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Abstract

Topological Data Analysis (TDA) is proving to be an excellent tool for shape
analysis of digital data. The recently found synergy with artificial intelligence gave
rise to Topological Machine Learning (TML), which aims to combine the expressive
power of computational topology with the accuracy of machine learning to provide
a comprehensive and automatic framework for data classification. The aim of this
thesis is twofold: to develop current applications of TML in practical scenarios,
with emphasis on the most overlooked aspects of its pipeline, and to connect the
theory of TDA with a broader class of maps, the Group Equivariant Non-Expansive
Operators (GENEOs). In the first part of this dissertation, we develop a pipeline
to study digital data by means of TML in order to validate the practical aspects
of our theory. We apply this pipeline to benchmark and experimental datasets,
achieving state-of-the-art accuracies in biomedical scenarios. Moreover, we perform
an empirical but extensive study of the stability of features arising from the various
homological dimensions with respect to noise and points distribution in the persist-
ence diagram. Such a comparison is novel in the TML literature and our findings
show that results coming from the concatenation of each homological dimension
available are the best approach in the vectorisation step. We later expand on the
main concept of TDA, proving that the functor that computes persistence diagrams
can be seen as a particular instance of GENEOs (Theorem 4.1.4). The GENEO
framework allows us to inject arbitrary equivariances in a machine learning setting
and represents a new possible approach to neural network architecture. Next, we
fully present the theory of GENEOs and their properties, such as convexity and
concavity, under suitable assumptions. This thesis expand the GENEO theory with
two new tools to define such operators, namely using symmetric functions (The-
orem 5.3.24) and a characterization theorem of linear GENEOs between arbitrary
functional spaces (Theorem 6.2.2). Finally, we develop a new neural network ar-
chitecture with GENEOs instead of neurons and show its potential in a couple of
applications.
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Introduction

The goal of this thesis is to enhance the connection between Topological Data
Analysis (TDA) and the theory of Group Equivariant Non-Expansive Operators
(GENEOs), as well as develop the theory and applications of both concepts. To-
pological data analysis computes descriptors of data to encode its shape in a more
manageable and useful object called persistence diagram. The first part of the thesis
focuses on TDA applications and theory. In particular, we provide a novel attempt
to standardise a fragmented part of the TDA pipeline, with empirical evidence
to support our claim. Moreover, we perform three new case studies of real-world
datasets using a TDA pipeline, achieving state-of-the-art accuracy results. In the
second part of the thesis we generalize the theory of TDA, proving that the oper-
ator that produces persistence diagrams belongs to a family of operators that we call
GENEOs. Furthermore, we develop the theory of GENEOs with two new methodo-
logies to build them and we provide a few applications of this new framework. The
two parts of the dissertation rely on different but related mathematical concepts.
In this dissertation we further link them with a proof that the mathematical core
of TDA can be seen as an element of the GENEO space.

In the last decades, the need to analyze and extract meaningful information
from a large quantity of data is becoming fundamental in many aspects of scientific
research and beyond. Deep learning methods achieve state-of-the-art performances
in a huge variety of real-world tasks. Part of their success is due to the fact that
raw data are sufficient, if not better, than hand-crafted features for learning a spe-
cific task. Despite their extreme effectiveness, however, little effort has been made
to standardise the theory behind neural networks. Furthermore, as deep network
applications grow in complexity, so do their architectures and we have reached a
point where their architectures are often as task-specific as the hand-crafted fea-
tures that they intended to replace. In data analysis, Topological Data Analysis
(TDA) [1] is establishing as one of the most prominent lines of research since it al-
lows to exploit symmetries and invariance of data, overcoming the infamous course
of dimensionality [2], of which many deep learning methods suffer. Moreover, to-
pological data analysis produces low dimensional models required in the so-called
explainable artificial intelligence [3]. Incidentally, a low dimensional model is also
less prone to overfitting. TDA allows to extract powerful representations of the
data shape that are both stable with respect to noise and allow for easy low dimen-
sional interpretations. These features can play an important role in deep learning
[4, 5]. The mathematical core of TDA is Persistent Homology (PH), which has
been deeply investigated both from a theoretical and an applicative point of view

vii



viii INTRODUCTION

[6, 7, 8, 9, 10, 11]. On a broader perspective, persistent homology can be seen as a
map that transform data into multisets. Moreover, persistent homology is invariant
with respect to homeomorphisms of data by construction. Defining a new mathem-
atical model that stems from functional analysis and interpreting data as points in
a function space, operators that act on data are in fact maps between functional
spaces. In this optic, the computation of persistence diagrams can be seen as a
group equivariant non-expansive operator [12]. In general, neural networks (or any
intelligent observer) can be seen as an agent acting on data and transforming them
in order to better study them. The key idea of this new mathematical framework is
to shift the focus from the data to the space of transformations of the data, and the
symmetries they are associated with. The goal is therefore to study the geometrical
and topological properties of the space of GENEOs, of which PDs are simply an
element. Moreover, the group of equivariance can be changed depending on the
task and the resulting framework is more flexible than persistent homology, which
is equivariant with respect to a fixed group. This model is what we call the theory
of GENEOs.

Broadly speaking, persistent homology aims to extract features from data that
encode its shape. More importantly, the features extracted represent the data shape
not only from a static point of view, that is, from a fixed perspective like many com-
petitors, rather it is interested in the evolution of a class of features arising from
algebraic topology. The common assumption is that features that are detectable at
multiple scales are the most important in describing the shape of the data. More
precisely, persistent homology studies the evolution of the Betti numbers associated
with a finite family of nested subcomplexes of the data, and keeps track of their
appearances and vanishing. The process that computes such a family of subcom-
plexes is called filtration, which represent one of the main geometric component of
TDA. The collection of pairs (birth, death) of topological invariants, counted with
multiplicity, is usually referred to as Persistence Diagram (PD), and it is the feature
extracted by persistence homology that we are going to exploit in this dissertation.
In particular, each point of the PD is associated to a specific homological dimen-
sion. In lower dimensions, such points offer an easy interpretation. In particular,
the collection of points in homological dimension zero represents the evolution of
the connected components of the data (i.e. the number of 0-dimensional holes plus
one). Points in homological dimension one represent the evolution of holes in the
data (i.e. 1-dimensional holes) and analogously in higher dimensional counterpart.
When endowed with the bottleneck or Wasserstein distance, the most common in
literature, the space of PDs lacks fundamental properties to be directly employed in
machine learning. Nevertheless, TDA solves this issue with suitable embedding in
vector or Hilbert spaces ([13, 14, 15] just to name a few). Such embeddings are called
vectorisations. Currently, the features extracted from TDA achieve state-of-the-art
performance in many tasks [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. In this
field, some limitations still remain. First of all, applications to real-world datasets
are still scarce. Moreover, the literature is not consistent on how to exploit the po-
tentiality of the features extracted. We recall that different homological dimensions
encode information about different degrees of connection of the shape of the data.
In many cases, the various homological dimensions do not carry equal importance
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in a classification task. In the vectorisation step of the TDA pipeline the literat-
ure is fragmented on how to exploit the information provided by such dimensions.
In particular, we find examples in bibliography where the homological dimensions
deemed less important are entirely discarded in such a step [28, 29, 30, 31, 32, 33].
Other times, each dimension is vectorised and subsequently concatenated altogether
[14, 34, 35, 36] (just to name a few). Again, both approaches can be used inter-
changeably, depending on the task [27, 37, 38]. The implicit assumption is that only
the best-performing approach is reported. The first contribution of this dissertation
to the theory of TDA lies in a novel attempt to standardise the literature concern-
ing the handling of homological dimensions in the vectorisation step. We provide
empirical evidence that the concatenation approach is consistently among the best
performing and never experiments a drop of performance, in contrast with all other
approaches. In doing so, we develop a topological machine learning pipeline along-
side this dissertation that gathers all the major bibliography on TDA and we apply
it to benchmark datasets. To further validate our claims, we perform a study on
the noise incidence of such approaches. Again, such a study is new in the TDA
literature and can provide insights on how to effectively exploit the information
provided by the homological dimensions in the vectorisation step. Incidentally, in
this study we also show that omitting the homological dimension of points in the per-
sistence diagram represents a viable alternative when the data has well-distributed
points in different homological dimensions of comparable cardinality. Finally, the
last contribution of this dissertation to the theory of TDA is the application of the
aforementioned pipeline to three new real-world datasets, thus expanding the liter-
ature of TDA applications. In particular, we performed a case study on upwelling
regimes of the Ibaria / Canary current system and two cases studies of biomedical
signals for chondrogenic bone cancer grading and Alzheimer disease detection. In
both biomedical signals datasets we achieved state-of-the-art accuracies.

Widening the perspective and aiming to provide a more general and flexible
mathematical framework to the operators involved in persistent homology, we flow
in the theory of group equivariant operators. With equivariance with respect to
a group we mean that the operator commutes with the action of the group, and
invariance is a special case of equivariance. The invariance of persistent homology
with respect to homeomorphisms is well known in literature. Moreover, the sta-
bility theorem [39] implies that the operator that maps data to their persistence
diagrams is non-expansive. Originating from functional analysis is the theory of
group equivariant non-expansive operators [12]. Despite originating from different
mathematical branches, the connection between the theory of GENEOs and TDA
is actually quite strong, but often overlooked. In particular, there are three major
connections between these two concepts, and this dissertation contributes with a
fourth. The invariance of persistence homology w.r.t. the group of all homeomorph-
isms is not requested in numerous scenarios. Moreover, the metric defined on the
space of GENEOs is in many cases unfeasible. Broadly speaking, in [12] has been
proven a dual synergy between GENEOs and TDA, since GENEOs can provide
a metric for TDA that is not homeomorphic-invariant, and TDA can provide an
approximation of the metric defined on GENEOs. The third connection already
known in literature is an interaction of GENEOs with multiparameter persistent
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homology [40, 41]. Another contribution of this dissertation is the enhancement of
the connection between TDA and GENEOs, with a formal proof that the computa-
tion of persistence diagrams is an element of the space of GENEOs from a functorial
point of view (Theorem 4.1.4). As already discussed, TDA is revolutionising data
analysis. However, this theory comes with certain limitations. Historically, the the-
ory underpinning persistent homology offers a model that is invariant with respect
to the group of all homeomorphisms. Despite being equivariant with respect to
the largest group of transformations, the fixity of the group of equivariance may
represent a constrain too severe in many situations. Furthermore, topology may
not always be the best perspective to study data. It is to address all these limita-
tions that the theory of group equivariant non-expansive operators has generated.
The idea to employ group equivariant operators in deep learning is not new and its
importance is well-known in literature [42, 43, 44, 45]. Yet, it lacks a formalisation.
Arguably the leading example of equivariant operators in deep learning is the con-
volutional neural network [46]. In fact, the convolution operator is equivariant with
respect to translations. The equivariance of convolutional neural networks with re-
spect to translations allows both a reduction of the number of parameters of the
network, which otherwise could be cumbersome, and also to learn features that can
detect patterns in every part of the image by default. This translates both into a
speed-up of the learning process and a robustness of the learned features. Convolu-
tional neural networks represent the state-of-the-art in computer vision and part of
their success is due to the equivariance with respect to a group that is relevant for
the task. Of course, in other tasks equivariance with respect to different transform-
ations is requested to mimic the same concept. Currently, data augmentation or
heavy preprocessing are the most common strategies to produce networks resistant
to even simple data transformations. It is our belief that formalising the framework
for injecting group equivariance in the architecture of neural networks is funda-
mental in the success of deep learning. The benefits of using equivariant operators
in deep learning are twofold. Firstly, this allows to inject pre-existing knowledge
in the model. This results in gaining control of the learned features, which are
forced to commute with respect to the chosen transformations [47]. Secondly, the
equivariance of the model corresponds to exploiting symmetries in the data space.
In mathematics, symmetry is almost exclusively expressed by means of group the-
ory. This yields a drastically reduced space to be explored during optimisation,
which results in a speed-up learning process and a model more robust to overfitting
and noise. Moreover, such a mathematical framework offers an easily interpretable
and transparent model. Our mathematical model focuses on group equivariant
non-expansive operators. The additional request of non-expansivity, prerogative of
our model, is motivated by two aspects. One is epistemological: the goal of an
intelligent operator is to find representations of the data that compress the ori-
ginal information. Of course, there are scenarios in which this request is not locally
satisfied, but the long-term goal is to reduce the information to extract only the
relevant features. The second aspect is purely mathematical. The non-expansivity
of such operators is fundamental in providing important mathematical properties
such as the compactness of the GENEOs space, under suitable hypothesis. Such
a property is extremely helpful in applications, since it guarantees to approximate
the space with just a finite set. For more information on such a theory, we refer
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the reader to [12, 26, 48, 49, 50, 51, 52, 53, 54, 55, 56]. Our mathematical model
is based on some epistemological assumptions. First of all, data are represented
as functions defined on topological spaces. This is due to the fact that only data
that are stable with respect to a certain criterion (i.e. some kind of measurements)
can be considered for applications. Hence, stability requires a topological structure.
In many real-world applications, data can be represented as Rm-valued continuous
functions defined on a topological space X. Simple examples are the coloring of
3D objects, the coordinates of the points in a planar curve, the grey-levels in X-ray
images, and many more. For the sake of simplicity, in this dissertation we will re-
strict to real-valued functions. The second epistemological assumption is that data
can not be directly studied. They are only knowable through acts (i.e. measure-
ments or transformations) made by an agent. Hence, there is no absolute way to
study data. Rather, the pair (data, agent) is what truly matters. Furthermore,
agents are described by means of how they transform data while preserving some
kind of invariance. That is, an agent is a group equivariant operator that acts on
function spaces. Finally, data similarity depends on the output of the considered
agent. In our framework, we switch the analysis from the data to the pair (data,
agent). As already stated, an agent can be modeled as a group equivariant operator
and we aim to present a good topological theory of the space of such operators.
For more details on these assumptions, please refer to [48]. The applicability of
this theory is severely restricted by our ability to generate new GENEOs, which is
currently very limited. In this line of research, this dissertation contributes with
two new methods to define GENEOs by means of symmetric functions (Theorem
5.3.24) and with a characterization theorem for linear GENEOs (Theorem 6.2.2).
Moreover, the ability to generate a large number of GENEOs is beneficial both for
the increased flexibility of the model, and for the approximation of the GENEO
space with just a finite set, which is achievable due to the compactness of such a
space. Finally, the last contribution of this dissertation is the design of a GENEO
network and its application in two experiments, both of which with excellent results.

We stress the fact that several parts of the dissertation have already been pub-
lished separately in specific papers. In those cases, we cite the respective works.
This dissertation is structured as follows. In Chapter 1 we present the necessary
bibliography of current topological machine learning and we formally describe the
pipeline devised alongside this dissertation. Such a pipeline is a slightly expanded
version of the one presented in [57]. In Chapter 2 we apply the pipeline to a series
of benchmark datasets, in order to both validate its effectiveness and to provide
some insights on how to handle the homological dimensions in the vectorisation
step. In this chapter we define our proposed approach to the vectorisation step,
and we validate our findings with a novel noise resistance study of the extracted
features. In Chapter 3 we present the applications of the topological machine learn-
ing pipeline to real-world datasets coming from temperature maps of the Atlantic
Ocean and Raman Spectra derived from biological samples. This chapter is de-
rived from [16, 17, 18]. Chapter 4 represents the pivotal point of the dissertation,
providing a strong link between its two main components: TDA and GENEOs. In
particular, we prove from a functorial point of view that the operator that produces
persistent diagrams belongs to the space of GENEOs. In Chapter 5 we describe the
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theory of group equivariant non-expansive operators and new ways to build them
through the concept of symmetric function and permutant. This chapter is mainly
derived from [12, 53, 54]. In Chapter 6 we present a characterization theorem for
linear GENEOs between arbitrary finite spaces which revolves around the concept
of generalized permutant measure. In Chapter 7 we develop a GENEO network and
apply it to benchmark datasets.

The dissertation concludes with a recap of the work here presented and possible
future developments in our line of research.



Chapter 1

Topological data analysis meets
ML for data classification

In this chapter, we define and explore a promising approach to artificial intelli-
gence and data classification, namely Topological Machine Learning (TML). TML
combines Topological Data Analysis (TDA, Section 1.2) with techniques from Ma-
chine Learning (ML) in order to study digital data. The resulting model benefits
both from the dimensionality reduction coming from Persistent Homology (PH,
Section 1.2.1) and its stability with respect to noise and also from the discrimin-
ative power of ML algorithms. This chapter is organized as follows. In Sections
1.1 and 1.2 we are going to present the bibliographical background of our math-
ematical setting. For more information about such topics, we refer the reader to
[1, 6, 37, 39, 58, 59, 60]. In Section 1.3 we are going to describe the topological ma-
chine learning pipeline devised alongside this dissertation, which has already been
presented in [57].

1.1 Algebraic topology

Algebraic topology is a wide branch of mathematic that aims to study the shape
of topological spaces. For an in-depth coverage of the subject, we refer to standard
literature [6, 58, 61]. The main goal of algebraic topology is to define computable
algebraic invariants associated with topological spaces (e.g. manifolds) that per-
sist under homeomorphisms. Arguably the most significant invariant devised by
algebraic topology is the homology of a topological space. Homology describes
in a quantitative and unambiguous fashion how a topological space is connected.
There are alternative formalisms to homology to study the general shape of a space.
Probably the best known are the curvature of a space [62] or homotopy theory [63].
The main advantage of homology is its (relative) computational efficiency. Loosely
speaking, homology captures the presence of holes in a topological space by focusing
on what surrounds a hole. In this section, we are going to focus on the concept of
simplicial homology, which is the homology of a simplicial complex.

Definition 1.1.1. Given k ∈ N, a k-simplex σ is the convex hull of k + 1 affinely

1



2 CHAPTER 1. TDA MEETS ML FOR DATA CLASSIFICATION

independent points u0, . . . , uk ∈ Rn, and we write σ = (u0, . . . , uk). That is,

σ =

{
k∑
i=0

λiui s.t. λi ∈ R, λi ≥ 0 for every i = 0, . . . , k and
k∑
i=0

λi = 1

}
.

Given a k-simplex σ, we call vertices of σ each point ui, for i = 0, . . . , k. Given
a k-simplex σ, we call τ a face of σ if it is a convex hull of a non-empty subset of
vertices of σ, and we denote it with τ ≤ σ. We call a face proper if the subset is
not the entire set.

Definition 1.1.2. A simplicial complex K is a finite collection of simplices such
that if σ ∈ K and τ ≤ σ, then τ ∈ K and if σ1, σ2 ∈ K, then σ1 ∩ σ2 is either empty
or a face of both.

The mesh of a simplicial complex is the maximum diameter of its simplices.
A subcomplex of a simplicial complex K is a subset of K that is still a simplicial
complex.

Remark 1.1.3. By definition, simplicial complexes are sets of geometric entities.
Given a simplicial complex K, with a slight abuse of notation, we will refer to its
geometric realization (i.e. the topological space given by the union of simplices in
K) with the same notation.

Definition 1.1.4. A topological space is triangulable if it is homeomorphic to
a simplicial complex. If a topological space is triangulable, we call a triangulation
any homeomorphism to a simplicial complex.

Theorem 1.1.5 [64, 65] Every smooth manifold admits an (essentially unique)
triangulation.

According to Theorem 1.1.5, we can focus on simplicial complexes without losing
generality, as they cover most of the topological spaces that appear in data analysis
and machine learning applications. A common assumption in this field is the “man-
ifold hypothesis” [66], which states that data come from an underlying manifold.
Although some studies have challenged this hypothesis (see [67]), it remains a cru-
cial premise in our research. See Figure 1.1 for an example of a triangulation of the
Möbius strip and the Klein bottle. The first step in order to define the homology
groups of a simplicial complex is to introduce the concept of chain complexes.

Definition 1.1.6. An orientation of the k-simplex σ is a choice of the ordering
of its vertices u0, . . . , uk. Two orderings define the same orientation if they differ
by an even permutation.

It follows directly from the definition of orientation that every simplex can have
exactly two orientations. The following theory holds for any field F. To keep the
exposition simple and following standard literature on this concept, we will limit to
the case F = Z/2Z. Similarly, such a theory allows for more general versions with
integer dimensions, but in this dissertation we consider only natural numbers. Let
p ∈ N.

Definition 1.1.7. Given a simplicial complex K, a p-chain is a formal sum of
oriented p-simplices in K. The standard notation is c =

∑
aiσi, where ai ∈ Z/2Z

are the coefficients.
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Figure 1.1: Triangulation of the Möbius strip (left) and of the Klein bottle (right).

Since we are working in Z/2Z, it can be useful to think as a p-chain as the set
of p-simplices with ai = 1. We denote with Cp = Cp (K) the set of p-chains of the
simplicial complex K. On Cp we define the sum operation:

+: Cp × Cp → Cp,
(∑

aiσi,
∑

biσi

)
7→
∑

(ai + bi)σi.

The neutral element is 0 =
∑

0σi and the inverse of every element is itself. Since
associativity follows from associativity of addition, we have that (Cp,+) is a group,
called the group of p-chains. With a slight abuse of notation, we will refer to this
group simply with Cp, since the group operation is understood. To connect such
groups in different dimensions we define the boundary of p-simplices and p-chains.

Definition 1.1.8. Given a p-simplex σ = (u0, . . . , up), the boundary of σ, denoted
with ∂pσ, is the (p− 1)-chain given by

∂pσ =

p∑
j=0

(u0, . . . , ûj , . . . , up) ,

where (u0, . . . , ûj , . . . , up) is the (p − 1)-simplex generated by all vertices with the
exception of uj .

Definition 1.1.9. The boundary of a p-chain c is the sum of the boundaries of
its simplices, that is ∂pc =

∑
ai∂pσi.

The boundary of a p-chain is a (p − 1)-chain and, since the p-simplices form a
basis of Cp, we can write the linear map ∂p : Cp → Cp−1. We call this map the
boundary map and it is easy to check that it commutes with addition (∂p(c+ c′) =
∂pc+ ∂pc

′).

Proposition 1.1.10 The boundary map ∂p : Cp → Cp−1 is a homomorphism, since
it commutes with the sum operation.

The chain complex of the simplicial complex K is the sequence of chain groups
connected by the boundary homomorphisms,

. . .
∂p+2−−−→ Cp+1

∂p+1−−−→ Cp
∂p−→ Cp−1

∂p−1−−−→ . . .
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A p-cycle is a p-chain c with empty boundary, that is ∂c = 0. We denote with
Zp the group of p-cycles, which is a subgroup of Cp. We have that Zp = ker ∂p. A
p-boundary is a p-chain c that is the boundary of a (p+ 1)-chain, that is c = ∂d
with d ∈ Cp+1. We denote with Bp the group of p-boundaries. We have that
Bp = Im∂p+1.

Lemma 1.1.11 (Fundamental lemma of homology [39]) ∂p∂p+1c = 0 for every
natural p and every (p+ 1)-chain c. That is, every p-boundary is a p-cycle. Equi-
valently, Bp is a subgroup of Zp.

Definition 1.1.12. The p-th homology group of the simplicial complex K is the
p-th cycle group modulo the p-th boundary group, Hp := Zp/Bp. The p-th Betti
number is the rank of the group, βp := rank (Hp).

The homology groups and Betti numbers are topological invariants, that is, they
are invariant under homeomorphisms. Moreover, Betti numbers provide an intuitive
and powerful interpretation: with the exception of β0, the p-th Betti number counts
the number of p-dimensional holes in the topological space. In the case of β0, it
counts the number of connected components. Other types of homology can be
defined: see reduced homology, cohomology and others [39]. Their definition and use
is beyond the scope of this dissertation, so they are not addressed. For any compact
smooth manifold, homology offers a quantitative and computable way to identify
it, up to homeomorphisms, with a finite sequence of integers in the form of Betti
numbers. In the next section, we are going to expand the concept of homology in
the presence of finite metric spaces, such as data, in the form of persistent homology.

1.2 Topological data analysis

Topological data analysis aims to extract qualitative and quantitative descriptors
of a finite metric space (data) that are stable in the presence of noise. Such
descriptors are not statistical, rather they rely on the underlying manifold structure
of data in an algebraic fashion. The primary concept of TDA is persistent homology,
which can be thought of as the extension of homology for finite and noisy metric
spaces. In fact, the homology of a finite metric space, such as digital data, is essen-
tially trivial, since the only non-null homology group is H0. Moreover, persistent
homology allows to express data as sequences of simplicial complexes, which allows
for a study of the evolution of the homology. The choice on how to construct such
a sequence is fundamental and shapes the point of view of such a study.

1.2.1 Persistent homology

Persistent homology measures the scale of topological features computed by
homology. In real-world data, the scale at which important topological features
occur is not a priori obvious. As an example, one can think of a football ball and
a sponge ball of the same size. If looked at closely, the latter is full of small holes
and the two balls do not look anything alike. If they are looked at from a distance,
however, they do share the same shape. PH is able to track topological changes at
different scales of resolution and store such information. It is composed of two main
ingredients, one geometric in the form of a function on a topological space, and one
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algebraic, which turns the function into measurements. We stress the fact that the
choice of the function is fundamental in extracting meaningful measurements. Let
K be a simplicial complex and f : K → R a monotonic function, that is, f(τ) ≤ f(σ)
whenever τ is a face of σ. We are going to refer to f as the filtration function. The
monotonicity of f guarantees that setting K(a) = f−1(−∞, a], it is a subcomplex of
K for every a ∈ R. Moreover, since K is finite, there is a finite sequence of filtration
values −∞ = a0 < a1 < a2 < · · · < an of the simplices in K. This means that
we can arrange all subcomplexes of K in a sequence of complexes called filtered
simplicial complex

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K,

where Ki = K(ai) for each i. For ease of notation, we will refer to such a filtration
as (Ki)

n
i=0, omitting from the notation the dependency from the filtration function

f , since it is clear. Moreover, it is clear as of now that the choice of a filtration f
defines different filtered simplicial complexes, hence different structures in persist-
ent homology. In particular, we are interested in the topological evolution of this
sequence of complexes. For every i ≤ j the inclusion map ι : Ki ↪−→ Kj induces an ho-

momorphism between the respective homology groups f i,jp : Hp (Ki) → Hp (Kj), for
each dimension p. That is, for each dimension p, we have the sequence of homology
groups connected by homomorphisms

Hp (K0) → Hp (K1) → · · · → Hp (Kn) = Hp (K) .

