
Summary of:
A framework for quantitative modeling and
analysis of highly (re)configurable systems

M. H. ter Beek1[0000−0002−2930−6367], A. Legay2, A. Lluch
Lafuente3[0000−0001−7405−0818], and A. Vandin3[0000−0002−2606−7241]

1 ISTI–CNR, Pisa, Italy
2 UCLouvain, Louvain-la-Neuve, Belgium

3 DTU, Lyngby, Denmark

Abstract. This short paper summarises the contributions published
in [4], where we introduce QFLan, a framework for quantitative mod-
eling and analysis of highly (re)configurable systems, like software prod-
uct lines. We define a rich domain specific language (DSL) for systems
with variability in terms of features, which can be dynamically installed,
removed or replaced, capable of modeling probabilistic behavior, possi-
bly subject to quantitative feature constraints. High-level DSL specifica-
tions are automatically encoded in a process algebra whose operational
behavior interacts with a store of constraints, which allows to separate
a system’s configuration from its behavior. The resulting probabilistic
configurations and behavior converge seamlessly in a semantics based on
discrete-time Markov chains, thus enabling quantitative analysis. An ac-
companying Eclipse-based tool offers a modern integrated development
environment to specify such systems and to perform analyses that range
from the likelihood of specific behavior to the expected average cost, in
terms of feature attributes, of specific system variants. Based on a seam-
less integration with the statistical model checker MultiVeStA, QFLan
allows to scale to larger models with respect to precise probabilistic anal-
ysis techniques. We provide a number of case studies that have driven
and validated the development of the QFLan framework. In particular,
we show the versatility of the QFLan framework with an application to
risk analysis of a safe lock system from the security domain.

1 Extended Abstract

In [1, 2], we presented various facets of the probabilistic modeling language
QFLan, which is capable of describing a wide spectrum of aspects of (software)
product lines (SPL) or configurable (software) systems in general. After a survey
in the invited contribution [3], we provide a comprehensive presentation of the
QFLan framework, consisting of a high-level modeling language with advanced
tool support, in [4] and an accompanying tool paper [7]. Moreover, to illustrate
the versatility of the QFLan framework, [4] contains case studies from different
application domains. One of them concerns risk assessment in a security scenario
with high variability that makes use of so-called attack trees. We show how to
apply QFLan to the seminal example from that area: Schneier’s Safe Lock [5,6].

2 M.H. ter Beek et al.

Figure 1 depicts the attack tree from [5]. It specifies a risk assessment for a
safe lock system. An attack tree is essentially an and/or tree, whose nodes repre-
sent goals, and sub-trees represent sub-goals. In this case, the root represents the
main threat under analysis, namely the lock being opened by an attacker. Each
of its children are possible ways of enacting such threat. The sub-goal Eavesdrop
has two sub-goals that need to be accomplished (thus their combination as and -
children). Nodes are decorated with an estimation of the cost that the attacker
would have to pay to succeed in enacting the corresponding action. The classical
analysis of such trees is to compute the minimal cost for an attacker to succeed.

Fig. 1. Schneier’s attack tree from [5] Fig. 2. Feature model representation

Attack trees can easily be modelled as so-called feature models, with the
following rationale: a node, representing a goal, can be modeled as a feature of
the system which the attacker tries to activate. The sub-goal relation is modeled
by the feature hierarchy. The attack tree of Fig. 1 can be modeled as in Fig. 2.

We introduce a slight variation to overcome a well-known limitation of the
original attack trees, namely the inability to encode the ordering of events.
Indeed, Listen to Conversation should occur before Get Target to State Combo,
which we can model with a requires cross-tree constraint. A feature model de-
fines which configurations are valid, but not how (i.e., in which order) to con-
figure them. QFLan does model (re)configuration: features can be dynamically
installed, removed or replaced as long as at any point in time all constraints
are satisfied, including those imposed by the feature model. As noted in [4], the
requires cross-tree constraint from Get Target to State Combo to Listen to Conver-
sation implies an order: whenever QFLan tries to install (i.e., the attacker tries to
activate) Get Target to State Combo, it fails to do so unless Listen to Conversation
was installed (i.e., activated) before. As a matter of fact, the flexibility of the
way feature models are specified in QFLan allows us to specify richer relations
among sub-goals. For instance, we can specify that Eavesdrop is only successful
if the attacker first listens to a conversation and then gets the target to state
the combo, thus refining the original and -relation among such sub-goals.

Quantitative Modeling and Analysis of Highly Configurable Systems 3

idle

install(PickLock),1

...
install(Bribe),1

��

tryPickLock

fail,10oo

install(PickLock),1

idle

try,1

00

try,1

..

...

tryBribe

oo

install(Bribe),1

QQ

Fig. 3. PowerfulAttacker (top)
and FailingAttacker (bottom)

A notable advantage of using QFLan for such
scenarios is that we can model attacker behavior
and study the system’s robustness against them.
Consider the attackers sketched in Fig. 3 (cf. [4]
for their process specifications). An attacker is
specified in terms of states and transitions among
them, each labeled with the performed action, a
weight to probabilistically choose the transition
to be executed, and optional variable updates.

