele Loreti University of Camerino, Italy
Anastasia Mavridou NASA Ames, USA
Hernán Melgratti University of Buenos Aires, Argentina
Sun Meng Peking University, China
Dominique Méry LORIA and University of Lorraine, France

viii Organization

Rosemary Monahan Maynooth University, Ireland
Olfa Mosbahi University of Carthage, Tunisia
Mohammad Mousavi University of Leicester, UK
César Muñ oz NASA Langley, USA
Tim Nelson Brown University, USA
Gethin Norman University of Glasgow, UK
Colin O’Halloran D-RisQ Software Systems, UK
Federico Olmedo University of Chile, Chile
Gordon Pace University of Malta, Malta
Jan Peleska University of Bremen, Germany
Marielle Petit-Doche Systerel, France
Alexandre Petrenko Computer Research Institute of Montréal, Canada
Anna Philippou University of Cyprus, Cyprus
Jorge Sousa Pinto University of Minho and INESC TEC, Portugal
André Platzer Carnegie Mellon University, USA
Jaco van de Pol Aarhus University, Denmark
Tahiry Rabehaja Macquarie University, Australia
Steve Reeves University of Waikato, New Zealand
Matteo Rossi Polytechnic University of Milan, Italy
Augusto Sampaio Federal University of Pernambuco, Brazil
Gerardo Schneider Chalmers University of Gothenburg, Sweden
Daniel Schwartz Narbonne Amazon Web Services, USA
Natasha Sharygina University of Lugano, Switzerland
Nikolay Shilov Innopolis University, Russia
Ana Sokolova University of Salzburg, Austria
Marielle Stoelinga University of Twente, The Netherlands
Jun Sun University of Technology and Design, Singapore
Helen Treharne University of Surrey, UK
Elena Troubitsyna Äbo Akademi University, Finland
Tarmo Uustalu Reykjavik University, Iceland
Andrea Vandin TU Denmark, Denmark
R. Venkatesh TCS Research, India
Erik de Vink TU Eindhoven and CWI, The Netherlands
Willem Visser Stellenbosch University, South Africa
Farn Wang National Taiwan University, Taiwan
Bruce Watson Stellenbosch University, South Africa
Tim Willemse TU Eindhoven, The Netherlands
Kirsten Winter University of Queensland, Australia
Jim Woodcock University of York, UK
Lijun Zhang Chinese Academy of Sciences, China

Organization ix

Additional Reviewers

Rui Abreu
Arthur Américo
Hugo Araujo
Myla Archer
Sepideh Asadi
Florent Avellaneda
Eduard Baranov
Davide Basile
Cláudio Belo Lourenço
Philipp Berger
František Blahoudek
Martin Blicha
Jean-Paul Bodeveix
Brandon Bohrer
Ioana Boureanu
Laura Bozzelli
Daniel Britten
James Brotherston
Richard Bubel
Doina Bucur
Juan Diego Campo
Laura Carnevali
Gustavo Carvalho
Davide Cavezza
Xiaohong Chen
Yu-Ting Chen
Robert Colvin
Jesú s Correas Fernández
Silvano Dal Zilio
Carlos Diego Damasceno
Quoc Huy Do
Sebastian Ehmes
Santiago Escobar
Marco Faella
Paul Fiterau Brostean
Simon Foster
Maria João Frade
Maciej Gazda
Lorenzo Gheri
Eduardo Giménez
Pablo Gordillo

Gloria Gori
Friedrich Gretz
Jerry den Hartog
Raju Halder
Hossein Hojjat
Karel Horak
Zhe Hou
Thomas Hujsa
Andreas Humenberger
Antti Hyvarinen
Peter Häfner
Fabian Immler
Miguel Isabel
Shaista Jabeen
Phillip James
Seema Jehan
Saul Johnson
Violet Ka I Pun
Eduard Kamburjan
Minh-Thang Khuu
Sascha Klü ppelholz
Dimitrios Kouzapas
Robbert Krebbers
Shrawan Kumar
Luca Laurenti
Maurice Laveaux
Corey Lewis
Jianlin Li
Yi Li
Yong Li
Ai Liu
Wanwei Liu
Martin Lukac
Carlos Luna
Lars Luthmann
Joshua Moerman
Hendrik Maarand
Kumar Madhukar
Shahar Maoz
Matteo Marescotti
Bojan Marinkovic

Paolo Masci
Mieke Massink
Franco Mazzanti
Larissa Meinicke
Alexandra Mendes
Stephan Merz
Ravindra Metta
Andrea Micheli
Stefan Mitsch
Alvaro Miyazawa
Carroll Morgan
Mariano Moscato
Toby Murray
David Mü ller
Koji Nakazawa
Pham Ngoc Hung
Omer Nguena-Timo
Hans de Nivelle
Quentin Peyras
Paul Piho
Danny Bøgsted Poulsen
James Power
Tim Quatmann
Jean-Baptiste Raclet
Markus Roggenbach
Guillermo Román-Díez
Jurriaan Rot
Albert Rubio
Enno Ruijters
Sebastian Ruland
David Sanan
Julia Sapiñ a
Andy Schü rr
Ramy Shahin
Neeraj Singh
Andrew Sogokon
B. Srivathsan
Dominic Steinhö fel
Ivan Stojic
Sandro Stucki
Martin Tappler