Actually, most of these homomorphisms are actually isomorphisms. In such cases,
no topological events occur. Rather, we are interested in the changes of homology
groups during the filtration, that is, in the emergence and disappearance of classes.
By convention, when two classes merge the elder one is the one that persists. This
convention is usually known to as elder rule and is functional in our setting.

Definition 1.2.1. The p-th persistent homology groups of the filtration (Ki)
n
i=0

are the images of homomorphisms induced by inclusion, H i,j
p := Imf i,jp , for 0 ≤ i ≤

j ≤ n. The p-th persistent Betti numbers are the ranks of these groups,
βi,jp := rankH i,j

p .

In what follows, it may be helpful to say that a homology class γ ∈ H i,i
p = Hp(Ki)

is born at Ki if γ /∈ H i−1,i
p . Similarly, we say that a class γ born at Ki dies at Kj ,

with j > i, if f i,j−1
p (γ) /∈ H i−1,j−1

p but f i,jp (γ) ∈ H i−1,j
p . That is, the class γ merges

with an older class when passing from Kj−1 to Kj . The persistence of a class γ
born at Ki and that dies at Kj is the difference pers(γ) := aj−ai, where aj (resp. ai)
is the filtration value of Kj (resp. Ki). If a class never dies, we set its persistence to
infinity. We stress the fact that multiple classes can born and die at the same time.
We denote with µi,jp the multiplicity of indipendent p-dimensional classes that are

born at Ki and die at Kj . It holds that µi,jp :=
(
βi,j−1
p − βi,jp

)
−
(
βi−1,j−1
p − βi−1,j

p

)
for all i < j and all p.

Definition 1.2.2. The p-persistence diagram (PD) of the filtration (Ki), de-
noted as Dgmp(f), is the multiset of points (ai, aj) with multiplicity µi,jp , together
with all the points (a, a) with infinite multiplicity.
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Remark 1.2.3. It follows directly from the monotonicity of f that every point (ai, aj)
of the PD verifies aj > ai. Therefore, every point of the PD lies in the closed half-
plane above the diagonal.

Remark 1.2.4. Persistence diagrams are graded object, that is, there is a persistence
diagram for every natural p. When the context is clear, we are going to omit the
dependence from p in the notation of persistence diagrams. Moreover, given a PD
D, it may be useful sometimes to refer to µ : D → Z>0 as its multiplicity function.

Lemma 1.2.5 (Fundamental lemma of persistent homology [39]) Let ∅ = K0 ⊆
K1 ⊆ · · · ⊆ Kn = K be a filtered simplicial complex. For every pair of indices
0 ≤ k ≤ l ≤ n and every dimension p, the p-th persistent Betti number is βk,lp =∑

i≤k
∑

j>l µ
i,j
p .

The fundamental lemma of persistent homology guarantees that the persist-
ence diagram encodes all information about persistent homology groups and it is
therefore the invariant that we are interested in. Moreover, the PD offers two visu-
alizations easily interpretable. The first one is to plot each element in the PD as
a point in the upper half-plane, the second one, usually referred to as persistence
barcode [68], is to plot bars of length equal to their respective persistence. Figure
1.2 shows four stages of a filtration for points sampled from a circle and corrupted
with noise. Figure 1.3 shows the persistence barcode associated with the filtration
in Figure 1.2. Vertical black lines correspond to the four stages depicted in Figure
1.2. Red bars indicate classes in H0 and blue bars indicate classes in H1.

Figure 1.2: Different stages of a filtration for noisy points sampled from a circle.

Figure 1.3: Persistence barcode associated with noisy points sampled from a circle.
Vertical black lines correspond to the stages of Figure 1.2. Red bars indicate classes
in H0 and blue bars indicate classes in H1.

Finally, we are able to address the stability of PDs, a property that makes
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such descriptors suitable for real-world applications. Let D,D′ be two persistence
diagrams and ∥·∥∞ be the L∞-norm.

Definition 1.2.6. The bottleneck distance dmatch between D and D′ is defined
as

dmatch

(
D,D′) := inf

η : D→D′
sup
α∈D

∥α− η(α)∥∞ ,

where η ranges over all multi-bijections between D and D′.

We stress the fact that the presence of every point of the diagonal with infinite
multiplicity on the persistence diagram guarantees that there is a multi-bijection
between each pair of PDs. Given a triangulable topological space X and a continuous
function f : X → R, a ∈ R is a homological critical value for f if there is no
ε > 0 for which fa−ε,a+εp is an isomorphism for each dimension p.

Definition 1.2.7. We call a continuous function f tame if it has only finitely many
homological critical values and all homology groups have finite rank.

Theorem 1.2.8 (Stability theorem for bottleneck distance [39]) Let X be a tri-
angulable topological space and let f, g : X → R be two tame functions. For each
dimension p, the bottleneck distance between the diagrams D = Dgmp(f) and D′ =
Dgmp(g) is bounded from above by the L∞-distance between the functions. That is,
dmatch (D,D′) ≤ ∥f − g∥∞.

The main drawback of the bottleneck distance is its insensitivity to details. For
this reason, it may be useful to introduce an alternative metric between persistence
diagrams.

Definition 1.2.9. Let q be a positive real number and let D,D′ be two persistence
diagrams. The q-Wasserstein distance between D and D′ is defined as

dq
(
D,D′) :=

[
inf

η : D→D′

∑
α∈D

∥α− η(α)∥q∞

]1/q
,

where η ranges over all multi-bijections between D and D′.

Perhaps unsurprisingly, a similar stability result for any q-Wasserstein distance
is out of reach. However, we can state something very similar for a large class of
functions. Given a triangulable topological space X, we say that the triangulation
of X grows polynomially if there are constants c and j such that N(r) ≤ c/rj ,
where N(r) is the minimum number of simplices in a triangulation with mesh at
most r. Finally, the k-th total persistence of a persistence diagram D is the sum
of k-th powers of the persistence of its points.

Theorem 1.2.10 (Stability theorem for Lipschitz functions [39]) Let f, g : X → R
be tame 1-Lipschitz functions on a metric space whose triangulations grow polynomi-
ally with constant exponent j. Then there are constants C and k > j no smaller than
1 such that the q-Wasserstein distance between D = Dgmp(f) and D′ = Dgmp(g)

is dq (D,D′) ≤ C ∥f − g∥1−k/q∞ for every q ≥ k.



8 CHAPTER 1. TDA MEETS ML FOR DATA CLASSIFICATION

1.2.2 Vectorisation methods

The main drawback of the space of PDs, endowed with the bottleneck or Wasser-
stein distance, is that it is infinite-dimensional (cf. [69]) and it lacks a Hilbert space
structure. Moreover, even basic statistical quantities such as the average of two per-
sistence diagrams are not well defined. As such, PDs can not be directly employed
in a ML algorithm. Hence, in literature considerable effort has been devoted to
embed PDs into a more manageable space, resulting in a large number of solutions
that have been devised. Essentially, all of them embed the space of PDs in a suitable
Hilbert or vector space. In any case, since an infinite-dimensional space does not
admit a faithful embedding in finite-dimensional vector space, and even mapping
barcodes to infinite-dimensional vector space may result in a lack of discriminat-
ive power, there is no canonic way to perform this embedding. Loosely speaking,
similarly to the notorious No Free Lunch theorem (cf. [70]), there is no optimal
embedding suitable for every application. To be more precise, usually, the methods
that embed the space of PDs in a Hilbert space are referred to as kernel methods,
and the methods that embed the space of PDs in a vector space are referred to as
vectorisation methods. The former of which are usually computationally prohibit-
ive, and in literature the latter are preferred. In this section, we are going to briefly
describe the vectorisation methods that have been employed in the topological ma-
chine learning pipeline devised alongside this dissertation. For a brief summary of
the different vectorisation methods, their stability and parameters, refer to Table
1.1. We refer to Figure 1.4 for a graphical example of a persistence diagram and its
various vectorisations by means of the techniques that we are going to introduce.
For consistency with the original works, we describe the different methods with the
original notation. For this reason, in this section exclusively, the same symbol could
be used several times to indicate different concepts. Let D be a finite persistence
diagram and µ : D → Z>0 its multiplicity function.

1.2.2.1 Persistence statistics [71]

The persistence statistics is the simplest descriptor defined in literature and
it consists in a collection of 38 statistical quantities of the persistence diagram. More
in detail, it consists of the mean, standard deviation, median, interquartile range,
full range, 10th, 25th, 75th and 90th percentiles of the births, deaths, midpoints and
lifespan of each point of the PD counted with multiplicity, the total number of bars
and the entropy Eµ of the PD, which is defined as

Eµ := −
∑

[p,q]∈D

µp,q

(
q − p

Lµ

)
log

(
q − p

Lµ

)
,

where Lµ is the weighted sum Lµ :=
∑

[p,q]∈D µp,q (q − p).
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Vectorisation method Stability Parameters

Persistence statistics ✗ ✗

Entropy summary ✓ resolution ∈ {50, 100}
Algebraic functions ✗ ✗

Tropical coordinate function ✓ resolution ∈ {50, 100}

Complex polynomial ✓
number of coefficients ∈ {5, 20}

polynomial type ∈ {R, T}
Betti curve ✗ resolution ∈ {50, 100}

Lifespan curve ✗ resolution ∈ {50, 100}

Persistence landscapes ✓
number of landscapes ∈ {5, 10}

resolution ∈ {50, 100}

Persistence silhouette ✓
weight ∈ {1, 10}

resolution ∈ {50, 100}

Persistence image ✓
bandwidth ∈ {0.05, 1}
resolution ∈ {50, 100}

Template function ✓
δ ∈ {5, 25}
π ∈ {1, 20}

Adaptive template system ✓ number of clusters ∈ {10, 25}
ATOL ✓ number of functions ∈ {2, 4}

Table 1.1: Summary of the vectorisation methods used in the topological machine
learning pipeline, their stability and parameters.

1.2.2.2 Entropy summary [28]

The entropy summary is the extension of the entropy defined in the persist-
ence statistics to a piecewise constant map Sµ : R → R defined by

Sµ(t) := −
∑

[p,q]∈D

µp,q

(
q − p

Lµ

)
log

(
q − p

Lµ

)
1p≤t≤q,

where Lµ is defined as in the persistence statistics. It arises from the idea to
summarize the information about the number of intervals of the persistence barcode
and their homogeneity with a simple descriptor such as a piecewise constant map.

1.2.2.3 Algebraic functions [72]

A more evolved vectorisation comes in the form of algebraic vectorisations. The
next three methods define polynomial maps and evaluate them on the persistence
diagram. The ring of algebraic functions arises from the understanding that a
persistence barcode can be identified by the collection {x1, y1, . . . , xn, yn} ∈ R2n,
where xi and yi represents the birth and death of the i-th bar. Of course, aiming
to characterize the barcodes with polynomials in 2n variables, such polynomials
should be independent on the order of the barcodes. It turns out that such a sub-
ring can be characterized algebraically by the subring of polynomials f in variables
{x1, y1, . . . , xn, yn} ∈ R2n such that there exist polynomials {gi, 1 ≤ i ≤ n} satisfy-
ing ∂f

∂xi
+ ∂f

∂yi
= (xi − yi)gi. The vectorisation by means of algebraic functions then
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consists on selecting a finite set of such polynomials and evaluating them at each
point (xi, yi) = (pi, qi) ∈ D.

1.2.2.4 Tropical coordinate function [73]

The tropical coordinate functions vectorisation arises from the same concept
as algebraic functions, but such polynomials are required to be both symmetric and
tropical. We refer to [74] for a formal definition of both concepts. In particular, the
max and min functions are tropical functions and in [73] it is shown that they are
more suitable than other polynomials, given the underlying structure of the barcode.
After selecting a fixed number of such polynomials, to produce the vectorisation they
are evaluated at (xi, yi) = (qi−pi,max(r(qi−pi), pi)) or (xi, yi) = (qi−pi,min(r(qi−
pi), pi)), where r is a positive integer parameter.

1.2.2.5 Complex polynomial [75, 76]

The complex polynomial vectosization of D is yet again another vectos-
ization of persistence diagrams by means of polynomials. The motivation be-
hind this approach was to speed up the process of computing the bottleneck dis-
tance, which can be quite burdensome, with a suitable metric defined on vec-
tors. Such vectors are composed of the coefficients of the representation of PDs
by means of complex polynomials. More in detail, we define the complex poly-
nomial CX(z) :=

∏
[p,q]∈D [z −X(p, q)]µp,q , where X : R2 → C is either R(x, y) :=

x+ iy, T (x, y) := y−x
2 [(cosα− sinα) + i (cosα+ sinα)] or

S(x, y) :=

{
y−x
α
√
2
(x+ iy) if (x, y) ̸= (0, 0)

0 otherwise

and α :=
√
x2 + y2. The vectorisation is therefore obtained by considering the

coefficients of such a polynomial.

1.2.2.6 Betti curve [77]

The next four methods turn a persistence diagram into one or more curves. The
vectors are subsequentially obtained by sampling the given curve on a finite grid on
R. The Betti curve was originally introduced to study the evolution of time series
by means of TDA and is based on the assumption that the main point of persistent
homology consists on following the change in the number of holes corresponding to
the change in the radius parameter. More formally, the Betti curve is defined as
the curve βµ : R → R, βµ(t) :=

∑
[p,q]∈D µp,q1p≤t≤q. By discretizing such a curve in

a grid of R we obtain the Betti curve vectorisation.

1.2.2.7 Lifespan curve [78]

The lifespan curve tracks lifespan information over the filtration. One can
think of it as a topological intensity function that accounts for the size or intensity
of topological features. More specifically, the lifespan curve is the map Lµ : R →
R, Lµ(t) :=

∑
[p,q]∈D µp,q (q − p)1p≤t≤q.
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1.2.2.8 Persistence landscapes [15]

The persistence landscape originated from the idea of converting the barcode
into a function in an additive manner. Since the resulting descriptor belongs to a
separable Banach space, it is easy to apply statistical tools to it. Informally, the per-
sistence landscape counts the number of points in the persistence diagram in the up-
per left quadrant of (b, d), and we obtain a vectorisation of the PD by “stacking iso-
sceles triangles” whose bases are the intervals in the barcode. It is important to note
that the mapping from persistence diagrams to persistence landscapes is stable and
invertible. Formally, the persistence landscape is the collection of curves Λµi : R →
[−∞,∞] ,Λµi (t) = sup

{
s ≥ 0 such that

(∑
[p,q]∈D 1[t−s,t+s]⊂[p,q]µp,q

)
≥ i
}

, with the

convention that the supremum over an empty set is zero. Since D is finite, it exists
ī such that Λµi (t) ≡ 0 for every i > ī and this yields a finite vectorisation of the PD.

1.2.2.9 Persistence silhouette [79]

The w-weighted persistence silhouette originates as a variation of persistence
landscapes which allows for a trade-off parameters between uniformly treating all
pairs in the persistence diagram and considering only the most persistence pairs.
Specifically, when w is small, the persistence silhouette is dominated by the effect
of low persistence pairs. Conversely, when w is large, the persistence silhouette
is dominated by the most persistent pairs. Given a function w : D → R>0, the
w-weighted persistence silhouette is the map ϕwµ : R → R defined by

ϕwµ :=

∑
[p,q]∈D w(p, q)µp,q∆([p, q], t)∑

[p,q]∈D w(p, q)µp,q
,

where ∆([p, q], t) := max (min (t− p, q − t) , 0). Since it is a variation of the persist-
ence landscape, it benefits from all its statistical properties.

1.2.2.10 Persistence image [13]

An evolution of curve vectorisation comes in the form of functional vectorisation,
which arises from the same idea but with a codomain different than R. The first
functional vectorisation that we are going to introduce is the persistence image,
which aims to compute a vector in a stable, efficient way and to maintain an inter-
pretable connection with the original PD. Moreover, the persistence image allows
to adjust the relative importance of points in different regions of the PD. Given
a continuous, piecewise-differentiable function f : R2 → R≥0 such that f(x, 0) = 0
and a collection of smooth probability distributions Ψ = {ψp,q} with mean (p, q−p),
the persistence image Iµf,Ψ with respect to (f,Ψ) is the discretization on a finite grid

Z of R2 defined by

Iµf,Ψ(Z) :=

∫ ∫
Z
ρµf,Ψ(x, y) dx dy,

where ρµf,Ψ(x, y) :=
∑

[p,q]∈D µp,qf(p, q − p)ψp,q(x, y).
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1.2.2.11 Template function [80]

The template function addresses the problem of approximating continuous
functions on compact subsets of the space of persistence diagrams. Given S a
compact subset of the space of persistence diagrams, the goal is to devise provably-
correct and computationally feasible approaches to approximating a function F : S →
R, given a finite sample D1, . . . , Dn ∈ S and their value F (D1), . . . , F (Dn) ∈ R.
More in detail, a template system T is a subset of CC(∆) (the space of functions
from the upper half-plane to R with compact support) such that for every pair of
barcodes D1, D2, there is at least one f ∈ T such that VD1(f) ̸= VD2(f), where VD is
the function induced by the barcode and it is defined as VD : CC(∆) → R, VD(f) :=∑

[p,q]∈D µp,qf(p, q − p). The template function vectorisation with respect to the
template system T is therefore the vector τµ := (VD(f1), . . . , VD(fn)).

1.2.2.12 Adaptive template system [14]

The last two examples of vectorisation methods are called ensemble vectorisation
methods and require a large quantity of persistence diagrams to train a suitable
vectorisation. The main utility of the adaptive template system vectorisation
is that they can be used to construct dense subsets of the space of continuous real-
valued functions with domain a PD, with respect to the compact-open topology.
Although this topology is not metrizable, two functions are deemed to be nearby
if their values on compact sets are similar. Since the space of persistence diagrams
is rather large and complicated, such comparisons are desirable. The adaptive
template system defines finitely many ellipses Ej that strictly contain the support
of the collection of PDs. Each of these ellipses is expressed in quadratic form by
the 2 × 2 matrix Aj . At this point, it defines

gj(z) :=

{
1 − hj(z) if hj(z) < 1

0 otherwise,

where hj(z) = (z − xj)
TAj(z − xj) and xj ∈ R2 is the center of the ellipse Ej .

That is, inside the ellipse gj measures how far a point is from the center, and it
measures 0 outside of the ellipse. After these steps, it applies the same procedure
as the template function.

1.2.2.13 ATOL [81]

The ATOL vectorisation is the last vectorisation method that we are going to
introduce. It relies on a quantization of the space of diagrams that is statistically
optimal and is fast and practical even for large-scale and high dimensional scen-
arios. This method is proven able to separate clusters of persistence diagrams.
Given z = (z1, . . . , zb) points in R2 sampled indipendently and identically dis-
trubeted, the contrast functions {Ωi, 1 ≤ i ≤ b} are given by Ωi : R2 → R,Ωi(x) :=

exp
(
− ∥x−zi∥

1
2
maxj ̸=i∥zj−zi∥2

)
. The ATOL contrast function vectorisation is therefore

given by the vector
(
Ωµ
1 , . . . ,Ω

µ
b

)
, where Ωµ

i :=
∑

[p,q]∈D µp,qΩi(p, q).
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Figure 1.4: Examples of a PD and its vectorisations by means of the various tech-
niques used in the topological machine learning pipeline.
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1.3 The topological machine learning pipeline

Now that we have introduced the necessary bibliography, we can finally form-
ally describe the topological machine learning pipeline that was devised alongside
this dissertation. We highlight the fact that the pipeline here described represents
a slight extension over the one already presented in [57]. We refer to Figure 1.5
for a schematic of the pipeline. This is motivated by the effectiveness of methods
from computational topology to the analysis of digital data and the excellent res-
ults achieved in recent years by its descriptors. In a topological machine learning
pipeline, there are three non-canonical choices that are fundamental in the nature
of the study. Firstly, a suitable filtration must be chosen to compute persistence
diagrams from data. This choice is fundamental since it represents the geometric
component of the pipeline. More in detail, different filtrations highlight different
geometric features of data and result in different persistence diagrams. However,
the choice of the filtration is usually bounded by the data type. For point cloud
data, the most common filtration is the Vietoris-Rips filtration [82], for images the
cubical complex filtration [83] and for signals the lower star filtration [59, 84]. More
filtrations are available in the literature and are used in the pipeline. Since their
use is strictly related to the data type, we postpone their description to the next
chapter, where different benchmark datasets are presented. After the filtration has
been chosen, the pipeline computes the persistence diagrams associated to the data-
set. The second non-canonical choice is how to handle the homological dimensions
in the vectorisation step. This choice in particular is often overlooked in literat-
ure, in the sense that a fair comparison between the different approaches is rarely
provided, with the implicit assumption that only the best results are reported. To
be more precise, when entering the vectorisation process of the pipeline, the homo-
logical dimension must be omitted. This technicism admits three possible solutions.
The first is to focus only on one dimension, the one deemed more important. Ex-
amples of this approach can be found in [14, 15, 28, 29, 30, 31, 32, 33, 37, 85].
The second approach is to vectorise each dimension separately and then concat-
enate the results, as in [14, 34, 35, 36] (among many others). Finally, perhaps
unexpectedly, forgetting the homological dimension and vectorising everything al-
together still represents a good alternative [16, 57]. Our results consistently favor
a certain approach, as we will show in the following chapters, where an extensive
comparison between the different approaches will be performed. In any case, our
pipeline performs all three approaches and returns the accuracy for each of them.
Finally, the last non-canonical choice in a machine learning pipeline is the choice
of the vectorisation method and its possibile parameters. We refer to Table 1.1 for
the vectorisation methods and parameters combination used in this dissertation.
Again, via a grid-search approach, the pipeline vectorises the PD using the meth-
ods previously described. In the end, the resulting vectors enter a machine learning
algorithm (support vector classifier or random forest classifier, we refer to [86] for
more information on machine learning) and returns the accuracy for each method.
We stress the fact that, after the persistence diagrams are computed with the suit-
able choice of the filtration, the pipeline is entirely automatic. For the TDA part
of the pipeline, we used the methods coming from the Gudhi [87] and Giotto [88]
Python library. For the ML part, we used the scikit-learn [89] Python library.
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Now that we have introduced the necessary literature on the topic of topological
machine learning, discussed its potentials and described the pipeline devised along-
side this dissertation, we are ready to test its results on benchmark datasets. More
importanly, the next step is to dive deep in some of the most overlooked aspects of
this theory. All this is the content of the next chapter.

Figure 1.5: Scheme of the topological machine learning pipeline. Starting from
the data we produce a persistence diagram by means of a filtration, which is then
vectorised through various methods and such vectors enter a machine learning al-
gorithm which returns a classification with a certain accuracy.
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Chapter 2

The TML pipeline: experiments
and results

The aim of this chapter is mainly twofold: provide some applications of the
topological machine learning pipeline described in Chapter 1 on a variety of bench-
mark datasets and provide a fair comparison of the accuracy results of the different
ways to handle homological dimensions previously described. This second goal in
particular is the first contribution of this dissertation and it constitutes a novel
attempt to standardise a non canonical part of the TML pipeline. To be more pre-
cise, as reported in the literature there are three ways to manage the homological
dimensions in the vectorisation step:

• Singular dimension vectorisation [14, 15, 28, 29, 30, 31, 32, 33, 37, 85]:
only a specific homological dimension is vectorised and used as train and test
dataset by the machine learning classifier. We refer to this approach as Hi,
for i ranging in the homological dimensions;

• Concatentating dimension vectorisation [14, 34, 35, 36, 90]: every ho-
mological dimension is vectorised singularly, and then the resulting vectors
are concatenated. We refer to this approach as the concat approach;

• Fused dimension vectorisation [16, 57]: perhaps surprisingly, completely
neglecting the homological dimension of each point and vectorising the PD
altogether is in many cases a good approach. We refer to this approach as the
fused approach.

In many works (cf. [14, 15, 37, 85, 91]) the methods are used interchangeably, but
no comparison is reported. In fact, little at all emphasis on a comparison among
the three approaches is provided in the literature. Our findings, on the other hand,
lean totally in favor of the concat method. To be more precise, the concat approach
may not always be the absolute best, but its results are always among the top
performing and it never suffers drops in performance, as is the case for all other
methods. In this chapter, we are going to perform experiments in a heterogeneous
setting of different datasets, filtrations, vectorisation techniques and classifiers. We
want to highlight the fact that if a priori information is known for specific tasks,
some of these approaches may not be very insightful. For instance, FMNIST [92]

17
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is a dataset of images of clothings. If we try to classify such a dataset considering
the persistence arising from a filtration based on the gray value of the image using
exclusively H0 or H1, it would yield obviously poor results. Nevertheless, we want
to perform a blind analysis, as if no a priori information were available. This is to
mimic many real-world datasets, where information about the topology of the data
may not be so obvious, or even available, a priori. Moreover, the second contribution
of this dissertation is a noise robustness test between of the three approaches in a
synthetic dataset, in order to better assert our findings. This test is, to the best
of our knowledge, novel in the TDA literature. Finally, a preliminary study on
how the distribution of points in the PD influences the meaningfulness of the fused
approach.

2.1 Benchmark evalutations

We first apply the topological machine learning pipeline to a heterogeneous list
of benchmark datasets, with data ranging from images, signals, point cloud data and
graphs. Different filtrations will be used and described in the appropriate section.
In each table, we report in bold the best method in each line (i.e. each vectorisation
method) and in red the overall best accuracy. The first line of each cell reports the
best accuracy for a single vectorisation across all parameters and classifiers, and the
second line is the average over the different parameters and classifiers combination.
In every application, we performed a 70% − 30% train-test split.

2.1.1 Orbit dataset

The Orbit dataset is a collection of orbits in the plane generated by a linked
twisted map, which is the equation:{

xn+1 = xn + ryn(1 − yn) mod 1,

yn+1 = yn + rxn+1(1 − xn+1) mod 1.

