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Abstract. Due to the diffusion of location-aware devices and location-
based services, it is now possible to analyse the digital trajectories of
human mobility through the use of mining algorithms. However, in most
cases, these algorithms come with little support for the analyst to actu-
ally use them in real world applications. In particular, means for under-
standing how to choose the proper parameters are missing. This work
improves the state-of-the-art of mobility data analysis by providing an
experimental study on the use of data-driven parameter estimation mea-
sures for mining flock patterns. Experiments were conducted on two real
world datasets, one dealing with pedestrian movements in a recreational
park and the other with car movements in a coastal area. The study has
shown promising results for estimating suitable values for parameters for
flock patterns envisaging a formal framework for parameter evaluation
in the near future, since the advent of more complex pattern algorithms
will require the use of a larger number of parameters.

1 Introduction

The increasing availability of data pertaining to the movements of people and
vehicles, such as GPS trajectories and mobile phone call records, has fostered
in recent years a large body of research on the analysis and mining of these
data, to the purpose of discovering the patterns and models of human mobility.
Examples along this line include [2, 3], which highlight the broad diversity of
mobility patterns. A few authors concentrated on the problem of characterising
and detecting flocks, i.e., patterns describing a set of objects that stay closely
together during an interval of time, either moving together along the same route
(a moving flock), or staying together in a specific location (a stationary flock)
[6, 4, 7].

Flocking patterns highlight groups with synchronised movements that stay
together for a while and disappear afterwards. In this paper, we follow the defi-
nition where a flock is a group of at least k objects that, observed during a time
interval ∆T with a sampling rate R, remain spatially close to each other within
a distance ε. While this definition and other variations in literature are useful for
detecting flocks, it is apparent that setting such parameters (k, ε,∆T,R) makes



it complex for an analyst to use flock mining in different contexts. These pa-
rameters clearly depend on the data under analysis, and may be vary greatly
in different settings. We observed remarkable differences in datasets pertaining
to pedestrian and car movements, which are the two trajectory datasets used in
this paper. Such differences can be expected as well when observing other types
of moving objects, e.g., bird trajectories. Despite this complexity, no prior work
addressed the problem of parameter setting, which is a barrier especially for
mobility experts who would like to use flock mining as a black box. To this aim,
we address the parameter estimation problem of finding appropriate values for
the parameters using a systematic data-driven method, based on the trajectory
dataset that is being analysed. This paper provides an empirical evaluation of
the effects of parameters in two different moving objects datasets. This is an
initial step towards delineating a data-driven parameter estimation method for
flock mining.

The structure of this paper is as follows: Section 2 presents some related
approaches in the literature. Section 3 provides a summary of the flock algorithm
considered in this study while Section 4 describes the experiments performed on
two datasets in order to study the effect of the different parameters. Finally,
Section 5 sums up the conclusions derived from the study.

2 Related works

Although the problem of finding realistic parameter values in data mining is well
recognized in literature, very few papers have addressed this problem. Paper [1]
is a well known work that proposes a solution for parameter estimation, and has
inspired our approach. In this work, the authors propose a heuristic technique
for determining the parameter values of the density-based clustering algorithm
DBSCAN: Eps (radius) and MinCard (minimum cardinality of clusters). A
function called k-distance is defined to compute the distance between each object
and its k-th nearest neighbor. These values are then plotted with objects ordered
in descending order, in the so-called sorted k-distance plot. This plot is then used
to find an estimation of the parameters: given an object p, the k-distance(p) is the
value of Eps while MinCard is set to k+ 1. This setting means that all objects
with an equal or smaller k-distance are the “core” objects. The threshold object
which maximize the k-distance in the least dense cluster gives the desired values.
This object can be found visually in the plot by identifying the first “valley”.
The objects plotted to the left of the threshold will be considered as noise while
other objects will be assigned to some cluster.

