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Abstract. We present a kinetic approach to the formation of urban agglomerations which
is based on simple rules of immigration and emigration. In most cases, the Boltzmann-
type kinetic description allows to obtain, within an asymptotic procedure, a Fokker–Planck
equation with variable coefficients of diffusion and drift, which describes the evolution in
time of some probability density of the city size. It is shown that, in dependence of the
microscopic rules of migration, the equilibrium density can follow both a power law for large
values of the size variable, which contains as particular case a Zipf’s law behavior, and a
lognormal law for middle and low values of the size variable. In particular, connections
between the value of Pareto index of the power law at equilibrium and the disposal of the
population to emigration are outlined. The theoretical findings are tested with recent data
of the populations of Italy and Switzerland.

Keywords: Kinetic models; Fokker–Planck equations; Zipf’s law; Lognormal distribution;
Large-time behavior.

1. Introduction

The study of social and economic interactions in multi-agent systems led to an interest-
ing variety of mathematical models which, starting from elementary interaction rules, have
produced various emergent phenomena [22, 73, 76, 83]. In socio-economic modeling, these
systems are composed not by particles but by humans, and every individual usually inter-
acts with a very limited number of peers, which appears negligible compared to the total
number of people in the system. Nevertheless, the phenomena are characterized by unex-
pected global behaviors, like the formation of very stable curves for the wealth distribution
[15, 25, 27, 28, 30, 31, 35, 36, 37, 38, 58, 59, 61, 68, 72, 84, 87], or the emergence of consensus
about a specific issue [11, 12, 13, 14, 16, 17, 18, 19, 29, 33, 39, 47, 48, 49, 50, 71, 85, 86].

The description of apparently different social phenomena has its common basis in statistical
physics. In particular, methods borrowed from kinetic theory of rarefied gases have been
successfully used to construct master equations of Boltzmann type, usually referred to as
kinetic equations, describing the time-evolution of the number density of the population and,
eventually, the emergence of universal behaviors through their equilibria [20, 73, 76].

Among the various emergent phenomena which have been studied so far, one is related to
the understanding of the reasons why the distribution of urban agglomeration, above a certain
size, is well represented by a power law. This phenomenon is striking, since historically, cities
have seen birth, growth, competition, migration, decline and death, but nevertheless their
distribution with respect to size appears very uniform across cultures and economies [5, 6].
While this behavior was first noticed by Auerbach [2] one century ago, a convincing social
explanation came only half a century later by Zipf’s theory [92], who attributed the statistical
formation of a distribution with power tails to the least effort principle of human behavior.
Let us denote by h(v)dv the number of cities having the population size between v and v+dv,
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and by

R(v) =

∫ ∞
v

h(w) dw

the associated cumulative probability distribution function (the rank), which provides the
fraction of cities with size greater than v. Then in Zipf’s law the rank R(v) of a city with
population equals 1/vγ , with γ approximately equal to one. By direct inspections Zipf verified
that the scaling exponent γ = 1 was very close to reality for most societies and across time.

A theoretical derivation of Zipf’s law for cities has been the object of several studies.
Gabaix [44] introduced a random growth for cities which in a suitable limit converge to Zipf’s
law. Zanette and Manrubia [91] proposed a city formation model based on a multiplication
and diffusion process, and find that their results also reproduce Zipf’s law. Other studies
obtained the formation of Zipf’s law as a direct result of migration [70], by assuming suitable
pairwise interactions between inhabitants of different cities. Also Zipf’s law with exponent
one was obtained by Gabaix resorting to simple economics arguments [45]. A slightly different
mathematical modeling has been introduced in [52], where growth and organization of cities
has been modelled as a resource utilization problem, where many restaurants compete, as in
a game, to attract customers using an iterative learning process. The case of restaurants with
uniformly distributed fitness was shown to give rise to Zipf’s law for the number of customers.

On the other hand, variations to this behavior have been observed for countries like the
former USSR or China countries [10, 51]. While the cumulative probability distribution
function of these nations follows a power law for large sizes of the cities, the correct exponent
γ has been shown to take values different from 1 [46, 74]. More recently, the validity of
Zipf’s law for city sizes has been questioned in a number of papers [40, 41, 64, 69, 82, 60]. In
particular, lognormal distribution was proposed as the correct one for city size [40], while a
recent analysis of the size distribution of US cities [8] arrived to the drastic conclusion that
the power law behavior does not hold even in the tail.

Looking for a good fitting of city size distribution in the lower and middle part of the size
has been the object of a number of recent papers [21, 34, 53, 54, 55, 65, 66, 67, 79, 80]. The
conclusion that can be extracted from these accurate simulations based on real data of large
countries (mostly India and Unites States) is that lognormal distribution and its variants
provides an accurate description of the middle part (in agreement with the claim of Eechout
[40]).