With mod 1 we mean that only the fractional part is considered. For different
values of the parameter r, different orbits are generated. The task is to recognize
the parameter based on the orbit generated. Figure 2.1a shows four different orbits
generated for different choices of the parameter r. This dataset is inspired by [93]
and it is composed of five different values of the parameter r ∈ [2, 3.5, 4, 4.1, 4.3],
each class with 200 orbits. Each orbit consists of 1, 000 points. For this dataset,
we used the Vietoris-Rips filtration [82]. Such a filtration grows balls of radius ε
centered at each point. The simplices are the collections of points with diameter
less than the current filtration value ε. Following the elder rule, when two or more
simplices connect, the younger one dies. We report the accuracy results for the
Orbit dataset in Table 2.1. For this first application, both H1 and concat achieve
very similar results and are consistently the best-performing approaches. H0 is
not very informative and fused is informative only with very specific parameter -
vectorisation combinations.
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2.1.2 SHREC14

SHREC14 [94] is a dataset for shape retrieval of real and synthetic non-rigid 3D
human shapes and poses. Following TDA literature on this dataset (cf. [14, 37, 95]),
we focused only on the synthetic part. It consists of a classification task with 15
classes of human bodies (e.g. male neutral, male bodybuilder, female neutral)
each one with 20 poses. Figure 2.1b shows a sample of the shapes and poses of
SHREC14. For this dataset, we perform the same filtration as [14], which exploits
the heat kernel signature function to compute persistence diagrams. We report the
accuracy results for the SHREC14 dataset in Table 2.2. In this case, H1 achieves
the absolute best result, with 0.97% accuracy. Both fused and concat approaches
are right behind with 0.94% and across the board are pretty much equivalent.

2.1.3 Outex dataset

Outex dataset [96] is composed of 1, 360 images divided into 68 classes. Each
image is a 128×128 RGB of a sample texture. Figure 2.1c shows sample images for
the Outex dataset. Since each image has three channels, we compute the cubical
complex filtration [83] for each channel and concatenate the resulting vectors. In
detail, the cubical complex exploit the intrisic structure of pixels. Each pixel intens-
ity is given by its graylevel value. A pixel enter the filtration as a 0-simplex when
their intensity is greater than the current treshold. In order to define a triangulation
of the grid, pixels are connected with their vertical and horizontal neighbours, as
well as their neighbours along the first diagonal. 1-simplices and 2-simplices enter
the filtration when all pixels composing them enter the filtration. We report the
accuracy results for the Outex dataset in Table 2.3. In this case, concat is clearly
the only best approach and for the first time H1 performs poorly. Conversely, H0

and fused are able to capture key features of the data for classification, despite some
notably drop in performances.

2.1.4 FMNIST

The Fashion-MNIST dataset [92] is composed of 60, 000 training images and
10, 000 test images divided in ten classes. Each picture is a 28×28 grayscale image,
representing an individual article of clothing collected from Zalando’s inventory. See
Figure 2.1d for some sample images. We highlight that, due to convergence issues,
SVC was not used for this dataset. For this dataset, we performed two different
filtrations, in order to highlight the fact that even for suboptimal filtrations the
concat approach still consistently performs among the best. The first filtration is
the cubical filtration on the grayscale image. The second filtration is inspired by
[90]. It defines eight directions and nine centers, binarizes the original image, and
computes the distance from such centers and directions, in addition to the density
filtration. Finally, it computes the cubical complex and concatenates the results.
We refer to this filtration as the multi filtration. Figure 2.2 shows two preprocessed
images, one for each filtration. We refer to Table 2.4 for the accuracy results of
both filtrations. In particular, we highlight two important aspects. First, despite
the suitability of the chosen filtration, the concat approach yields the best results.
Second, in order to achieve satisfactory results a more complex and ad-hoc filtration
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has been devised. As already stated, such a filtration is particularly suited for the
task at hand, but it is more sensitive to the parameter choice. This is seen by the
fact that the gap between the best accuracy and the average is very pronounced.
Moreover, the gap between the various vectorisation methods is wider than usual.
Despite these details, the accuracy results obtained from this vectorisation are very
satisfactory. In this case, H1 performs considerably worse, while H0 and fused are
able in some combinations to perform reasonably well.

2.1.5 COLLAB dataset

The COLLAB dataset is a network graphs dataset of scientific collaborations
presented in [97]. It consists of 5, 000 graphs derived from three public collaboration
datasets which also serve as labels: high energy physics, condensed matter physics
and astrophysics. Each node of the graphs is an author, and there is a link between
two authors if they coauthor a scientific article. COLLAB is a dataset of weighted,
undirected graphs. Every collaboration between n authors contributes to the edge
weight between those authors of a factor 1/(n− 1). The vertices are not weighted;
this means that all vertices immediately enter the filtration as 0-simplexes. The
filtration value of the 1-simplexes is the weight of the edge connecting the two
vertices, and for 2-simplexes, we chose as the filtration value the maximum weight
of the edges forming it. For computational reasons, we limit to the computation of
homology up to dimension 2. We refer to Table 2.5 for the accuracy results of this
evaluation. In this case, both H2, fused and concat offer the best results, while H0

and H1 are not very informative.

2.1.6 Gravitational waves dataset

The gravitational waves dataset is inspired by [98, 99]. Without diving into too
much detail, which would somehow require an exposition on modern physics, the
gravitational wave dataset is composed of signals generated by a surrogate model of
a non-spinning binary black hole generating gravitational waveforms. When detec-
ted, such a signal is heavily corrupted by noise and it is difficult to discern it from
pure noise. The dataset is composed of 1, 000 signals, half of which are a corrupted
version of the gravitational waveform, and half of which are simply noise. We refer
to Figure 2.3 for a graphical example of the dataset. On the left, we have a purely
noise signal (blue), on the right the gravitational waveform (green) and its corrup-
ted version (red). Following [99], we have employed a Takens embedding [100] in
order to pick the recurrent structure of the gravitational waveform. More in detail,
for this step we used the giotto built-in function with both embedding dimension
and time delay of 30. For a visual example of the projection of the resulting point
cloud in 3D, we refer the reader to Figure 2.4. Moreover, we also performed a lower
star filtration for this dataset. We refer to Table 2.6 for the accuracy results of
this evaluation. Two things in particular stand out from these results. First, in
agreement with what we have already seen, the concat method is among the best
performing. Also, perhaps surprisingly, is not necessary a complicated filtration to
achieve high accuracy results in this case, since a simple lower star filtration per-
forms considerably better. In any case, when the Takens embedding filtration is
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employed, both H1 and H2 perform worse than the other approaches.

From these first experiments, the features extracted form the concat approach
are consistently among the best performing, if not solely. However, it is the only
method that never experienced a drop of performances and it is across the board
more consistent with respect to vectorisations and parameters combination. Moreover,
the fused approach seems to be a viable alternative, however with sporadic drop of
performances. We stress the fact that the vectorisation of the fused approach is as
computational expensive as a single dimensions, while the concat approach is i× as
expensive, where i is the number of dimensions. The true bottleneck of the pipeline
is the computation of the persistence diagrams, however for heavy datasets such as
COLLAB also the vectorisation part is not negligible.

2.2 Noise robustness in homological dimensions

To further validate our findings in Section 2.1, in this section we provide a
preliminary study on noise robustness of the features extracted from the various
homological dimensions. In particular, this study aims to discover relationships
between the dimension of the feature and its stability with respect to noise. To
this aim, we developed a synthetic dataset inspired by [13]. It consists of 600 point
clouds, each with 500 points sampled from six geometrical shapes: the unit cube, a
sloped circle of diameter one, the sphere of diameter one, three clusters with centers
randomly chosen from the unit cube, three clusters within three clusters with centers
randomly chosen from the unit cube and a torus. Figure 2.5 shows samples of the six
classes of the Synthetic dataset. From this dataset, we created three variants with
increasing degrees of noise. Every point is perturbed by a Gaussian distribution of
standard deviation σ ∈ {0.05, 0.1, 0.15}. Figure 2.6 shows the same class corrupted
by the various degrees of noise. For this experiment, we also computed H2 since it is
not trivial for points in 3D. Moreover, we expanded the list of possible approaches.
In particular, alongside the usual approaches that we refer to as H0, H1, H2, f012
and c012 we also restricted ourselves to the case where H2 was not computed. The
resulting fused and concat approach containing only features from H0 and H1 are
referred to as f01 and c01. The rational behind these choices is to further validate our
findings even when not all non-trivial homological dimensions are computed (e.g.
for computational restrictions). We report in Table 2.7 and Table 2.8 the accuracy
results of the pipeline for the various degrees of noise. From these results, we want to
highlight three aspects, which are intuitively apparent but which it is nonetheless
encouraging to observe in this experiment, albeit a preliminary one. Firstly, in
accordance with our previous findings, concatenating all homological dimensions is
yet again the best approach, regardless of the degree of noise corrupting the data.
Secondly, features extracted from singular dimensions and with zero or low degrees
of noise are unquestionably better in higher dimensions than in lower ones, for this
dataset. However, when the incidence of noise grows, higher dimensions lose their
advantage with respect to features extracted from lower dimensions. This could
be explained by the fact that features in higher dimensions are generated by the
interaction of a larger number of points, whose mutual position is more perturbed
by noise with respect to the mutual position of fewer points. Thirdly, it is best to
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Vietoris Rips

vectorisation H0 H1 fused concat

Pers. Statistics
0.62 0.90 0.77 0.91
0.49 0.63 0.51 0.60

Entropy Summary
0.59 0.94 0.64 0.92
0.58 0.90 0.58 0.90

Algebraic Functions
0.61 0.87 0.87 0.88
0.47 0.75 0.58 0.61

Tropical Coordinates
0.58 0.93 0.92 0.94
0.44 0.80 0.59 0.73

Complex Polynomials
0.55 0.79 0.75 0.76
0.44 0.56 0.51 0.52

Betti Curve
0.20 0.92 0.20 0.92
0.20 0.85 0.20 0.83

Lifespan Curve
0.57 0.94 0.57 0.95
0.50 0.91 0.50 0.82

Pers. Landscapes
0.20 0.96 0.20 0.96
0.20 0.92 0.20 0.78

Pers. Silhouette
0.53 0.92 0.48 0.91
0.30 0.85 0.29 0.65

Pers. Images
0.56 0.74 0.55 0.73
0.39 0.55 0.41 0.47

Template Functions
0.61 0.63 0.41 0.78
0.45 0.46 0.32 0.53

ATS
0.57 0.83 0.54 0.83
0.41 0.57 0.42 0.58

ATOL
0.59 0.74 0.60 0.76
0.44 0.53 0.44 0.54

Table 2.1: Orbit dataset results. H1 and concat achieve consistently the best
results. First line of each row: best result, second line: average.
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Heat kernel signature

vectorisation H0 H1 fused concat

Pers. Statistics
0.87 0.96 0.91 0.94
0.63 0.87 0.75 0.70

Entropy Summary
0.24 0.70 0.73 0.74
0.24 0.62 0.64 0.63

Algebraic Functions
0.89 0.87 0.86 0.90
0.74 0.80 0.83 0.89

Tropical Coordinates
0.79 0.89 0.87 0.87
0.52 0.78 0.66 0.70

Complex Polynomials
0.83 0.88 0.86 0.91
0.62 0.75 0.70 0.75

Betti Curve
0.08 0.71 0.66 0.64
0.08 0.61 0.62 0.59

Lifespan Curve
0.69 0.87 0.91 0.90
0.66 0.87 0.89 0.88

Pers. Landscapes
0.69 0.90 0.90 0.90
0.64 0.89 0.89 0.89

Pers. Silhouette
0.69 0.83 0.86 0.90
0.64 0.80 0.77 0.85

Pers. Images
0.51 0.90 0.91 0.87
0.33 0.75 0.76 0.62

Template Functions
0.89 0.97 0.94 0.94
0.70 0.91 0.89 0.89

ATS
0.78 0.90 0.90 0.91
0.55 0.84 0.82 0.81

ATOL
0.81 0.88 0.86 0.93
0.52 0.81 0.82 0.83

Table 2.2: SHREC14 results. H1 achieves the overall best result, fused and
concat are right behind. First line of each row: best result, second line: average.
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Cubical complex

vectorisation H0 H1 fused concat

Pers. Statistics
0.88 0.60 0.90 0.90
0.60 0.44 0.63 0.70

Entropy Summary
0.44 0.63 0.41 0.72
0.34 0.31 0.32 0.57

Algebraic Functions
0.78 0.73 0.76 0.88
0.50 0.55 0.49 0.55

Tropical Coordinates
0.84 0.71 0.84 0.87
0.58 0.58 0.60 0.60

Complex Polynomials
0.74 0.72 0.73 0.83
0.43 0.46 0.43 0.51

Betti Curve
0.03 0.62 0.03 0.63
0.03 0.58 0.03 0.58

Lifespan Curve
0.32 0.59 0.33 0.70
0.18 0.52 0.18 0.38

Pers. Landscapes
0.33 0.57 0.33 0.66
0.26 0.49 0.26 0.56

Pers. Silhouette
0.43 0.52 0.41 0.70
0.29 0.38 0.28 0.43

Pers. Images
0.74 0.65 0.73 0.77
0.55 0.45 0.59 0.56

Template Functions
0.71 0.77 0.72 0.83
0.37 0.65 0.44 0.69

ATS
0.77 0.77 0.81 0.85
0.62 0.67 0.65 0.73

ATOL
0.79 0.75 0.78 0.81
0.49 0.59 0.51 0.69

Table 2.3: Outex dataset results. Concat achieves consistently the best results.
First line of each row: best result, second line: average.
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Cubical complex Multi filtration

vectorisation H0 H1 fused concat H0 H1 fused concat

Pers. Statistics
0.53 0.48 0.56 0.61 0.78 0.52 0.75 0.80
0.53 0.48 0.56 0.61 0.69 0.47 0.67 0.71

Entropy Summary
0.15 0.32 0.16 0.34 0.10 0.14 0.13 0.12
0.15 0.32 0.16 0.34 0.10 0.13 0.13 0.13

Algebraic Functions
0.27 0.35 0.29 0.44 0.80 0.50 0.79 0.83
0.27 0.35 0.29 0.44 0.77 0.39 0.76 0.77

Tropical Coordinates
0.38 0.38 0.41 0.51 0.11 0.13 0.14 0.13
0.37 0.37 0.41 0.51 0.10 0.13 0.12 0.12

Complex Polynomials
0.32 0.33 0.32 0.42 0.21 0.20 0.26 0.31
0.30 0.32 0.30 0.41 0.16 0.17 0.20 0.25

Betti Curve
0.13 0.35 0.13 0.35 0.11 0.13 0.14 0.13
0.13 0.34 0.13 0.35 0.10 0.10 0.11 0.10

Lifespan Curve
0.12 0.32 0.12 0.32 0.13 0.12 0.14 0.14
0.12 0.31 0.12 0.32 0.11 0.11 0.12 0.12

Pers. Landscapes
0.11 0.40 0.11 0.41 0.11 0.14 0.27 0.26
0.11 0.39 0.11 0.38 0.10 0.12 0.22 0.20

Pers. Silhouette
0.16 0.27 0.17 0.31 0.23 0.25 0.30 0.28
0.13 0.24 0.14 0.26 0.18 0.18 0.26 0.25

Pers. Images
0.49 0.43 0.50 0.55 0.35 0.38 0.41 0.44
0.43 0.38 0.44 0.50 0.24 0.26 0.33 0.36

Template Functions
0.36 0.49 0.35 0.48 0.36 0.33 0.40 0.43
0.23 0.41 0.24 0.45 0.31 0.30 0.34 0.35

ATS
0.28 0.15 0.11 0.30 0.27 0.28 0.34 0.34
0.21 0.15 0.11 0.22 0.25 0.24 0.25 0.27

ATOL
0.34 0.25 0.40 0.27 0.21 0.21 0.28 0.29
0.24 0.21 0.37 0.23 0.14 0.14 0.18 0.18

Table 2.4: FMNIST dataset results. Two different filtrations with very different
results. In both cases, concat performs best. First line of each row: best result,
second line: average.
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Edge weight filtration

vectorisation H0 H1 H2 fused concat

Pers. Statistics
0.59 0.54 0.75 0.76 0.75
0.57 0.53 0.72 0.72 0.71

Entropy Summary
0.59 0.53 0.73 0.72 0.74
0.57 0.53 0.70 0.66 0.68

Algebraic Functions
0.59 0.54 0.66 0.66 0.66
0.58 0.54 0.60 0.57 0.59

Tropical Coordinates
0.59 0.54 0.68 0.66 0.68
0.58 0.52 0.58 0.60 0.60

Complex Polynomials
0.59 0.57 0.64 0.62 0.62
0.58 0.55 0.60 0.59 0.60

Betti Curve
0.60 0.54 0.71 0.71 0.70
0.60 0.53 0.62 0.64 0.60

Lifespan Curve
0.59 0.54 0.73 0.74 0.73
0.56 0.52 0.59 0.62 0.61

Pers. Landscapes
0.59 0.54 0.73 0.73 0.74
0.58 0.53 0.63 0.61 0.63

Pers. Silhouette
0.59 0.55 0.70 0.71 0.71
0.58 0.54 0.66 0.65 0.67

Pers. Images
0.60 0.53 0.79 0.77 0.79
0.57 0.53 0.71 0.70 0.71

Template Functions
0.52 0.49 0.68 0.69 0.65
0.50 0.49 0.62 0.64 0.59

ATS
0.55 0.53 0.71 0.71 0.71
0.52 0.51 0.66 0.68 0.68

ATOL
0.57 0.53 0.72 0.70 0.71
0.55 0.52 0.69 0.66 0.69

Table 2.5: COLLAB dataset results. Except for H0 and H1, the accuracy results
are high and consistent for all approaches. First line of each row: best result, second
line: average.
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Takens embedding Lower star

vectorisation H0 H1 H2 fused concat H0

Pers. Statistics
0.56 0.56 0.55 0.64 0.66 0.88
0.53 0.53 0.53 0.57 0.58 0.83

Entropy Summary
0.70 0.72 0.65 0.67 0.70 0.92
0.67 0.70 0.62 0.65 0.68 0.79

Algebraic Functions
0.66 0.64 0.61 0.64 0.68 0.61
0.58 0.57 0.56 0.57 0.59 0.56

Tropical Coordinates
0.69 0.71 0.66 0.70 0.70 0.54
0.60 0.61 0.58 0.60 0.60 0.52

Complex Polynomials
0.67 0.70 0.65 0.69 0.72 0.69
0.60 0.61 0.58 0.59 0.64 0.67

Betti Curve
0.69 0.70 0.63 0.68 0.70 0.86
0.67 0.69 0.62 0.68 0.69 0.79

Lifespan Curve
0.73 0.67 0.63 0.74 0.73 0.68
0.61 0.58 0.57 0.62 0.62 0.59

Pers. Landscapes
0.70 0.68 0.64 0.73 0.72 0.73
0.60 0.59 0.57 0.61 0.60 0.61

Pers. Silhouette
0.60 0.65 0.64 0.68 0.68 0.71
0.58 0.60 0.58 0.61 0.62 0.68

Pers. Images
0.50 0.56 0.50 0.57 0.59 0.50
0.50 0.55 0.52 0.57 0.55 0.48

Template Functions
0.50 0.56 0.55 0.58 0.50 0.51
0.50 0.52 0.52 0.54 0.50 0.49

ATS
0.71 0.67 0.64 0.70 0.71 0.85
0.69 0.60 0.60 0.68 0.69 0.83

ATOL
0.75 0.73 0.72 0.75 0.75 0.94
0.73 0.71 0.67 0.72 0.73 0.94

Table 2.6: Gravitational wave dataset results. Two different filtrations and
their accuracies. When multiple approaches are available, H0, fused and concat
perform best. First line of each row: best result, second line: average.
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(a) Orbit dataset: four orbits for different choices of the parameter r.

(b) SHREC14 dataset: different shapes and poses of a human.

(c) Outex dataset: four sample images.

(d) FMNIST dataset: four sample images.

Figure 2.1: Samples of the datasets used in this chapter.
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Figure 2.2: Two processed images of the FMNIST dataset. Height filtration with
the arrow along which it was computed the distance (left). Center filtration with
the center from which it was computed the distance to measure function (right).

Figure 2.3: Two signals coming from the gravitational wave dataset. Pure noise
signal (left), gravitational waveform (right, green) and its corrupted version (right,
red).

Figure 2.4: 3D projection of the embedded gravitational waveform (left) and 3D
projection of the embedded noise (right).
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use all homological dimensions available since f012 and c012 are superior to f01 and
c01, which are themselves superior to H0 and H1.

To summarize, concatenating all non-trivial homological dimensions seems to
be the best approach, regardless of the noise level. If for some reason (i.e. compu-
tational cost) only fewer homological dimensions are computed, the best approach
is yet to concatenate all homological dimensions available. Finally, it appears that
higher dimensions are less reliable in the presence of noise. We stress the fact that
these are just preliminary and empirical findings, further statistical studies should
be conducted.

Figure 2.5: Sample of shapes for the Synthetic dataset.

Figure 2.6: The different levels of noise corrupting the Synthetic dataset.
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Vietoris Rips

vectorisation
σ = 0 σ = 0.05

H0 H1 H2 f01 c01 f012 c012 H0 H1 H2 f01 c01 f012 c012

Pers. Statistics
0.96 0.99 0.96 0.99 0.99 0.99 0.99 0.96 0.97 0.97 0.96 0.97 0.97 0.98
0.93 0.98 0.92 0.96 0.97 0.94 0.96 0.88 0.78 0.88 0.78 0.79 0.81 0.79

Entropy Summary
0.91 0.90 0.91 0.91 0.94 0.91 0.94 0.86 0.84 0.86 0.92 0.92 0.88 0.92
0.90 0.85 0.90 0.90 0.87 0.91 0.86 0.82 0.84 0.82 0.87 0.87 0.85 0.87

Algebraic Functions
0.96 0.92 0.95 0.95 0.96 0.94 0.97 0.91 0.87 0.92 0.93 0.92 0.93 0.92
0.89 0.88 0.88 0.93 0.88 0.93 0.89 0.85 0.83 0.85 0.91 0.85 0.90 0.85

Tropical Coordinates
0.96 0.97 0.96 0.99 0.98 0.99 0.97 0.93 0.97 0.93 0.95 0.96 0.94 0.96
0.90 0.79 0.90 0.96 0.74 0.94 0.80 0.86 0.77 0.86 0.77 0.66 0.80 0.71

Complex Polynomials
0.95 0.97 0.95 0.96 0.97 0.96 0.96 0.91 0.95 0.91 0.94 0.95 0.94 0.94
0.86 0.89 0.86 0.86 0.84 0.85 0.84 0.84 0.87 0.84 0.85 0.85 0.84 0.84

Betti Curve
0.17 0.92 0.17 0.17 0.90 0.33 0.90 0.17 0.86 0.17 0.17 0.88 0.17 0.87
0.17 0.83 0.17 0.17 0.80 0.33 0.80 0.17 0.81 0.17 0.17 0.80 0.17 0.79

Lifespan Curve
0.87 0.94 0.87 0.87 0.95 0.84 0.94 0.83 0.91 0.84 0.83 0.93 0.83 0.92
0.82 0.90 0.82 0.82 0.90 0.79 0.89 0.81 0.89 0.81 0.81 0.86 0.81 0.87

Pers. Landscapes
0.17 0.97 0.17 0.17 0.97 0.17 0.96 0.17 0.91 0.17 0.17 0.91 0.17 0.91
0.17 0.91 0.17 0.17 0.89 0.17 0.85 0.17 0.83 0.17 0.17 0.82 0.17 0.82

Pers. Silhouette
0.86 0.94 0.84 0.89 0.94 0.90 0.93 0.84 0.89 0.84 0.89 0.92 0.87 0.92
0.48 0.83 0.48 0.50 0.86 0.50 0.86 0.49 0.75 0.49 0.51 0.82 0.51 0.81

Pers. Images
0.94 0.99 0.93 0.99 0.99 0.99 0.99 0.92 0.80 0.92 0.79 0.93 0.80 0.92
0.77 0.97 0.77 0.93 0.96 0.94 0.96 0.73 0.69 0.73 0.66 0.77 0.67 0.76

Template Functions
0.86 0.99 1.00 0.99 0.99 0.99 1.00 0.86 0.92 0.91 0.68 0.90 0.74 0.91
0.81 0.98 0.98 0.96 0.98 0.93 0.98 0.80 0.79 0.82 0.61 0.79 0.64 0.83

ATS
0.94 0.97 0.92 0.99 0.96 0.99 0.98 0.94 0.95 0.95 0.96 0.94 0.97 0.95
0.83 0.94 0.89 0.98 0.94 0.99 0.95 0.80 0.92 0.93 0.92 0.89 0.93 0.90

ATOL
0.96 0.99 0.99 0.99 0.99 0.99 1.00 0.94 0.96 0.95 0.97 0.96 0.96 0.95
0.86 0.98 0.98 0.98 0.98 0.96 0.98 0.86 0.92 0.91 0.77 0.92 0.78 0.92

Table 2.7: Synthetic dataset results for noise level σ = 0 and σ = 0.05. For
low levels of noise, every approach seem equivalent, but c012 still achieves the best
accuracy, together with H2. First row of each cell: best result, second row: average.