Another related work on parameter estimation related to flocks is found in [5]
where the authors propose a set of algorithms for detecting convoys in trajectory
datasets. They proposed a guideline for determining the parameters δ and λ of
the proposed Douglas-Peucker (DP) algorithm, with the purpose of optimizing
the execution time. The optimal convoy algorithm is run on a pre-processed
dataset where trajectories have been simplified using the DP algorithm, which
uses δ as a tolerance value for constraining the spatial distance between the



original and the simplified points. The algorithm uses another additional pa-
rameter λ, which refers to the length of the time partitions. The determination
of a good value for δ has the goal of finding a trade-off value giving a good sim-
plification of original trajectories while mantaining a tight enough distance. For
finding a good value for δ authors propose to run the DP algorithm with δ set
to 0. They consider the actual tolerance values at each simplification step and
find the values with the largest difference with their neighbour before averaging
them to obtain the final parameter value. Meanwhile, a good λ is computed by
taking the average probability of each object having an intermediate simplified
point that is not found in other trajectories. However, the parameter estima-
tion techniques were applied to the preprocessing step of the convoy algorithm
rather than applying it directly to the parameters related to the flock or convoy
definition.

3 A Moving Flock Extraction Algorithm

The study for parameter estimation has been designed with reference to the flock
algorithm introduced in [7]. The algorithm finds moving flocks, each of which
is a group of objects consisting of at least min points members that are spa-
tially close together while moving from one location to another over a minimum
time duration min time slices. The algorithm requires four user-defined param-
eters: synchronisation rate(R) - refers to the rate, specified in seconds, at which
observation points (e.g., GPS recordings) are sampled for each moving object;
min time slices(∆T ) - is the minimum number of consecutive times slices for
which the objects remain spatially close; min points(κ) - is the minimum num-
ber of objects in a moving flock; radius(ε) - defines the spatial closeness of a
group of moving objects at a specific time instance.

The following is a pseudocode of the moving flock algorithm:

Algorithm 1: Moving Flock(D, R, ∆T , κ, ε)

1 synchDataset = synchronise(D, R));
2 for each traj in synchDataset
3 if traj is NOT marked
4 for each curr point, a sampled point of current traj
5 1-flocks = computeSpatialNeighbour(curr point, ε, synchDataset);
6 n-flocks = merge adj cand(1-flocks);
7 for each cand, a candidate flock in n-flocks
8 if count time slices(cand)>=∆T and compute extent(cand)>=ε
9 for each traj’, a member of cand
10 mark traj’;
11 F = F ∪ cand;

The algorithm initially samples the observation points in the input dataset
at a regular interval R (line 1). The next steps are performed for each of the



trajectories. The current unmarked trajectory is considered as the base member
and for each of its time instances, points belonging to other trajectories are
considered as neighbours if their x,y components are within ε distance to that of
the base (lines 4-5), producing candidate flocks lasting for only 1 time slice (i.e.,
1−flocks). The 1−flocks with adjacent time slices and have at least κ members in
common are then merged, producing 2−flocks candidates. Merging is recursively
applied until n−flocks, which refer to the longest duration candidate flocks, are
found (line 6). n−flocks lasting for at least ∆T time slices and covering a spatial
extent of at least ε are considered as moving flocks and their member trajectories
are marked in order to reduce the number of base trajectories that need to be
processed (lines 8-11).

4 Parameter Estimation

This section focuses on the investigation of the effects of individual parameters
on the flock results to understand how suitable values can be selected. This study
for parameter estimation has been designed with reference to the flock algorithm
introduced in [7], to find moving flock patterns using the parameters k, ε, ∆T ,
and R as discussed in section 3.

We start with a description of the datasets used for the experiments and an
overview of some flock quality measures since these are necessary to understand
the impact of the parameters on the results. These are followed by a discussion
of the effect of each parameter before closing with an approach on finding a
suitable radius value.