While very accurate in recovering the city size distribution function, in general these contri-
butions do no enter into the mechanism responsible of the formation in time of this behavior,
leaving the mathematical modeling of the city size formation largely unexplored. Looking at
the pertinent literature, the interested reader can however extract a number of shared reasons.
Among others, it seems established that the main phenomenon leading to the formation of
cities is the tendency of inhabitants to migrate, tendency which relies in both cultural and
socio-economic reasons, first and foremost the search for new and better living conditions. As
discussed in [70], this is a relatively recent behavior. In very primitive times a small com-
munity (even a family) was able to perform all necessary activities to survive, and there was
no need to aggregate with other families beyond the size of a tribe. This is no more true
in modern times, where mutual cooperation and competition brings people to live together.
Clearly this tendency to aggregate does not work in a single direction, since while a larger
part of population prefers to live in a big city, another part prefers to move towards cities of
middle size, with the hope to reach a better quality of life. Note that migration of population
across cities can be justified on the basis of other motivations, including the possibility to
adjust for resources [7, 52]. In any case, as it happens in all social phenomena, there is a
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certain degree of randomness in the process, which takes into account the possibility that
part of the variation in size of cities could be generated by unforeseeable reasons.

In a related socio-economic context, the behavior of wealth distribution in western societies
exhibits many points of contact with the formation of city size. Indeed, the formation of
a small class of rich people is related to the common desire of the agents to improve their
social condition. This is obtained by trading, which in this latter case plays the role of
migration in the former. In the model of formation of personal wealth introduced in [31],
similarly to binary interactions between particles velocities in the classical kinetic theory of
rarefied gases, the variation law of wealth of agents in a binary trade has been based on
two main assumptions: the saving propensity [26, 25, 78] and the random risk, main novelty
of the modeling in [31]. Then, the time behavior of wealth distribution has been fruitfully
studied by means of kinetic models of Boltzmann type, that largely justified the formation
of Pareto tails [77] on the associated cumulative probability distribution function of wealth
on the basis of few universal exchange rules in linear trading interactions [73, 76]. Indeed, as
the wealth distribution example learns, one of the main consequences of kinetic modeling of
social phenomena is that the microscopic law of variation of the number density consequent
to the (fixed-in-time) way of interaction, is able to capture both the time evolution and the
steady profile of the density, in presence of some conservation law [73, 76].

Following this line of thought, we will discuss the (eventual) appearance of Zipf’s law in
the distribution of city size by resorting to fixed microscopic rules describing the evolution
of city size in terms of certain citizen’s behaviors, that mainly motivates immigration and
emigration. Starting from these microscopic detailed interactions, we will construct kinetic
models of Boltzmann and Fokker–Planck type, which allow to obtain in some cases the explicit
shape of the underlying equilibrium.

The theoretical findings will be tested with real data of Italian and Swiss population. From
the fitting of these data, it it will appear that the city size distribution is a very composite
phenomenon where the behavior of the population can not be identified in a unique way. A
good fitting is indeed obtained by splitting the population in parts which, while homogeneous
in their behavior, differ from each other in scope. Surprisingly, the analysis of data from the
Italian and the Swiss population show that an extremely good fitting is obtained by resorting
to a splitting of the populations in two classes. The behavior of one class determines the
formation of the lognormal distribution observed in the middle part of the distribution, while
the power law behavior of the population of large cities is due to the second class.

The kinetic approach used in this paper allows to a better understanding of the possible
motivations behind the formation of city size distribution. In particular, it allows to obtain
an analytic description of the process of city size forming.

The forthcoming analysis will be based on the asymptotic relationship between Boltzmann-
type equations based on linear interactions with one-dimensional Fokker–Planck type equa-
tions with variable coefficients of diffusion and drift [43]. Then, the explicit form of the
underlying equilibria follows easily by integration of an ordinary differential equation of first
order.

2. Kinetic modeling of Zipf’s law

Following the basic rules of kinetic theory [76], we will focus on the evolution of a multi-
agent system in which agents are identified with urban agglomerations (for simplicity we will
denote these entities with the name cities). Each agent (city) will be entirely characterized
by a number v, that will indicate the number of its inhabitants. While it is clear that v is
a natural number, to avoid inessential difficulties, we will simply assume in the rest of the
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paper that v ∈ R+. As briefly discussed in the introduction, the basic assumption is that the
number of inhabitants of a city will essentially grow by immigration, while the size can change
for various reasons, and exhibit random fluctuations. This process can be fully described by
a sequence of internal elementary variations of size coupled with immigration of inhabitants
from a fixed environment. Hence, each elementary variation of the size v of a city is the result
of three different contributes (cf. [75] for a similar modeling),

(2.1) v∗ = v − E(v)v + IE(v)z + η v.