Vietoris Rips

vectorisation
σ = 0.1 σ = 0.15

H0 H1 H2 f01 c01 f012 c012 H0 H1 H2 f01 c01 f012 c012

Pers. Statistics
0.79 0.84 0.79 0.83 0.85 0.87 0.83 0.64 0.69 0.63 0.67 0.70 0.65 0.71
0.77 0.64 0.77 0.63 0.64 0.66 0.63 0.64 0.49 0.63 0.48 0.49 0.48 0.50

Entropy Summary
0.74 0.70 0.74 0.76 0.85 0.76 0.84 0.66 0.54 0.66 0.63 0.67 0.62 0.66
0.72 0.66 0.72 0.75 0.75 0.74 0.74 0.64 0.50 0.65 0.62 0.59 0.62 0.56

Algebraic Functions
0.73 0.75 0.73 0.80 0.78 0.84 0.80 0.67 0.63 0.67 0.67 0.64 0.67 0.66
0.72 0.69 0.72 0.78 0.76 0.80 0.77 0.65 0.60 0.66 0.66 0.64 0.65 0.66

Tropical Coordinates
0.75 0.81 0.75 0.76 0.82 0.79 0.82 0.65 0.67 0.66 0.62 0.67 0.67 0.68
0.74 0.64 0.75 0.59 0.57 0.61 0.55 0.64 0.48 0.65 0.45 0.46 0.50 0.45

Complex Polynomials
0.75 0.78 0.75 0.83 0.81 0.82 0.81 0.64 0.65 0.65 0.64 0.69 0.63 0.70
0.73 0.69 0.73 0.74 0.76 0.73 0.75 0.64 0.62 0.64 0.63 0.63 0.62 0.65

Betti Curve
0.17 0.67 0.17 0.17 0.68 0.17 0.67 0.17 0.49 0.17 0.17 0.50 0.17 0.46
0.17 0.64 0.17 0.17 0.61 0.17 0.56 0.17 0.45 0.17 0.17 0.44 0.17 0.42

Lifespan Curve
0.73 0.78 0.73 0.73 0.86 0.73 0.83 0.67 0.62 0.67 0.67 0.66 0.67 0.67
0.71 0.76 0.71 0.71 0.73 0.71 0.76 0.64 0.60 0.64 0.64 0.60 0.64 0.60

Pers. Landscapes
0.17 0.78 0.17 0.17 0.76 0.17 0.79 0.17 0.64 0.17 0.17 0.67 0.17 0.66
0.17 0.70 0.17 0.17 0.64 0.17 0.66 0.17 0.62 0.17 0.17 0.51 0.17 0.50

Pers. Silhouette
0.72 0.70 0.72 0.74 0.83 0.73 0.83 0.64 0.66 0.64 0.63 0.66 0.62 0.64
0.42 0.61 0.45 0.67 0.66 0.45 0.66 0.40 0.55 0.40 0.38 0.42 0.38 0.51

Pers. Images
0.73 0.68 0.73 0.57 0.76 0.58 0.78 0.63 0.48 0.63 0.38 0.61 0.47 0.59
0.63 0.52 0.65 0.45 0.59 0.47 0.58 0.53 0.41 0.54 0.33 0.46 0.33 0.44

Template Functions
0.75 0.75 0.79 0.56 0.79 0.57 0.79 0.65 0.61 0.61 0.43 0.64 0.44 0.67
0.72 0.62 0.62 0.45 0.65 0.44 0.66 0.64 0.45 0.43 0.38 0.42 0.32 0.48

ATS
0.73 0.86 0.84 0.77 0.84 0.83 0.84 0.62 0.68 0.66 0.63 0.66 0.66 0.71
0.55 0.85 0.77 0.69 0.82 0.80 0.83 0.45 0.67 0.64 0.56 0.65 0.61 0.68

ATOL
0.83 0.83 0.85 0.84 0.83 0.84 0.85 0.65 0.67 0.63 0.61 0.66 0.64 0.70
0.75 0.77 0.78 0.64 0.77 0.63 0.81 0.63 0.61 0.59 0.47 0.61 0.48 0.68

Table 2.8: Synthetic dataset results for noise level σ = 0.1 and σ = 0.15.
For higher level of noise, singular lower dimensions gain relevance in classification.
The concat approach is still the best performing. First row of each cell: best result,
second row: average.
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2.3 Understanding pros and cons of features from fu-
sion and concatenation approaches

Finally, in our last experiment we want to investigate the relationship between
the fused and concat approaches in more detail. In particular, we want to study
from an empirical point of view how the distribution and quantity of points in the
various homological dimensions of the persistence diagrams influence the usefulness
of either approach. To this end, we developed four synthetic datasets that vary in
the number and distribution of points. We denote them as Dataset 1 − 4. In order
to better control the distribution of points in the PD, in all datasets we directly
synthetically generated the PDs. More in detail, each dataset has three classes
C1, C2 and C3 with points in homological groups H0, H1 and H2. Each class Ci
has a number of points in each homological dimension which is a random integer
in the intervals [0, n0], [0, n1], [0, n2] for H0, H1 and H2 respectively. Each homo-
logical dimension of each class samples points in the box b1, b2, b3 ∈ R2. For ease
of notation, with bi = [x, y] we mean that points are sampled from the triangle
{(b, d)}, with b ∈ [x, y] and d ∈ [b, y]. Finally, each class is corrupted with random
Gaussian noise with standard deviation σ1, σ2 and σ3. For a list of parameters used
to generate the four datasets, we refer the reader to Table 2.9. We refer to Figure
2.7 for a graphical example of the different datasets. Each dataset is composed of
900 samples. The idea behind these combinations is that Dataset 1 is composed
of classes with well-separated homological dimensions and with a comparable num-
ber of points within the homological dimensions. Dataset 2 has classes with very
mixed homological dimensions but a comparable number of points in the homolo-
gical dimensions. Dataset 3 has points in H0 that are orders of magnitude higher
than H1 and H2, but well-separated points. Finally, Dataset 4 has again points
in H0 that are orders of magnitude higher than H1 and H2 and additionally very
mixed homological dimensions. We refer to Table 2.10 for the accuracy results of
this experiment. In Dataset 1 we observe that concat and fused results are very
close, although concat being slightly better and more consistent. In particular, it
is clear that for this dataset fused is able to synergise information coming from all
dimensions. For Dataset 2, however, the fused approach is rarely able to synergise
the various homological dimensions to increase their singular performances. When
it happens, it is only marginally. This is supposedly due to the fact that points in
different homological dimensions are more mixed with respect to that in Dataset 1.
The results for Dataset 3 are in a sense similar to those of Dataset 1, with one major
difference. Again, concat and fused approaches are the best-performing methods.
The concat approach is nonetheless the best performing. It is interesting to note
however that the gap between the first row of each cell and the second row is wider
than in Dataset 1 and 2, both for the fused and the concat approaches. That is,
in the presence of homological dimensions with a huge disparity of points, using all
dimensions became very sensitive to optimal parameters choice. Finally, the results
with Dataset 4 are consistent with our previous findings. In particular, the gap
between fused and approach is more pronounced, and again with different orders
of magnitude of points in the various homological dimensions, using features from
all of them became way more sensible to the parameters than in the setting with a
similar amount of numbers.
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Dataset 1 Dataset 2 Dataset 3 Dataset 4

C1 : (n0,n1,n2) (100, 60, 20) (100, 60, 20) (3120, 60, 20) (1600, 60, 20)
C2 : (n0,n1,n2) (120, 60, 40) (120, 60, 40) (2120, 60, 40) (1620, 60, 40)
C3 : (n0,n1,n2) (120, 60, 40) (120, 60, 40) (3120, 60, 40) (1620, 60, 40)

C1 : (b0,b1,b2) ([0, 5], [5, 10], [10, 15]) ([0, 5], [1, 6], [2, 7]) ([0, 5], [5, 10], [10, 15]) ([0, 5], [1, 6], [2, 7])
C2 : (b0,b1,b2) ([0, 4], [4, 8], [8, 12]) ([0, 4], [1, 5], [2, 6]) ([0, 4], [4, 8], [8, 12]) ([0, 4], [1, 5], [2, 6])
C3 : (b0,b1,b2) ([0, 6], [6, 12], [12, 20]) ([0, 6], [2, 8], [4, 12]) ([0, 6], [6, 12], [12, 20]) ([0, 6], [2, 8], [4, 12])

(σ1, σ2, σ3) (1, 1.5, 2) (1, 1.5, 2) (1, 1.5, 2) (1, 1.5, 2)

Table 2.9: Parameters combination for the four datasets of pros and cons of fusion
and concat approaches.

To conclude the chapter, our experiments show that the concat approach is
undoubtedly more reliable and consistently achieves the best accuracy results. More
importantly, it never suffers from a drop of performance related to specific datasets
- filtrations - vectorisations, in contrast with all other approaches. The presence of
noise seems to impact it in a more limited way than the other approaches. Especially,
higher dimensions seem to be more affected by noise, while concat is still very
consistent. However, the concat approach can be more computational expensive
and this factor may be limiting in certain scenarios. The fused approach can be
an exellent alternative, easy to vectorise as a singular dimensions, but it can suffer
from sharp drop of performances when the homological dimenisons are not well
separated or with number of points that differs by orders of magnitude. It is much
more sensible to the parameters combination but is usually able to improve the
quality of features from individual homological dimensions. All these results must
be considered preliminary. In any case, the premises of the topological machine
learning pipeline devised alongside this dissertation are excellent and its application
to real-world data is the focus of the next chapter.
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Dataset 1 Dataset 2 Dataset 3 Dataset 4

H0 H1 H2 fused concat H0 H1 H2 fused concat H0 H1 H2 fused concat H0 H1 H2 fused concat

PS
0.69 0.91 0.99 0.89 1.00 0.70 0.75 0.84 0.83 0.90 0.78 0.92 0.98 0.93 0.99 0.71 0.78 0.86 0.82 0.94
0.65 0.91 0.99 0.83 0.99 0.65 0.74 0.82 0.79 0.86 0.64 0.91 0.98 0.51 0.72 0.51 0.75 0.85 0.58 0.72

ES
0.37 0.37 0.43 0.56 0.43 0.34 0.34 0.46 0.54 0.44 0.43 0.40 0.46 0.62 0.46 0.42 0.43 0.49 0.60 0.49
0.37 0.35 0.41 0.56 0.41 0.33 0.32 0.43 0.51 0.43 0.42 0.39 0.42 0.49 0.43 0.40 0.40 0.47 0.58 0.46

AF
0.60 0.62 0.71 0.79 0.77 0.61 0.63 0.71 0.74 0.76 0.63 0.62 0.75 0.81 0.79 0.63 0.64 0.77 0.76 0.82
0.56 0.58 0.64 0.74 0.71 0.59 0.60 0.67 0.69 0.72 0.59 0.60 0.66 0.76 0.71 0.56 0.62 0.68 0.66 0.68

TC
0.56 0.54 0.67 0.67 0.73 0.52 0.53 0.70 0.67 0.72 0.62 0.51 0.69 0.60 0.70 0.60 0.56 0.70 0.74 0.79
0.53 0.51 0.62 0.61 0.70 0.49 0.49 0.68 0.65 0.71 0.59 0.49 0.64 0.55 0.65 0.59 0.51 0.67 0.66 0.69

CP
0.53 0.66 0.71 0.72 0.82 0.59 0.58 0.66 0.58 0.74 0.66 0.65 0.68 0.70 0.76 0.67 0.67 0.72 0.79 0.81
0.41 0.43 0.64 0.53 0.68 0.42 0.44 0.45 0.50 0.64 0.58 0.59 0.59 0.67 0.71 0.60 0.58 0.67 0.70 0.72

BC
0.35 0.35 0.43 0.56 0.44 0.39 0.37 0.44 0.52 0.47 0.43 0.39 0.47 0.60 0.44 0.43 0.40 0.48 0.62 0.47
0.34 0.34 0.41 0.55 0.40 0.35 0.35 0.43 0.50 0.44 0.39 0.38 0.45 0.47 0.41 0.41 0.36 0.46 0.60 0.44

LC
0.45 0.41 0.56 0.66 0.59 0.46 0.39 0.59 0.52 0.57 0.51 0.46 0.56 0.69 0.63 0.51 0.44 0.53 0.63 0.60
0.40 0.39 0.54 0.65 0.57 0.42 0.38 0.58 0.51 0.57 0.50 0.42 0.53 0.60 0.56 0.48 0.41 0.52 0.61 0.52

PL
0.61 0.51 0.64 0.75 0.73 0.60 0.52 0.65 0.74 0.73 0.65 0.52 0.67 0.75 0.75 0.63 0.58 0.64 0.69 0.74
0.57 0.49 0.63 0.70 0.71 0.56 0.50 0.63 0.70 0.69 0.62 0.51 0.61 0.72 0.70 0.59 0.56 0.61 0.67 0.68

PSi
0.57 0.49 0.58 0.66 0.63 0.53 0.48 0.54 0.65 0.64 0.62 0.50 0.54 0.73 0.63 0.54 0.49 0.57 0.65 0.66
0.52 0.45 0.55 0.65 0.60 0.50 0.44 0.53 0.62 0.60 0.56 0.45 0.52 0.64 0.62 0.51 0.45 0.56 0.61 0.63

PI
0.51 0.51 0.59 0.76 0.68 0.52 0.54 0.66 0.68 0.68 0.63 0.49 0.62 0.79 0.70 0.60 0.56 0.62 0.71 0.77
0.46 0.44 0.54 0.70 0.57 0.49 0.50 0.57 0.65 0.62 0.58 0.48 0.55 0.68 0.62 0.59 0.52 0.58 0.60 0.64

TF
0.67 0.89 0.99 0.98 1.00 0.68 0.76 0.80 0.81 0.87 0.77 0.91 0.97 0.96 0.99 0.73 0.75 0.83 0.82 0.92
0.64 0.81 0.94 0.86 0.96 0.65 0.69 0.79 0.75 0.82 0.73 0.86 0.95 0.77 0.79 0.66 0.65 0.81 0.74 0.81

ATS
0.66 0.86 0.97 0.98 0.99 0.69 0.72 0.78 0.81 0.87 0.72 0.82 0.97 0.93 0.99 0.71 0.71 0.82 0.79 0.88
0.65 0.84 0.96 0.91 0.96 0.64 0.67 0.75 0.76 0.83 0.70 0.80 0.95 0.73 0.87 0.66 0.68 0.80 0.73 0.73

ATOL
0.57 0.80 0.95 0.78 0.98 0.58 0.67 0.81 0.76 0.86 0.66 0.85 0.98 0.62 1.00 0.62 0.67 0.80 0.62 0.90
0.51 0.73 0.94 0.57 0.95 0.51 0.60 0.79 0.70 0.84 0.60 0.77 0.95 0.57 0.81 0.56 0.63 0.80 0.58 0.75

Table 2.10: Four synthetic datasets of pros and cons of fusion and concat
approaches results. For well separated classes with a comparable number of
points, the fused approach is able to synergise the various homological dimensions.
When this is not the case, howerver, it suffers a drop in performance. First row of
each cell: best result, second row: average.
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(a) Class 1 Dataset 1 (b) Class 2 Dataset 1 (c) Class 3 Dataset 1

(d) Class 1 Dataset 2 (e) Class 2 Dataset 2 (f) Class 3 Dataset 2

(g) Class 1 Dataset 3 (h) Class 2 Dataset 3 (i) Class 3 Dataset 3

(j) Class 1 Dataset 4 (k) Class 2 Dataset 4 (l) Class 3 Dataset 4

Figure 2.7: Examples of classes C1 − 3 for Datasets 1 − 4.



36 CHAPTER 2. TML: EXPERIMENTS AND RESULTS



Chapter 3

Real-world dataset applications

The aim of this chapter is to present three applications of the topological ma-
chine learning pipeline described in Chapter 1 and tested on benchmark datasets in
Chapter 2 to real-world datasets that are under analysis ISTI-CNR laboratory. This
chapter represents the third contribution of this dissertation and it is derived from
[16, 17, 18]. This is motivated by the good results of the pipeline on benchmark
datasets, and also expand the literature of TDA applications to real-world data,
which is still under-represented. The applications presented in this chapter are
three, two of which are biomedical. Following the findings of the previous chapter,
we are only going to present the results obtained by the pipeline for the concat ap-
proach (when applicable). We want to highlight the fact that all three applications
deal with datasets heavily affected by noise, making the findings of noise robustness
of the concat approach of the previous chapter even more relevant. Of course, the
results are nonetheless impacted by the presence of such noise. However, results are
still satisfactory, expecially in biomedical data.

3.1 Sea surface temperature analysis

The first application that we are going to present comes from the analysis of Sea
Surface Temperatures (SST) and has already been presented [18]. This application
is justified by the recent advances in remote sensing that provide experts with a
huge amount of marine observation acquired by satellite sensors. Consequently, the
need for automatic methods is increased and this application aims to provide pre-
cisely this automatic pipeline. The case of study consists in the classification of the
upwelling regimes of the Iberia - Canary Current System (ICCS), one of the least
studied among the mesoscale ecosystems [101]. Upwelling is a process of particu-
lar interest because it causes the transportation of deeper, colder and nutrient-rich
waters to the surface. Hence, it affects the biological parameters of the habitat and
enhances local biodiversity [102]. Sea surface temperature is the measure of the
water’s temperature performed by satellite instruments that record the energy em-
anating from the ocean surface, which is emitted at different wavelengths. Studying
the sea surface data is important because it allows to understand changes in the
environment and consequently changes in the access to food, migration patterns
and mating access of the species. To the best of our knowledge, very few solutions

37
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have been developed to tackle the automation of the upwelling event classification
[103, 104, 105].

3.1.1 Dataset description

In this experiment we collect satellite imagery from two satellite sources: the
EUMETSAT’s METOP-A and METOP-B [106] and NASA’s Aqua [107]. As a
preliminary step, a visual inspection of SST maps of the southwestern region of the
Iberian Peninsula has been performed by experts. This leads to the identification of
four typologies of mesoscale events as the most representative. The first mesoscale
pattern E1 is associated with the meander of the southward upwelling jet to the
west, near Cape St. Vincent, alongside the development of upwelling filaments. The
second mesoscale pattern E2 is depicted by the southwards flow of the upwelling
jet overpassing the Cape St. Vincent forming an extended meridional filament.
Pattern E3 is characterized by a clear line of cool water throughout the whole
southern Iberian coast. To be more precise, experts distinguish two sub-types in
E3 [103], but we do not consider this split in our application. Finally, pattern
E4 occurs when a warm countercurrent develops near the southern Iberian coast,
surrounding Cape S. Vincent, and flowing north near the coast. A selection of
503 images (381 METOP, 122 Aqua) from years 2009 to 2016 has been collected
and manually classified by experts in the mesoscale patterns E1, E2, E3, E4. The
resulting dataset is balanced. The spatial resolution of the satellite sources is of one
nadir of 1km, and temperature accuracy of 0.01°C (METOP) or 0.005°C (Aqua),
with a range from −2°C to 36°C. The files were provided in either NetCDF-4 or HDF
format (the latter only for pre-2014 Aqua files) and converted into 8-bit grayscale
PNG images. In particular, the following steps were performed:

• information about the latitude, longitude and temperature value was extracted
from the NetCDF/HDF file and stored in three NumPy arrays;

• a Cartopy GeoAxis was prepared with a Plate Carrée projection and an extent
of [36°N, 39.5°N] × [10.5°W, 7°W];

• a grayscale colormap was defined such that a temperature of 5°C corresponds
to gray 95%, a temperature of 25°C corresponds to gray 0% and the in-between
values are linearly interpolated. The white color has been assigned to missing
or low-quality data;

• the temperature was plotted in the GeoAxis using MatPlotLib’s pcolormesh

Python method (normalized between 5°C and 25°C) and saved using MatPlot-
Lib’s savefig Python method, with a 0.2-inch white padding, resulting in a
409 × 409 PNG image (370 × 370 without the white frame).

We highlight the fact that the thermal resolution of the raw data is 0.01°C at
least, but when the temperature map is converted into a PNG file, such a resolution
might be lower. The dataset is composed of images that are heavily affected by
noise or vast areas of missing data (clouds). In the vast majority of cases, only
around half of the sea surface is visible. We refer to Figure 3.1 for an example of
a neat image and one corrupted by noise. In order to enhance the signal of each
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image, and limit the incidence of noise, we performed the following preprocessing
steps:

• the Iberian peninsula is filtered out using a black mask;

• multi-threshold Otsu [108] with a 5-class segmentation (the Scikit-Image im-
plementation is applied);

• median filtering with kernel size 7 followed by Gaussian filtering with kernel
size 3 (OpenCV implementation);

• fat edge extraction using the inbuilt ImageFilter.find edge function of the
PIL Python package, kernel size 3.

We refer to Figure 3.2 for a graphical example of the performed preprocessing.

Figure 3.1: Sample images from the dataset of SST. A neat image (left) and a
corrupted image (right).

Figure 3.2: The preprocessing applied to the SST dataset. In order: The Iberian
peninsula is filtered out, multi-threshold Otsu, medial filter and Gaussian filter and
fat edge extraction.
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Predicted
E1 E2 E3 E4

T
ru

e

E1 7 3 8 7
E2 2 2 13 8
E3 0 1 24 0
E4 0 0 2 23

Table 3.1: Confusion table for SST dataset.

3.1.2 Results

The topological machine learning pipeline has been applied to the processed
dataset described in the previous section. The best-performing method achieves a
56% overall accuracy using Betti curves. We refer to Table 3.1 for the confusion
matrix of the best-performing method. The accuracy is clearly not particularly
impressive and the classification of E1 and E2 in particular can be improved. For
comparison, we train two competitors in the same scenario. As a fist competitor
we trained a convolutional neural network, state-of-the-art in computer vision tasks
[109]. We employed two architectures, both with 6 convolutional layers. The first
configuration consists of [32, 64, 128, 128, 256, 256] kernels of dimension 3 × 3. The
second configuration consists of [4, 8, 16, 16, 32, 32] kernels of dimension 3× 3. Both
CNNs are not able to improve the accuracy of our model, since the accuracy was of
34% and of 45%. Likely, such results are impacted by the scarcity of data, but still
our method outperformed CNNs model. Secondly, we performed standard machine
learning to the dataset. More in detail, we used the same classifiers as in the to-
pological machine learning pipeline, without the topological part. In this case, the
accuracy result was of 51%. The result of our topological machine learning pipeline,
despite not being particularly satisfactory in terms of accuracy, is at least encour-
aging. Topological descriptors extracted from SST maps can provide support in
the detection of E3 and E4 patterns, showing robustness against noise and missing
signal.

3.2 Raman spectroscopy for cancer grading

The second application comes from [16] and aims to develop an automated
pipeline for cancer grading using Raman Spectroscopy (RS). Raman spectroscopy is
a non-invasive optical technique sensitive to the molecular composition of biological
tissues. In particular, RS can be used to optically probe the molecular changes asso-
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ciated with diseased tissues. The Raman spectrum is a plot of scattered intensity as
a function of the energy difference between the incident and scattered photons and is
obtained by pointing a monochromatic laser beam at the tissue under investigation.
Hence, the loss or gain in the photon energies corresponds to the difference in the
final and initial vibrational energy levels of the molecules belonging to the specific
spots of the tissue investigated. The difference between final and initial vibra-
tional energy levels denote shifts in wave-numbers, which are unique for individual
molecules resulting in specific peaks that are spectrally narrow and potentially as-
sociated with the vibration of a specific chemical bond in the molecules [110]. The
grading of cancer tissues is currently one of the main challenges for pathologists
and RS can provide the support needed for making diagnoses more accurate and
less invasive [111, 112, 113, 114, 115]. In this study, we aim to provide insights for
the grading of chondrogenic tumors. Chondrogenic tumors are the second world-
wide largest group of bone tumors and its malignant cells produce a cartilaginous
matrix. When they occur in previously normal bones, they are generally classified
as primary chondrosarcomas. At the same time, secondary chondrosarcomas result
from the malignant transformation of a benign cartilaginous lesion. They are clas-
sified into three malignant degrees, the first degree (CS G1), the second one (CS
G2) and the third one (CS G3). In addition to such three degrees, Enchondroma
(EC) is a noncancerous version. Distinguishing between EC and CS G1 is a rather
critical issue for pathologists, generating many false positive and false negative dia-
gnoses [116, 117]. A first attempt to exploit RS for chondrogenic cancer grading has
been performed [118] and was later expanded [119]. In this work, we are going to
apply the topological machine learning pipeline to a dataset of Raman spectra un-
der analysis at ISTI-CNR laboratory. The work was approved by the local Ethical
Committee Comitato Etico Regionale per la Sperimentazione Clinica della Regione
Toscana sezione AREA VASTA NORD OVEST (protocol number 14249).

3.2.1 Dataset description

The data acquisition was carried out with a Thermo Fisher Scientific DXR2xi
Raman microscope. A total of ten patients, who were being treated at the In-
stitution, Azienda Ospedaliera Universitaria Pisana, Pisa, were enrolled in the
study under the Ethical Committee agreement. More details can be found in
[118]. Formalin-fixed paraffin-embedded tumor tissue sections were collected on
glass slides and subsequently submitted to RS analysis after the dewaxing step.
The protocol to remove paraffin and formalin has provided the immersion of the
histopathological sections in a series of two baths of xylene for 10 minutes, respect-
ively, and then washing the sections in PolyButylene Succinate (PBS) to remove
residual formalin. The Raman spectroscopy measurements were configured based
on the following experimental parameters: laser wavelength 532nm; power laser of
5–10mW; 400–3400cm−1 full range grating; 10×, 50× and 100× objectives; 25µm
pinhole; 5 (FWHM) cm−1 spectral resolution. Integration time for recording a Ra-
man spectrum was 1s and 10 scans for any spectrum. As a first step, the tissue
morphology overview was carried out to identify the regions of interest with the
collection of a number of mosaic images at low (10×) and intermediate (50×) mag-
nification. Thus, the acquisition of Raman spectra was carried out with a 100×
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objective. Optimization of signal-to-noise ratio and minimization of sample fluor-
escence were obtained through preliminary measurements in order to set the best
experimental parameters. Multiple measurements were performed in different re-
gions within the various samples, in order to assess intra-sample variability. In
turn, no pre-treatment of the samples was necessary before Raman measurements.
Minimal preprocessing, including background removal and baseline application, was
performed using the tools of the DXR2xi GUI, and a 5th order polynomial correc-
tion was used to compensate for the tissue fluorescence. Peaks were identified with
specific tool support by Omicron 9.0 software. Raman hyperspectral chemical maps
ranging from 50× 50µm2 (step size 1µm) to approximately 200× 200µm2 (step size
4µm), recording several hundreds of spectra per map were collected. Raman maps
provide the fundamental advantage of being able to localize Raman spectra to spe-
cific locations, providing local information about chemical composition. Step sizes
were chosen to have a collection time for each map less than 7 hours for all the
maps. Ten supplemental spectra have been acquired, making use of an Xplora Plus
(Horiba) in a similar experimental setup and preprocessing procedure in order to test
the classification method on never-seen data samples. This way, the results of the
final test show that the classification method proposed is neither subject-dependent
nor vendor-specific (DXR Thermo Fisher data for model training, Xplora Horiba
data for final model testing). The dataset is balanced. Moreover, when computing
the persistence diagrams we restricted to the wavenumber range 400-1800cm−1 and
opted for a Vietoris-Rips filtration. We refer to Figure 3.3 for examples of the data-
set. Figures 3.3a, 3.3b, 3.3c and 3.3d show histological images of the tumors with
the different degrees of malignancy, while Figures 3.3e, 3.3f, 3.3g and 3.3h show the
respective Raman spectra.