4.1 Context Awareness and Flock Cohesion Distance

We performed the study on two datasets that have two entirely different set-
tings of two different types of moving objects. The first dataset, called DNP,
contains 370 trajectories, one for each visitor and consisting of a total of 141,826
sample points. These were recorded using GPS devices given to the visitors at
the parking lots where they have started their visits. Due to the sparsity of this
dataset, we have combined the data in different days into one day. The second
dataset, called OctoPisa, contains the trajectories of ≈ 40,000 cars for a total
of ≈ 1,500,000 travels covering a temporal span of 5 weeks in a coastal area of
Tuscany around the city of Pisa. From this large dataset, we concentrated on a
subset of trajectories occurring on June, 29, 2010 in order to be able to perform
a more detailed study on a specific time period. This is one of the days with the
highest number of moving cars. It contains 28,032 trajectories (corresponding
to 557,201 observed GPS points) of 10,566 vehicles. The flock algorithm can be
applied as well to the other days and the obtained flocks can be combined in a
straightforward manner to obtain the flocks inherent in the entire dataset.

The initial set of parameter values that we used for the DNP dataset is as
follows: R = 5mins., ∆T = 3, κ = 3, and ε = 150m. Meanwhile, the initial
set used for the OctoPisa dataset is as follows: R = 1min., ∆T = 3, κ = 3,



and ε = 150m. For both datasets, we maximized R to a value that does not
cause large distortion (from the domain expert’s perspective) among the input
trajectories. We selected a value of 3 for both ∆T and κ since using 2 is too
small while 4 is quite large for finding a good number of flocks. Then, using
the values for R, ∆T , κ, and the type of entity (i.e., pedestrian and car) in
consideration, we derived a feasible and logical value for ε. In observing the
effects of the individual parameters, we only modify the value of the parameter
in consideration and retain the initial values for the rest.

A first step in parameter estimation is to understand how the parameters
influence the results obtained by the flock extraction algorithm. In doing so, it is
important to have an objective measure of this influence in order to understand
whether decreasing or increasing the parameter values improves or worsens the
quality of discovered flocks.

In our study, we used three measures, which are extensions of measures used
for cluster evaluation. These measures include cohesion, separation and silhou-
ette coefficient.

Flock cohesion distance is a measure of spatial closeness among members
of a discovered flock. It is analogous to the cohesion measure used for evaluat-
ing clusters but specifically applied to flock patterns. It can be computed using
Equation 1, which evaluates a specific flock Fi by computing the distance be-
tween each flock member mj with the base mi(b). Recall from Algorithm 1 that
candidate flocks are found using each trajectory as a base. Each discovered flock
Fi has mi(b) as its base member. Members of Fi are spatially close to mi(b) for
its duration of flocking. |Fi| is the number of Fi’s members.

flock coh(Fi) =

∑
mj∈Fi

mj 6=mi(b)

proxintra(mj ,mi(b))

|Fi| − 1
(1)

The proxintra between a flock member mj and the flock base mi(b) can be
computed by averaging the Euclidean distance among (x, y) points that were
sampled simultaneously as described in Equation 2. T refers to the flocking
duration and it consists of a set of sampled time instances. xtj and ytj refer to the
x, y components of member j at time instance t. xti(b) and yti(b) are the x and y
components of flock i’s base.

proxintra(mj ,mi(b)) =

∑
t∈T euclDist((x

t
j , y

t
j), (x

t
i(b), y

t
i(b)))

|T |
(2)

The overall flock cohesion distance of an obtained flock result can be com-
puted by averaging the flock cohesion distance scores for each flock in the result
as shown in Equation 3. Naturally, a flock with a low cohesion distance score is
considered as a high quality flock.

overall f lock cohesion distance(F ) =

∑
Fi∈F flock coh(Fi)

|F |
(3)



On the contrary, flock separation is a measure of spatial or spatio-temporal
detachment of a flock from the rest and it can be computed using Equation 4.

flock sep(Fi) =
∑
Fj∈F
i 6=j

proxinter(mb(i),mb(j)) (4)

While proxintra measures the distance among members of a flock, proxinter
measures the distance among different flocks. The distance between a pair of
flocks is computed by computing the distance between their respective bases. We
propose two approaches for this computation: proxinter(XY T ) and proxinter(routeSim).
proxinter(XY T ) considers the spatio-temporal components in computing the dis-
tance while proxinter(routeSim) only considers the spatial components. Using
proxinter(routeSim), distance is computed based on the similarity between the
route followed by the flocks, without considering co-occurrence of the route sim-
ilarity in time. Choosing between these two depends on the similarity level that
the user is interested in.