In (2.1) the variable z ∈ R+ indicates the amount of population which can migrate towards
a city from the environment. It is usual to assume that this value is sampled by a certain
known distribution function, which characterizes the environment itself.

The functions E(v) and IE(v) describe the rates of variation of the size v consequent to
internal (respectively external) mechanisms. The internal rate of variation E(·) is assumed
in the form

(2.2) E(v) = λ
(v/v̄)δ − 1

(v/v̄)δ + 1
.

The rate E(·) has been designed to satisfy at better the main aspects linked to migration.
The value v̄ in (2.2) defines an ideal city size. For Italian cities, the existence of an ideal
size depends on well consolidated historical reasons, that determined in most inhabitants the
conviction that the best quality of life can be reached in cities of middle size (the so-called
province cities). In (2.2) the constant values 0 ≤ λ < 1 and 0 < δ < 1 quantify the intensity
of the rate of migration around the ideal size v̄.

Note that the rate E(v) can assume both positive and negative values. It is negative when
the city size v has a value below the ideal size v̄, and positive in the opposite situation. Hence,
this quantity describes the tendency of the population to reach the ideal size v̄ in the case in
which v 6= v̄. By construction, independently of δ, E(·) satisfies the bounds

(2.3) − λ ≤ E(v) ≤ λ.
Consequently, given the size v, the value λ v describes the maximal amount of population
that can emigrate from the city or migrate towards it in a single microscopic variation. The
presence in (2.1) of the minus sign in front of the function E(v) is due to the obvious fact
that the population tends to increase when v < v̄, since people aims in living in a city of
population v̄, and to decrease if v > v̄.

A further important property is that the rate E(·) is skewed with respect to the value v̄.
This follows from the fact that (2.2) has to represent at best the main economic aspects related
to the variation of the population in a city. While the increasing in size of a city is linked to a
number of positive economic effects, like urbanization and work opportunities, the decreasing
in size is accompanied by various problems, including among others the expensive reuse of
abandoned areas, as well as the decrease of job opportunities. Hence, the function E(·) is
chosen to possess most of the properties of a value function in the spirit of the pioneering
motivations of prospect theory by Kahneman and Twerski [62, 63]. This means that, given a
certain value 0 < s < 1

−E (1− s) > E (1 + s) .

This behavior reflects the fact that, given two cities with size differing of a fixed quantity from
the ideal size v̄ from below and above, a city which has a population below the expected ideal
size will have a more pronounced increase of the number of its inhabitants than the decreasing
of inhabitants of a city with a size bigger than the ideal one. Note however that the intensity
of this variation depends on δ, and it is directly proportional to δ itself.
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Going back to the description of the terms in (2.1), the non negative function IE(v) provides
a measure of the immigration rate, and still quantifies this process in terms of the pre-
interaction size number v. Finally, the term η v describes the random fluctuations of the
population of the city. This term takes into account the unpredictable random changes of
the size, assumed, without loss of generality, of zero mean and finite variance. Since v varies
on the positive half-line, the random parameter needs to be suitably chosen to insure that
the interaction (2.1) maintains the value v∗ on the same domain. Taking bound (2.3) into
account, a consistent interaction is obtained by assuming that

(2.4) η ≥ λ− 1

In this case, starting from a city of size v ≥ 0 it is insured that the interaction (2.1) gives
v∗ ≥ 0.

In reason of the fact that we want to understand the role of the internal migration rate
E(v) in the formation of city size distribution, we will start by assuming that the function
quantifying the rate of immigration from the environment towards cities is constant, IE(v) =
IE . In a second step, we will verify, looking at the resulting kinetic model, that this choice
does not change in a significant way the tails of the steady distribution.

The study of the time-evolution of the distribution of the city size v consequent to interac-
tions of type (2.1) can be studied by resorting to the modeling assumptions of kinetic theory
[76]. Let us indicate by f = f(v, t) the density of cities which at time t > 0 are represented
by their size v ∈ R+. Then, the variation in time of f(v, t) due to (2.1) obeys to a linear
Boltzmann-like equation. This equation can be fruitfully written in weak form. It corre-
sponds to say that the solution f(v, t) satisfies, for all smooth functions ϕ(v) (the observable
quantities)

(2.5)
d

dt

∫
R+

f(v, t)ϕ(v) dv =
1

τ

〈∫
R+×R+

(ϕ(v∗)− ϕ(v)) f(v, t) E(z) dv dz
〉
.

In (2.5), the positive constant τ measures of the frequency of interactions, and plays the role
of the Knudsen number in classical kinetic theory [23, 24]. Also, the symbol 〈·〉 represents
mathematical expectation. Here expectation takes into account the randomness of (2.1),
expressed by the parameter η. The function E(z), z ∈ R+ defines the distribution of the size
of the environment. It is natural to assume that E(z) is a probability density function with
finite moments up to some order larger than two. In particular, the finite average value of
the environment will be denoted by ME .