(a) Histology EC (b) Histology G1 (c) Histology G2 (d) Histology G3

(e) RS EC (f) RS G1 (g) RS G2 (h) RS G3

Figure 3.3: Representative histologic images of the tumors analyzed in this study
and the respective Raman spectra.

3.2.2 Results

For this study, we performed multiple experiments but we are going to present
only the two most relevant in this dissertation. For a more detailed description of
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all performed experiments, we refer the reader to [16]. As stated in the previous
section, we had access to two datasets. One composed of 400 spectra and one
composed of 10 spectra obtained from a different equipment and at a different
time. For the experiments that we are going to present, the first dataset is used as
training and the second one is used as test. More in detail, we report two different
experiments, one with all four labels of malignancy degrees and one with just two
labels: EC (benign) vs. CS (malignant). Table 3.2a reports the confusion matrix
for the four labels experiment, with an accuracy of 80%. Table 3.2b reports the
confusion matrix for the two labels experiment, with an accuracy of 90%. These
results are remarkable and, together with the limitations of the dataset, show the
potential of this method in large-scale applicability. Moreover, it is shown in [16]
that the features extracted from TDA are more convenient (both for accuracy and
significance) for a machine learning study than using directly the Raman spectra or
neural networks, highlighting the power of TDA in such challenging scenarios. Also,
results are very promising with respect to the state of the art, as the classification
accuracy outperforms the best results in literature [119]. Due to the size of the
dataset, our results should be considered preliminary but significant. Finally, the
proposed pipeline provides a classification model that can be easily integrated into
a workflow (as already done in the commercial workstation as for the preprocessing
modules), enabling the reduction of time and cost of the grading of cancerous tissues.

Table 3.2: Confusion tables of the Raman spectroscopy for cancer grading experi-
ment.

(a) Confusion table for the 4 degrees classification.

Predicted
EC CS G1 CS G2 CS G3

T
ru

e

EC 2 0 0 0
CS G1 1 2 0 0
CS G2 0 0 3 0
CS G3 1 0 0 1

(b) Confusion table for the 2 degrees
classification.

Predicted
EC CS

T
ru

e EC 1 1
CS 0 8

3.3 Raman spectroscopy for Alzheimer’s disease detec-
tion

Alzheimer’s disease (AD) is the most common neurodegenerative disease and,
due to the population aging, its rate of affliction is likely to increase. At present,
the clinical diagnosis of AD requires a series of neurological examinations (National
Institute of Aging – Alzheimer’s Association criteria) but the definitive diagnosis is
possible only after the patient’s death and brain tissue analysis. Therefore, there is a
need to improve the accuracy of clinical diagnosis with innovative, cost-effective and
specific approaches. As seen in the previous section, RS represents a fast, efficient,
non-invasive diagnostic tool and its high-precision detection is expected to reduce or
replace other AD diagnostic tests. Recently, Raman-based techniques demonstrated
significant potential in identifying AD by detecting specific biomarkers in body
fluids [120, 121]. The detection of Cerebrospinal Fluid (CSF) biomarkers is one of
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the diagnostic criteria for AD [122] because CSF is more sensitive than blood or
other biofluids in the diagnosis of AD. Therefore, RS can be used as an effective tool
to analyze CSF samples [123, 124]. In this work, we propose a novel method based
on the collection of the vibrational Raman fingerprint of the proteomic content
of cerebrospinal fluid and the topological machine learning pipeline presented in
Chapter 1 in order to support the AD diagnosis. This study is an expanded version
of [17].

3.3.1 Dataset description

The study population is made of 43 patients, enrolled in the framework of
the Bando Salute 2018 PRAMA project (“Proteomics, RAdiomics and Machine
learning-integrated strategy for precision medicine for Alzheimer’s”), co-funded by
the Tuscany Region, with the approval of the Institutional Ethics Committee of
the Careggi University Hospital Area Vasta Centro (ref. number 17918 bio). All
of them showed pathological symptoms: the majority of them have been diagnosed
with AD, while the others have been considered as controls (noAD), even if dia-
gnosed with other neurological conditions (vascular dementia, hydrocephalus and
multiple sclerosis). The CSF samples were collected by lumbar puncture, then
immediately centrifuged at 200g for one minute, 20°C and stored at −80°C un-
til analysis [125, 126]. On the day of analysis, CSF samples were thawed and
centrifuged again at 4000g for ten minutes at 4°C. The pellet was separated from
the supernatant and further used for the analyses. A 2µl drop of the pellet was
deposited onto a gold mirror support (ME1S-M01; Thorlabs, Inc., Newton, NJ),
followed by air drying for 30 minutes and acquisition of Raman spectra from the
outer ring of the dried drop. A set of five Raman spectra have been collected for
each drop-casted sample by using a micro-Raman spectrometer (Horiba, France)
in back-scattering configuration, equipped with a laser excitation source tuned at
785nm (40mW power, 20 second integration time, 10 accumulations) and a Peltier
cooled CCD detector. For each patient, the average of the five acquisitions of the
raw Raman spectrum is computed. This resulted in a dataset of 43 acquisitions
of RS: 21 belonging to the AD class and 22 to the noAD class. The following
preprocessing steps have been applied:

• baseline correction with parameters l = 1e+7 for smoothness and p = 0.05 for
asymmetry;

• signal smoothing using the scipy savgol filter Python package and para-
meters w = 9 for window and p = 2 for polynomial order;

• autocorrelation transform using numpy.correlate built-in function.

We refer to Figure 3.4 for a visualization of the preprocessing steps and to Figure
3.5 for a visual example of the final dataset. On the left side, there is the entirety of
the dataset, on the right side the average of both classes with standard deviation.
The filtration used in this application is the lower star, which results only in H0

features. The validation scheme is the Leave One Out cross-validation (LOO) [127].
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Figure 3.4: Alzheimer’s disease RS dataset. The entirety of the dataset (left) and
average with standard deviation (right).

Figure 3.5: Alzheimer’s disease RS dataset after the autocorrelation transform. The
entirety of the dataset (left) and average with standard deviation (right).
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Predicted
AD noAD

T
ru

e AD 18 3
noAD 3 19

Table 3.3: Confusion table for Raman spectroscopy of Alzheimer’s disease dataset.

3.3.2 Results

We refer to Table 3.3 for the confusion matrix of this application, which resul-
ted in a 86% accuracy. Such results improve the current state-of-the-art [123], but
must be considered preliminary due to the scarcity of data. In any case, our results
strongly support that RS and topological data analysis together may provide an
effective combination to the clinical diagnosis of AD. Also, our pipeline do not re-
quire the choice of any parameters, hence the proposed methodology may evolve in
automatic support to AD diagnosis and could be easily embedded in a commercial
platform of Raman spectroscopy. Of course, all these considerations are preliminary
and require further statistical confirmation.

In conclusion, despite all these results are preliminary, they are significant and
encouraging. On the two biomedical applications we have achieved state-of-the-
art results with excellent accuracies. In the SST application the result were at
least promising, since all competitors performed worse. However, the accuracy
alone was not very satisfactory, but the dataset is extremely corrupted by noise.
All these results further validate the utility of TML in real-world scenario, since
it offers a powerful tool to describe and classify data where other state-of-the-art
methods fail. Moreover, it is less impacted by the noise and is not as impacted
as neural network by the scarcity of data. In accordance with current literature
[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], these first chapters showed that
TML is a promising new approach to data analysis and classification. Following
these great premises, the remaining of the dissertation is devoted to investigate
thoroughly the mathematical foundation of PH and to link it to a new category of
operators that are more generale and may be more useful.



Chapter 4

A new set of equivariances for
topological data analysis

This chapter represents the pivotal point of the two main concepts of the dis-
sertation, namely topological data analysis and group equivariant non-expansive
operators. The first part of the dissertation was devoted to the description, applic-
ations and possible advancements of topological data analysis, while the remaining
part of the dissertation will be entirely dedicated to group equivariant non-expansive
operators. In this chapter, we are going to establish a link between these two con-
cepts in the form of Theorem 4.1.4. More in detail, we are going to prove that the
operator that computes persistence diagrams can be seen as a particular instance
of GENEOs from a functorial point of view.

Chapters 1, 2 and 3 presented the theory behind topological data analysis, some
applications and insights on benchmark datasets, and some case studies with real-
world data. In the latter, in particular, we achieved state-of-the-art accuracies.
These successes are mainly due to the fact that, in most cases, features extrac-
ted by persistent homology are informative and representative of the data shape.
Such features are easily exploitable in a machine learning setting to produce models
that are both robust, to a certain extent interpretable, and accurate. The previ-
ous chapters have emphasized the potentials of TDA and its integration with deep
learning only offers greater progress to this field [128, 129, 130, 131, 132, 133, 134].
This paradigm, however, has some weaknesses. Historically, the framework of TDA
considered data as geometric objects whose shape can be studied by means of suit-
able filtration functions. With different filtrations available, we are equipped with
different tools to study the geometry and the shape of data under various lens. A
possibly more accurate approach, the one adopted by the theory of GENEOs, is that
data does not carry geometric shape. Rather, data are interpreted as functions and
the filtrations of TDA are simply transformations of functions (data) in other func-
tions which are both more manageable and informative. The geometry and shape to
be studied is therefore to be found not in data themselves, but in the space of such
transformations. Moreover, modelling the framwork in terms of geometry of data
has the severe risk to confuse the various protagonists of the TDA paradigm. That
is, the border between transformations / preprocessing and the actual filtration can

47
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be very mixed. To provide an example, let us consider a setting in which we aim to
apply the blur operator to images and compute the persistence diagrams by means
of the cubical filtration. The confusion is whether we are defining a new filtration,
which incorporates both the blur and the cubical filtration, or we are transforming
the original data and then using the cubical filtration. The GENEO setting solves
this issue considering only transformations and studying the shape of the resulting
space. Moreover, it allows for more flexible approaches. For instance, both the blur
operator and the operator that computes persistence diagrams are GENEOs. Be-
cause of the compactness and convexity of the GENEOs space (Theorems 5.2.3 and
5.2.4), we are allowed to consider every operator in the segment connecting these
two, e.g. the average, and the resulting operator may be better suited for the task
at hand. In the TDA setting, the average of the blur operator and the persistence
diagram is not even defined. In addition, a further drawback of topological data
anlysis lies in its mathematical foundations. It is a well-known fact that persistent
homology is homeomorphism-invariant; it follows directly from its definition. The
constrain of basic TDA to be invariant with respect to homeomoprhisms is too loose
in a variety of scenarios. To solve this issue, in literature we can find examples of
the design of ad hoc filtrations (with the same issues described above) in order to
distinguish homeomorphic data. We can find examples of such behaviour also in
Chapters 2 and 3. Although feasible, this process could definitely be improved upon.
The theory of GENEOs solves this issue allowing to inject specific equivariances dir-
ectly into the model, in the same fashion as persistent homology does relatively to
homeomorphisms. From here onwards, we are going to present the theory of Group
Equivariant Non-Expansive Operators (GENEOs), and when we refer to data we
mean functions defined on a topological space. The theory of GENEOs consitutes
the focus of the second part of the dissertation and will be described deeply in
Chapter 5. In this chapter we briefly present the main concepts necessary to prove
Theorem 4.1.4. This theorem is a contribution of this dissertation that aims to fur-
ther establish a strong connection between the two core settings this thesis is based
upon: TDA and GENEOs. Despite originating from different mathematical fields,
namely representation theory and functional analysis, TDA and GENEOs are pro-
foundly connected. Firstly, the core idea of both approaches is to study the shape
of an object: data for TDA and observers for GENEOs. More importantly, their
synergy is already known in literature and Theorem 4.1.4 aims to further establish
a connection between these two concepts from a functorial point of view. More in
detail, the use of GENEOs allows to restrict the invariance of TDA to subgroups of
the group of homeomorphisms. Moreover, GENEOs interact with multiparameter
persistence homology [40, 41] and we will show in the next chapter that GENEOs
and TDA can provide metrics for each other that increase the descriptive power of
both [12]. This chapter provides a new connection, proving that the computation of
persistence diagrams is actually a GENEO. As briefly stated, the core idea behind
the GENEO definition is to switch the focus from data to the observers, which can
also be understood as tasks. Alongside an observer come specific transformations
of data that are deemed equivariant in the model. Therefore, instead of on data,
our model focuses on couples data set-transformations, referred to as perception
pairs. Moreover, instead of focusing on the shape of data, we focus on the geo-
metric and topological properties of the operators defined on such pairs. Generally,
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TDA and PH are understood as the geometric study of data; in this chapter, we
are going to prove that they simply represent one of the possible studies.

Formally, let X be a non-empty topological space and Φ a subspace of RXb :=
{φ : X → R, φ bounded}. Let AutΦ(X) be the group of bijections g : X → X such
that φg ∈ Φ for every φ ∈ Φ, with the composition operation. Given G ⊆ AutΦ(X),
a perception pair is the pair (Φ, G). The group G represents the equivariances that
we want to inject into the model. For example, if we are dealing with images the
isometries are likely to belong to G. Given two perception pairs (Φ, G) and (Ψ,K)
(with possible different domains X and Y ), a Group Equivariant Non-Expansive
Operator (GENEO) is a pair (F, T ) : (Φ, G) → (Ψ,K) such that T : G → K is
a homomorphism and F : Φ → Ψ is T -equivariant (i.e. F (φg) = F (φ)T (g)) and
non-expansive (i.e. ∥F (φ) − F (ψ)∥∞ ≤ ∥φ− ψ∥∞). For the sake of clarity, in this
dissertation, we will restrict to the case where data are modeled as real-valued tame
functions φ : X → R. We stress the fact that this request is little restrictive, since a
large variety of data can be modeled in this way. An immediate example is signals,
that are already modeled as functions. Also, grayscale images, where the domain
is a grid of R2, or point clouds where φ(x) = 1 if x belong to the point cloud and
φ(x) = 0 otherwise. We recall that, for functions defined on topological spaces,
the homology we refer to is singular homology [58], and Definition 1.2.7 of tame
function is modified accordingly.

4.1 The computation of PDs is a GENEO

We now describe the setting that will allow us to prove Theorem 4.1.4. In
this chapter, we are going to treat the diagonal of persistence diagrams as a point
with infinite multiplicity. For more information on such assumption, we refer the
reader to [135]. Let us consider the category C1 whose objects are tame functions
φ : X → R, with X a topological space. Throughout the chapter we will always
assume that φ : X → R, ψ : Y → R and χ : Z → R, with X,Y, Z topological spaces.
The morphisms of C1 from φ to ψ are pairs (h, ε), where h : X → Y is a homeo-
morphism such that ∥φ− ψ ◦ h∥∞ ≤ ε. We refer to the collection of morphisms of
C1 with Mor(C1), and with Mor(φ,ψ) the morphisms between the objects φ and ψ.
Given the morphisms (h, ε1) ∈ Mor(φ,ψ) and (k, ε2) ∈ Mor(ψ, χ), their composition
is given by (k ◦ h, ε1 + ε2). It holds that (IdX , 0) is the identity morphism between
(X,φ) and itself. The associativity of morphisms composition is given by the as-
sociativity of composition of homeomorphisms and associativity of the sum of real
numbers, hence C1 is truly a category. The second category C2 we are going to define
has as objects the persistence diagrams Dgm(φ) of functions in C1. The morph-
isms from Dgm(φ) to Dgm(ψ) are pairs (IDgm(φ),Dgm(ψ), η), where IDgm(φ),Dgm(ψ)

is the collection of all matchings from Dgm(φ) to Dgm(ψ) with cost less or equal
than η ∈ R. For the definition of cost of a matching, we refer to [135]. We admit
IDgm(φ),Dgm(ψ) to be empty if η is so small that no lower cost matching is pos-
sible. In C2, given two morphisms (IDgm(φ),Dgm(ψ), η1) ∈ Mor(Dgm(φ),Dgm(ψ))
and (IDgm(ψ),Dgm(χ), η2) ∈ Mor(Dgm(ψ),Dgm(χ)), we define the composition of
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morphisms to be

(IDgm(ψ),Dgm(χ), η2) ◦ (IDgm(φ),Dgm(ψ), η1) := (IDgm(φ),Dgm(ψ), η1 + η2). (4.1.1)

We note that the set IDgm(φ),Dgm(φ) with cost less or equal than 0 consists of the
singleton

{
IdDgm(φ)

}
, since we have assumed the diagonal to be a single point.

Therefore, the identity morphism from Dgm(φ) to itself is given by (
{

IdDgm(φ)

}
, 0).

The associativity of morphisms of C2 follows from definition. Hence, C2 is actually
a category. We now define a functor F between C1 and C2. Given φ ∈ Ob(C1),
we define F (φ) := Dgm(φ) ∈ Ob(C2). Given (h, ε) ∈ Mor(φ,ψ), with h : X → Y ,
we define F ((h, ε)) := (IDgmφ,Dgmψ , ε). It easy to check that IDgm(φ),Dgm(ψ) is not
empty due to the stability theorem [136]. Let us consider in C1 the identity morph-
ism (IdX , 0) from φ to itself. It is easy to check that F ((IdX , 0)) = ({IdDgmφ}, 0).
Moreover, it holds that

F ((k, ε2) ◦ (h, ε1)) = F ((k ◦ h, ε1 + ε2))

= (IDgmφ,Dgmχ , ε1 + ε2)

= (IDgmψ ,Dgmχ , ε2) ◦ (IDgmφ,Dgmψ , ε1)

= F ((k, ε2)) ◦ F ((h, ε1)).

Hence, F is actually a functor between C1 and C2.

Remark 4.1.1. We highlight that, in order to formalise the functor F we are inter-
ested in, some technical care was necessary. We also note that, while each homeo-
morphism h : X → Y with cost bounded by ε induces a homomorphism between the
homology groups of φ and ψ, h does not induce a matching between Dgm(φ) and
Dgm(ψ) with cost less or equal than ε. Rather, it induces multiple matchings with
bounded cost and there is no canonical choice. We refer to [137, 138] for a more
detailed description of such behaviour, but the essential is that each morphism in
C1 is not associated in a natural way to a unique morphism in C2.

Given a morphism (h, ε) ∈ Mor(φ,ψ), if we set ε = 0, then necessarily the only
homeomorphism we can consider (if it exists) is h : X → Y such that φ = ψ ◦ h. In
this case, there is a unique induced matching between Dgm(φ) and Dgm(ψ) and a
unique morphism in Mor(Dgm(φ),Dgm(ψ)), which is (

{
IdDgm(φ)

}
, 0). We denote

with ∆+ the closed upper half-plane. That is, ∆+ :=
{

(x, y) ∈ R2, x ≤ y
}

.

Remark 4.1.2. We recall that GENEOs map functions into functions. However, the
support of a PD is a compact that can be identified as a function in this way: given
a persistence diagram Dgm(φ), we define fDgm(φ) : ∆+ → R that maps each point
to the minimum distance from a point in the PD. Identifying a persitence diagram
with such a function, the bottleneck distance between PDs turns into a distance
between such functions. With a sligh abuse of notation, until the end of the chapter
we are still going to denote with Dgm(φ) the support of the persistence diagram.

Before proceeding, we recall the following well-known theorem [139].

Theorem 4.1.3 Let A,B be two compact sets, dH the Hausdorff distance and
dA, dB the distance function from A and B, respectively. Then,

dH (A,B) = ∥dA − dB∥∞ .
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In our setting, the support of PDs are compact sets. Therefore it holds that
dH (Dgm(φ),Dgm(ψ)) =

∥∥dDgm(φ) − dDgm(ψ)

∥∥
∞ =

∥∥fDgm(φ) − fDgm(ψ)

∥∥. We are
finally able to state and prove the main result of this chapter.

Theorem 4.1.4 Let us consider Φ = C0(X,R) and D =
{
fDgm(φ), φ ∈ Φ

}
. The

functor F : (Φ,Homeo(X)) → (D, Id∆+), F (φ) = fDgm(φ) is a GENEO with respect
to the trivial homomorphism T : Homeo(X) → Id∆+.

Proof. We have to check that F is T -equivariant and non-expansive. The T -
equivariance follows directly from the invariance of persistent homology with re-
spect to homeomorphisms. More precisely, given φ ∈ C1 and g ∈ Homeo(X), we
have that

F (φ ◦ g) = F (φ)

= F (φ) Id∆+

= F (φ)T (g).

For more details on the invariance of PH with respect to homeomorphisms, we
refer the reader to Remark 10 of [52] and Theorem 2.5 of [140]. Regarding the
non-expansivity, given φ,ψ ∈ C1, we have that

∥F (φ) − F (ψ)∥∞ =
∥∥fDgm(φ) − fDgm(ψ)

∥∥
∞

=
∥∥dDgm(φ) − dDgm(ψ)

∥∥
∞

= dH (Dgm(φ),Dgm(ψ))

≤ dmatch (Dgm(φ),Dgm(ψ))

≤ ∥φ− ψ∥∞ ,

where the second equality follows from Theorem 4.1.3 and the two inequalities come
from Section 3.1 of [136].

Broadly speaking, Theorem 4.1.4 expresses the computation of persistence dia-
grams using the language of GENEOs and shows that such operator is actually a
specific GENEO. As already stated in the Introduction and in the beginning of this
chapter, GENEOs and TDA are linked in many ways, and Theorem 4.1.4 further
increase this connection. It is the this strong connection that motivates the second
part of the dissertation, that focuses on the topological and geometrical proper-
ties of the space of GENEOs, new ways to define them and some applications to
benchmark datasets.
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Chapter 5

The theory of group equivariant
non-expansive operators

In the previous chapter we showed various connections between GENEOs and
TDA, and most importantly we provided a new link in the form of Theorem 4.1.4.
Since the computation of persistence diagrams can be thought of as a GENEO, the
aim of this chapter is to fully present the theory of group equivariant non-expansive
operators. The mathematical framework of GENEOs represents a novel geometric
approach to the theory of deep neural networks which is proving successful due to
its ability to generate models in low dimensions that are highly interpretable and
transparent. Moreover, this framework is general enough to provide us new tools
to explore the composition of such operators in ways that would be impossible in
other frameworks. Returning to a previous example, let us suppose that we wish
to apply blur to data and to compute the persistence diagram. Both the TDA
setting and the GENEO setting allow us to easily perform both of these steps. The
benefit of the GENEO setting is that we can actually be more malleable. Since the
GENEOs space is convex and compact (Theorems 5.2.3, 5.2.3), every operator in
the segment connecting the blur operator and the PD operator (e.g. the average
operator) is still a GENEO and may be best suited for the study. Such an operator
is immediately available and easily definable in the GENEO setting, but its meaning
and definition in the TDA setting is not clear. The aim of this chapter is to present
the current theory of GENEOs, some topological properties of their space and a
method to build them by means of symmetric functions. Most of the contents of
this chapter are not original and they are inserted for self-completion, but Section
5.3 is the first contribution of this dissertation to the theory of GENEOs. We recall
that a more exhaustive bibliography of the full theory of GENEOs can be found in
the Introduction. For more information about the results reported in this chapter,
we refer the reader to the original papers: [12, 53, 54, 141]. For the sake of brevity,
the proofs of results present in other works are omitted.

5.1 Topologies on data

One of the key aspects of this theory is the definition of suitable topologies on
data. This concept follows the idea to formalize the assumption that data are stable.

53
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The stability of data is a fundamental concept in applications, since it allows for
reproducibility. Stability requires a notion of closeness and hence a topology. In
our setting, a data set Φ is a set of bounded real-valued functions on a non-empty
set X:

Φ ⊆ {φ : X → R, φ bounded} = RXb ,

where RXb is the set of all bounded real-valued functions on X. The set X is often
called the domain of the data set Φ and we denote it with dom (Φ). The idea
of this setting is that the set X is the space where agents (or instruments) make
measurements, and it is not accessible if not for the admissible measurements φ
contained in Φ.

Example 5.1.1. A grayscale image can be formalized as a function φ from a grid
on the real plane X to the real numbers. Agents have no control on the grid, e.g.
the pixel density or distribution, they can only access the generated images and
eventually transform them.

In our model, agents act on data by transforming it in a way that makes it easier
to be studied. In doing so, they transform measurements into other measurements
while preserving certain invariances and symmetries deemed important.

Definition 5.1.2. A Φ-operation is a function g : X → X such that the compos-
ition φg ∈ Φ for every φ ∈ Φ.

Remark 5.1.3. Given a Φ-operation g, the function Rg : Φ → Φ that maps φ to φg
is non-expansive. Moreover, if g is a bijection then Rg is an isometry. This can be
easily proven by noticing that, given φ,ψ ∈ Φ, it holds that:

∥φ− ψ∥∞ = max
x∈X

|φ(x) − ψ(x)| ≥ max
x∈Im(g)

|φ(x) − ψ(x)| = ∥φg − ψg∥∞ .

The composition of Φ-operations is yet a Φ-operation and the identity function
IdX is a Φ-operation for every Φ ⊆ RXb . We call a Φ-operation g invertible if
there is a Φ-operation h such that gh = hg = IdX . From now on, we denote with
g−1 the Φ-operation such that gg−1 = g−1g = IdX . We denote the collection of all
invertible Φ-operations with AutΦ(X). More formally,

AutΦ(X) :=
{
g : X → X, g is a bijection and φg, φg−1 ∈ Φ for every φ ∈ Φ

}
.

Remark 5.1.4. AutΦ(X) is a group with the composition operation.

The group AutΦ(X) naturally induces an associative right action on Φ:

ρ : Φ × AutΦ(X) → Φ, (φ, g) 7→ φg (5.1.1)

where φg is the usual function composition.

Definition 5.1.5. A perception pair is (Φ, G) with Φ ⊆ RXb and G ⊆ AutΦ(X).

The choice of the group G encodes the symmetries of Φ that are deemed relevant
by the agent for the task at hand. Different agents might choose different groups G
even for the same data set Φ.
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Example 5.1.6. Given a data set Φ, the pair (Φ,AutΦ(X)) is called the universal
perception pair.

Example 5.1.7. Let us consider the finite set X = {1, . . . , n} and the space RXb .
We note that AutRXb

= Sn, where Sn is the set of permutation of X. Then
(
RXb , Sn

)
is a perception pair.