proxinter(XY T ) computes the spatial distance among the portion of the base
trajectories that overlap in time as was done for proxintra. The remaining portion
that does not overlap incurs a penalty pnlty, which is the maximum possible
distance obtained from the overlapping portion plus an arbitrary value. In the
case that this maximum value does not exist since the bases being compared
are disjoint, a maximum penalty score is incurred. More specifically, Equation 5
describes how proxinter(XY T ) is computed. nonOverlapLTI refers to the number
of un-matched time instances in the longer trajectory, euclDistOvlp is the sum
of Euclidean distances among pairs of points (from each base) that overlap in
time, and maxTD refers to the length of the longer base trajectory in terms of
the number of time instances.

proxinter(XY T ) =
pnlty ∗ (nonOverLTI) + euclDistOvlp

maxTD ∗ (|Fi| − 1)
(5)

For proxinter(routeSim), we adapted an existing algorithm for computing the
route similarity distance. The algorithm ignores the temporal component of the
bases and computes the distance in terms of the spatial components by compar-
ing the shape of the trajectories.

As with the overall flock cohesion of an obtained flock result, the overall flock
separation can be computed by averaging individual flock separation scores.

Finally, the flock silhouette coefficient is a combination of the previously
discussed measures as shown in Equation 6. Note that computed scores can
range from -1 (large intraflock distances and small interflock distances) to 1
(small intraflock distances and large interflock distances).

flock Sil(Fi) =
flock sep(Fi)− flock coh(Fi)

max{flock sep(Fi), f lock coh(Fi)}
(6)

As with overall flock cohesion and separation, the overall silhouette coefficient
of a flock result can be computed by the averaging silhouette score of each flock.



4.2 Observing the Effect of Varying the Parameters

This part discusses the observations derived from investigating the effect of differ-
ent parameter values on the obtained flock results for the DNP and the OctoPisa
datasets. The following subsections provides a discussion of the individual effect
of each parameter.

Effect of synchronisation rate (R) Out of the 4 parameters of the algo-
rithm, the synchronisation rate can affect the quality of the input dataset. More
specifically, a very large value of R can distort the input trajectories whereas a
very small value requires a longer processing time.

We have observed how dataset cohesion changes for different values of R.
Dataset cohesion describes how each individual trajectory is cohesive with re-
spect to the rest of trajectories in the dataset. To compute this value, we applied
the flock separation measure and treated each trajectory as a base trajectory.

Experiments demonstrate that the synchronisation step can indeed modify
the input and its cohesiveness but at the same time, the variation is small in the
two datasets for smaller values of R. Using XYT cohesion, the largest difference
between the smallest cohesion score compared to the other scores obtained using
larger R is 371.67m when R = 11mins. in the DNP dataset. Meanwhile, the
largest difference is 1987.77m using route similarity cohesion when R = 15mins.
in the DNP dataset. For the Octopisa dataset, the largest difference is 480.28m
and 10789.69m using XYT and route similarity cohesion, respectively. The route
similarity cohesion score varied more compared to the XYT cohesion score. This
plot thus suggests the use of smaller values of R.

We now present the effect of the synchronisation rate on the discovered
flocks themselves. Figure 1 illustrates how different values of R can affect the
flock results by observing the change in the number of moving flocks discovered,
the overall flock cohesion, the overall flock separation (based on the spatio-
temporal coordinates XYT and route similarity), and the overall silhouette co-
efficient (XYT and route similarity based).