(2.6)
∫
R+

z E(z) dz = ME .

Hence, the quantityME measures the mean value of the reservoir from which a city can receive
possible immigrants. The meaning of the kinetic equation (2.5) is clear. At any positive time
t > 0, the variation in time of the distribution of the city size v (the left-hand side) is due to
the change in v resulting from interactions of type (2.1) between the city and its environment.
This change is measured by the interaction operator at the right-hand side.

The kinetic equation (2.5) describes the evolution of the density, and allows us to study,
at least numerically, the long-time behavior of the sizes of cities, by recovering a macroscopic
universal behavior.

Note that, the choice ϕ(v) = 1 in (2.5) shows that the kinetic equation is mass preserving, so
that, if f0(v) denotes the initial probability density functions of city sizes, at each subsequent
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time

(2.7)
∫
R+

f(v, t) dv =

∫
R+

f0(v) dv = 1,

and the solution to the kinetic equation remains a probability density.
The choice ϕ(v) = v in (2.5) allows to study the evolution of the mean size value m(t),

defined by

(2.8) m(t) =

∫
R+

v f(v, t) dv.

The evolution of the mean value satisfies the differential equation

(2.9)
d

dt

∫
R+

v f(v, t) dv =
1

τ

(
IEME −

∫
R+

v E(v) f(v, t) dv

)
,

that is not explicitly solvable. If the initial mean value, say m(0), is bounded, it can be shown
that equation (2.9) implies the uniform boundness in time of m(t). In fact, since

E(v) = λ

(
1− 2

1

(v/v̄)δ + 1

)
,

one has the identity

−
∫
R+

v E(v) f(v, t) dv = λ

(
2

∫
R+

v

(v/v̄)δ + 1
f(v, t) dv −m(t)

)
.

Therefore, resorting to the inequality
v

(v/v̄)δ + 1
≤ v̄δ v1−δ,

one obtains ∫
R+

v

(v/v̄)δ + 1
f(v, t) dv ≤ v̄δ

∫
R+

v1−δ f(v, t) dv ≤ v̄δm(t)1−δ,

where the last inequality follows from Jensen’s inequality. Substituting into (2.9) one realizes
that the mean value satisfies the differential inequality

(2.10)
dm(t)

dt
≤ 1

τ

(
IEME − λm(t) + 2λ v̄δm(t)1−δ

)
.

Now, the right-hand side is nonnegative if and only if the positive quantity m(t) ≤ m̄, where
m̄ is the (unique) bounded quantity such that

IEME − λ m̄+ 2λ v̄δm̄1−δ.

Consequently, if m(0) < m̄, the right-hand side of (2.10) is positive, and m(t) starts to
increase, without crossing the value m̄. Conversely, if m(0) > m̄, m(t) starts to decrease. In
any case

(2.11) m(t) ≤ max {m(0); m̄} < +∞.
The above computations allow to show that the eventual steady state of the kinetic model
has a certain number of moments bounded.

However, except in some simple case [3, 4, 84], the Boltzmann-type equation consequent
to interactions of type (2.1) does not allow to recover a precise analytic description of the
emerging equilibria. A further insight into the large-time behavior of the kinetic equation,
and a more accessible description of the possible stationary states can be achieved by resorting
to particular asymptotics which lead to Fokker-Planck type equations [31, 86].
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This asymptotic procedure is a well-consolidated technique which is reminiscent of the so-
called grazing collision limit, fruitfully applied to the classical Boltzmann equation [88, 89, 90]
and to the dissipative versions of Kac caricature of a Maxwell gas [42] introduced in [81]. For
the sake of completeness, we will briefly describe this asymptotic procedure in the next Section.
Further details in its general setting can be found in [43, 56].

3. Quasi-invariant size limits and Fokker-Planck equations

As briefly discussed above, among observable quantities, besides the mass which is con-
served, the first representative ones to be studied are the average values of the density f . Let
A(v, t) denote the deterministic part of the change in size of v, as given by (2.1), that is

(3.1) A(v, z) = IE z − E(v) v.

If we set ϕ(v) = v in (2.5) we have

〈v∗ − v〉 = A(v, z),

and, consequently

(3.2)
d

dt

∫
R+

v f(v, t) dv =
1

τ

∫
R+×R+

A(v, z)f(v, t)E(z) dv dz,

that coincides with (2.9). Likewise, since

〈v∗2 − v2〉 = σ v2 +A2(v, z) + 2vA(v, z),

(3.3)
d

dt

∫
R+

v2 f(v, t) dv =
1

τ

∫
R+×R+

(
σ v2 +A2(v, z) + 2vA(v, z)

)
f(v, t)E(z) dv dz.