Example 5.1.8. As already stated, a choice of a suitable group of equivariances
encodes the idea of different agents or perception pairs. This concept is often
overlooked, since in many contexts the agent is subtextually clear. That is, given
a dataset Φ, the perception pair (Φ, G) can be obvious and it is as if Φ is the only
object of interest. We now provide an example where a dataset is given but the
perception pair is not obvious. In such a case, we highlight how different choices of
the group of equivariances G encode different perception pairs (or tasks). Figure 5.1
shows graylevel images sampled from the KDEF dataset [142]. In such a scenario,
the task is not immediately clear, and hence neither is the group of equivariances.
For instance, a possible task could be emotion recognition. Another plausible task
is facial recognition. Together with the task (observer or agent), comes the different
admissible transformations. For the sake of simplicity, we refer to φa the image
represented in Figure 5.1a, and similarly for all other images, and with X the
domain of the images (the grid of pixels). In an emotion recognition task, the map
g1 : X → X such that φag1 = φb does not change the semantics of the image, and
we would like for g1 to belong the group of equivariances G, while g2 : X → X
such that φag2 = φd would not. On the other hand, in a facial recognition task,
the map g2 would belong to G, while g1 would not. That is, different tasks encode
different symmetries, and considering only Φ (the data set) as the object of study
is reductive. In our approach, we focus on pairs (Φ, G).

5.1.1 Topological structure on the data set

We endow the space of admissible measurements Φ with the topology of uniform
convergence that is induced by the distance

DΦ (φ1, φ2) := ∥φ1 − φ2∥∞ .

The topological structure of X is inherited by the extended pseudo-metric DX :

DX (x1, x2) = sup
φ∈Φ

|φ(x1) − φ(x2)| ,

for x1, x2 ∈ X. We recall that a pseudo-metric is a distance d without the property
that d (x1, x2) = 0 implies that x1 = x2 and that an extended pseudo-metric is a
pseudo-metric that can take an infinite value. We stress the fact that the assump-
tion behind the definition of DX is that we can distinguish two points of X only
if there is a measurement that maps them to different values. If Φ contains only
constant functions, for instance, DX vanishes for every couple of points of X and
no discrimination can be made. This is a pathological example since, in this case,
X is not even a T0 space.
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(a) Subject: AF20HAS (b) Subject: BM08HAS (c) Subject: BM35HAS

(d) Subject: AF20SUS (e) Subject: BM08SUS (f) Subject: BM35SUS

Figure 5.1: Sample of graylevel images from KDEF dataset [142].

We consider the extended pseudo-metric space (X,DX) a topological space by
choosing as base BDX for the topology the collection of open balls:

BX (x, ε) =
{
x′ ∈ X : DX

(
x, x′

)
< ε
}
,

where 0 < ε <∞ and x ∈ X.

Remark 5.1.9. Our choice of topology allows us to deal with non-continuous func-
tions with respect to the Euclidean topology.

In general, X is not compact with respect to the topology induced by DX . As
an example, let us consider the open interval X = ]0, 1[ and Φ = {IdX}. In this
case, the topology induced by DX is the Euclidean topology and X is not compact
with respect to it. Nonetheless, the following results hold.

Theorem 5.1.10 If Φ is totally bounded, then (X,DX) is totally bounded.

Corollary 5.1.11 If Φ is totally bounded and (X,DX) is complete, then (X,DX)
is compact.
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Example 5.1.12. Let X =
{

(cos 2πp, sin 2πp) ∈ R2 : p ∈ Q
}

, Φ be the set of all
non-expansive functions from X to [0, 1] and G be the group of all rotations ρ2πq
of 2πq radiants, where q ∈ Q. It holds that Φ is compact, but the topological space
X is not complete, hence Φ is not compact.

We now investigate the relationship between the topology τDX induced by the
extended pseudo-metric DX and the initial topology τin on X with respect to Φ,
where the topology on R is simply the Euclidean topology. We recall that the initial
topology is the coarsest topology on X such that each function φ ∈ Φ is continuous.

Proposition 5.1.13 Each element φ ∈ Φ is a non-expansive map, and hence it is
continuous with respect to DX .

Theorem 5.1.14 If Φ is totally bounded, then the topology τDX coincides with τin.

Example 5.1.15. We can give a counter-example of Theorem 5.1.14 if Φ is not
totally bounded. Let Φ be the set of all continuous functions from [0, 1] to R, with
respect to the Euclidean topologies on both [0, 1] and R. In this case the initial
topology τin is the Euclidean topology, while τDX is the discrete topology.

5.1.2 Topological structure on the equivariance group

As of now, we have defined a topology on the data set Φ and a topology on the
domain X. We now want to define a topology on the third and last component
of a perception pair: AutΦ(X). We define the distance between two elements of
AutΦ(X) as the difference of their actions on Φ. More specifically,

DAut (g1, g2) := sup
φ∈Φ

DΦ (φg1, φg2) ,

for any g1, g2 ∈ AutΦ(X).

Remark 5.1.16. For any g1, g2 ∈ AutΦ(X) it holds that

DAut (g1, g2) = sup
φ∈Φ

DΦ (φg1, φg2)

= sup
x∈X

sup
φ∈Φ

|φ (g1(x)) − φ (g2(x))|

= sup
x∈X

DX (g1(x), g2(x)) .

Hence, DAut coincides with the pseudo-metric induced by the uniform convergence
on AutΦ(X).

As usual, we want to study the compactness of AutΦ(X). We have the following
results concerning the topology on AutΦ(X) and the compactness of a subgroup of
AutΦ(X).

Theorem 5.1.17 The following statements hold:

• AutΦ(X) is a topological group with respect to the topology induced by DAut;

• the action of AutΦ(X) on Φ is continuous.

Theorem 5.1.18 Let G be a subgroup of AutΦ(X). If Φ is totally bounded, then
(G,AutΦ(X)) is totally bounded.
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Corollary 5.1.19 If Φ is totally bounded and (G,DAut) is complete, then (G,DAut)
is compact.

Example 5.1.20. We can give a counter-example of Corollary 5.1.19 if Φ is not
totally bounded. Let X be the unit circle and Φ be the set of all non-expansive
functions from X to [0, 1]. Let G be the group of all rotations ρ2πq of 2πq radiants,
where q ∈ Q. Then, the space (G,DAut) is not complete, hence it is not compact.

Theorem 5.1.21 Consider a compact subspace Φ ⊆ RXb . Assume that (X,DX) is
a compact metric space. Then, AutΦ(X) is compact.

5.1.3 The natural pseudo-distance

The last concept that we are going to introduce in this section is the natural
pseudo-distance dG [52]. This metric represents the ground truth in our model and
allows for comparison between functions in Φ. Such a distance vanishes for functions
that are equivalent with respect to the action of G ⊆ AutΦ(X). Moreover, we
will show that the natural pseudo-distance allows for another connection between
GENEOs and TDA, different from the one presented in the previous chapter.

Definition 5.1.22. Given a group G ⊆ AutΦ(X), the natural pseudo-distance
dG is defined by setting

dG (φ1, φ2) := inf
g∈G

DΦ (φ1, φ2g) ,

where φ1, φ2 ∈ Φ.

As pointed out in [143], the natural pseudo-distance between two measurements
φ1, φ2 can be seen as the distance between the orbits φ1G and φ2G with respect to
the action of G on Φ.

Remark 5.1.23. If G = {IdX}, then dG and DΦ coincides on Φ. Moreover, given
two subgroups G1 ⊆ G2 ⊆ AutΦ(X), it holds that

dAutΦ(X) (φ1, φ2) ≤ dG2 (φ1, φ2) ≤ dG1 (φ1, φ2) ≤ DΦ (φ1, φ2) ,

for every φ1, φ2 ∈ Φ.

The main drawback of the natural pseudo-distance is that it is difficult to com-
pute. Luckily, we will show in the following section that we are able to approximate
the natural pseudo-distance by means of a dual approach based on group equivariant
non-expansive operators and persistent homology.

5.2 The space of GENEOs

In this section, we are going to introduce the main concept of this new ap-
proach to the framework of geometric deep learning, namely Group Equivariant
Non-Expansive Operators (GENEOs). In our framework, GENEOs encode the
idea of agents that transform data (perception pairs) preserving symmetries and
distances. Moreover, we are going to define a topological structure on the space of
GENEOs and a new pseudo-distance on Φ, based on a dual approach of persistent
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homology and the theory of GENEOs, which allows us for an approximation of the
natural pseudo-distance.

For the whole section (Φ, G) and (Ψ,K) will denote two perception pairs. We
stress the fact that such perception pairs are allowed to have different groups of
equivariances and different domains.

Definition 5.2.1. A map (F, T ) : (Φ, G) → (Ψ,K) such that T : G → K is an
homomorphism and F : Φ → Ψ is a continuous, T -equivariant map (i.e. F (φg) =
F (φ)T (g) for every φ ∈ Φ and every g ∈ G) is called a Group Equivariant
Operator (GEO) from (Φ, G) to (Ψ,K).

Definition 5.2.2. A GEO (F, T ) from (Φ, G) to (Ψ,K) such that F is non-
expansive is called a Group Equivariant Non-Expansive Operator (GENEO).

In scenarios where the homomorphism T is fixed, we will refer to the map
F : Φ → Ψ as a GENEO (resp. GEO) if the couple (F, T ) satisfies Definition 5.2.2
(resp. 5.2.1). We denote with Fall the set of all GENEOs between two perception
pairs (Φ, G) , (Ψ,K). Given a homomorphism T : G → K, we denote with Fall

T the
set of all GENEOs between the perception pairs (Φ, G) and (Ψ,K) with respect to
T . We endow Fall with the uniform convergence distance

DGENEO (F1, F2) := sup
φ∈Φ

DΨ (F1(φ), F2(φ)) ,

for any F1, F2 ∈ Fall. As already stated, the GENEOs space benefits from good
mathematical properties that make such a space more manageable and potentially
more useful. In particular, the following results hold.

Theorem 5.2.3 If Φ and Ψ are compact with respect to DΦ and DΨ, respectively,
then Fall

T is compact with respect to DGENEO.

Theorem 5.2.4 If Ψ is convex, then Fall
T is convex.

Theorem 5.2.3 and Theorem 5.2.4 are fundamental in applications. The com-
pactness of Fall

T guarantees that the space of GENEOs can be approximated by a
finite set, while the convexity allows us to obtain new GENEOs by convex combin-
ations of pre-existing ones. Finally, we have a preliminary result of Fall.

Corollary 5.2.5 If X,Y are finite and Φ,Ψ are compact with respect to DΦ and
DΨ, respectively, then Fall is compact.

Proof. If X and Y are finite, then the set of all homomorphisms between G and
K is finite. The finite union of compacts is compact, hence from Theorem 5.2.3 it
follows that Fall is compact.

Remark 5.2.6. We underline that if we remove the assumption that our operators are
non-expansive, the property of compactness does not hold anymore. As an example,
let Φ = Ψ be equal to the set of all constant functions from R to [0, 1], and G = H
be the trivial group containing just the identity on R. We observe that Φ, X =
R and G are compact with respect to their topologies. Let us now consider the
sequence (Fn)n∈N of GEOs from Φ to Φ with respect to the identity homomorphism
IdG : G → G, defined by setting Fn (φ) := φn for every function φ ∈ Φ and every
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positive integer n. It is easy to check that limn→∞DGENEO (Fm, Fn) = 1 for every
positive integer m, and hence the sequence (Fn) does not admit any converging
subsequence. This implies that the space of all GEOs from Φ to Φ with respect to
IdG is not compact.

The results shown so far have demonstrated that the non-expansivity of the
GENEOs, a prerogative of this model, has important implications not only from an
epistemological point of view, but also from a mathematical one.

5.2.1 Persistent homology-induced pseudo-metrics

As already stated in Chapter 4, the computation of persistence diagrams can
be seen as a particular GENEO with an appropriate choice of perception pairs. In
this section we are going to present more in detail some of the connections between
TDA and GENEOs that are already known in literature. In particular, PH allows
us to define suitable metrics for the approximation of the natural pseudo-distance
and the other distances defined in Section 5.1. Let us fix two perception pairs
(Φ, G), (Ψ,K) and a homomorphism T : G→ K. Let us consider a set of GENEOs

F ⊆ Fall
T . We can define another metric, DF ,k

match which is computationally efficient,

stable and strongly invariant. The roots of DF ,k
match are in persistent homology.

Definition 5.2.7. A pseudo-metric d on Φ is strongly G-invariant if it is invari-
ant under the action of G with respect to each variable. That is,

d (φ1, φ2) = d (φ1g, φ2) = d (φ1, φ2g) = d (φ1g, φ2g) ,

for every φ1, φ2 ∈ Φ and every g ∈ G.

Remark 5.2.8. The natural pseudo-distance dG is strongly G-invariant.

Persistent Betti numbers (PBNs, Definition 1.2.1) are not necessarily finite in
our setting, even if X is compact. Therefore, for the rest of this chapter, we will
assume that PBNs of every φ ∈ Φ take a finite value at each point. We recall that
dmatch comes from Definition 1.2.6.

Example 5.2.9. Let us consider the setX = {0}∪
{

1
n , n ∈ N+

}
and Φ = {ι : X ↪→ R}.

X is compact, but every sublevel set Xu = {x ∈ X,x ≤ u}, for u > 0, has infinitely
many connected components.

Let us now fix a non-empty subset F of Fall
T . For every k, we can finally define

the extended pseudo-metric DF ,k
match on Φ:

DF ,k
match (φ1, φ2) := sup

F∈F
dmatch (rk (F (φ1)) , rk (F (φ2))) ,

where φ1, φ2 ∈ Φ and rk (φ) is the k-th persistent Betti number with respect to
φ ∈ Φ. The following results hold.

Proposition 5.2.10 DF ,k
match is a strongly G-invariant pseudo-metric on Φ.

Theorem 5.2.11 Let Fall be the space of all GENEOs from (Φ, G) to (Ψ,K). If
F is a non-empty subset of Fall, then

DF ,k
match ≤ dG ≤ DΦ.
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Theorem 5.2.12 Let Fall be the space of all GENEOs from (Φ, G) to itself. Let
us assume that each function φ ∈ Φ is non-negative, the k-th Betti number of X
does not vanish and that for each function φ ∈ Φ, also each constant function c
such that 0 ≤ c ≤ ∥φ∥∞ is in Φ. Then, DF ,k

match = dG.

Remark 5.2.13. If Φ is bounded, we can add a suitable constant to every function
in Φ in order to make them non-negative. Hence, if Φ is bounded such hypothesis
in Theorem 5.2.12 is not restrictive.

Proposition 5.2.14 Let F be a non-empty subset of Fall
T . For every ε > 0, a

finite subset F∗ of F exists, such that∣∣∣DF∗,k
match (φ1, φ2) −DF ,k

match (φ1, φ2)
∣∣∣ ≤ ε,

for every φ1, φ2 ∈ Φ.

The previous results are of great importance in our framework. First, they allow
the natural pseudo-distance to be approximated in a computationally efficient way
via persistent homology. Second, they further enhance the connections between the
theory of GENEOs and TDA. Although the connection was already introduced in
Chapter 4, Theorem 5.2.12 establishes a connection between different theoretical
concepts, namely dG and DF ,k

match.

5.3 Building GENEOs via symmetric functions

The previous section explained how we are able to approximate the set of all
GENEOs with just a finite subset, due to the compactness of the space of such
operators. This approximation requires large and dense sets of GENEOs, each one
representing a data-observer interaction. In this section, we are going to introduce
a new method to produce non-linear GENEOs through the concepts of symmetric
function and permutant. This result is the first contribution of this dissertation to
the theory of GENEOs and it is derived from [54]. This technique benefits from
the approximability of continuous symmetric functions by symmetric polynomials.
The mathematical setting is the same as the previous sections, but we will consider
G = H and T = IdG.

First, we denote the image ofX through the admissible measurements as Im (Φ) =
{φ(x), for φ ∈ Φ, x ∈ X}. The following result holds:

Proposition 5.3.1 If X and Φ are compact, then Im (Φ) is compact with respect
to the Euclidean topology on R.

Definition 5.3.2. Let SX be the set of permutations of X. For each g ∈ G, the
map cg : SX → SX that maps s ∈ SX to g◦s◦g−1 is called the conjugation action
of g ∈ G on SX . For every subset H of SX , we denote the set cg (H) by the symbol
gHg−1.

Definition 5.3.3. A finite set H ⊆ AutΦ(X) is called a permutant for G if either
H = ∅ or gHg−1 = H for every g ∈ G.

Remark 5.3.4. In general, a permutant is not a normal subgroup of G. We stress
that we require neither that a permutant is a group nor that it is a subset of G.
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Example 5.3.5. The sets ∅ and {IdX} are trivial permutants for any subgroup G
of AutΦ(X).

Example 5.3.6. If G and AutΦ(X) are finite, both G and AutΦ(X) are permutants
for G.

Example 5.3.7. Let Φ be the set of all functions from S1 to [0, 1] that are non-
expansive with respect to the Euclidean distances on both S1 and [0, 1].

• If G is the group of isometries of R and h is the clockwise rotation of ℓ radiants,
for ℓ ∈ R, then the set H =

{
h, h−1

}
is a permutant for G.

• If G is the group generated by the reflection with respect to the axis x =
0, then the set H =

{
IdS1 , ρ, ρ2, ρ3

}
is a permutant for G, where ρ is the

clockwise rotation of π/2 around the origin.

Remark 5.3.8. If G is Abelian, every finite subset of G is a permutant for G. This
follows from the fact that the conjugation action on an Abelian group is the identity.

Remark 5.3.9. In what follows, we will commit a slight abuse of notation with the
symbol ∥·∥∞. It will be used both for the max-norm of functions and the max-norm
of points of Rm, for m ∈ N. That is, given φ : X → R and α = (α1, . . . , αm) ∈ Rm,
∥φ∥∞ = maxx∈X |φ(x)| and ∥α∥∞ = max1≤i≤m |αi|.

5.3.1 Building GEOs from symmetric functions

Definition 5.3.10. Let X be a symmetric subset of Rn, i.e. a subset C such that
π (X) = X for every permutation π of the coordinates. A function f : X → R is
symmetric on X if its value is the same no matter the order of its arguments.
That is,

f (a1, . . . , an) = f
(
aπ(1), . . . , aπ(n)

)
for every (a1, . . . , an) ∈ X and every permutation π of the set {1, . . . , n}.

Proposition 5.3.11 Let f be a continuous real-valued symmetric function defined
on a compact symmetric subset of Rn. Then f is the restriction of a continuous
real-valued symmetric function f defined on Rn.

Proposition 5.3.11 guarantees that a continuous real-valued symmetric function
defined on a compact symmetric subset of Rn coincides with the restriction of a
continuous real-valued symmetric function defined on Rn. Let S : Rn → R be a
symmetric function and H = {hi}ni=1 be a non-empty permutant for G ⊆ AutΦ(X).
Then, we can define an operator SH : Φ → RXb by setting, for any φ ∈ Φ,

SH (φ) := S (φ ◦ h1, . . . , φ ◦ hn) , (5.3.1)

where S (φ ◦ h1, . . . , φ ◦ hn) (x) := S ((φ ◦ h1) (x), . . . , (φ ◦ hn) (x)) for every x ∈ X.

Proposition 5.3.12 If S : Rn → R is a symmetric function and G ⊆ AutΦ(X),
then SH defined as in Equation 5.3.1 is a GEO from Φ to RXb with respect to the
identity homomorphism IdG : G→ G.

Corollary 5.3.13 If S : Rn → R is a symmetric function and its restriction to
Im (Φ)n is non-expansive, then SH is a GENEO from Φ to RXb with respect to IdG.
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As of now, we have defined a GEO associated with a symmetric function and we
showed that such a GEO is actually a GENEO if the function is non-expansive. In
the following sections, we will show how to define a GENEO even in the presence
of symmetric functions that may be expansive.

Remark 5.3.14. The key point of the use of permutants in this setting is that the
size of permutants is, in many cases, smaller than the size of the equivariance group
G. Indeed, an alternative approach to the construction of GENEOs may be with
the integration on the equivariance group G. However, despite the possibly infinite
and large size of the group G, the size of a permutant is by its very nature finite.
Moreover, the largest the group of equivariances G becomes, the smaller the size of
permutants for G.

5.3.2 Fundamental theorem on symmetric polynomials

For extending Corollary 5.3.13 to expansive symmetric functions, we need to
approximate them by means of elementary symmetric functions. In the sequel, we
will denote the symmetric group over the set {1, . . . , n} as Sn. In this section, K
will denote a compact metric space. Let C (K) be the vector space of continuous
real-valued functions on K. In what follows, with a slight abuse of notation, we
will confuse each polynomial with the function it represents, in the domain we are
considering.

Definition 5.3.15. Given a natural number n and a finite subset I ⊆ Nn, a poly-
nomial

∑
(k1,...,kn)∈I ck1,...,kny

k1
1 . . . yknn is said to be symmetric if π (I) = I and

ck1,...,kn = cπ(k1),...,π(kn) for every multi-index (k1, . . . , kn) ∈ I and every permuta-
tion π ∈ Sn.

We recall the following well-known definitions and theorems (cf. [144]).

Definition 5.3.16. A subset A of C (K) is an algebra if it is a vector subspace of
C (K) that is closed under multiplication. That is, given f, g ∈ A, then f · g ∈ A.

Definition 5.3.17. A set S of functions on K separates points if for each pair
of points s, t ∈ K there is a function f ∈ S such that f(s) ̸= f(t).

Definition 5.3.18. A set S of functions on K vanishes at s ∈ K if f(s) = 0 for
all f ∈ S.

Theorem 5.3.19 (Stone - Weierstrass Theorem) An algebra A of continuous real-
valued functions on a compact metric space K that separates points and does not
vanish at any point is dense in C (K) with respect to the max-norm referred to the
domain K.

Corollary 5.3.20 Let K be a compact subset of Rn. The algebra of all polynomials
p (y1, . . . , yn) in n variables is dense in C (K) with respect to the max-norm referred
to the domain K.

Corollary 5.3.20 guarantees that we can approximate a continuous symmetric
function by a polynomial with arbitrary accuracy. However, we also require such
a polynomial to be symmetric. We can obtain this by a symmetrization of the
previously found polynomial.
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Proposition 5.3.21 Let K be a compact subset of Rn, verifying the property
π (K) = K for every π ∈ Sn. If S|K : K → R is the restriction to K of a continuous
symmetric function S : Rn → R and ∥·∥∞ is the max-norm referred to the domain
K, then for every ε > 0 there exists a symmetric polynomial q in n variables such
that

∥∥S|K − q|K
∥∥
∞ ≤ ε.

Definition 5.3.22. The elementary symmetric polynomials in the n variables
a1, . . . , an, also called elementary symmetric functions, are defined as:

• σ1 :=
∑

1≤i≤n ai;

• σ2 :=
∑

1≤i<j≤n ai · aj ;

• σr :=
∑

1≤i1<i2<···<ir≤n
∏ir
j=i1

aj ;

• σn :=
∏

1≤i≤n ai.

Theorem 5.3.23 (Fundamental Theorem on Symmetric Polynomials, [145]) Any
symmetric polynomial in n variables a1, . . . , an is representable in a unique way as
a polynomial in the elementary symmetric polynomials σ1, . . . , σn.

Since the proofs of Theorems 5.3.19 and 5.3.23 are constructive, we are effect-
ively able to approximate each continuous symmetric function S : Rn → R restricted
on K a compact symmetric subset of Rn with an error less than ε by a polynomial
in the elementary symmetric functions restred to K.

To summarize the section, let G ⊆ AutΦ(X) be the equivariance group and let
F be the GEO defined in Proposition 5.3.12 with respect to the symmetric function
S : Rn → R. Let X and Φ be compacts. Since Im(Φ)n is guaranteed to be compact
by Proposition 5.3.1, we can approximate S by a polynomial p : Rn → R with an
arbitrarily small error ε. Now, we define the symmetric polynomial q (a1, . . . , an) :=
1
n!

∑
π∈Sn p

(
aπ(1), . . . , aπ(n)

)
. Given a permutant H = {h1, . . . , hn}, we define the

GEO
F ′(φ) := q (φ ◦ h1, . . . , φ ◦ hn)

for every φ ∈ Φ. It is easy to check that∥∥F (φ) − F ′(φ)
∥∥
∞ ≤ ε

for any φ ∈ Φ. Hence, the operator F ′ is arbitrarily close to F and it is associated
to a polynomial in the elementary symmetric polynomials.

5.3.3 Building GENEOs from elementary symmetric functions

Let S : Rn → R be a continuous symmetric function. Since π (Im (Φ)n) =
Im (Φ)n trivially holds for every π ∈ Sn, the previous section guarantees that we
can approximate S|Im(Φ)n with the restriction on Im (Φ)n of a polynomial in the
elementary symmetric functions, defined as

S̃ (a1, . . . , an) =

m1∑
k1=0

· · ·
mn∑
kn=0

ck1,...,kn

n∏
i=1

σkii (a1, . . . , an) ,
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wheremi ∈ N for every i ∈ {1, . . . , n}, ck1,...,kn ∈ R for every k1 ∈ {0, . . . ,m1} , . . . , kn ∈
{0, . . . ,mn} and σi is the i-th elementary symmetric polynomial for every i ∈
{1, . . . , n}. Let us now define the following constants:

MIm(Φ)n := max
α∈Im(Φ)n

∥α∥∞ = max
φ∈Φ

∥φ∥∞

M1 := max
1≤i≤n

{
ki

(
n

i

)ki
iM iki−1

Im(Φ)n

}

M2 := max
1≤i≤n

{(
n

i

)ki
M iki

Im(Φ)n

}n−1

C = n

m1∑
k1=0

· · ·
mn∑
kn=0

|ck1,...,kn |M1M2, (5.3.2)

Let us consider a non-empty permutant H = {hi}ni=1 for G. We can define the

operator ŜH : Φ → RXb by setting

ŜH (φ) :=
1

C
S̃ (φ ◦ h1, . . . , φ ◦ hn)

for any φ ∈ Φ, where S̃ (φ ◦ h1, . . . , φ ◦ hn) (x) := S̃ ((φ ◦ h1) (x), . . . , (φ ◦ hn) (x))
for every x ∈ X and C is the constant defined in Equation 5.3.2. Finally, we can
state the following.

