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Here we study standard and higher-order birth-death processes on fully-connected networks,
within the perspective of large-deviation theory (also referred to as Wentzel-Kramers-Brillouin
(WKB) method in some contexts). We obtain a general expression for the leading and next-to-
leading terms of the stationary probability distribution of the fraction of "active" sites as a function
of parameters and network size N . We reproduce several results from the literature and, in particu-
lar, we derive all the moments of the stationary distribution for the q-susceptible-infected-susceptible
(q−SIS) model, i.e., a high-order epidemic model requiring of q active ("infected") sites to activate
an additional one. We uncover a very rich scenario for the fluctuations of the fraction of active sites,
with non-trivial finite-size-scaling properties. In particular, we show that the variance-to-mean ratio
diverges at criticality for [1 ≤ q ≤ 3], with a maximal variability at q = 2, confirming that complex-
contagion processes can exhibit peculiar scaling features including wild variability. Moreover, the
leading-order in a large-deviation approach does not suffice to describe them: next-to-leading terms
are essential to capture the intrinsic singularity at the origin of systems with absorbing states. Some
possible extensions of this work are also discussed.

I. INTRODUCTION

Systems with absorbing or quiescent states have played
a central role in the development of the theory of non-
equilibrium phase transitions [1–5]. Analysis of such sys-
tems is crucial to shed light onto apparently diverse phe-
nomena such as catalytic reactions, the propagation of
epidemics in complex networks, neural dynamics, viral
spreading of memes in social networks, the emergence of
consensus, desertification processes, and the transition to
turbulence, to name but a few examples [6–17]. In par-
ticular, birth-death processes (or "creation-annihilation"
particle processes) on complex networks represent an ex-
tremely general and versatile framework to tackle such
a variety of problems, as exemplified by, e.g., models of
epidemic propagation in which infected ("active") indi-
viduals can either heal (become "inactive") or infect their
neighbors at some given rates, and all dynamics ceases
in the absence of infection, i.e., once the absorbing or
quiescent state has been reached.

The focus of attention in this context has recently
shifted to the study of higher-order interactions (beyond
simple pairwise ones) in the probabilistic rules for the
birth-and-death processes; i.e. to include the possibility
that more than one active site is required to generate

further activations [18, 19]. Indeed, it has been shown
that the presence of higher-order interactions (also called
"complex-contagion" processes [8, 20–24]) can lead to a
change on the nature of the phase transition for a wide
class of models describing, e.g., epidemics, opinion dy-
namics, synchronization, population-dynamics, etc.

For instance, the requirement of more than one sin-
gle "active" (or "infected") individual needed to gener-
ate further activations (infections) gives typically rise to
discontinuous or abrupt transitions with coexistence be-
tween quiescent and active states and hysteresis phenom-
ena (see e.g. [4, 5, 25–27]). Simplicial complexes and hy-
pergraphs represent a natural and alternative framework
to analyse these processes [28–30] with important impli-
cations in research fields such as theoretical ecology [31]
and neuroscience [32].

Theoretical analyses of these transitions often start
from the consideration of complete or fully-connected
graphs, for which the "ideal" mean-field dynamics is for-
mally recovered in the limit of infinitely-large network
sizes, N , allowing also to analyze finite-size corrections.
Results for the dynamics of higher-order process on the
complete graph have been obtained in recent years, but
they are rather scattered in the literature. Here, we re-
cover many of these results by employing systematically
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a large-deviation framework [33] (also called Wentzel-
Kramers-Brillouin (WKB) method in the context of e.g.
population dynamics see, e.g., [34–37]) and study in de-
tail several aspects of the most general birth-death pro-
cesses, exhibiting a phase transition into an absorbing
state.

In particular, we obtain a general expression for the
leading and next-to-leading terms of the stationary prob-
ability distribution of the fraction of "active" sites, as a
function of the systems size N . By doing this, we first
reproduce diverse results from the literature and, then,
we also derive all the moments of the stationary distri-
bution for the specific case of the q-susceptible-infected-
susceptible (q−SIS) model, i.e., a higher-order epidemic
model requiring of q active ("infected") sites with q > 1,
to activate an additional one. We uncover a very rich phe-
nomenology for the fluctuations of the fraction of positive
sites, with a non-trivial dependence both on the system
size N (i.e. anomalous finite-size scaling) and on the or-
der q of the interaction. In particular, we stress the fact
that, crucially and contrarily to the standard situation,
e.g. in equilibrium statistical mechanics, one needs to go
beyond leading order in N to properly describe critical
fluctuations.