Note that, proceeding as in the precise evaluation of the mean value performed in the previous
Section, it can be proven that the moments at the first two orders of the solution to equation
(2.5) remain bounded at any time t > 0, provided that they are bounded initially.

Let us suppose now that any interaction of type (2.1) produces a very small mean change
of the size of the city. This can be easily achieved by multiplying the constant IE and the
function E(·) by some value ε, with ε � 1, and the random variable by εα, for some α > 0.
In other words, given a small parameter ε, one considers the scaling

(3.4) IE → εIE , E(·)→ εE(·), η → εαη.

Concerning the evolution of the average value (3.2) this scaling will produce a small variation
in time of the average, given by

d

dt

∫
R+

v f(v, t) dv =
ε

τ

∫
R+×R+

A(v, z)f(v, t)E(z) dv dz.

To observe an evolution of the average value independent of ε, it is enough to increase the
frequency of interactions. The simplest way to do it is to set τ = ετ . Then, if we denote
f(v, t) = fε(v, t) to outline the ε-dependence, the evolution of the average value for fε(v, t)
satisfies

d

dt

∫
R+

v fε(v, t) dv =
1

τ

∫
R+×R+

A(v, z)fε(v, t)E(z) dv dz,

namely the same evolution law for the average value of f given by (3.2). The reason is clear.
If we assume that the interactions are scaled to produce at each time a very small change in
the size of cities, to observe an evolution of the average value independent of the smallness of
the scaling, we need to suitably increase the frequency of interactions to restore the original
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evolution. Note that, since the random variable η has zero mean, the evolution of the average
value does not depend on α in (3.4).

By using the same scaling (3.4) into the equation (3.3), and τ → ετ , the evolution equation
for the second moment of fε(v, t) takes the form

d

dt

∫
R+

v2 fε(v, t) dv =

1

ετ

∫
R+×R+

(
σε2α v2 + ε2A2(v, z) + 2ε v A(v, z)

)
fε(v, t)E(z) dv dz.

Hence, by choosing α = 1/2, one shows that the evolution of the second moment of fε(v, t),
for any given ε� 1 depends on all the quantities appearing in the interaction (2.1), and

d

dt

∫
R+

v2 fε(v, t) dv =
1

τ

∫
R+×R+

(
σv2 + 2 v A(v, z)

)
fε(v, t)E(z) dv dz +Rε(t),

where the (small) remainder is given by

Rε(t) =
ε

τ

∫
R+×R+

A2(v, z)fε(v, t)E(z) dv dz.

If the remainder vanishes as ε→ 0, one obtains in the limit a closed form for the evolution of
the second moment, given by

(3.5)
d

dt

∫
R+

v2 f(v, t) dv =
1

τ

∫
R+×R+

(
σv2 + 2 v A(v, z)

)
f(v, t)E(z) dv dz

However, one has to note that, while the scaling (3.4) is such that the evolution law of the
average value is independent of ε, the limit evolution law of the second moment, as given
by (3.5), is different from the evolution law (3.3). In particular, for a fixed density f the
right-hand side of (3.3) is strictly bigger than the right-hand side of (3.5). This shows that
the variance of the solution to the kinetic model is strictly bigger than the variance of the
(possible) limit density.

The short discussion about moments contains the main motivations and the mathematical
ingredients that justify the passage from the kinetic model (2.5) to its continuous counterpart
given by the Fokker–Planck description. Before to proceed with computations, let us outline
that the scaling (3.4) is clearly well adapted to the present situation. Indeed, the rates of
variation of the population (the function E(·)) and the immigration rate (the function IE(·))
in a single interaction are in general negligible with respect to the population size. Also, to
observe an appreciable variation of the size one has to wait for an amount of time of the
order of years, and this corresponds to increase the importance of the interaction operator to
observe it in a unit of time. Clearly, the right balance of scaling to observe the phenomenon
in the limit is given by (3.4) with α = 1/2 and τ → ετ .

Given a smooth function ϕ(v), let us expand in Taylor series ϕ(v∗) around ϕ(v). Using the
scaling (3.4) we obtain

〈v∗ − v〉 = εA(v, z); 〈(v∗ − v)2〉 = ε2A2(v, z) + εσ v2

Therefore, in terms of powers of ε, we easily obtain the expression

〈ϕ(v∗)− ϕ(v)〉 = ε

(
ϕ′(v)A(v, z) +

1

2
ϕ′′(v)σ v2

)
+Rε(v, z),

where the remainder term Rε, for a suitable 0 ≤ θ ≤ 1 is given by

(3.6) Rε(v, z) =
1

2
ε2 ϕ′′(v)A2(v, z) +

1

6
〈ϕ′′′(v + θ(v∗ − v))(v∗ − v)3〉,
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and it is vanishing at the order ε3/2 as ε → 0. Therefore, since τ → ετ , the evolution of the
(smooth) observable quantity ϕ(v) is given by