x Organization

Laura Titolo
Andrea Turrini
Ben Tyler
Evangelia Vanezi
Alicia Villanueva

Inna Vistbakka
Matthias Volk
Jingyi Wang
Shuling Wang
Markus Weckesser

Stephan Wesemeyer
Pengfei Yang
Haodong Yao

I-Day Program Committee

M. Antony Aiello AdaCore, USA
Flemming Andersen Galois Inc., USA
Stylianos Basagianni United Technologies Research Centre, Ireland
Roderick Chapman Protean Code Limited, UK
David Cok GrammaTech, USA
Alessandro Fantechi University of Florence, Italy
Chris Hawblitzel Microsoft, USA
Peter Gorm Larsen Aarhus University, Denmark
Michael Leuschel University of Dü sseldorf, Germany
Yannick Moy AdaCore, France
Jan Peleska Verified Systems International GmbH, Germany
Etienne Prun ClearSy, France
Kenji Taguchi CAV Technologies Co., Ltd., Japan
Stefano Tonetta FBK–IRST, Italy
Daniel Zimmerman Galois Inc., USA

DS Program Committee

Ana Cavalcanti University of York, UK
André Platzer Carnegie Mellon University, USA
Alessandro Fantechi University of Florence, Italy
Carlo A. Furia USI, Switzerland
Dalal Alrajeh Imperial College, UK
Einar Broch Johnson University of Oslo, Norway
Elvira Albert Complutense University of Madrid, Spain
Jaco van de Pol Aarhus University, Denmark
Matteo Rossi Polytechnic University of Milan, Italy
Stefania Gnesi ISTI-CNR, Italy
Stephan Merz Inria, France

JFT Program Committee

Cliff Jones University of Newcastle, UK
Manfred Broy TU Munich, Germany

Organization xi

Organizing Committee

Luís Soares Barbosa University of Minho and INESC TEC, Portugal
José Creissac Campos University of Minho and INESC TEC, Portugal
João Pascoal Faria University of Porto and INESC TEC, Portugal
Sara Fernandes University of Minho and INESC TEC, Portugal
Luís Neves Critical Software, Portugal
Ana Paiva University of Porto and INESC TEC, Portugal

Local Organizers

Catarina Fernandes University of Minho and INESC TEC, Portugal
Paula Rodrigues INESC TEC, Portugal
Ana Rita Costa INESC TEC, Portugal

Web Team

Francisco Neves University of Minho and INESC TEC, Portugal
Rogério Pontes University of Minho and INESC TEC, Portugal
Paula Rodrigues INESC TEC, Portugal

FME Board

Ana Cavalcanti University of York, UK
Lars-Henrik Eriksson Uppsala University, Sweden
Stefania Gnesi ISTI–CNR, Italy
Einar Broch Johnsen University of Oslo, Norway
Nico Plat Thanos, The Netherlands

xii Organization

Formal Methods for Security Functionality
and for Secure Functionality

(Invited Presentation)

Erik Poll

Digital Security group, Radboud University Nijmegen, The Netherlands
erikpoll@cs.ru.nl

With cyber security becoming a growing concern, it has naturally attracted the attention
of researchers in formal methods. One recent success story here is TLS: the devel-
opment of the new TLS 1.3 specification has gone hand-in-hand with efforts to verify
security properties of formal models [5] and the development of a fully verified
implementation [3]. Earlier well-known success stories in using formal methods for
security are the verifications of operating system kernels or hypervisors, namely seL4
[7] and Microsoft’s Hyper-V [10].

These examples – security protocols and OS kernels – are applications whose
primary purpose is to provide security. It is natural to apply formal methods to such
systems: they are by their very nature security-critical and they provide some security
functionality that we can try to specify and verify.

However, we want all our systems to be secure, not just these security systems.
There is an important difference between secure functionality and security function-
ality, or – given that most functionality and most security problems are down to
software – between software security and security software [11]. Many, if not most,
security problems arise in systems that have no specific security objective, say PDF
viewers or video players, but which can still be hacked to provide attackers with
unwanted functionality they can abuse.

Using formal methods to prove security is probably not on the cards of something
as complex as a PDF viewer or video player. Just defining what it would mean for such
a system to be secure is probably already infeasible. Still, formal methods can be
useful, to prove the absence of certain types of security flaws or simply find security
flaws. Successes here have been in the use of static analysis in source code analysers,
e.g. tools like Fortify SCA that look for flaws in web applications and tools like
Coverity that look for memory vulnerabilities in C(++) code. Another successful
application of formal methods is the use of symbolic (or concolic) execution to generate
test cases for security testing, as in SAGE [6] or, going one step further, not just
automatically finding flaws but also automatically generating exploits, as in angr [16].

Downside of these approaches is that they are post-hoc and can only look for flaws
in existing code. The LangSec paradigm [4, 9], on the other hand, provides ideas on
how to prevent many security problems by construction. Key insights are that most
security flaws occur in input handling and that there are several root causes in play
here. Firstly, the input languages involved (e.g. file formats and network protocols) are
complex, very expressive, and poorly, informally, specified. Secondly, there are many

of these input languages, sometimes nested or stacked. Finally, parsers for these lan-
guages are typically hand-written, with parsing code scattered throughout the appli-
cation code in so-called shotgun parsers [12]. With clearer, formal specifications of
input languages and generated parser code much security misery could be avoided.
(Recent initiatives in tools for parser generation here include Hammer [1] and Nail [2].)
Given that formal languages and parser generation are some of the most basic and
established formal methods around, it is a bit of an embarrassment to us as formal
methods community that sloppy language specifications and hand-coded parsers should
cause so many security problems.