The paper is organized as follows. In Section II, we
first introduce the general framework for a general birth-
death process on a complete graph, deriving as a first step
general results for the stationary distribution at large N
using a large-deviation approach [33]. In Section III we
consider the case of systems with an absorbing state and
we define a quasi-stationary distribution. In Section IVB
we study in detail the higher-order q − SIS model, de-
riving all the moments of the quasi-stationary distribu-
tion and their finite-size scaling properties, underlining
its non-trivial behavior. Finally, Section V summarizes
the conclusions and some open problems.

II. THE MASTER EQUATION IN THE
LARGE-DEVIATION (OR WKB) APPROACH

In order to fix notation and ideas, let us recapitu-
late some well-known approaches and results [12, 34–40].
For this, let us consider a dynamical process on a fully-
connected network (or "complete graph") of size N . The
network state is specified by a set of binary variables
σi = 0, 1: one for each node i. The variable n =

∑

i σi

counts the number of active nodes, i.e., in state σi = 1.
The transition-rate functions γ−(n) and γ+(n), represent
the probability that n decreases or increases by one unit,
respectively, defining a general mean-field-like dynamics
on the complete graph, as determined by the (one-step)
Master equation [38, 39]:

P (n, t+ 1)− P (n, t) = −P (n, t)(γ+(n) + γ−(n))

+P (n+ 1, t)γ−(n+ 1) + P (n− 1, t)γ+(n− 1). (1)

for the probability to be in the state n at time t, P (n, t).
Observe that Eq.(1) may describe many possible mean-

field-like models such as, e.g., the Ising model, the SIS
model, the voter model, and also models with more com-
plex behavior involving higher-order interactions on q
sites, such as the q-neighbor Ising model [41] or the q-
voter model [42]. The associated stationary distribution,
Pst(n) is simply given by the detailed-balance condition
[38, 39]:

Pst(n)γ
+(n) = Pst(n+ 1)γ−(n+ 1). (2)

with γ−(0) = γ+(N) = 0, since 0 ≤ n ≤ N , an equation
that can be formally solved in an exact way:

Pst(n) = Pst(0)

n
∏

j=1

γ+(j − 1)/γ−(j), (3)

where Pst(0) is fixed by the overall normalisation condi-
tion (note, in particular, that if γ+(n0) = 0 for some
n0, this implies that Pst(n) = 0 for n > n0 and, if
γ−(n0) = 0, then Pst(n) = 0 for n < n0, so that the dy-
namics is asymptotically confined in a subset of the state
space). Eq.(3) can be used to obtain an exact numeri-
cal evaluation of the stationary probability distribution;
indeed, it has been employed in different contexts such
as for the q-neighbor Ising model [41], for the SIS model
and its generalizations [43–45] and for neutral models in
ecology [46], to name but a few examples.

To make further progress, let us assume that, in the
limit of large network sizes (N → ∞), γ+(n) and γ−(n)
just depend on the fraction of active sites, x = n/N (that
can be treated as a continuous variable), so that Eq.((2))
can be written as

Pst(x,N) γ+(x) = Pst(x+ 1/N,N) γ−(x+ 1/N). (4)

Within a large-deviation or WKB approach, at large N
Pst(x,N) can be expressed as [33, 35, 36]

Pst(x,N) = e−NF (x)− g(x) + Θ(1/N). (5)

Plugging this expression into Eq.(4), one readily obtains:

log(γ+(x)) −NF (x)− g(x) =

log(γ−(x +
1

N
))−NF (x+

1

N
)− g(x+

1

N
) (6)

and, expanding Eq.(6) for large N :

log(γ+(x)) −NF (x)− g(x) =

log(γ−(x)) +
γ̇−(x)

γ−(x)

1

N
−NF (x)−NḞ (x)

1

N
−

N

2
F̈ (x)

1

N2
− g(x)− ġ(x)