Theorem 5.3.24 If S̃ is a polynomial in the n elementary symmetric functions,
then ŜH is a GENEO from Φ to RXb with respect to IdG.

5.3.4 Symmetric GENEOs and data

Theorem 5.3.24 allows us to define a new set of GENEOs by means of symmet-
ric functions and permutants. In addition to having a new tool for populating the
GENEO space, main aim of this section, we are now going to explore the useful-
ness of operators defined in this way. More in detail, we are going to present two
examples. The first example shows how symmetric GENEOs allow us to distin-
guish data that would otherwise be undistinguishable through persistent homology
alone. In the second example, the use of non-linear GENEOs allows for more flex-
ible pseudo-metrics DF ,k

match compared to the same distance obtained through linear
GENEOs, which will instead be the focus of the next chapter.

Example 5.3.25. Let us consider Φ as the space of all 1-Lipschitz functions from S1

to [0, 1], the equivariance group G of all rotations of S1 and two function ϕ, ψ ∈ Φ
defined as ϕ(x) = |sin(x)| , ψ(x) = sin(x)2. Persistent homology is not able to
distinguish ϕ from ψ, since the sublevel set of both functions is the same for every
threshold value, see Figure 5.2a. Let us consider two GENEOs: F1 = Id and
F2 (φ) = φ ◦ ρπ/2, where ρπ/2 is the clockwise rotation through a π/2 angle. The
joint use of persistent homology, F1 and F2 is clearly not able to distinguish the
two functions, since they both share the same sublevel set. See Figures 5.2b and
5.2c. However, let us consider the second elementary symmetric function σ2 and the
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permutant H =
{

IdS1 , ρπ/2
}

. We can apply Theorem 5.3.24 and get that ŜH (φ) =
1
4

(
φ ·
(
φ ◦ ρπ/2

))
is a symmetric GENEO. Finally, the synergy between persistent

homology and GENEOs, specifically Theorem 5.3.24, is able to distinguish ϕ and
ψ, since the sublevel set of ŜH (ϕ) and ŜH (ψ) is different, see Figure 5.2d.

(a) ϕ and ψ have the same sublevel set, so
PH is not able to distuinguish them.

(b) The same thing applies for the identity
GENEO F1.

(c) The GENEO that translates data by π/2
radiants is not able to distinguish ϕ from ψ,
when looked through PH.

(d) The symmetric GENEO ŜH and PH is
able to distinguish the two data, since the
sublevel set is different.

Figure 5.2: It is easy to check that the synergy between persistent homology and
symmetric GENEOs is able to distinguish data that persistent homology alone
cannot, since the sublevel set of ŜH(ϕ) and ŜH(ψ) is different.

Example 5.3.26. Let Φ be the set of all functions from a set X = {A,B} to [0, 1].
We can identify each function in φ ∈ Φ as the ordered pair (φ(A), φ(B)). Let us fix
G as the group of all permutations of two elements. We recall that, from Section
5.1.1, on Φ we have the metric DΦ (φ,ψ) = ∥φ− ψ∥∞, for φ,ψ ∈ Φ. Hence, the
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pairwise distance between φ1 = (0, 0) , φ2 = (0, 1) , φ3 = (1, 0) and φ4 = (1, 1) is
always 1. Since GENEOs encode the idea of an observer, let us suppose that we want
to define a GENEO F such that the pseudo-metric ∥F (φ) − F (ψ)∥∞ vanishes for
functions with a null component, while maintaining a positive distance between φ4

and every φi, for i = 1, 2, 3. It is easy to check that each linear transformation that
maps both (1, 0) and (0, 1) to (0, 0) must also map (1, 1) to (0, 0). Hence, we cannot
define the desired GENEO through linear maps. On the contrary, the GENEO
associated with the second elementary symmetric function σ2 (a1, a2) = a1 · a2 and
with the permutant H = G defines the pseudo-metric with the requested property.
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Chapter 6

A representation theorem for
linear GENEOs

The aim of this chapter is to provide a new contribution to the theory of
GENEOs in the form of Theorem 6.2.2, which is a representation theorem for linear
GENEOs. The ability to populate the space of GENEOs with useful operators is
still one of the main limitations of the theory and this chapter operates in that
direction. In particular, this chapter provides a tool to generate linear GENEOs
using a weighted summation of a generalized permutant measure, which is more
easily definable than GENEOs. This study expands the concepts presented in [49],
but allows for arbitrary finite perception pairs and homomorphisms.

6.1 Building linear GEOs via generalized permutant
measures

Throughout the chapter, we are going to restrict to finite domains for the
perception pairs. Let us consider the sets X = {x1, . . . , xm} = {xj}mj=1 and

Y = {y1, . . . , yn} = {yi}ni=1 and the function spaces RX and RY , equipped with
the usual uniform norm ∥·∥∞. The finiteness of the domain allows us to simplify
the key concepts of our theory. More in detail we recall that, if X is finite, RX has
the canonical basis

{
1xj
}
j
, where 1xj : X → R is the function with value 1 on xj

and 0 otherwise. Also, RX ∼= Rm and AutRX (X) = Aut(X). A similar result holds
for RY and AutRY (Y ). As usual in the GENEO framework, we need to fix a group
homomorphism T : G→ K, where G ⊆ Aut(X) and K ⊆ Aut(Y ). The last concept
that we need is the set of all functions from Y to X, which we denote with XY .
First of all, we need to mimic the concept of the conjugation action in the presence
of a homomorphism T . For each h ∈ XY , we consider the following action of G on
XY :

αT : G×XY → XY , (g, h) 7→ ghTg−1.

In particular, we are interested in the orbit G(h) of h under the action of αT .

Remark 6.1.1. Since X is finite, the pseudo-metric DX induces the discrete topology
on X. With this topology, RX coincides with C0 (X,R). Similarly for DY .

We can state the following definitions.

69
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Definition 6.1.2. A GENEO (resp. GEO) (F, T ) : (RX , G) → (RY ,K) is called
linear if F is a linear map between RX and RY . That is, F (φ+αψ) = F (φ)+αF (ψ)
for every φ,ψ ∈ RX and every α ∈ R.

Definition 6.1.3. A finite signed measure µ on XY is called a generalized per-
mutant measure with respect to T if each subset H of XY is measurable and µ
is invariant under the action αT of G, i.e. µ(H) = µ(gHTg−1) for every g ∈ G.
Equivalently, we can say that a finite signed measure µ on XY is a generalized per-
mutant measure with respect to (G,T ) if each singleton {h} ⊆ XY is measurable
and µ({h}) = µ(

{
ghTg−1

}
) for every g ∈ G.

Example 6.1.4. Let X,Y be two non-empty finite sets, with Y ⊆ X. We fix
the equivariance group G on X as the group of all permutations of X that pre-
serve Y , and the equivariance group K on Y is the group of all permutations
of Y . Let us consider the homomorphism T : G → K that takes each permuta-
tion of X to its restriction to Y . For any positive integer m, we define Hm =
{h : Y → X such that |Im(h)| = m}, where |·| denotes the cardinality of the set.
We define the finite signed measure µ as such: given h ∈ Hm, µ(h) := 1

m|Hm| . Then
µ is a generalized permutant measure with respect to T .

For the rest of the chapter, we will always assume that a given homomorphism
T is given, therefore we will omit the dependence from it in the definitions of GEO
and GENEO. Moreover, with a slight abuse of notation, we denote with µ(h) the
signed measure of the singleton {h} for each h ∈ XY . Thanks to the concept of
generalized permutant measure we are able to define a linear GEO associated to it.
In fact, we can state the following.

Proposition 6.1.5 Let µ be a generalized permutant measure. The operator
F : RX → RY defined by

F (φ) :=
∑
h∈XY

φhµ(h)

for every φ ∈ RX is a linear GEO.

Proof. First, we show that F is T -equivariant. It holds that:

F (φg) =
∑
h∈XY

φghµ(h)

=
∑
h∈XY

φghTg−1Tgµ
(
ghTg−1

)
=
∑
f∈XY

φfTgµ(f)

= F (φ)Tg,

since µ(h) = µ
(
ghTg−1

)
and the map h 7→ f := ghTg−1 is a bijection from XY to
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XY . Now we show that F is linear. Let φ,ψ ∈ RX and let λ ∈ R. It holds that:

F (φ+ λψ) =
∑
h∈XY

(φ+ λψ)hµ(h)

=
∑
h∈XY

φhµ(h) +
∑
h∈XY

λψhµ(h)

= F (φ) + λF (ψ).

Therefore, F is a linear GEO.

Proposition 6.1.5 provides a first link between generalized permutant measures
and GEOs, and its definition and proof was relatively easy. In contrast, proving the
other verse of the representation theorem, i.e. associating a generalized permutant
measure with a GEO, is more difficult. In any case, we are able as of now to state
the result that we want to prove.

Theorem 6.1.6 Assume that G ⊆ Aut(X),K ⊆ Aut(Y ) transitively acts on the
finite set Y , T : G → K is a surjective homomorphism and F is a map from RX
to RY . The map F is a linear group equivariant operator from (RX , G) to (RY ,K)
with respect to the homomorphism T if and only if a generalized permutant measure
µ exists such that F (φ) =

∑
h∈XY φhµ(h) for every φ ∈ RX .

The remaining of the section is devoted to the proof of Theorem 6.1.6. We are
going to split the proof in many substeps, both for ease of reading and to separate
each step in its own result.

6.1.1 Decomposition of stochastic matrices

In order to prove Theorem 6.1.6, it is necessary to introduce tools to decompose
stochastic matrices. This is the aim of this section, which is mainly adapted from
[146]. Let Mn×m be the set of all n×m real-valued matrices. Moreover, with the
symbol [ℓ] we denote the set {1, . . . , ℓ} for every ℓ ∈ N.

Definition 6.1.7. A matrix A = (aij) ∈ Mn×m is (right) stochastic if aij ≥ 0
for all (i, j) ∈ [n] × [m] and

∑m
j=1 aij = 1 for all i ∈ [n].

A {0, 1}-matrix is a matrix A = (aij) ∈ Mn×m, such that aij ∈ {0, 1} for all
(i, j) ∈ [n]× [m]. We shall refer to the {0, 1}-matrices in Mn×m with exactly one 1
in each row as rectangular (row) permutation matrices and RPn×m is the set
of all rectangular permutation matrices of dimension n×m. From now on, we will
drop the right and row dependence from the definition of stochastic and rectangular
permutation matrices, since it is understood. It is a well-known fact that the set of
stochastic matrices is a convex set. We recall that an extreme point for a convex
set is a point that does not lie in any open line segment joining two points in the
set. With this definition, Theorem 1 of [146] can be restated as the following.

Theorem 6.1.8 Every n × m stochastic matrix can be expressed as a convex
combination of n×m rectangular permutation matrices.

Remark 6.1.9. In general, the convex combination stated in Theorem 6.1.8 is not
unique. As an example, let us consider the following stochastic matrix:

B =

(
1/2 0 1/2
1/3 1/3 1/3

)
.
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To keep the notation simple, we refer to the rectangular permutation matrix with
1 as i-th element of the first row and j-th element of the second row as Ri,j . Using
this notation, B can be expressed as the following convex combinations:

B =
1

12
R1,1 +

5

24
R1,2 +

5

24
R1,3 +

1

4
R3,1 +

1

8
R3,2 +

1

8
R3,3

and

B =
5

24
R1,1 +

1

12
R1,2 +

5

24
R1,3 +

1

8
R3,1 +

1

4
R3,2 +

1

8
R3,3.

6.1.2 Proof of the representation theorem for linear GEOs

In order to prove Theorem 6.1.6, we are going to split the task in several substeps
that we are going to prove singularly. We stress the fact that one verse of the proof
has aldready been proved by Proposition 6.1.5. Let us assume that F : RX → RY is
a linear GEO. Moreover, let B = (bij) be the matrix associated with F with respect
to the bases {1x1 , . . . ,1xm} for RX and {1y1 , . . .1yn} for RY . Given a natural
number ℓ ∈ N and a set Z with |Z| = ℓ, for every permutation p : Z → Z we will
denote by σp : [ℓ] → [ℓ] the function defined by setting σp(j) = i if and only if
p(xj) = xi. We observe that σp−1 = σ−1

p .

Lemma 6.1.10 For any g ∈ G, we have that bij = bσTg(i)σg(j) for every (i, j) ∈
[n] × [m].

Proof. Let us choose a function 1xj and a permutation g ∈ G. By equivariance we
have that

F (1xjg) = F (1xj )Tg.

The left-hand side of the equation can be rewritten as:

F (1xjg) = F (1g−1(xj)) =
n∑
i=1

biσ−1
g (j)1yi .

On the right-hand side, we get

F (1xj )Tg =

(
n∑
i=1

bij1yi

)
Tg =

n∑
i=1

bij(1yiTg) =

n∑
i=1

bij(1(Tg)−1(yi)) =

n∑
s=1

bσTg(s)j1ys ,

by setting ys = (Tg)−1(yi). Therefore, we obtain the following equation:

n∑
i=1

biσ−1
g (j)1yi =

n∑
s=1

bσTg(s)j1ys .

This immediately implies that biσ−1
g (j) = bσTg(i)j , for any i ∈ [n]. Since this equality

holds for any j ∈ [m] and any g ∈ G, we have that bij = bσTg(i)σg(j) for every
(i, j) ∈ [n] × [m] and every g ∈ G.

For the rest of the chapter, we will assume that K is transitive on Y and T is
surjective. Moreover, the surjectivity of T implies that m > n. These assumptions
allow us to prove the following.



6.1. BUILDING LINEAR GEOS 73

Lemma 6.1.11 If K is transitive and T is surjective, an m-tuple of real numbers
β = (β1, . . . , βn) exists such that each row of B can be obtained by permuting β.

Proof. SinceK is transitive, for every i ∈ [n] there exists hi1 ∈ K such that hi1(yi) =
y1. Considering the ı̄-th row of B and hı̄1 ∈ K, there exists ḡ ∈ G such that
T (ḡ) = hı̄1 because T is surjective. Hence, by Lemma 6.1.10, we have that bı̄j =
bσT ḡ(ı̄)σḡ(j) = bσhı̄1 (ı̄)σḡ(j) = b1σḡ(j), for any j ∈ [m]. Since σḡ is a permutation, the
ı̄-th row is a permutation of the first row.

In order to proceed, it is helpful to split the GEO F in its positive and negative
parts. That is, let us consider the linear maps F⊕, F⊖ : RX → RY defined by setting
F⊕(1xj ) :=

∑n
i=1 max {bij , 0}1yi and F⊖(1xj ) :=

∑n
i=1 max {−bij , 0}1yi for every

index j ∈ {1, . . . ,m}. One can easily check that the following properties hold:

1. F⊕, F⊖ are T -equivariant linear maps;

2. The matrices B⊕ and B⊖ associated with F⊕ and F⊖ with respect to the

bases {1x1 , . . . ,1xm} for RX and {1y1 , . . . ,1yn} for RY are B⊕ =
(
b⊕ij

)
=

(max {bij , 0}) and B⊖ =
(
b⊖ij

)
= (max {−bij , 0}), respectively. In particular,

B⊕ and B⊖ are non-negative matrices;

3. F = F⊕ − F⊖ and B = B⊕ −B⊖;

4. Lemma 6.1.11 and the definitions of B⊕, B⊖ imply that two m-tuples of pos-
itive real numbers β⊕ =

(
β⊕1 , . . . , β

⊕
m

)
, β⊖ =

(
β⊖1 , . . . , β

⊖
m

)
exist such that

each row of B⊕ can be obtained by permuting β⊕, and each row of B⊖ can
be obtained by permuting β⊖.

The next step in order to prove Theorem 6.1.6 is to express F⊕ and F⊖ as
weighter sums of φh, for h ∈ XY . First, we need to establish a connection
between the elements of XY and the rectangular permutation matrices. Each func-
tion h : Y → X can be associated with a n × m rectangular permutation matrix
R(h) = (rij) defined by setting rij = 1 if h(yi) = xj , and rij = 0 otherwise. In the
case X = Y and h : X → X is a permutation, we denote as P (h) such square mat-
rix, which is the usual permutation matrix. Furthermore, one can prove that there
is a bijection between XY and the set RPn×m of all n×m rectangular permutation
matrices that sends h to R(h).

Remark 6.1.12. Assume that h is a function from Y to X and Rh denotes the linear
operator that sends each function φ in RX to φh in RY . One could easily check
that R(h) is the matrix associated with the operator Rh with respect to the bases
{1x1 , . . . ,1xm} for RX and {1y1 , . . . ,1yn} for RY .

Proposition 6.1.13 For every h ∈ XY there exist two non-negative real numbers
c⊕(h), c⊖(h) such that

F⊕(φ) =
∑
h∈XY

c⊕(h)φh,

F⊖(φ) =
∑
h∈XY

c⊖(h)φh,
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for every φ ∈ RX .

Proof. Let us start by considering the statement concerning c⊕ and F⊕. If |β⊕|1 :=∑m
i=1 β

⊕
i , we note that the matrix 1

|β⊕|1
B⊕ is stochastic. Hence, Remark 6.1.12 and

Theorem 6.1.8 imply that, with a slight abuse of notation,

F⊕(φ) =
∣∣β⊕∣∣

1

(
1

|β⊕|1
B⊕φ

)
=
∣∣β⊕∣∣

1

∑
h∈XY

γ⊕(h)R(h)φ

=
∑
h∈XY

c⊕(h)Rh(φ)

=
∑
h∈XY

c⊕(h)φh,

where
∑

h∈XY γ⊕(h) = 1, and c⊕(h) = |β⊕|1 γ⊕(h) ≥ 0 for any h ∈ XY . The proof
of the statement concerning c⊖ and F⊖ is analogous.

We recall that our aim is to associate a generalized permutant measure to a
GEO F , and we split the task to its positive and negative parts F⊕ and F⊖. As of
now, the function that maps h 7→ c⊕(h) is not a generalized permutant measure. In
order to produce a generalized permutant measure, we need to take its average on
the orbits of h under the action of G. First, we need to show that such a measure
is well-defined.

Proposition 6.1.14 If f1, f2 ∈ XY and there exists t ∈ [n] such that f1(yt) =
f2(yt), then either c⊕(f1) = 0, or c⊖(f2) = 0 or both values are null.

Proof. Since there exists t ∈ [n] such that xs = f1(yt) = f2(yt), we can consider 1xs
and get that

F⊕ (1xs) = B⊕1xs

=
n∑
i=1

b⊕is1yi .

Hence, we have that

b⊕ts =

(
n∑
i=1

b⊕is1yi

)
(yt)

= F⊕ (1xs) (yt)

=
∑
h∈XY

c⊕(h)1xsh(yt)

≥ c⊕(f1)1xsf1(yt)

= c⊕(f1).

One could similarly check that b⊖ts ≥ c⊖(f2). Therefore,

c⊕(f1) > 0 =⇒ b⊕ts > 0 =⇒ b⊖ts = 0 =⇒ c⊖(f2) = 0.

It follows that either c⊕(f1) = 0, or c⊖(f2) = 0, or both.



6.1. BUILDING LINEAR GEOS 75

Corollary 6.1.15 For every f ∈ Aut(X), either c⊕(f) = 0, or c⊖(f) = 0, or both.

Proof. Set f1 = f2 in Proposition 6.1.14.

We finally have the prerequisites to define the generalized permutant measures
µ⊕ and µ⊖ associated to F⊕ and F⊖. Each of them is the average of the functions
c⊕ and c⊖ along the orbit O(h) of h under the action of G. Formally, we define

µ⊕(h) :=
∑

f∈O(h)

c⊕(f)

|O(f)|
=

∑
f∈O(h)

c⊕(f)

|O(h)|
,

µ⊖(h) :=
∑

f∈O(h)

c⊖(f)

|O(f)|
=

∑
f∈O(h)

c⊖(f)

|O(h)|
.

Proposition 6.1.16 µ⊕ and µ⊖ are generalized permutant measures. As a con-
sequence, the function µ = µ⊕ − µ⊖ is also a generalized permutant measure.

Proof. The definition of µ⊕ immediately implies that µ⊕(H) = µ⊕
(
gHT (g)−1

)
for

every g ∈ G and every subset H of XY . In other words, µ⊕ is a non-negative
generalized permutant measure. Quite analogously, we can prove that µ⊖ is a non-
negative generalized permutant. From Corollary 6.1.15, we can conclude that the
function µ := µ⊕ − µ⊖ is a generalized permutant.

Now that we have defined the two generalized permutant measures associated
to the T -equivariant linear maps F⊕ and F⊖, we can start the steps to finally
prove that the weighted sum of such measures are precisely the two maps. Let
Gh := {g ∈ G | αT (g, h) = h} be the stabilizer subgroup of G with respect to h,
i.e., the subgroup of G containing the elements that fix h by the action. We recall
that acting on h with respect to every element of G we obtain each element of the
orbit O(h) exactly |Gh| times, and the well known relation |Gh| |O(h)| = |G| (cf.
[147]). We observe that, for f, h ∈ XY , if f ∈ O(h) then Gf is isomorphic to Gh.
Finally we are able to prove Proposition 6.1.17, which states something very similar
to Theorem 6.1.6 but regarding F⊕ and F⊖.

Proposition 6.1.17 For any φ ∈ RX we have that

F⊕(φ) =
∑
f∈XY

φfµ⊕(f),

F⊖(φ) =
∑
f∈XY

φfµ⊖(f).

Proof. Recalling that Rg : φ 7→ φg and Rk : ψ 7→ ψk are linear maps for any g ∈ G
and k ∈ K, the T -equivariance condition F⊕Rg−1 = RT (g)−1F⊕ directly implies
that B⊕P (g) = P (T (g))B⊕. In particular, we have that P (T (g))B⊕P (g)−1 = B⊕
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for every g ∈ G. From Proposition 6.1.13 it follows that

B⊕ =

|G| summands︷ ︸︸ ︷
1

|G|
B⊕ + · · · +

1

|G|
B⊕

=
1

|G|
∑
g∈G

P (T (g))B⊕P (g)−1

=
1

|G|
∑
g∈G

P (T (g))

 ∑
h∈XY

c⊕(h)R(h)

P (g)−1

=
∑
h∈XY

∑
g∈G

c⊕(h)

|G|
P (T (g))R(h)P (g)−1

=
∑
h∈XY

c⊕(h)

|G|
∑
g∈G

R
(
ghT (g)−1

)
.

Therefore, with a slight abuse of notation,

F⊕(φ) =
∑
h∈XY

c⊕(h)

|G|
∑
g∈G

R
(
ghT (g)−1

)
φ (6.1.1)

=
∑
h∈XY

c⊕(h)

|G|
∑
g∈G

φghT (g)−1. (6.1.2)

Let us now set δ(f1, f2) = 1 if f1 and f2 belong to the same orbit under the action
of G, and δ(f1, f2) = 0 otherwise. Therefore, equality 6.1.1 implies

F⊕(φ) =
∑
h∈XY

c⊕(h)

|G|
|Gh|

∑
f∈O(h)

φf

=
∑
h∈XY

c⊕(h)

|G|
|Gh|

∑
f∈XY

δ(f, h)φf

=
∑
f∈XY

 ∑
h∈XY

c⊕(h)

|G|
|Gh| δ(f, h)

φf

=
∑
f∈XY

 ∑
h∈XY

c⊕(h)

|O(h)|
δ(f, h)

φf

=
∑
f∈XY

 ∑
h∈O(f)

c⊕(h)

|O(h)|

φf

=
∑
f∈XY

φfµ⊕(f).

The statement concerning F⊖ is proved analogously.

Proposition 6.1.5, together with Proposition 6.1.16 and Proposition 6.1.17 are
enough to prove Theorem 6.1.6, since they solve both verses of the representation
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theorem. We recall that all this section requires that K transitively acts on Y and
that T is surjective, hence such hypothesis are inserted in the theorem. We have just
proved a representation theorem for linear GEOs. Now, we are going to extend it to
include non-expansivity. Before proceeding, we want to say something more about
the relationship between µ⊕ and µ⊖. In what follows, we say that two matrices
A = (aij) , B = (bij) ∈ Mn×m are mutually singular if aij ̸= 0 =⇒ bij = 0 and
vice versa.

Proposition 6.1.18 µ⊕ and µ⊖ are mutually singular.

Proof. If µ⊕ ≡ 0 there is nothing to prove. Let us assume that µ⊕ is not the
null measure and consider h ∈ XY such that µ⊕(h) > 0. By contradiction, we
suppose that µ⊖(h) > 0. Then, by definition of µ⊖ there exists f ∈ O(h) such that
c⊖(f) > 0. Since R(f) = (r(f)ij) is a rectangular permutation matrix, there is an
index (ı, ȷ) such that r(f)ı,ȷ = 1. Hence, it holds that b⊖ı,ȷ =

∑
h∈XY r(h)ı,ȷc

⊖(h) > 0.

Since B⊕ and B⊖ are mutually singular, b⊕ı,ȷ = 0, and this is absurd, since from

Proposition 6.1.17 we have that b⊕ı,ȷ =
∑

h∈XY r(h)ı,ȷµ
⊕(h) ≥ µ⊕(f) > 0, because

invariance property of µ⊕ implies that µ⊕(h) = µ⊕(f).

Proposition 6.1.18 ensures that our definitions of µ⊕ and µ⊖ are precisely the
Hahn-Jordan decomposition of µ (cf. [148]).

6.2 Building linear GENEOs via generalized permutant
measures

The last step of the chapter is to extend Theorem 6.1.6 in order to include non-
expansivity. To this end, it is necessary a last step in the form of Proposition 6.2.1.
Such result allows us to connect the generalized permutant measure and the norms
of F and φ in the same hypothesis as Theorem 6.1.6.

Proposition 6.2.1 Assume that G ⊆ Aut(X),K ⊆ Aut(Y ) transitively acts on
the finite set Y , T : G→ K is a surjective homomorphism and F is a map from RX
to RY . It holds that ∑

h∈XY

|µ(h)| = max
φ∈RX\{0}

∥F (φ)∥∞
∥φ∥∞

.