Some security flaws in input handling are not so much caused by buggy parsing of
inputs, but rather by the unexpected parsing of input [13]. Classic examples of this are
command injection, SQL injection, and Cross-Site Scripting (XSS). Tell-tale sign that
unwanted parsing of input may be happening in unexpected places is the heavy use of
strings as data types [14].

Information or data flow analysis can be used to detect such flaws; indeed, this is a
standard technique used in the source code analysis tools mentioned above. These
flaws can also be prevented by construction, namely by using type systems. A recent
example of this is the ‘Trusted Types’ browser API [8] by Google, where different
types are used to track different kinds of data and different trust level of data to prevent
XSS vulnerabilities, esp. the DOM-based XSS vulnerabilities that have proved so
difficult to root out.

To conclude, formal methods cannot only be used to prove security of
security-critical applications and components – i.e. the security software –, but they can
be much more widely used to improve security by ruling out of the root causes behind
security flaws in input handling, and do so by construction, and hence improve soft-
ware security in general. Moreover, some very basic and lightweight formal methods
can be used for this: methods that we teach – or should be teaching – our students in the
first years of their Bachelor degree, such as regular expressions, finite state machines,
grammars, and types. Indeed, in my own research I have been surprised to see how
useful the simple notion of finite state machine for describing input sequences is to
discover security flaws [15].

That we have not been able to get these basic techniques into common use does not
say much for our success in transferring formal methods to software engineering
practice. Still, looking at the bright side, it does suggest opportunities for improvement.

References

1. Anantharaman, P., Millian, M.C., Bratus, S., Patterson, M.L.: Input handling done right:
building hardened parsers using language-theoretic security. In: Cybersecurity Development
(SecDev), pp. 4–5. IEEE (2017)

2. Bangert, J., Zeldovich, N.: Nail: A practical tool for parsing and generating data formats. In:
OSDI 2014, pp. 615–628. Usenix (2014)

xiv E. Poll

3. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference implementations
for the TLS 1.3 standard candidate. In: Security and Privacy (S&P 2017), pp. 483–502. IEEE
(2017)

4. Bratus, S., Locasto, M.E., Patterson, M.L., Sassaman, L., Shubina, A.: Exploit program-
ming: from buffer overflows to weird machines and theory of computation. Login, 13–21
(2011)

5. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehensive
symbolic analysis of TLS 1.3. In: SIGSAC Conference on Computer and Communications
Security (CCS 2017), pp. 1773–1788. ACM (2017)

6. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: Whitebox fuzzing for security testing.
Commun. ACM 55(3), 40–44 (2012)

7. Klein, G., et al.: seL4: Formal verification of an OS kernel. In: ACM SIGOPS, pp. 207–220.
ACM (2009)

8. Kotowicz, K.: Trusted types help prevent cross-site scripting (2019). https://developers.
google.com/web/updates/2019/02/trusted-types. blog

9. LangSec: Recognition, validation, and compositional correctness for real world security
(2013). http://langsec.org/bof-handout.pdf. uSENIX Security BoF hand-out

10. Leinenbach, D., Santen, T.: Verifying the microsoft hyper-V hypervisor with VCC. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009, LNCS, vol. 5850, pp. 806–809. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_51

11. McGraw, G.: Software security. IEEE Secur. Priv. 2 (2), 80–83 (2004)
12. Momot, F., Bratus, S., Hallberg, S.M., Patterson, M.L.: The seven turrets of Babel: a

taxonomy of LangSec errors and how to expunge them. In: Cybersecurity Development
(SecDev 2016), pp. 45–52. IEEE (2016)

13. Poll, E.: LangSec revisited: input security flaws of the second kind. In: Workshop on
Language-Theoretic Security (LangSec 2018). IEEE (2018)

14. Poll, E.: Strings considered harmful. Login, 43 (4), 21–26 (2018)
15. Poll, E., de Ruiter, J., Schubert, A.: Protocol state machines and session languages: speci-

fication, implementation, and security flaws. In: Workshop on Language-Theoretic Security
(LangSec 2015), pp. 125–133. IEEE (2015)

16. Shoshitaishvili, Y., et al.: SoK:(state of) the art of war: offensive techniques in binary
analysis. In: Symposium on Security and Privacy (SP 2016), pp. 138–157. IEEE (2016)

Formal Methods for Security Functionality and for Secure Functionality xv

https://developers.google.com/web/updates/2019/02/trusted-types
https://developers.google.com/web/updates/2019/02/trusted-types
http://langsec.org/bof-handout.pdf
https://doi.org/10.1007/978-3-642-05089-3_51

Contents

Invited Presentations

The Human in Formal Methods . 3
Shriram Krishnamurthi and Tim Nelson

Successes in Deployed Verified Software
(and Insights on Key Social Factors) . 11

June Andronick

Verification

Provably Correct Floating-Point Implementation
of a Point-in-Polygon Algorithm . 21

Mariano M. Moscato, Laura Titolo, Marco A. Feliú,
and César A. Muñoz

Formally Verified Roundoff Errors Using SMT-based Certificates
and Subdivisions. 38

Joachim Bard, Heiko Becker, and Eva Darulova

Mechanically Verifying the Fundamental Liveness Property
of the Chord Protocol . 45

Jean-Paul Bodeveix, Julien Brunel, David Chemouil, and Mamoun Filali

On the Nature of Symbolic Execution . 64
Frank S. de Boer and Marcello Bonsangue

Synthesis Techniques

GR(1)*: GR(1) Specifications Extended with Existential Guarantees 83
Gal Amram, Shahar Maoz, and Or Pistiner