1

N
(7)

where the dot stands for x-derivatives. Finally, equat-
ing terms of the same order in 1/N and performing the
integrals, leads to:

F (x) = C +

∫ x

c

log(γ−(x′))− log(γ+(x′))dx′

g(x) = B +
1

2
log(γ−(x)γ+(x)) (8)
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where B, C and 0 < c < 1 are arbitrary constants, so
that the stationary distribution reads [35]:

Pst(n) ≈ PS(x,N) = K
e−N

∫
x

c
log(γ−(x′)/γ+(x′))dx′

√

γ−(x)γ+(x)
(9)

where the constant K (that depends on c) is determined
by the normalization condition. As explicitly discussed
in Appendix A, NF (x) is a sort of extensive free energy
of the system, in analogy to what happens in equilibrium
systems satisfying the detailed-balance condition.

Before closing this preliminary section, let us also re-
call that —as customarily done in the literature and done
in detailed in Appendix B— Eq.(1) can be expanded in
power series of N (Kramers-Moyal expansion [39]), and
its second-order truncation leads to a standard Fokker-
Planck equation [38, 39]. As it has been already dis-
cussed, [47, 48], its associated stationary solution pro-
vides us with an accurate description of the exact sta-
tionary distribution Eq.(3) only around the maxima but
fails to reproduce the statistics of the tails or rare events
(see Appendices A and B).

III. QUASI-STATIONARY DISTRIBUTIONS IN
THE PRESENCE OF AN ABSORBING STATE

Let us explicitly consider the dynamics in the case
γ+(n0) = 0, which implies, e.g., from Eq.(3), that n0

(that typically is the origin, i.e, n0 = 0) is an absorb-
ing state, which implies Pst(n > 0) = 0 and Pst(0) = 1.
As a consequence, the only steady state distribution is a
delta-Dirac at the origin.

In this context an interesting approach is obtained
by introducing a small "spontaneous-creation" param-
eter ǫ that modifies the transition functions into γ+(n, ǫ)
and γ−(n, ǫ) in such a way that γ+(0, ǫ) > 0,
limǫ→0 γ

+(n, ǫ) = γ+(n) and limǫ→0 γ
−(n, ǫ) = γ−(n)

[43, 44], so that the system has a non trivial station-
ary probability distribution Pst(n, ǫ). Let us remark
that in the limit of ǫ → 0, Pst(n, ǫ) is expected to dis-
play interesting features, due to the presence of a critical
transition to an absorbing state in the original model.
In particular, for small enough ǫ and n ≥ 1, Pst(n, ǫ)
depends on ǫ only through a global scaling factor, i.e.
Pst(n, ǫ) = h(ǫ)P ∗

st(n). The quasi-stationary normalized
probability distribution P ∗

st(n) [49–52] —i.e. the distri-
bution conditioned to the fact that the system is active—
computed as

P ∗
st(n) = P ∗

st(1)

n
∏

j=2

γ+(j − 1)

γ−(j)
(10)

with γ−(n) = γ−(n, 0) and γ+(n) = γ+(n, 0) (and where
P ∗
st(1) needs to be fixed by imposing the normaliza-

tion condition) is independent of ǫ. To make further
progress, let us note that, in the limit of small ǫ, Pst(0, ǫ)
and the overall factor h(ǫ) are determined by Eq.(2)
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Figure 1: Fluctuations and quasi-stationary state dis-
tributions. Panel (a): the evolution of x as a function of
time τ = t/N with g−(x) = µx and g+(x, ǫ) = λ(x+ ǫ)(1−x)
(µ = .5, λ = .48, ǫ = 10−3, N = 100). In panels (b-
d) Pst(x, ǫ) has been obtained from Eq.(3) for n ≥ 0, with
g−(x) = µx and g+(x, ǫ) = λ(x + ǫ)(1 − x). We plot only
the solution for n ≥ 1 (i.e. x ≥ 1/N) imposing the normal-
ization on these sites (ǫ = 10−10). The effective distribution
P ∗

st(x,N) has been obtained for x > 1/N from Eq.(10) set-
ting ǫ = 0. PS(x,N) and PFP (x,N) have given by Eq.(9)
and Eq.(B3) at ǫ = 0 respectively. We fix µ = 0.5 and we
describe the super-critical, critical ad sub-critical regimes by
fixing λ = 0.7, λ = 0.5, λ = 0.4 in panels (b), (c) and (d) re-
spectively. Insets zoom in a small region around x = 0, where
the distributions diverge.
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(γ+(0, ǫ)Pst(0, ǫ) = Pst(1, ǫ)γ
−(1) = h(ǫ)P ∗

st(1)γ
−(1))

together with the normalization condition Pst(0, ǫ) +
h(ǫ) = 1.