d

dt

∫
R+

ϕ(v) fε(v, t) dv =

1

τ

∫
R+×R+

(
ϕ′(v)A(v, z) +

1

2
ϕ′′(v)σ v2

)
fε(v, t)E(z) dv dz +

1

ε
Rε(t) =

1

τ

∫
R+

(
ϕ′(v)(IEME − E(v)v) +

1

2
ϕ′′(v)σ v2

)
fε(v, t) dv +

1

ε
Rε(t),

where
Rε(t) =

1

τ

∫
R+×R+

Rε(v, z)fε(v, t)E(z) dv dz,

and Rε is given by (3.6). Letting ε → 0, and still denoting the limit density by f(v, t)
shows that in consequence of the scaling (3.4) the weak form of the kinetic model (2.5) is well
approximated by the weak form of a linear Fokker–Planck equation (with variable coefficients)

(3.7)

d

dt

∫
R+

ϕ(v) f(v, t) dv =

1

τ

∫
R+

(
ϕ′(v)(IEME − E(v)v) +

1

2
ϕ′′(v)σ v2

)
f(v, t) dv.

In fact, provided the boundary term in v = 0 produced by the integration by parts vanishes,
equation (3.7) coincides with the weak form of the Fokker–Planck equation

(3.8) τ
∂f(v, t)

∂t
=
σ

2

∂2

∂v2
(
v2f(v, t)

)
+

∂

∂v
((E(v)v − IEME)f(v, t)) .

A brief discussion which clarifies the vanishing of the boundary term can be found in [43].
One of the main advantages in resorting to this asymptotic procedure is that it is possible to
obtain from the Fokker–Planck equation (3.8) its explicit stationary solution, and this follows
by solving an ordinary differential equation of first order.

4. The stationary distribution

The stationary distribution of the Fokker–Planck equation (3.8) is easily found by solving
the differential equation

(4.1)
σ

2

d

dv

(
v2f
)

+ (E(v)v − IEME)f = 0.

Solving (4.1) with respect to g = v2f by separation of variables gives as unique solution to
(4.1) the function

(4.2) f∞(v) =
κ

v2

(
v

(1 + (v/v̄)δ)2/δ

)2λ/σ

exp

(
−2IEME

σ v

)
.

In (4.2) the positive constant κ has been chosen to fix the mass of the equilibrium density
equal to unity. The equilibrium distribution (4.2) has a polynomial rate of decay at infinity
given by

(4.3) 1 + γ = 2

(
1 +

λ

σ

)
.

This rate is related to the both the parameters λ and σ denoting respectively the asymptotic
value of the internal rate of migration and the variance of the random fluctuations. It is
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remarkable that the decay rate does not depend on the values of the ideal size v̄ and of the
constant δ. The expected rank R(v) for large values of v in this situation is

(4.4) R(v) ∼= v−γ = v−1−2λ/σ.

The value γ = 1, namely the classical Zipf’s law is obtained only for λ = 0 (or δ = 0), namely
in absence of the value function E(v) and in presence of a constant rate of immigration from
the background. Hence, the limit value γ = 1 does not correspond to a realistic situation, in
that all the economic reasons behind the formation of city size are not taken into account.
Also, values close to 1 for γ can be assumed or for small values of the parameter λ, or for
large values of the variance σ, that is in presence of large diffusion. Since large diffusion is not
realistic in most situations, values close to one are assumed for small values of the parameter
λ. Consequently closeness to Zipf’s law is typical of countries in which immigration dominates
the internal rate of change of city size, or the population manifests only a limited attractiveness
towards towns of a certain ideal size.

We remark that the description of the city size evolution density by means of the Fokker–
Planck equation (3.8) allows to obtain the steady state profile for the whole range of the size,
thus giving a precise description of the distribution at equilibrium of the population also in
cities of medium and small size. There, a precise fitting of the real population of a country
(when available) allows to better verify whether or not the proposed model is good enough.

Concerning the rate of decay for large values of the city size, the profile of the steady
distribution does not change in a relevant way by assuming the rate of immigration IE(v)
depending on the size v. A natural choice, which generalizes the previous assumption (constant
rate) is given by

(4.5) IE(v) = µ
vα

1 + vα
,

where µ and 0 < α ≤ 1 are positive constants denoting the intensity of the immigration rate.
This choice corresponds to fix the rate of immigration from the surrounding increasing with
respect to the city size, while tending to a positive constant value as v → +∞. Hence the rate
(4.5) represents the normal situation of a country in which cities of big size are more attracting
than cities of small size, for example in view of the different number of opportunities they
offer.

The stationary distribution of the Fokker–Planck equation (3.8) now solves the differential
equation

(4.6)
σ

2

d

dv

(
v2f
)

+ (E(v)v − µ vα

1 + vα
ME)f = 0.