Counterexample-Driven Synthesis for Probabilistic Program Sketches 101
Milan Češka, Christian Hensel, Sebastian Junges,
and Joost-Pieter Katoen

Synthesis of Railway Signaling Layout from Local Capacity Specifications 121
Bjørnar Luteberget, Christian Johansen, and Martin Steffen

Pegasus: A Framework for Sound Continuous Invariant Generation. 138
Andrew Sogokon, Stefan Mitsch, Yong Kiam Tan, Katherine Cordwell,
and André Platzer

Concurrency

A Parametric Rely-Guarantee Reasoning Framework for Concurrent
Reactive Systems . 161

Yongwang Zhao, David Sanán, Fuyuan Zhang, and Yang Liu

Verifying Correctness of Persistent Concurrent Data Structures 179
John Derrick, Simon Doherty, Brijesh Dongol, Gerhard Schellhorn,
and Heike Wehrheim

Compositional Verification of Concurrent Systems
by Combining Bisimulations. 196

Frédéric Lang, Radu Mateescu, and Franco Mazzanti

Model Checking Circus

Towards a Model-Checker for Circus . 217
Artur Oliveira Gomes and Andrew Butterfield

Circus2CSP: A Tool for Model-Checking Circus Using FDR. 235
Artur Oliveira Gomes and Andrew Butterfield

Model Checking

How Hard Is Finding Shortest Counter-Example Lassos
in Model Checking? . 245

Rüdiger Ehlers

From LTL to Unambiguous Bü chi Automata via Disambiguation
of Alternating Automata. 262

Simon Jantsch, David Müller, Christel Baier, and Joachim Klein

Generic Partition Refinement and Weighted Tree Automata 280
Hans-Peter Deifel, Stefan Milius, Lutz Schröder, and Thorsten Wißmann

Equilibria-Based Probabilistic Model Checking for Concurrent
Stochastic Games . 298

Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos

Analysis Techniques

Abstract Execution . 319
Dominic Steinhöfel and Reiner Hähnle

Static Analysis for Detecting High-Level Races in RTOS Kernels 337
Abhishek Singh, Rekha Pai, Deepak D’Souza, and Meenakshi D’Souza

xviii Contents

Parallel Composition and Modular Verification of Computer Controlled
Systems in Differential Dynamic Logic . 354

Simon Lunel, Stefan Mitsch, Benoit Boyer, and Jean-Pierre Talpin

An Axiomatic Approach to Liveness for Differential Equations. 371
Yong Kiam Tan and André Platzer

Local Consistency Check in Synchronous Dataflow Models 389
Dina Irofti and Paul Dubrulle

Gray-Box Monitoring of Hyperproperties . 406
Sandro Stucki, César Sánchez, Gerardo Schneider,
and Borzoo Bonakdarpour

Quantitative Verification of Numerical Stability for Kalman Filters 425
Alexandros Evangelidis and David Parker

Concolic Testing Heap-Manipulating Programs . 442
Long H. Pham, Quang Loc Le, Quoc-Sang Phan, and Jun Sun

Specification Languages

Formal Semantics Extraction from Natural Language Specifications
for ARM . 465

Anh V. Vu and Mizuhito Ogawa

GOSPEL—Providing OCaml with a Formal Specification Language 484
Arthur Charguéraud, Jean-Christophe Filliâtre, Cláudio Lourenço,
and Mário Pereira

Unification in Matching Logic . 502
Andrei Arusoaie and Dorel Lucanu

Embedding High-Level Formal Specifications into Applications 519
Philipp Körner, Jens Bendisposto, Jannik Dunkelau, Sebastian Krings,
and Michael Leuschel

Reasoning Techniques

Value-Dependent Information-Flow Security on Weak Memory Models. 539
Graeme Smith, Nicholas Coughlin, and Toby Murray

Reasoning Formally About Database Queries and Updates 556
Jon Haël Brenas, Rachid Echahed, and Martin Strecker

Abstraction and Subsumption in Modular Verification of C Programs 573
Lennart Beringer and Andrew W. Appel

Contents xix

Modelling Languages

IELE: A Rigorously Designed Language and Tool Ecosystem
for the Blockchain. 593

Theodoros Kasampalis, Dwight Guth, Brandon Moore,
Traian Florin Șerbănuță, Yi Zhang, Daniele Filaretti, Virgil Șerbănuță,
Ralph Johnson, and Grigore Roşu

APML: An Architecture Proof Modeling Language 611
Diego Marmsoler and Genc Blakqori

Learning-Based Techniques and Applications

Learning Deterministic Variable Automata over Infinite Alphabets 633
Sarai Sheinvald

L!-Based Learning of Markov Decision Processes . 651
Martin Tappler, Bernhard K. Aichernig, Giovanni Bacci,
Maria Eichlseder, and Kim G. Larsen

Star-Based Reachability Analysis of Deep Neural Networks 670
Hoang-Dung Tran, Diago Manzanas Lopez, Patrick Musau,
Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang,
and Taylor T. Johnson

Refactoring and Reprogramming

SOA and the Button Problem . 689
Sung-Shik Jongmans, Arjan Lamers, and Marko van Eekelen

Controlling Large Boolean Networks with Temporary
and Permanent Perturbations. 707

Cui Su, Soumya Paul, and Jun Pang

I-Day Presentations

Formal Methods Applicability on Space Applications Specification
and Implementation Using MORA-TSP . 727