Figure 1 shows the plots obtained for the synchronisation rate in the two
datasets. In general, fewer flocks are found as R increases. Furthermore, the
overall flock cohesion varies slightly for different R values, while the overall flock
separation tend to decrease with increasing R values. In the case of R = 8mins.
in Octopisa and R = 13mins. in DNP, the discovered flocks becomes 0 and
hence, the cohesion and separation scores are no longer applicable. Considering
the plots for the XYT and route similarity separation scores, it is advisable to
set R to a value less than 6mins. in DNP and a value less than 4mins. in Oc-
topisa due to the sudden drop in the separation scores. A sudden drop occurs
when no flock or only a single flock is discovered, or when the distance among
the discovered flocks is small. Very large XYT separation scores indicates that
the flocks are temporally disjoint. On the other hand, very large route similar-
ity scores indicates that different flocks are following different routes. Finally,
the silhouette coefficients summarize the effect of R on both the cohesion and
separation scores. The silhouette coefficients are generally close to 1 (i.e., ideal



Fig. 1. Effect of the synchronisation rate parameter for the two datasets. We have
the full plots on the left part and the zoom in on the right part. The zoom in figures
show the variation in the measures that have very small scores compared to the XYT
and route similarity separation scores.

case), except for cases wherein the silhouette coefficient is 0. These cases refer to
instances wherein only a single flock or no flock was found, making the silhouette
coefficient inapplicable.

Effect of the min time slices (∆T ) Parameter min time slices and
synchronisation rate are parameters that are both related to time. Since the
plots and observations for these parameters are generally similar, we no longer
present the plots for min time slices.

As observed with synchronisation rate, an increasing value of ∆T results
in fewer number of discovered moving flocks, and, generally, lowering the XYT
and route similarity separation scores. The XYT- and route similarity-based
silhouette coefficients are either close to 1 when more than a single flock is
found, or 0, otherwise. Based on the experiments, a value of 2 or 3 time slices
is ideal for the DNP dataset since there is a large drop in the XYT separation
score when ∆T = 4. Same is true for the OctoPisa dataset.

Effect of the min points (κ) Parameter Recall that another parameter
of the flock algorithm is min points, which refers to the minimum objects that
should consist a flock. Based on these experiments, we conclude that the selection
of minimum number of points is the most trivial since a large value for min points



tends to produce no flock or few flocks; it is a tradeoff between having more flocks
but with fewer members, or having few flocks but with more members.

Effect of the radius (ε) Parameter Lastly, we have also observed the ef-
fect of the radius parameter, which defines the spatial closeness among flock
members. As observed in Figure 2, the number of flocks generally increases as ε
increases. Meanwhile, the flock cohesion degrades (i.e., intra-distance increases)
as ε increases. The XYT flock separation score tends to improve as ε increases
when excluding the cases wherein the discovered flocks do not overlap in time
(i.e., maximum XYT separation score is obtained) or no flocks were found. Mean-
while, the route similarity separation score generally improves as larger values
of ε are used. As with previously observed parameters, the silhouette coefficients
for varying ε remains close to 1.

The effect of radius as compared with the effect of the other parameters is
as follows:

1. Out of all the scores used in assessing the effects of the parameters, the
number of moving flocks has been the most sensitive. Generally, its value
is directly proportional to the value of ε while it is inversely proportional
to the other parameters. It is also worth noting that a higher number of
moving flocks does not necessarily mean that the obtained flock results is
better since the quality of the moving flocks may decrease when there are
too many flocks discovered.

2. Compared to other flock validity measures, we consider flock cohesion as
most important since it is in harmony with and explicit in the definition of a
flock (i.e., a flock consists of members that are spatially close together over a
specific time duration). While the flock cohesion score linearly increases (i.e.,
flock cohesion degrades) as the ε increases, the cohesion score did not change
as much with respect to changing values of the other parameters. Thus, we
can conclude that the radius has a larger impact on the obtained flock results
compared to the other parameters. Excluding the cases wherein no flocks
are discovered (i.e., the flock separation score is irrelevant) and the cases
wherein there is no overlap in time among the discovered flocks (i.e., the XYT
separation score is set to the maximum), higher ε generally improves the
separation scores whereas higher values for the other parameters generally
degrades the separation scores.

3. As a final point, the silhouette coefficient scores obtained by varying different
parameters for both datasets were consistently close to 1, except for cases
where less than 2 flocks were found.