As already discussed in [43, 44], Eq.(10) describes the
stationary distribution of a model with a transition prob-
ability γ−(1) = 0 in the original SIS model at ǫ = 0,
which is an alternative prescription to avoid the sys-
tem to be trapped in the absorbing state. Let us also
remark that our approach is related to the method in-
troduced by R. Dickman and collaborators to describe
quasi-stationary probability distributions in systems with
absorbing states [49, 50] (in the mathematical literature
see, e.g., [51, 52]).

By comparing Eq. (10) with the procedure described in
the previous section, we get that for n ≥ 1, P ∗

st(n) should
be well approximated for large enough N by PS(x,N)
given by Eq.(9) with transition probabilities γ+(x) and
γ−(x) evaluated at ǫ = 0. Since n ≥ 1, a natural cut-
off, i.e. x ≥ 1/N , arises in the continuous-limit case. In
particular, let us remark that such a cut-off removes the
divergence that is present for x → 0 in the non-extensive
term (γ−(x)γ+(x))−1/2 in the distribution PS(x,N) in
Eq.(9) for systems with absorbing states.

Finally, it is also possible to apply the continuous limit
to the master equation and obtain a Fokker Planck equa-
tion, Eq.(B1). As explained above, PFP (x,N) given by
Eq.(B3) should provide us with a reliable estimate of the
quasi-stationary probability distribution P ∗

st(n) around
the maxima of the probability distribution.

Let us also remark that in a purely continuous ap-
proach with a Langevin Equation with multiplicative
noise one obtains a continuous distribution with a non in-
tegrable singularity at the origin [53] similar to PS(x,N)
or PFP (x,N). In the continuous case, however, there
is no natural cutoff 1/N , the probability distribution is
not normalizable and the absorbing state δ(x) is the only
stationary solution. In this perspective, our approach
suggests a physical prescription to introduce a cut off in
the diverging probability distribution of the continuous
model, so that the regularized distribution describes the
behavior of a discrete model where the collapse of the sys-
tem in the absorbing state is forbidden by an arbitrary
small escape probability.

To illustrate all this, in Figure 1 we present results from
a computational simulation of the standard SIS model,
i.e. a paradigmatic example of a system with an absorb-
ing state. The ǫ parameter is introduced by defining the
transitions as γ−(x) = µx, γ+(x, ǫ) = λ(x+ ǫ)(1−x). In
panel (a) we plot a stochastic time series for the fraction
of active sites x as a function of time τ = t/N in the
presence of a small ǫ = 10−3, where λ is set in the ab-
sorbing phase but close to criticality (as specified by the
condition λc = µ). In panels (b-d) we consider the quasi-
stationary distribution for different values of the param-
eters, from the active phase (b), to the critical point (c),
and subcritical regime (d). In all cases, Pst(x, ǫ) has been
obtained from the exact solution Eq.(3) at ǫ > 0, ne-
glecting the probability to be in x = 0 (i.e. we consider

only the evolution of x during the excursion above the
dashed line of panel (a)). P ∗

st(x) has been obtained from
Eq.(10) using γ+(x) with ǫ = 0. Observe that there is
a perfect agreement between the two statistics, and the
analytical expression PS(x,N) obtained for large N for
1/N ≤ x ≤ 1. Finally, as anticipated above, the Fokker-
Planck approximation (B2) and its relevant distribution
(B3) gives the correct behavior at the maximum but it
fails in the large deviation regime, as expected. In the
insets we zoom in a small region near x = 0 in order to
illustrate the divergence of the distribution and the cutoff
at z = 1/N

Thus, in summary, we have illustrated that, in order
to obtain bona fide steady state distributions in systems
with absorbing states it suffices to use a natural cutoff
1/N and assume that the state variable is confined to val-
ues equal or larger than it. This is, precisely, the strategy
used in what follows.