Proof. The statement is trivially true if F is the null operator, since in this case µ
coincides with the null measure on XY . Hence, we can assume that F in not the null
operator. Setting c := c⊕− c⊖, Corollary 6.1.15 implies that |c(h)| = c⊕(h) + c⊖(h)
for every h ∈ XY . By definition of µ⊕ and µ⊖, we have that, for any h ∈ XY

∑
f∈O(h)

µ⊕(f) =
∑

f∈O(h)

c⊕(f),

∑
f∈O(h)

µ⊖(f) =
∑

f∈O(h)

c⊖(f).
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It follows that, for each h ∈ XY ,∑
f∈O(h)

|µ(f)| ≤
∑

f∈O(h)

µ⊕(f) +
∑

f∈O(h)

µ⊖(f)

=
∑

f∈O(h)

c⊕(f) +
∑

f∈O(h)

c⊖(f)

=
∑

f∈O(h)

|c(f)|

and hence, ∑
h∈XY

|c(h)| ≥
∑
h∈XY

|µ(h)| . (6.2.1)

Now we set 1X :=
∑m

r=1 1xr and 1Y :=
∑n

s=1 1ys . We obtain

F⊕ (1X) =
∑
h∈XY

c⊕(h)R(h)1X =

 ∑
h∈XY

c⊕(h)

1Y .

Since F⊕ (resp. F⊖) is a T -equivariant linear map, any row of B⊕ (resp. B⊖) is a
permutation of the first row. Then, we get

F⊕(1X) = B⊕1X =

 m∑
j=1

b⊕1j

1Y ,

F⊖(1X) = B⊖1X =

 m∑
j=1

b⊖1j

1Y .

It follows that ∑
h∈XY

c⊕(h) =
m∑
j=1

b⊕1j ,

∑
h∈XY

c⊖(h) =
m∑
j=1

b⊖1j .

Therefore ∑
h∈XY

|c(h)| =
∑
h∈XY

c⊕(h) +
∑
h∈XY

c⊖(h)

=

m∑
j=1

b⊕1j +
m∑
j=1

b⊖1j

=
m∑
j=1

|b1j | . (6.2.2)

Moreover, for every i ∈ [n], we have that

m∑
j=1

|b1j | =

∣∣∣∣∣∣
m∑
j=1

b1jsgn(b1j)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
m∑
j=1

bijsgn(b1j)

∣∣∣∣∣∣ .
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Considering φ =
∑m

j=1 sgn(b1j)1xj ∈ RX \ {0}, it follows that, with a sligh abuse
of notation,

F (φ) = Bφ

= B
m∑
j=1

sgn(b1j)1xj

=
m∑
j=1

sgn(b1j)B1xj

=
m∑
j=1

sgn(b1j)
n∑
i=1

bij1yi

=

n∑
i=1

 m∑
j=1

sgn(b1j)bij

1yi .

Hence, from Equations 6.2.1 and 6.2.2 we have that

∥F (φ)∥∞ =

∥∥∥∥∥∥
n∑
i=1

 m∑
j=1

sgn(b1j)bij

1yi

∥∥∥∥∥∥
∞

=
m∑
j=1

|b1j |

=
∑
h∈XY

|c(h)| ≥
∑
h∈XY

|µ(h)| .

Since ∥φ∥∞ = 1, it follows that ∥F (φ)∥∞ =
∥F (φ)∥∞
∥φ∥∞

≥
∑

h∈XY |µ(h)|. In particular,

max
φ∈RX\{0}

∥F (φ)∥∞
∥φ∥∞

≥
∥F (φ)∥∞
∥φ∥∞

≥
∑
h∈XY

|µ(h)| .

Now we are going to prove the other verse of the inequality. From Theorem 6.1.6
we have that, for every function φ ∈ RX , F (φ) =

∑
h∈XY φhµ(h). Hence,

∥F (φ)∥∞ ≤
∑
h∈XY

∥φh∥∞ |µ(h)|

≤ ∥φ∥∞
∑
h∈XY

|µ(h)| .

Therefore,
∥F (φ)∥∞
∥φ∥∞

≤
∑

h∈XY |µ(h)| for every φ ∈ RX \{0}. In particular, the same

applies for the maximum over φ ∈ RX \ {0}. In conclusion,∑
h∈XY

|µ(h)| = max
φ∈RX\{0}

∥F (φ)∥∞
∥φ∥∞

.
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Finally, we are able to state and prove the main result of this chapter, the
representation theorem for linear GENEOs.

Theorem 6.2.2 Assume that G ⊆ Aut(X),K ⊆ Aut(Y ) transitively acts on
the finite set Y , T : G → K is a surjective homomorphism and F is a map from
RX to RY . The map F is a linear group equivariant non-expansive operator from
(RX , G) to (RY ,K) with respect to the homomorphism T if and only if a generalized
permutant measure µ exists such that F (φ) =

∑
h∈XY φhµ(h) for every φ ∈ RX and∑

h∈XY |µ(h)| ≤ 1.

Proof. Let us assume that F is a group equivariant non-expansive operator from(
RX , G

)
to
(
RY ,K

)
with respect to T . Then, Theorem 6.1.6 guarantees that

a generalized permutant measure µ exists such that F (φ) =
∑

h∈XY φhµ(h) for
every φ ∈ RX . Moreover, Proposition 6.2.1 guarantees that

∑
h∈XY |µ(h)| =

maxφ∈RX\{0}
∥F (φ)∥∞
∥φ∥∞

. Since F is non-expansive, it follows that
∑

h∈XY |µ(h)| ≤ 1,

which is the first implication of the statement. Let us now assume that a generalized
permutant measure µ exists such that F (φ) =

∑
h∈XY φhµ(h) for every p ∈ RX

with
∑

h∈XY |µ(h)| ≤ 1. Then, Proposition 6.1.5 guarantees that F is a linear group
equivariant operator. Moreover, we can prove the non-expansivity of F :

∥F (φ)∥∞ =

∥∥∥∥∥∥
∑
h∈XY

φhµ(h)

∥∥∥∥∥∥
∞

≤
∑
h∈XY

∥φh∥∞ |µ(h)|

=
∑
h∈XY

∥φ∥∞ |µ(h)|

≤ ∥φ∥∞

 ∑
h∈XY

|µ(h)|


≤ ∥φ∥∞ .

Theorem 6.2.2 represents every linear GENEO between different perception pairs
by means of generalized permutant measures. We stress the fact that generalized
permutant measures are more easily definable than GENEOs, hence this theorem
offers us a valuable tool in the construction of GENEOs. The concept of populating
the space of GENEOs with operators that we are able to construct is fundamental
in having a wide range of applications. As we will see in the next chapter, we
currently have a small number of GENEOs available, which severely limits their
use in applications. For this reason, Theorem 6.2.2 is not only important from a
theoretical point of view, but also in terms of applicability of the theory.



Chapter 7

New neural network
architectures with GENEOs

In the previous chapters we have introduced and explored the concept of GENEO,
defined the topological properties of its space and proved that the operator that map
data to its persistence diagram is actually a GENEO. From a theoretical point of
view, the use of GENEOs in applications can provide an improvement both in ac-
curacy, interpretability and significance of extracted features, since we are injecting
specific symmetries in the model. The contribution of this chapter is to provide
some first examples of applications of GENEOs. These experiments are prelim-
inary, in the sense that they can be greatly expanded and refined. Nonetheless,
these results are significant and highlight the potential that GENEOs can have in
large-scale applications.

7.1 MNIST reconstruction with GENEOs

The first application that we are going to introduce deals with image recon-
struction. More in detail, we corrupt the MNIST dataset [149] with a random noise
that maps 80% of the pixels to the black level. The objective is to reconstruct
the original image. Since we are dealing with images, we require that our model is
equivariant with translations and rotations. We recall that a convolutional neural
network (CNN) [150] is a GEO with respect to translations. In order to include non-
expansivity and equivariance with respect to rotations, we have modified a CNN
with the additional request that kernels are symmetric with respect to rotations.
More in detail, each kernel of our neural network is the discretization of a rotated
and normalized shifted Gaussian around the center of the kernel. Therefore, our
kernel has only three parameters: the center of the Gaussian, its amplitude and
its scale. An example of an admissible kernel for our network is shown in Figure
7.1. Finally, the last layer of our network is a convex combination of the outputs
of the previous layer. This is done to ensure that the network is non-expansive.
More in detail, our neural network architecture has four layers with {6, 16, 16, 16}
convolutions, respectively, each with kernel size 5. Since each kernel has three para-
meters, this results in a total of 1, 842 parameters. As a competitor, we have trained
both an Autoencoder [151] and a Variational Autoencoder [152], which have been

81
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successfully applied in denoising [153]. We will not dive into the details of both of
these networks, but the number of trainable parameters is 1, 732, 913 and 838, 337,
respectively. For the hyperparameters of the training, we used 40 epochs, a batch
size of 32, a learning rate of 0.001, mean squared error loss and stochastic gradient
descent optimizer. We report a graphical example of the reconstructed images for
our model in Figure 7.2 and for the variational autoencoder in Figure 7.3. Results
for the autoencoder are similar to the variational autoencoder, so they are not re-
ported. The results achieved by our network are satisfactory, while the variational
autoencoder is not able to learn anything. This behavious is further validate by the
analysis of the loss (Figure 7.4). The training loss of the GENEO network is clearly
decreasing (Figure 7.4a, especially during the first epochs), while the training loss
of the variational autoencoder is overall constant during the epochs (Figure 7.4b.
Moreover, the test loss of the GENEO network is greatly smaller than the respect-
ive loss for the variational autoencoder. In this first experiment, we have shown
that our GENEO network is able to perform tasks that competitors are not able
to perform, with satisfactory results from a human perspective and with a small
amount of trainable parameters.

Figure 7.1: Example of a kernel of the GENEO neural network.

7.2 MNIST classification with GENEOs

The second application that we are going to present is an MNIST classification.
We want to highlight that, in our current implementation, a classification task re-
quires a final fully connected linear layer that is not guaranteed to be equivariant.
This detail is very important and requires further examination. It is well known
that any feedforward fully connected neural network is theoretically able to learn
any decision function: it is stated in the Universal Approximation Theorem [154].
Therefore, in theory, there should be no need of the plethora of neural network ar-
chitectures that are being developed. However, in real-world scenarios, the situation
is quite different. Usually, fully connected neural networks learn patterns that are
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Figure 7.2: Example of corrupted MNIST digits (first row), reconstructed digits
with the GENEO network (middle row) and original image (last row).

Figure 7.3: Example of corrupted MNIST digits (first row), reconstructed digits
with the variational autoencoder (middle row) and original image (last row).

specific to the dataset at hand, and not features that are intrinsically important for
the task. This is what is usually referred to as overfitting. This is the reason why
so many neural network architectures have been devised: changing the connection
of the layers (i. e. the topology of the network) we force the network to learn fea-
tures that are more suitable to the task. Typically such features are more robust to
noise or require fewer preprocessing steps. The most successful neural network ar-
chitecture for computer vision tasks is the convolutional neural network. Although
its development followed a different path, a convolutional network is translation
equivariant and this property is part of its success. Indeed, it guarantees that the
network learns to recognize the details of the image regardless of its position. Incid-
entally, this also shrinks the number of parameters (and thus the size of the space on
which to do optimization). This yields a more robust model that requires a smaller
training dataset. Of course, these excellent mathematical properties are lost once
you insert a linear, fully connected layers at the end of the neural network to do
classification. The hope, which will be confirmed empirically, is that having learned
equivariant features up to a certain layer, the last linear layers will equally maintain
such equivariance. A possible solution for this problem is to insert an invariant layer
after the equivariant ones. This would guarantee that any following layers would
still be equivariant, but in our current implementation, we do not have at our dis-
posal such a layer. That being said, despite the networks that we introduce are not
strictly GENEOs, we are still going to refer them as such. For comparison, we are
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(a) Loss for the GENEO network w.r.t.
epochs.

(b) Loss for the variational autoencoder
w.r.t. epochs.

Figure 7.4: Loss during training and testing of both GENEO network and vari-
ational autoencoder w.r.t. epochs.

going to test three different neural network architectures: the first one is a fully
connected neural network (FNN), the second one is a convolutional neural network
(CNN) suitably modified in order to introduce non-expansivity (hence resulting in a
GENEO network with respect to translations) and a GENEO network with respect
to translations and rotations with the same kernels as the ones described in the pre-
vious section. In particular, we are going to perform three experiments. The first
one is the normal classification of MNIST. The second experiment is the training
on MNIST and testing of the trained networks to a rotated version of MNIST. The
third experiment is the training and testing on a rotated version of MNIST. More
in detail, we have the following three neural networks:

• GENEO network: four layers of GENEO convolutions with {16, 32, 64, 32}
kernels, respectively, each kernel of size 7. The activation function is tanh

and there is a maxpool after each layer. For increased specificity, we allowed
for three Gaussians in each kernel. This is followed by two fully connected
layers with leakyrelu activation functions. The total number of trainable
parameters is 207, 130;

• CNN: two convolution layers with {6, 10} kernels, respectively, each kernel of
size 7. The activation function is relu and there is a maxpool after each layer.
This is followed by two fully connected layers with relu activation functions.
The total number of trainable parameters is 211, 538;

• FNN: three fully connected layers with relu activation functions and a total
number of trainable parameters of 263, 650.

The three neural networks have been devised in order to have a similar number
of parameters. Moreover, we upscaled the MNIST dataset to a 157 × 157 pixel
image using the torchvision.transforms.resize built-in function.
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7.2.1 Training and testing on MNIST

For the first experiment, all three neural networks achieve very similar results. In
particular, the GENEO network achieves a 91% accuracy on the test set, the CNN
an accuracy of 90% and FNN achieves a 88% accuracy. This was to be expected
both because of the simplicity of the dataset and the heavy preprocessing that was
done on MNIST. We refer to Figure 7.5 for the plot of train and test loss and
accuracy during the experiment for the GENEO network. The two other neural
networks share similar behavior and their plot were omitted.

Figure 7.5: Train and test loss (left) and accuracy (right) for the GENEO network
in the first experiment w.r.t. epochs.

7.2.2 Training on MNIST, testing on rotated MNIST

In the second experiment, all three neural networks are trained in the same
fashion as in the previous experiment, but they are tested on a version of MNIST
where images are rotated by a random angle ∈ [−60°, 60°]. In this case, the accuracy
results on the test set are 66%, 55% and 53% respectively for GENEO network,
CNN and FNN. This result is encouraging and shows that features extracted from
the GENEO network are, in fact, more equivariant with respect to rotations than
linear layers or CNNs. Therefore, despite the last linear layers do not guarantee
that the equivariance is maintained throughout the neural network, this occurs at
least partially. We refer to Figure 7.6 for an example of rotated MNIST digits and
to Figure 7.7 for the confusion matrix of the GENEO network.

In this experiment, we can truly dive deep in how our neural network is working.
In particular, in Figure 7.8 we show three trained kernels and how they act on the
different digits. Blue colors correspond to negative components, and red to positive
ones. In particular, the kernel shown in Figure 7.8a seems to detect the presence
of circles (or nearly) in the digits, since the outputs of the digits 0, 3, 5, 6, 8, 9 are
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Figure 7.6: Example of rotated MNIST digits.

the only ones with positive and negative components. A similar behaviour occurs
in Figure 7.8b, but such kernels seems to detect curvature, more than circles. This
is supposedly to the fact that the kernel reacts to the digit 2 in the same way as
the other digits with circles. We highlight the fact that the two kernels are similar
in shape. Finally, Figure 7.8c shows a kernel that seems to detect segments in
the digit. Another interesting concept to linger is the network activation changes
when passing a digit and its rotated version. In the first row of Figure 7.9, we
can see some MNIST digits and their rotated versions. In the second row there
is the respective output of a GENEO kernel, which is equivariant with respect to
rotations (up to finite algebra approximations). Finally, we can measure the amount
of equivariance of the complete network by tracking the classification output of the
GENEO network for a digit and some random rotations. It turns out that the
equivariance of the GENEO network (we stress, with the addition of two final linear
layers) is roughly 68%. This is quite encouraging and can explain the reason why
our network outperforms the competitors in such a scenario.

7.2.3 Training and testing on rotated MNIST

In our last experiment, both the train and test datasets consist of the rotated
version of MNIST. The accuracy result for the GENEO network is 87%, for the
CNN is 88% and for the FNN is 85%. This result in particular shows the potentials
and limitations of GENEOs. Especially in benchmark contexts, where the dataset
is incredibly neat and heavily preprocessed, the usefulness of injecting equivariance
in the model is mitigated but such preprocessing steps. However, it is sufficient to
introduce slight alterations to what a competitor is accustomed to and the network
suffers greatly. The GENEO network, on the other hand, is more robust to such
alterations thanks to its equivariance. In relatively simple cases such as MNIST or
rotated MNIST, a retraining of the neural network is sufficient to regain the original
accuracy for all networks, but in more complex datasets this may not be the case.

In conclusion, the applications of GENEOs are still in their infancy, since not
many GENEO layers have been devised yet. Nonetheless, they can offer an im-
provement both in accuracy and transparency and provide features that are more
robust and significant to specific transformations that are known a priori. Moreover,
the limited amount of parameters required helps the prevention of overfitting and
in general requires a smaller dataset to be adequately trained. This can be a key
factor in real-world datasets, like the one presented in Chapter 3.
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Figure 7.7: Confusion matrix of the GENEO network trained on MNIST and tested
on rotated MNIST.
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(a) A trained kernel that seems to detect circles in the digits.

(b) A trained kernel that seems to detect curvature in the digits.

(c) A trained kernel that seems to detect segments in the digits.

Figure 7.8: Example of trained kernels and their actions on the different digits.

Figure 7.9: Equivariance of the GENEO network. First row: MNIST digits and
their rotated version. Second row: the output of a GENEO kernel.



Chapter 8

Conclusions

The focus of this dissertation was topological data analysis. From an applic-
ative point of view, we focused on the development of a pipeline that collects the
major literature on the topic and apply it to new case studies, according to the
ISTI-CNR laboratory availability. In this area, we proposed a uniform methodo-
logy in a non-canonical part of the literature, supported by our empirical findings.
From a theoretical point of view, we firstly contributed to the connection of topo-
logical data analysis with a different but related concept, namely group equivariant
non-expansive operators. These operators can be thought of as an expansion of
the mathematical core of topological data analysis and show great potential, des-
pite being relatively underdeveloped. In this field, we contributed with two new
methodologies to generate them and with a couple of applications based on the
development of a neural network based on them.

The first contribution of this dissertation consists in the development of a to-
pological machine learning pipeline for the classification of digital data. Such a
pipeline combines the features arising from computational topology for describing
the data shape with the algorithms of machine learning and generates a novel, fully
automated and powerful tool for data classification. More importantly, in this dis-
sertation we proposed a novel approach to standardise a non-canonical step of the
topological machine learning pipeline. In addition, our approach is supported by a
noise resistance test, which is a first of this kind.

The second contribution of this dissertation consists in the application of the to-
pological machine learning pipeline devised alongside this thesis to three novel case
studies, in the form of real-world datasets coming from the biomedical and meteor-
ological fields. In all three approaches we achieved state-of-the-art accuracies, and
the biomedical scenarios were particularly satisfactory. These applications further
develop the literature of TML applications, with is still somewhat limited.

The third contribution of this dissertation consists in a new connection between
TDA and GENEOs, which constitutes the two main topics of this thesis. In partic-
ular, we prove that the functor that maps each function to its associated persistence
diagram and maps a homeomorphism between functions to the induced matching
between persistence diagrams (with a few precautions) is a group equivariant non-
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expansive operator. Thus, we can consider the computation of PDs as an element
of the space of all group equivariant non-expansive operators. This theory is based
on a dual approach that focuses on pairs data-group of equivariances. The rationale
behind the use of operators that are blind to the action of the group is that we want
to inject into the system preexisting knowledge, hence drastically reducing the di-
mensionality of the space. Moreover, the non-expansivity encodes the idea that we
are interested in operators that compress the information we have in input, and
grant compactness to the space of such operators. This property is fundamental in
applications since it allows us to approximate such space of operators with just a
finite set. In particular, this theory expand on the concept of persistent homology,
allowing for more flexibility of the group of equivariance and for viewpoints that
may differ from the topological one. In literature the connection between TDA and
GENEOs is not new, but this thesis provides a new bridge between these concepts
from a functorial point of view.

The fourth and fifth contributions of this dissertation consists of a new method
to build non-linear GENEOs by means of symmetric functions and permutants
(Theorem 5.3.24) and a characterization theorem of linear GENEOs between ar-
bitrary functional spaces (Theorem 6.2.2). Both these theorems are novel in the
GENEO theory and develop our ability to generate them, which is currently one of
the bottleneck for applications of this framework.

The last contribution of this dissertation consists in the development of a new
neural network architecture based on GENEOs. Such a network is preliminary but
still expressive enough to outperform competitors in two applications, highlighting
the potential of our mathematical framework.

We conclude by mentioning some new lines of research for this mathematical
model. One of the most difficult aspects of this setting consists in building equivari-
ant operators given an equivariance group. In this dissertation, we have developed a
method to build linear GENEOs by means of permutants, which are in general easier
to define. Nevertheless, new methods should be developed in order to get a good
approximation of the space of GENEOs. Furthermore, in many applications group
action may be too restrictive. As an example, a dataset consisting of digit images
would not admit a group of rotations as equivariances, since the resulting operator
would be blind to the digits “6” and “9”. In general, we would like less algebraic
structure in order to have a more versatile mathematical model. An advancement in
this research would be to generalize the framework to equivariance with respect to
monoid of couplings instead on groups of bijections. Another possible development
consists of a GENEO network more developed than the preliminary version presen-
ted in this dissertation. Finally, we want to highlight the potential of the GENEO
network with real-world data. In Chapter 3 we highlighted the fact that current
neural networks underperformed in scenarios where data are scarce. In all three
real-world datasets, simple machine learning classifiers outperformed more sophist-
icated neural network precisely due to the scarcity of data to train on. However,
this issue may be resolved with GENEO networks, since the narrowness of trainable
parameters (due to the symmetries injected in the model) would also require less
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training data. In the future, when a more developed GENEO network is available,
we aim to apply it to this kind of datasets as well.
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[114] Mustafa Çulha. Raman spectroscopy for cancer diagnosis: how far have we
come? Bioanalysis, 7(21):2813–2824, 2015.

[115] Julietta V Rau, Valerio Graziani, Marco Fosca, Chiara Taffon, Massimiliano
Rocchia, Pierfilippo Crucitti, Paolo Pozzilli, Andrea Onetti Muda, Marco
Caricato, and Anna Crescenzi. Raman spectroscopy imaging improves the
diagnosis of papillary thyroid carcinoma. Scientific Reports, 6(1):35117, 2016.

[116] C Dilara Savci-Heijink, Arjen HG Cleven, and Judith VMG Bovée. Benign
and low-grade cartilaginous tumors: An update on differential diagnosis. Dia-
gnostic Histopathology, 2022.

[117] David Suster, Yin Pun Hung, and G Petur Nielsen. Differential diagnosis of
cartilaginous lesions of bone. Archives of pathology & laboratory medicine,
144(1):71–82, 2020.

[118] Mario D’Acunto, Raffaele Gaeta, Rodolfo Capanna, and Alessandro Franchi.
Contribution of raman spectroscopy to diagnosis and grading of chondrogenic
tumors. Scientific Reports, 10(1):2155, 2020.

[119] Pietro Manganelli Conforti, Mario D’Acunto, and Paolo Russo. Deep learn-
ing for chondrogenic tumor classification through wavelet transform of raman
spectra. Sensors, 22(19):7492, 2022.

[120] Cristiano D’Andrea, Federico Angelo Cazzaniga, Edoardo Bistaffa, Andrea
Barucci, Marella de Angelis, Martina Banchelli, Edoardo Farnesi, Panagis
Polykretis, Chiara Marzi, Antonio Indaco, et al. Impact of seed amplifica-
tion assay and surface-enhanced raman spectroscopy combined approach on
the clinical diagnosis of alzheimer’s disease. Translational Neurodegeneration,
12(1):35, 2023.



BIBLIOGRAPHY 103

[121] Yanmei Xu, Xinyu Pan, Huan Li, Qiongfang Cao, Fan Xu, and Jianshu Zhang.
Accuracy of raman spectroscopy in the diagnosis of alzheimer’s disease. Fron-
tiers in Psychiatry, 14:1112615, 2023.

[122] Kaj Blennow and Henrik Zetterberg. Biomarkers for alzheimer’s disease:
current status and prospects for the future. Journal of internal medicine,
284(6):643–663, 2018.

[123] Elena Ryzhikova, Nicole M Ralbovsky, Vitali Sikirzhytski, Oleksandr Kaza-
kov, Lenka Halamkova, Joseph Quinn, Earl A Zimmerman, and Igor K
Lednev. Raman spectroscopy and machine learning for biomedical applic-
ations: Alzheimer’s disease diagnosis based on the analysis of cerebrospinal
fluid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,
248:119188, 2021.

[124] Chia-Chi Huang and Ciro Isidoro. Raman spectrometric detection methods for
early and non-invasive diagnosis of alzheimer’s disease. Journal of Alzheimer’s
Disease, 57(4):1145–1156, 2017.

[125] Randy S Tashjian, Harry V Vinters, and William H Yong. Biobanking of
cerebrospinal fluid. Biobanking: Methods and Protocols, pages 107–114, 2019.

[126] Hugo Vanderstichele, Mirko Bibl, Sebastiaan Engelborghs, Nathalie Le Bas-
tard, Piotr Lewczuk, Jose Luis Molinuevo, Lucilla Parnetti, Armand Perret-
Liaudet, Leslie M Shaw, Charlotte Teunissen, et al. Standardization of preana-
lytical aspects of cerebrospinal fluid biomarker testing for alzheimer’s disease
diagnosis: a consensus paper from the alzheimer’s biomarkers standardization
initiative. Alzheimer’s & Dementia, 8(1):65–73, 2012.

[127] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Fried-
man. The elements of statistical learning: data mining, inference, and predic-
tion, volume 2. Springer, 2009.

[128] Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer,
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[133] Rickard Brüel Gabrielsson, Bradley J Nelson, Anjan Dwaraknath, and Primoz
Skraba. A topology layer for machine learning. In International Conference
on Artificial Intelligence and Statistics, pages 1553–1563. PMLR, 2020.
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