Solving (4.6) with respect to g = v2f by separation of variables gives as unique solution to
(4.6) the function

(4.7) f∞(v) =
κ

v2

(
v

(1 + (v/v̄)δ)2/δ

)2λ/σ ( v

(1 + vα)1/α

)2µME/σ

By assuming

(4.8)
1

σ
(µME + λ) > 1,

it follows that the equilibrium density decays to zero as v → 0. Moreover, the equilibrium
distribution (5.5) has a polynomial rate of decay at infinity given by (4.3). Hence, the immi-
gration rate (4.5), provided µ is such that (4.8) is satisfied, gives the same decay at zero and
the same tail at infinity of the steady distribution (4.2).
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5. The appearing of lognormal distribution

As illustrated in Section 4, in our kinetic model Zipf’s law is determined by an immigration
dominated regime. In this Section we will discuss the opposite situation, namely a society
in which the movements among the inhabitants of the cities are dominant with respect to
immigration from outside.

If we consider as before that immigration from the environment is mainly directed towards
cities of big size, this behavior is particularly well-adapted to describe the distribution of cities
of small and mean size. Proceeding as in [57], for a given small δ we rewrite the internal rate
of variation as

(5.1) E(v) = δλ
1

δ

(v/v̄)δ − 1

(v/v̄)δ + 1

Consequently, if we assume that the variation of size due to the internal rule is small (δ ≈ ε),
we can consistently write, for v ≤ V < +∞ [57]

(5.2) E(v) ≈ ελ
2

log
v

v̄
.

Hence, by assuming a dominated internal rate of migration, and a random fluctuation as in
Section 3, we can apply to the kinetic equation (2.5) the scaling

(5.3) IE(v)→ ε1+βIE(v), E(v)→ ε
λ

2
log

v

v̄
, η → ε1/2η,

where now the positive exponent β enhances the irrelevant effects of the immigration towards
cities of small and middle size. Proceeding as in Section 3 (cf. also the computations in [57])
we obtain that the limit density, say g = g(v, t) now solves the Fokker–Planck equation

(5.4)
∂g(v, t)

∂t
=
σ

2

∂2

∂v2
(
v2g(v, t)

)
+
λ

2

∂

∂v

(
v log

v

v̄
g(v, t)

)
.

Equation (5.4) describes the evolution of the density g(w, t) of the size of cities when the
internal rate of change is dominant with respect to immigration from the environment. At
difference with the solution (4.2) of the Fokker–Planck (4.1), the steady state density does
not have fat tails at infinity, and results to be a lognormal density, with parameters linked to
the details of the microscopic internal size variation.

The unique steady solution to (5.4) of unit mass is given by the lognormal density

(5.5) g∞(v) =
1√

2πν v
exp

{
−(log v − µ)2

2ν

}
,

where

(5.6) ν =
σ

λ
, µ = log v̄ − ν.

Hence, the mean and variance of the equilibrium distribution (5.5) are given respectively by

(5.7) m(g∞) = v̄e−ν/2, V ar(g∞) = v̄2
(
1− e−ν

)
.

Note that the moments are expressed in terms of the parameters v̄, σ and λ denoting re-
spectively the optimal size v̄, the variance σ of the random fluctuations and the asymptotic
size λ of the internal rate function E. The hypothesis which leads to the appearance of the
lognormal distribution of city size, while well motivated by prospect theory, and accurate for
cities of middle size, does not take into account the role previously played by immigration.

This effect can be easily introduced by splitting the population in two parts, the first part
characterized by its tendency to move towards cities of middle size (characterized by an ideal
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size v̄M ), the second one with tendency to move towards cities of large size (characterized
by an ideal size v̄L � v̄M ). By assuming that the evolution of the distributions u1(v, t) and
u2(v, t) of the two parts of inhabitants is described by a Fokker–Planck equation of type (5.4),
each one with its characteristic parameters, the distribution of the whole population

u(v, t) = λ1u1(v, t) + λ2u2(v, t), λ1 + λ2 = 1,

will converge to a steady state given by the weighted sum of two lognormal densities of type
(5.5). Numerical experiments, reported in the forthcoming Section 6, show that one can
obtain in this way a very accurate fitting of the populations of Italy and Switzerland, and
that the parameter λ1 that represents the percentage of the population which aims in living
in cities of middle size is dominant with respect to λ2.

6. Numerical Experiments

In this section, we report our numerical experiments using the open data published by the
Italian National Institute of Statistics 1 and by the Swiss Federal Statistical Office 2. The first
dataset contains the size distribution of 8 006 Italian cities, ranging from the smallest village,
to the largest city, which is Rome with 2 873 494 citizens. These data refer to the last official
Italian census of 2016. The second dataset contains the size distribution of 2 289 Swiss cities,
with the largest city, which is Zurich with 396 955 citizens. These data refer to the last official
Swiss census of 2014. Table 6.1 reports the basic statistics of the two datasets, giving in order
the minimum, the first quartile, the median, the mean, the third quartile and the maximum
values of city size. Clearly, the basic statistics are clueless about the real distribution of cities
size.