IV. THE Q-SIS MODEL

Let us consider a generalisation of the SIS model in-
volving a higher-order interaction of q sites, with tran-
sition probabilities given by γ−(x) = µxq and γ+(x) =
λxq(1 − x). For integer q, the model can be interpreted
as a contact process with transitions occurring only if a
q-plet of infected sites are involved [5, 54, 55], i.e.

qI → (q − 1)I S with rate µ

qI S → (q + 1)I with rate λ (11)

and the standard SIS process is recovered for q = 1.
The dynamics can be interpreted in terms of q-plet pro-

cesses only for q integer, however the transitions γ+(x)
and γ−(x) as a function of the total fraction x are well
defined for any q > 0. In particular, for large q > 1, the
dynamics close to the absorbing state is slowed down,
since the transition processes are less probable, while for
small q < 1 the dynamics speeds up.

A. Mean-field dynamics

The dynamics of the q-SIS model has been studied in
the mean-field regime for N → ∞ in [5, 54, 55]. The
deterministic mean-field equation controlling the density
of active sites is simply [38, 39, 56]

ẋ(t) = −µxq + λxq(1− x). (12)

For λ > µ the absorbing state is unstable and x converges
exponentially to the stable fixed point x0 = 1−µ/λ, with
a characteristic time τ that diverges at the criticality as
τ ∼ (λ − µ)−q. For λ < µ, the absorbing state x = 0
is stable. In the standard SIS model (q = 1), x decays
exponentially to zero as exp(−t/τ) with the characteristic
time τ = (µ − λ)−1, that diverges at criticality λ = µ.
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On the other hand, for q > 1 a different behaviour is
observed, namely at large times:

x(t) ∼ t−1/(q−1). (13)

Therefore, for higher-order processes, with q > 1, a
power-law decay emerges generically in the absorbing
state, i.e., even away from the critical point. Finally,
at criticality, λ = µ, one has

x(t) ∼ t−1/q (14)

i.e. a power law is again observed, albeit with a slower
decay.

These simple mean-field dynamical analyses reveal the
crucial relevance of the parameter q —controlling the
standard or higher-order nature of the process— in de-
termining dynamical scaling features [53, 56–63]. Thus,
in what follows, we wonder whether similar anomalous
effects emerge in the stationary properties of this type
of processes, for which we rely on the large-deviation ap-
proach.

One could also consider the more general case where
the birth process involves a different number p of nodes
(i.e. γ+(x) = λxp(1 − x) with p 6= q). In this case for
p < q the active state is always stable and no transition
can be observed for finite λ and µ. For p > q, the system
becomes bistable and the transition between the active
and the inactive phase is discontinuous. Therefore, the
system does not present the critical behavior which typ-
ically characterizes second order continuous transitions.
Therefore, we focus on the non-trivial case p = q.

B. Finite-size scaling analyses

Let us consider the general analytic expression for
the quasi-stationary probability distribution, Ps(x,N),
as derived above to evaluate the average value and the
relevant moments of x as a function of the system size
N in the different phases. First of all, let us empha-
size that, curiously enough, the effective free energy
F (x) = log(µ/λ)x + (1 − x) log(1 − x) + x is indepen-
dent of q. In other words, the exponent q, which drives
the dynamics of 〈x(t)〉 in the infinite N limit and, in par-
ticular, controls the time decay as shown by Eq.(13) and
(14) appears only in the sub-leading non-extensive part
of the quasi-stationary distribution: i.e., the parameter
q only affects the degree of the singularity at the origin:

PS(x,N) = K
e−N(log(µ/λ)x+(1−x) log(1−x)+x)

xq
√

(1− x)
(15)

with 1/N ≤ x ≤ 1. Let us remark that, in the whole
physical regime 0 ≤ x ≤ 1, when the absorbing state is
stable, i.e. λ < µ, F (x) has a minimum at x = 0, while
for λ > µ the absorbing state is dynamically unstable
and F (x) has a minimum in the stable fixed point of the
mean-field evolution, x0 = 1− µ/λ > 0.