Daniel Silveira, Andreas Jung, Marcel Verhoef, and Tiago Jorge

Industrial Application of Event-B to a Wayside Train Monitoring System:
Formal Conceptual Data Analysis . 738

Robert Eschbach

Property-Driven Software Analysis (Extended Abstract) 746
Mathieu Comptier, David Déharbe, Paulin Fournier,
and Julien Molinero-Perez

xx Contents

Practical Application of SPARK to OpenUxAS. 751
M. Anthony Aiello, Claire Dross, Patrick Rogers, Laura Humphrey,
and James Hamil

Adopting Formal Methods in an Industrial Setting: The Railways Case 762
Maurice H. ter Beek, Arne Borälv, Alessandro Fantechi, Alessio Ferrari,
Stefania Gnesi, Christer Löfving, and Franco Mazzanti

Author Index . 773

Contents xxi

	Preface
	Organization
	Formal Methods for Security Functionality and for Secure Functionality (Invited Presentation)
	Contents
	Invited Presentations
	The Human in Formal Methods
	1 Humans and Formal Methods
	2 User Experience
	3 Education
	3.1 A Design Recipe for Writing Specifications
	3.2 Tools

	4 Conclusion
	References

	Successes in Deployed Verified Software (and Insights on Key Social Factors)
	1 The Dream
	2 Successes in Deployed Verified Software
	3 Insights on Key Social Factors
	References

	Verification
	Provably Correct Floating-Point Implementation of a Point-in-Polygon Algorithm
	1 Introduction
	2 The Winding Number Algorithm
	3 Program Transformation to Avoid Unstable Tests
	4 Test-Stable Version of the Winding Number
	5 Verification Approach
	6 Related Work
	7 Conclusion
	References

	Formally Verified Roundoff Errors Using SMT-based Certificates and Subdivisions
	1 Introduction
	2 Extensions to FloVer
	3 Experiments
	References

	Mechanically Verifying the Fundamental Liveness Property of the Chord Protocol
	1 Introduction
	2 The Chord Protocol
	2.1 Network Structure
	2.1.1 Identifier Space
	2.1.2 Chord Network

	2.2 Chord Operations
	2.2.1 Formal Model
	2.2.2 Model-Specific State Variables
	2.2.3 Events

	2.3 Proof Engineering

	3 Chord Correctness
	3.1 Generic Properties
	3.2 Chord Properties
	3.2.1 Chord Invariants
	3.2.2 Always-True Properties

	4 Phase-Based Convergence Proof
	4.1 Reaching MS1: Rectifying and prdc in Members
	4.2 Reaching MS2: The First Successor Is a Member
	4.3 Reaching MS3: Stabilizing only Includes Members
	4.4 Reaching MS4: prdc Is the Inverse of bestSucc and the Rectifying and Stabilizing Sets of Each Node Are Empty
	4.5 Reaching MS5: The Tail of the Successor List of Each Node Is Equal to the Successor List of Its First Successor
	4.6 Reaching the Ideal State

	5 Related Work
	6 Conclusion
	References

	On the Nature of Symbolic Execution
	1 Introduction
	2 Basic Symbolic Execution
	3 Recursion
	4 Object Orientation
	5 Arrays, Multithreading, and Concurrent Objects
	6 Conclusion
	References

	Synthesis Techniques
	GR(1)*: GR(1) Specifications Extended with Existential Guarantees
	1 Introduction
	1.1 Example: Lift Specification
	1.2 Related Work

	2 Preliminaries
	2.1 Game Structures and Strategies
	2.2 Linear Temporal Logic and the GR(1) Fragment
	2.3 -calculus over Game Structures

	3 GR(1)*: Going Beyond LTL
	3.1 GR(1)* Formulas
	3.2 GR(1)* Winning Condition
	3.3 Inexpressibility of GR(1)* Winning Conditions in LTL

	4 Solving GR(1)* Games
	5 Strategy Construction
	5.1 Construction Discussion and Overview
	5.2 Detailed Construction

	6 Implementation and Preliminary Evaluation
	6.1 Setup
	6.2 Results

	7 Conclusion
	References

	Counterexample-Driven Synthesis for Probabilistic Program Sketches
	1 Introduction
	2 Preliminaries and Problem Statement
	3 CEGIS for Markov Chain Families
	3.1 Conflicts and Synthesiser
	3.2 Verifier

	4 Syntax-Guided Synthesis for Probabilistic Programs
	4.1 A Program Sketching Language
	4.2 A Program-Level Synthesiser
	4.3 A Program-Level Verifier

	5 Experimental Evaluation and Discussion
	References

	Synthesis of Railway Signaling Layout from Local Capacity Specifications
	1 Introduction
	2 Background
	2.1 Railway Signalling Layout Design

	3 Method
	3.1 Local Capacity Specifications
	3.2 Initial Design
	3.3 SAT-Based Dispatch Planning
	3.4 Numerical Optimization
	3.5 Discrete Event Simulation

	4 Local Optimizations and Interactive Improvement
	5 Conclusions, Related and Further Work
	5.1 Related Works
	5.2 Further Work

	References

	Pegasus: A Framework for Sound Continuous Invariant Generation
	1 Introduction
	2 Preliminaries
	3 Sound Invariant Checking and Generation
	3.1 Invariant Generation with Template Enumeration
	3.2 Soundness: Proof Assistants and Invariant Generation