Powerful attacker always succeeds in trying to
achieve a goal and has unlimited resources. Fail-
ing attacker can fail, may need several attempts
(modeled via weights) and has limited resources.
Clearly, reasonable attackers stop attacking after
a successful attack. This can be expressed in QFLan using two action constraints:

begin action constraints
do(tryAction) -> !has(OpenSafe) do(instal l (...)) -> !has(OpenSafe)

end action constraints

QFLan’s rich specification language allows to express further constraints on the
accepted classes of attacks. Consider the following two quantitative constraints:

begin quantitative constraints
{ cost(Root) <= 100 } { cumul_cost <= 20 }

end quantitative constraints

The first restricts to (successful) attacks that cost less than $100K (i.e.,
install features with less than that price, cf. the feature model in Fig. 2). The
second constraint instead restricts to attacks (independently of their success)
that cumulated less than 20 attempts. Noteworthy, using the first constraint we
restrict the family of admissible products, while the latter constraint regards
only the behavioral part of the model. In fact, cumul cost is not an attribute
but a variable, which can be changed through a memory update in the behavior.
We use it as a counter to record the number of times that an attack is tried.

For both attackers, we want to know the probability for an attack to succeed
in a given amount of time and its average cost. QFLan can run such analyses by
querying, at each of the first 40 simulation steps (eval from 0 to 40 by 1),
the probability of installing the feature OpenSafe, the cost of the correspond-
ing variant (cost(Root)) and the attempts cumulated by the failing attacker
(cumul cost) while trying to install the features corresponding to the sub-goals:

begin analysis
query = eval from 0 to 40 by 1 : { OpenSafe[delta = 0.05] , cost(Root) ,

cumul_cost } default delta = 1 alpha = 0.05
end analysis

QFLan estimates these properties as the mean of n samples obtained from n
independent simulations, with n large enough (but minimal) to grant that the
size of the (1−α)× 100% confidence interval for the expected value is bounded
by δ, i.e., a confidence interval is specified in terms of two parameters: α and δ.

4 M.H. ter Beek et al.

0 10 20 30 40

Steps

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
su

cc
e

ss

Powerful attacker
Failing attacker 20
Failing attacker 10

Fig. 4. Probabilities of successful attacks

0 5 10 15 20 25 30 35 40

Steps

0

10

20

30

40

50

60

A
ve

ra
g
e
 c

o
st

s

Cost powerful attacker
Cost failing attacker 20
Cost failing attacker 10

Cumul_cost failing attacker 20
Cumul_cost failing attacker 10

Fig. 5. Costs of successful attacks

We consider three configurations: (a) a powerful attacker with constraints
as specified above; (b) an attacker that might fail with the same constraints;
and (c) an attacker that might fail with less resources, obtained by changing the
constraint on the cumul cost to { cumul_cost <= 10 }. This is obtained by
running once the analysis on each model variant, each requiring about 12 seconds.

Figure 4 plots the probabilities of successful attacks. The powerful attacker
succeeds with probability almost 1 after one step, but for the other attackers the
probability of success increases slowly. For constraint { cumul_cost <= 10 },
the probability of success stabilizes at ± 0.6 after 20 steps. Indeed, cumul cost

increases by 1 every two steps. Instead, for { cumul_cost <= 20 }, the proba-
bility reaches 0.8 after 40 steps, but this is not due to the mentioned constraint. In
fact, Fig. 5 plots the costs and cumulative attempts for the model variants. The
average cumulative attempts for the failing attackers do not diverge enough to
attribute the different dynamics of the two attackers to the mentioned constraint.
Finally, note that costs evolve similarly to probabilities, but with different scales.

References

1. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Quantitative Analysis
of Probabilistic Models of Software Product Lines with Statistical Model Checking.
EPTCS 182, 56–70 (2015). https://doi.org/10.4204/EPTCS.182.5

2. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical Analysis of
Probabilistic Models of Software Product Lines with Quantitative Constraints. In:
SPLC. pp. 11–15. ACM (2015). https://doi.org/10.1145/2791060.2791087

3. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical Model Check-
ing for Product Lines. In: ISoLA. LNCS, vol. 9952, pp. 114–133. Springer (2016).
https://doi.org/10.1007/978-3-319-47166-2 8

4. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: A framework for quanti-
tative modeling and analysis of highly (re)configurable systems. IEEE Trans. Softw.
Eng. (2018). https://doi.org/10.1109/TSE.2018.2853726

5. Schneier, B.: Attack trees. Dr. Dobb’s Journal (December 1999)
6. Schneier, B.: Secrets & Lies: Digital Security in a Networked World. Wiley (2000)
7. Vandin, A., ter Beek, M.H., Legay, A., Lluch Lafuente, A.: QFLan: A Tool for the

Quantitative Analysis of Highly Reconfigurable Systems. In: FM. LNCS, vol. 10951,
pp. 329–337. Springer (2018). https://doi.org/10.1007/978-3-319-95582-7 19

https://doi.org/10.4204/EPTCS.182.5
https://doi.org/10.1145/2791060.2791087
https://doi.org/10.1007/978-3-319-47166-2_8
https://doi.org/10.1109/TSE.2018.2853726
https://doi.org/10.1007/978-3-319-95582-7_19

	Summary of: A framework for quantitative modeling and analysis of highly (re)configurable systems