Based on these experiments, we conclude that (1) The selection of minimum
number of points is most trivial since a large value for min points tends to a
few flocks, if any at all; it is a tradeoff between having more flocks but with
fewer members, or having few flocks but with more members. We also conclude
that (2) the most crucial parameter is the radius, since it exhibited a larger
effect on the flock cohesion score compared to the other parameters. Lastly, we



conclude that (3) while radius is the most crucial parameter, it is still important
to choose good values for the other parameters since they still affect the quality
of the discovered flocks.

Fig. 2. Effect of the radius parameter with respect to flock quality measures in the
two datasets.

4.3 Finding a Suitable radius Value

Since radius is a crucial parameter of the flock algorithm, we propose the fol-
lowing technique, which is an extension of the technique introduced for the Eps
parameter of DBSCAN. Since DBSCAN deals with single n-dimensional data
points while the flock algorithm deals with 3D data points (spatial component
plus time) that are connected through object IDs, adjustments to their technique
are necessary to accommodate the points linked by the same object IDs. The
general idea of the extended technique is to compute the k-th distance among
objects that co-occur in the same time instant where k is min points − 1 and
k-th distance refers to the distance of a point from its k-th nearest neighbour.
Once the k-th distances have been computed for each point, they are sorted in
non-ascending order and plotted as a line graph. The portion in which there is
a sudden decrease in the k-th distance suggests an upper bound for the radius



parameter of the algorithm. It is important to note that the trend of the plots in
Figure 3 from right to left is as follows: increasing distance leads to the inclusion
of more entities as members of discovered flocks. This becomes less apparent
once we reach the portion of sudden decrease up to the leftmost part of the
plots. Within this range, larger distance may lead to an increase in more enti-
ties included members in the discovered flocks, but this increase is very small.
In fact, the leftmost part of the plots represent the cases wherein very large
distance values no longer results in any increase of the entities. This happens
when all entities are already member of one and the same flock since the chosen
radius, which is based on the plots’ k-th distance, is too large.

Fig. 3. Plot for k-th nearest neighbours for selected k’s in the DNP (left) and the
OctoPisa (right) datasets.

Using the top part of Figure 3 for the DNP dataset, a suggested radius value
should be below the 500m-2000m range for flocks with at least 3 members (i.e.,
k = 2).

The obtained plot for the OctoPisa dataset is shown on the bottom part of
Figure 3. It suggests 3000m-4000m as an upper bound for the radius. This is
reasonable since the OctoPisa dataset covers a wider spatial area (about 4600
Km2 vs about 48Km2 of DNP). It is also worth noting that the plots suggest
different radius values for varying k’s and yet, the division between the objects
that would be included in some flock and those that are considered as noise is
almost the same. Combining the suggested upper bound with contextual knowl-
edge and the observation on the effect of radius, we recommend that a good
range of values for radius is between 80m to 300m for DNP and between 50m to
300m for OctoPisa. Table 1 summarizes the main recommendations for a good
range of parameter values for the two datasets.

5 Conclusions and Future Work

This paper provides an empirical evaluation of the effects of parameters in two
different moving objects datasets, aimed at delineating a data-driven parameter
estimation method for flock mining. We have evaluated the parameter setting



Parameter
Name

OctoPisa DNP Remarks

κ 2-3 2-3
Prefer higher values but should consider number of
discovered flocks, cohesion and separation scores

∆T 3-4 2-3
Prefer higher values but consider number of dis-
covered flocks, cohesion and separation scores

R
< 4 mins.
best: 1-2

< 6 min.
best: 1 & 4

Based on XYT separation score

ε
50m to
300m

80m to
300m

the DBSCAN-based plot (gives the optimal result
in terms of cluster assignment) and the plots on
moving flocks, cohesion and separation scores

Table 1. A table summarizing the main suggestions for flock parameters

methods in trajectories of pedestrian moving in a park and GPS data sets of
moving vehicles.

We are also studying algorithm validation methods, which has been omitted
here for lack of space. We are extending the experiments including additional
trajectory datasets to further validate our results and to propose a formal frame-
work for general flock mining parameters evaluation. Future work includes the
extension of this approach to mining other kinds of moving objects such as ani-
mals.
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