	4 Invariant Generation Methods in Pegasus
	4.1 Exact Discrete Abstraction
	4.2 Targeted Qualitative Analysis
	4.3 Qualitative Analysis for Non-linear Systems
	4.4 General-Purpose Methods

	5 Strategies for Invariant Generation
	6 Evaluation
	7 Related Work
	8 Outlook and Challenges
	9 Conclusion
	References

	Concurrency
	A Parametric Rely-Guarantee Reasoning Framework for Concurrent Reactive Systems
	1 Introduction
	2 Motivation and Approach Overview
	3 PiCore: The Rely-guarantee Framework
	3.1 The Event Language
	3.2 Rely-Guarantee Proof System
	3.3 Invariant Verification

	4 Integrating Concrete Languages
	4.1 Rely-Guarantee Interface of PiCore Framework
	4.2 Integrating the IMP and CSimpl languages

	5 Concurrent Memory Management of Zephyr RTOS
	6 Evaluation and Conclusion
	References

	Verifying Correctness of Persistent Concurrent Data Structures
	1 Introduction
	2 A Persistent Queue
	3 Durable Linearizability
	4 An Operational Model for Durable Linearizability
	5 Correctness of the Persistent Queue
	5.1 Modelling the Persistent Queue
	5.2 Refinement-Based Verification
	5.3 Identification of Persistence Points
	5.4 Key Invariants and Abstraction Relation

	6 Conclusion
	References

	Compositional Verification of Concurrent Systems by Combining Bisimulations
	1 Introduction
	2 Background
	2.1 LTS Compositions and Reductions
	2.2 Temporal Logics
	2.3 Compositional Property-Dependent LTS Reductions

	3 Combining Bisimulations Compositionally
	3.1 The Lstrong(As) Fragments of L
	3.2 Applying Divbranching Bisimulation to Selected Components
	3.3 Identifying Strong Actions in Derived Operators

	4 Applications
	4.1 Trivial File Transfer Protocol
	4.2 Parallel Benchmark of the RERS 2018 Challenge

	5 Conclusion and Future Work
	References

	Model Checking Circus
	Towards a Model-Checker for Circus
	1 Introduction
	2 Circus Background
	3 Translating Circus to CSPM using Circus2CSP
	3.1 The Memory Model

	4 Upgrading the Memory Model
	4.1 Limitation 1: Z Types vs. CSPM Types
	4.2 Limitation 2: FDR Time/Space Explosion

	5 Experimental Results
	5.1 Haemodialysis (HD) Machine Experiments
	5.2 Ring-Buffer Experiments
	5.3 Compression Experiments

	6 Future Work
	7 Conclusions
	References

	Circus2CSP: A Tool for Model-Checking Circus Using FDR
	1 Introduction
	2 Circus2CSP: Requirements and Goals
	3 Experiments with Circus2CSP
	4 Conclusions
	References

	Model Checking
	How Hard Is Finding Shortest Counter-Example Lassos in Model Checking?
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Tightening Büchi Automata
	4 Component Lassos – Negative Result
	5 Component Lassos – Positive Result
	6 Conclusion
	References

	From LTL to Unambiguous Büchi Automata via Disambiguation of Alternating Automata
	1 Introduction
	2 Preliminaries
	3 Unambiguous VWAA
	4 Disambiguating VWAA
	5 Heuristics for Purely-Universal Formulas
	6 Implementation and Experiments
	7 Conclusion
	References

	Generic Partition Refinement and Weighted Tree Automata
	1 Introduction
	2 Theoretical Foundations
	3 Generic Partition Refinement
	3.1 Generic System Specification
	3.2 Refinement Interfaces
	3.3 Combining Refinement Interfaces
	3.4 Implementation Details

	4 Instances
	5 Weighted Tree Automata
	5.1 Cancellative Monoids
	5.2 Non-cancellative Monoids
	5.3 Evaluation and Benchmarking

	6 Conclusion and Future Work
	References

	Equilibria-Based Probabilistic Model Checking for Concurrent Stochastic Games
	1 Introduction
	2 Preliminaries
	3 Extending rPATL with Nash Formulae
	4 Model Checking CSGs Against Nash Formulae
	5 Implementation and Tool Support
	6 Case Studies and Experimental Results
	7 Conclusions
	References

	Analysis Techniques
	Abstract Execution
	1 Introduction
	2 Specifying Abstract Programs
	3 Abstract Execution Logic
	3.1 Principles of JavaDL
	3.2 Formalization of Abstract Execution
	3.3 Abstract Update Simplification

	4 Proving the Correctness of Refactoring Techniques
	5 Related Work
	6 Conclusion and Future Work
	References

	Static Analysis for Detecting High-Level Races in RTOS Kernels
	1 Introduction
	2 Overview
	3 Interrupt-Driven Programs with Callbacks
	4 High-Level Races
	5 High-Level Race Detection Using Disjoint Blocks
	6 Analyzing the P-RTOS Kernel
	7 TI-RTOS and FreeRTOS
	8 Experimental Evaluation
	9 Related Work
	10 Conclusion
	References

	Parallel Composition and Modular Verification of Computer Controlled Systems in Differential Dynamic Logic
	1 Introduction
	2 Differential Dynamic Logic
	3 Computer-Controlled Systems
	3.1 Modeling CCS
	3.2 Modular Verification of a CCS

	4 Parallel Composition
	4.1 Parallel Composition of Multi-choice Reactive Controllers
	4.2 Parallel Composition of Controllable Plants
	4.3 Parallel Composition of Multi-choice Reactive Controllers and Controllable Plants
	4.4 Parallel Composition of Multi Computer-Controlled Systems