Table 6.1. Basic statistics of Italian and Swiss distribution of cities size.

Min 1st Quart. Median Mean 3rd Quart. Max
Italy 30 1 019 2 452 7 571 6 218 2 873 494
Switzerland 13 642 1 425 3 638 3 513 396 955

Dataset on distribution of cities size are in the literature studied and fitted using a Zipf’s
law. However, if we just take the logarithm of every city size and we plot the resulting
distribution, we get what looks like a classical Gaussian distribution, as shown in Figures
6.1(a) and 6.2(a), respectively for the Italian and Swiss dataset (and it is almost impossible
to distinguish the shape of the two distributions). Even if we looks to the inverse cumulative
functions, given by Figures 6.2(b) and 6.2(b), it is pretty hard to distinguish the resulting
function from a Gaussian cumulative function. However, if we analyze the inverse cumulative
functions resorting to bi-logarithm plots, it is possible to notice that a single Gaussian does
not capture the trend of the tails of the distribution, as shown with the red lines in Figures
6.1(c), 6.1(d), 6.2(c), and 6.2(d). We remark that anyway even a single Gaussian is able to
perfectly fit the lower tails, which are never captured by the celebrated Zipf’s law.

In order to improve the fitting of the distributions also on the higher tails, we have fitted
the distributions of cities sizes using a multi-modal Gaussian model, using the mixtools
software package 3 available in the R statistical programming language. For full details on
the mixtools package we refer the interested reader to [9]. Basically, using mixtools we were

1http://www.istat.it, last visited June, 20th, 2018.
2http://www.bfs.admin.ch, last visited June, 20th, 2018.
3https://cran.r-project.org/web/packages/mixtools, last visited, June, 20th, 2018.
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able to fit in logarithmic scale the (steady) distribution of cities size with the mixture of two
Gaussian

(6.1) N∞(v) = λ1N(v;µ1, σ1) + λ2N(v;µ2, σ2)

Table 6.2 reports the parameters fitted by mixtools for both datasets and Figures 6.3 and 6.4
shows the respective probability density functions. It is evident that for both datasets there is
a “dominating” Gaussian. In fact we have λ1 = 0.945 for Italy and λ1 = 0.967 for Switzerland.
In both cases, the correction that serves to capture the behavior of the higher tails, and which
has both larger means and larger deviations, is obtained by adding a tiny Gaussian (note the
small values of λ2). We remark that the blue solid line on top of the histograms represents the
corresponding bimodal distributions. Finally, by looking at the green lines in Figures 6.1(c),
6.1(d), 6.2(c), and 6.2(d), the goodness of fitting cities size distributions with a mixture of
two Gaussian is striking evident.

Table 6.2. Mixture of two Gaussians: Model Parameters.

λ1 µ1 σ1 λ2 µ2 σ2
Italy 0.945 3.371 0.563 0.054 3.993 0.731
Switzerland 0.967 3.162 0.533 0.032 3.483 0.896

Figure 6.1. Probability distribution function and inverse cumulative func-
tions of Italian cities.
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Figure 6.2. Probability distribution function and inverse cumulative func-
tions of Swiss cities.

Figure 6.3. Log Size Distribution of 8006 Italian Cities, Census 2016.

7. Conclusions

Kinetic modeling is a powerful tool which allows to study a number of collective phenomena
in a multi-agent system on the basis of few microscopic rules of interaction. We applied
these techniques to the study of the city size in a country, aiming in understanding the
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Figure 6.4. Log Size Distribution of 2289 Swiss Cities, Census 2014.

elementary mechanism able to produce in time the observed behavior of the distribution of
urban agglomerations. The main finding in our analysis is that a power law for large size
of city size is obtained in presence of both internal movements of inhabitants between cities
and immigration from an external background. Internal movements have been realistically
described in terms of a value function in the spirit of the prospect theory by Kahneman and
Twersky [62, 63].

When the internal movements are dominant, it is shown that the steady city size distri-
bution takes the form of a lognormal density, which perfectly fits the distribution of cities of
small and middle size, while a mixture of two lognormal densities is able to carefully describe
the whole range of the population. Numerical fitting of data relative to cities of Italy and
Switzerland illustrate the goodness of the proposed kinetic modeling.

The present analysis illustrates the difficulties present in identifying in a precise way the
city size distribution, and the eventual formation of a power law. At difference with previous
attempts, we believe that the kinetic description is helpful to connect in a clear way the
microscopic mechanism responsible of the variation of the population size with its global
behavior.
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