Moments in the active phase. In order to compute
the moments of such distribution, Eq.((15)), let us first
consider the active phase, λ > µ. Fixing 1/N < x∗ < x0,
we can write

〈xm〉 =

∫ 1

1/N

xmPS(x,N)dx (16)

=

∫ x∗

1/N

xmPS(x,N)dx+

∫ 1

x∗

xmPS(x,N)dx

where the second integral can be easily estimated with a
saddle-point approximation for large N

∫ 1

x∗

xmPS(x,N)dx ∼ K
xm
0 e−NF (x0)

xq
0

√

(1− x0)

∫ ∞

−∞

e−N λ
µ
(x−x0)

2

dx

= K

√
πµxm

0 e−NF (x0)

√
Nλxq

0

√

(1− x0)
. (17)

On the other hand, the first integral is instead determined
by the divergence of PS(x,N) at small values of x:

∫ x∗

1/N

xmPS(x,N)dx <
Ke−NF (x∗)

√

(1 − x∗)

∫ x∗

1/N

(x′)m−qdx′

(18)
and since F (x∗) > F (x0), Eq.(18) is exponentially sup-
pressed in N with respect to Eq.(17) and can therefore
be neglected. Eq.(17) for n = 0 fixes the normalization
condition and fixes the value of K as a function of N .
We remark that for x > 0 Eq.(15) obeys a large de-
viation principle, therefore, in the limit of large N we
obtain that 〈xm〉 ≈ xm

0 , since the saddle-point expansion
around x0 dominates the integral, i.e. the probability
accumulates at the mean value x0, while the divergence
at x = 0 with the natural cut-off 1/N can be discarded.
One can also consider the fluctuations around the av-
erage value: since the saddle-point expansion in Eq.(17)
displays Gaussian behaviour, fluctuations vanish for large
N as 〈x2〉 − 〈x〉2 ≈ 1/N . Also in this case one can show
that the effect of the divergence of PS(x,N) in x = 0 is
exponentially suppressed for large values of N .

Moments in the absorbing phase. Let us now
consider the case λ < µ for which the absorbing state is
stable. Observe that, in this case, Ḟ (0) = log(µ/λ) > 0,
i.e. the derivative does not vanish at the origin (x =
0). Let us choose an x∗ such that for 0 < x < x∗ one
can approximate F (x) ≃ log(µ/λ)x and xq

√
1− x ≃ xq.

Then, it is possible to write:

〈xm〉 ≈ K

∫ x∗

1/N

xme−Nx log(µ/λ)

xq
dx+K

∫ 1

x∗

xme−NF (x)

x
√
1− x

dx.

(19)
The first integral can be solved setting x′ = Nx, so that:

K

∫ x∗

1/N

xme−Nx log(µ/λ)

xq
dx ≃

KN−m+q−1

∫ ∞

1

x′m−qe−x′ log(µ/λ)dx′. (20)
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Figure 2: Variance of the quasi-stationary distribution
as a function of the system size N . Symbols refers to ex-
act quantities evaluated numerically by means of the expres-
sion of Eq.(3) with γ+(x, ǫ) = λ(x+ǫ)(1−x) and γ−(x) = µx
(µ = .5 and ǫ = 10−10). Dashed lines refer to the asymp-
totic expression: in the active phase (λ = .7, λ > µ) we ob-
serve Gaussian fluctuations as N−1; in the absorbing phase
(λ = .4, λ < µ) fluctuations decay as N−2; at the critical
point (λ = µ = 0.5) fluctuations are described by Eq.(24) (in
the main plot we discard logarithmic corrections). In the inset
we show that relevant logarithmic correction indeed occurs at
the criticality λ = µ when q = 1.