	5 Related Work
	6 Conclusion
	References

	An Axiomatic Approach to Liveness for Differential Equations
	1 Introduction
	2 Background
	2.1 Syntax
	2.2 Semantics
	2.3 Proof Calculus

	3 Liveness via Box Refinements
	4 Liveness Without Domain Constraints
	4.1 Differential Variants
	4.2 Staging Sets

	5 Liveness with Domain Constraints
	5.1 Topological Proof Rules

	6 Related Work
	7 Conclusion
	References

	Local Consistency Check in Synchronous Dataflow Models
	1 Introduction
	2 Synchronous Dataflow Models
	3 A New Approach for Consistency Check
	4 Experimental Results
	4.1 Implementation in the SDF3 Open Source Tool
	4.2 Benchmark
	4.3 Results Obtained on the Experimental Setup

	5 Related Work
	6 Concluding Remarks
	References

	Gray-Box Monitoring of Hyperproperties
	1 Introduction
	2 Background
	2.1 LTL and HyperLTL
	2.2 Semantic Monitorability

	3 The Notion of Gray-Box Monitoring
	3.1 The Limitations of Monitoring Hyperproperties
	3.2 Gray-Box Monitoring. Sound and Perfect Monitors

	4 Monitoring Distributed Data Minimality
	4.1 DDM Preliminaries
	4.2 DDM as a Hyperproperty
	4.3 Properties of DDM
	4.4 Building a Gray-Box Monitor for DDM
	4.5 Proof-of-Concept Implementation

	5 Related Work
	6 Conclusions
	References

	Quantitative Verification of Numerical Stability for Kalman Filters
	1 Introduction
	2 Preliminaries
	2.1 The Kalman Filter
	2.2 Numerical Instability of the Kalman Filter
	2.3 The Carlson-Schmidt Square-Root Filter

	3 Quantitative Verification of Kalman Filters
	3.1 Constructing Probabilistic Models of Kalman Filter Execution
	3.2 Verification of Numerical Stability

	4 Tool Support: VerFilter
	5 Experimental Results
	5.1 Verification of Kalman Filter Implementations
	5.2 Scalability Analysis

	6 Conclusion
	References

	Concolic Testing Heap-Manipulating Programs
	1 Introduction
	2 Approach at a Glance
	3 Specification-Based Testing
	4 Concolic Execution
	5 Implementation and Experiments
	6 Related Work
	7 Conclusion
	References

	Specification Languages
	Formal Semantics Extraction from Natural Language Specifications for ARM
	1 Introduction
	2 Formal Semantics of ARM
	2.1 Natural Language Specification
	2.2 Operational Semantics
	2.3 Java Specification as Formal Semantics

	3 Syntax Normalisation
	4 Semantics Interpretation by Translation Rules
	4.1 NP-Phrases Extraction
	4.2 Instructions Selection Strategy
	4.3 Translation Rules Preparation
	4.4 A Comprehensive Example

	5 Detecting Modified Flags
	6 Conformance Testing
	7 The CORANA Tool
	7.1 CORANA Architecture
	7.2 Path Conditions Generation

	8 Experiments
	8.1 Semantics Extraction
	8.2 Dynamically Handling Jumps by CORANA

	9 Conclusion
	References

	GOSPEL—Providing OCaml with a Formal Specification Language
	1 Introduction
	2 An Overview of GOSPEL
	2.1 Basic Operations on a Mutable Queue
	2.2 Destructive and Nondestructive Operations
	2.3 Higher-Order Functions
	2.4 Ghost Variables
	2.5 Non-visible Side Effects

	3 Semantics
	3.1 General Form of GOSPEL Specifications
	3.2 Basics of Separation Logic
	3.3 Example Translations of Mutable Queue Specifications
	3.4 General Translation Scheme from GOSPEL to Separation Logic

	4 Implementation and Application
	5 Related Work
	6 Conclusion and Future Work
	References

	Unification in Matching Logic
	1 Introduction
	2 Preliminaries
	2.1 Syntactic Unification
	2.2 Matching Logic

	3 Syntactic Unification and Matching Logic
	3.1 Encoding Syntactic Unification in ML
	3.2 Unification Algorithms as Constraint Patterns Transformers
	3.3 Soundness and Completeness

	4 Generating Proofs
	5 Conclusions
	References

	Embedding High-Level Formal Specifications into Applications
	1 Introduction
	1.1 B, Event-B and ProB

	2 ProB 2.0
	3 Examples
	3.1 Real-Time Animation: Pac-Man
	3.2 Predicting the Future: Chess
	3.3 ProB as a Constraint Solver: PlüS
	3.4 Real Time Animation: ETCS Hybrid Level 3 Concept

	4 Discussion and Related Work
	4.1 Soundness of Approach
	4.2 Animation
	4.3 Visualisation
	4.4 Code Generation
	4.5 Other Approaches

	5 Conclusions
	References

	Reasoning Techniques
	Value-Dependent Information-Flow Security on Weak Memory Models
	1 Introduction
	2 Weak Memory Models
	3 Weak Memory Models and Security
	3.1 Value-Dependent Security and Reordering

	4 Formal Framework
	4.1 Assumptions and Guarantees
	4.2 Value-Dependent Security Levels
	4.3 Weak Memory Models

	5 The Logic
	5.1 Soundness
	5.2 Example Revisited
	5.3 A More Precise Logic

	6 Timing Sensitivity
	7 Conclusion
	References

	Reasoning Formally About Database Queries and Updates
	1 Introduction
	1.1 Context and Contributions
	1.2 Introductory Example