Instead, for the second integral:

K

∫ 1

x∗

xme−NF (x)

x
√
1− x

dx ≤ Ke−NF (x∗)

∫ 1

1/N

xm

x
√
1− x

dx

(21)
and since F (x∗) > 0, Eq.(21) is exponentially suppressed
for large N with respect to Eq.(20) and therefore it can
be neglected. Eq.(19) for n = 0 fixes the normaliza-
tion constant K and one has that the expectation value
〈xm〉 vanishes with the system size as 〈xm〉 ≈ N−m as
expected if the absorbing state is stable. Moreover, the
variance decays with N as 〈x2〉−〈x〉2 ≈ N−2. This means
that, when the absorbing state is stable, the fluctuations
in the system are much smaller than in the Gaussian
case, which is just a consequence of the stable stationary
state being an absorbing one. To further illustrate this,
observe that considering the number n of active sites in-
stead of the fraction x = n/N one readily obtains that
—independently of q— all moments as well as the vari-
ances of the quasi-stationary probability distribution are
finite (non-extensive) since they follow the distribution
e−n log(µ/λ)/nq.
P ∗
st(n) ≈ e−n log(µ/λ)/nq

Moments at the critical point. In the critical case,
µ = λ, F (x) = (1−x) log(1−x)+x which can be approx-
imated as 1/2x2 at small x. One can introduce a small
parameter x∗ such that the integral over x > x∗ can be

neglected with respect to the integral over x < x∗. In
this way, one is left with

∫ 1

1/N

xmPS(x,N)dx ≃ K

∫ x∗

1/N

xme−
Nx2

2

xq
dx

≃ N−(m−q+1)/2K

∫ ∞

1

N
1
2

xme−
x2

2

xq
dx

≃



















K(N)C1(m)N−(m−q+1)/2 if m > q − 1

K(N)C2(m) log(N) if m = q − 1

K(N)C3(m)N q−1−m if m < q − 1.

(22)

Eq.(22) for m = 0 provides the normalisation condition
for P (x,N). One can first evaluate the decay to zero
of the average number of active sites 〈x〉, to obtain the
following set of expressions for different values of q:

〈x〉 ∼























N−1/2 if q < 1
N−1/2(log(N))−1 if q = 1

N−(q+1)/2 if 1 < q < 2
N−1 log(N) if q = 2

N−1 if q > 2

(23)

The expression for the logarithmic corrections of 〈x〉 for
the standard SIS model (q = 1) had already been ob-
tained —directly from the exact formula (10) for P ∗

st(n)—
in [44].

On the other hand, for the variance of the distribution
one readily finds:

〈x2〉 − 〈x〉2 ∼























N−1 if q < 1
(N log(N))−1 if q = 1

N− q+1

2 if 1 < q < 3
log(N)N−2 if q = 3

N−2 if q > 3

(24)

The asymptotic behaviors of fluctuations is illustrated
in Figure 2. In particular, for q < 1 the variance scale as
in the Gaussian active phase, while for q > 3 we recover
the same scaling of the fluctuations as in the absorbing
state (i.e. finite fluctuations of n = xN). The exact
behaviour of the model is obtained from Eq.(3) with a
small regularization parameter ǫ = 10−10 (symbols). The
exact results are compared, with the fluctuations of the
active and the absorbing state for λ > µ and λ < µ
respectively while they are compared with the asymptotic
prediction of Eq.(24) in the critical regime λ = µ. The
plot reveals a very nice agreement between theory and
numerics and elucidates, in particular, the presence of
logarithmic corrections for q = 1, as evinced in the inset.

Finally, it is illustrative to compute the ratio between
the variance and the mean, i.e., the relative weight of
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Figure 3: Relative fluctuations, i.e. ratio
√

〈x2〉 − 〈x〉2/〈x〉 as a function of N for several
values of q. Symbols are obtained with exact evaluation
of the stationary distribution by means of Eq.(3) with
γ+(x, ǫ) = λ(x + ǫ)(1 − x) and γ−(x) = µx we fix at the
criticality µ = .5 and λ = 0.5; while for the small parameter
we have ǫ = 10−50. Lines correspond to the theoretical
predictions for the different values of q in Eq.(25).

fluctuations:

√

〈x2〉 − 〈x〉2
〈x〉 ∼



















































































C if q < 1

√

log(N) if q = 1

N (q−1)/4 if 1 < q < 2

N1/4(log(N))−1 if q = 2

N (3−q)/4 if 2 < q < 3

√

log(N) if q = 3

C if q > 3
(25)

which exhibits a non-monotonic behavior as illustrated
in Figure 3: for q < 1 and q > 3 the ratio is constant
(independent of N) while for 1 ≤ q ≤ 3 the ratio diverges
with N , i.e. fluctuations are much larger than the average
at large N even if both are vanishing. In particular, the
ratio between the variance and mean grows the fastest
with N for q = 2. This last result emphasizes the crucial
importance of the nature of the stochastic process, i.e.
of q, in determining the nature of the critical fluctuating
regime. In particular, relative fluctuations with respect
to the mean are wild —i.e. diverging with network size—
for higher-order interactions, around q = 2.