	2 Transformation Language
	2.1 Syntax
	2.2 Interpretations
	2.3 Operational Semantics

	3 Program Logic
	3.1 Hoare Triples: Definition
	3.2 Hoare Triples: Soundness
	3.3 Weakest Pre-conditions

	4 Guarded Fragment
	5 Conclusions
	References

	Abstraction and Subsumption in Modular Verification of C Programs
	1 Introduction
	2 Function Specifications in Verifiable C
	3 Subsumption of Function Specifications
	4 Definitions of Funspec Subtyping
	5 The Subsumption Rules
	6 Intersection Specifications
	7 Conclusion
	References

	Modelling Languages
	IELE: A Rigorously Designed Language and Tool Ecosystem for the Blockchain
	1 Introduction
	2 Background
	3 The IELE Language
	3.1 IELE Contracts
	3.2 IELE Functions
	3.3 IELE Instructions
	3.4 IELE Datatypes

	4 Formal IELE Language Definition in K
	4.1 IELE Formal Semantics Overview

	5 Formal Verifier of IELE Smart Contracts
	6 Conclusion
	References

	APML: An Architecture Proof Modeling Language
	1 Introduction
	2 Background
	2.1 Basic Mathematical Notations
	2.2 Architecture Model
	2.3 Composition
	2.4 Contracts
	2.5 Isabelle

	3 Running Example: A Reliable Adder
	4 Modeling Architecture Proofs
	4.1 Verifying Reliable Adder
	4.2 Soundness and Completeness

	5 From APML to Isabelle
	6 Modeling Architecture Proofs in FACTum Studio
	7 Case Study: Trainguard MT Control System
	8 Related Work
	9 Conclusion
	References

	Learning-Based Techniques and Applications
	Learning Deterministic Variable Automata over Infinite Alphabets
	1 Introduction
	2 Preliminaries
	3 A Canonical Form for DVFA
	3.1 Finding a Minimal Set of Variables

	4 A Learning Algorithm for DVFA
	5 Summary and Future Work
	References

	L*-Based Learning of Markov Decision Processes
	1 Introduction
	2 Preliminaries
	3 Exact Learning of MDPs
	4 Learning MDPs by Sampling
	4.1 Learner Implementation
	4.2 Teacher Implementation

	5 Experiments
	6 Related Work
	7 Conclusion
	References

	Star-Based Reachability Analysis of Deep Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Machine Learning Models and Symbolic Verification Problem
	2.2 Generalized Star Sets

	3 Star-Based Reachability Analysis of FNNs
	3.1 Exact and Complete Analysis
	3.2 Over-Approximate Analysis
	3.3 Reachability Algorithm for FNNs

	4 Evaluation
	4.1 Safety Verification for ACAS Xu DNNs
	4.2 Maximum Robustness Certification of Image Classification DNNs

	5 Conclusion and Future Work
	References

	Refactoring and Reprogramming
	SOA and the Button Problem
	1 Introduction
	2 Background
	3 Architectures and Refactorings
	3.1 Architecture Models
	3.2 Refactoring Framework
	3.3 Core Library of Refactorings

	4 Deployments and Sensitivities
	5 Implementation
	6 Conclusion
	References

	Controlling Large Boolean Networks with Temporary and Permanent Perturbations
	1 Introduction
	2 Preliminaries
	2.1 Boolean Networks
	2.2 Dynamics of Boolean Networks
	2.3 Attractors and Basins
	2.4 The Control Problem

	3 Results
	3.1 Permanent Control
	3.2 Temporary Control

	4 Case Studies
	5 Discussion and Future Work
	References

	I-Day Presentations
	Formal Methods Applicability on Space Applications Specification and Implementation Using MORA-TSP
	Abstract
	1 Introduction
	2 MORA-TSP Suitability to Formal Methods
	2.1 Model Transformation
	2.2 Model Validation
	2.3 Component Behavior Definition with FSM

	3 OSRA
	3.1 OSRA Process Description
	3.2 The OSRA Specification/Architecture
	3.3 OSRA Editor

	4 TASTE
	5 Model Transformation OSRA to TASTE
	6 AIR
	7 Conclusions

	Industrial Application of Event-B to a Wayside Train Monitoring System: Formal Conceptual Data Analysis
	Abstract
	1 Introduction
	2 Formal Conceptual Data Model of the Ticket System
	2.1 CMS Architecture
	2.2 Entity and Relationship Analysis
	2.3 Formal Conceptual Data Model

	3 Challenges and Solutions
	3.1 Data Integrity
	3.2 Fault Prevention
	3.3 Fault Tolerance
	3.4 Agile Development

	4 Conclusion
	References

	Property-Driven Software Analysis
	References

	Practical Application of SPARK to OpenUxAS
	1 Introduction
	2 Background
	2.1 OpenUxAS
	2.2 SPARK

	3 Approach
	3.1 Service Class Hierarchy
	3.2 Properties of Interest
	3.3 Ada-SPARK Boundaries

	4 Results
	4.1 Verification Results

	5 Conclusion
	References

	Adopting Formal Methods in an Industrial Setting: The Railways Case
	1 Introduction
	2 Questionnaires
	3 Cumulated Results of the Two Projects' Questionnaires
	4 Conclusion
	References

	Author Index