V. CONCLUSIONS

We have employed a large-deviation or WKB approach
to analyze the quasi-stationary distribution of general
birth-death processes on fully-connected networks, ex-
hibiting absorbing states. We have payed special at-
tention to cases where more than one active node is re-
quired to generate further activity —i.e. higher-order
processes— as exemplified by the q-SIS epidemic model.
First of all, it has been shown (following existing results
in the literature) that —in order to regularize the prob-
lem and to avoid the system just falling asymptotically
to the absorbing state— one can either (i) introduce a
small rate ǫ for the spontaneous generation of activity
and then take the limit ǫ → 0 or (ii) constrain the system
to have at least one active particle; these two approaches
are equivalent and allow one to study a quasi-stationary
distribution.

By using these combined techniques, we have been able
to perform a finite-size analysis of all the moments of the
quasi-stationary distribution of activity and elucidate a
number of non-trivial features. First of all, in the ac-
tive phase the scaling is simply Gaussian. On the other
hand, in the absorbing phase, the variance of the quasi-
stationary distribution scales with N as N−2 reflecting
that fluctuations are much more suppressed than in the
Gaussian case. Moreover, in this latter case, the dis-
tribution of the number of particles turns out to be an
exponential.

Finally, as it is often the case, the situation is much
more interesting at criticality, where we have found non-
trivial expressions for the scaling of moments. In partic-
ular, we have shown that the variance-to-mean ratio di-
verges for N → ∞ for values of q in the interval [1, 3] with
the strongest divergence occurring at q = 2. This anoma-
lous scaling implies, that fluctuations around the mean
are much wilder when processes involving two-particles
are at work. This also emphasizes the importance of the
nature of the higher-order process, i.e. the value of q, in
determining the nature of the critical fluctuating regime.

As a general comment we want to explicitly remark
once again that –owing to the presence of an absorbing
state and its concomitant singularity at the origin— the
leading-order term in a large-deviation approach does not

suffice to properly account for the steady state distribu-
tion: next-to-leading terms are crucial to obtain a sound
description at criticality.

Let us also mention that the fact that the maximal
variability is obtained for q = 2, i.e. for the case in which
"triplets" are involved —two sites creating activity plus
one being activated– is reminiscent of some recent find-
ings e.g. (i) in theoretical ecology where triplets have
been shown to stabilize ecological communities [31] and
(ii) in neuroscience where triplet interactions (simplicial
complexes) have been argued to be a minimal crucial in-
gredient to rationalize neural data [32]. We leave the
exploration of the possible relation between these obser-
vations for future work.
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In a forthcoming work we plan to analyze the relation
between the previous analysis of fluctuations in the quasi-
stationary state, with the response to perturbations to
the absorbing state, i.e. with the statistics of avalanches
at criticality. We expect critical avalanches to be much
more "volatile", i.e. to have a much larger variance, for
the case q = 2 exhibiting diverging variability, but this
needs to be confirmed by further numerical and analytical
studies. These studies may have implications in the anal-
yses of higher-order or "complex-contagion" processes of
relevance e.g. in actual epidemics, viral spreading, and
models of opinion or belief propagation.

Appendix A: Mean-field dynamics with detailed
balance

Let us consider the special case of a system whose mi-
croscopic dynamics satisfies the detailed-balance condi-
tion. In this case there exists an equilibrium distribution
PE(x,N) ∝ e−NV (x). In particular, if p−(x) represents
the probability to shift a variable from 1 to 0 and p+(x)
is the probability of the reverse process (from 0 to 1), the
detailed balance condition reads:

p+(x)e−NV (v) = p−(x+ 1/N)e−NV (x+1/N). (A1)

Moreover, in this case one has

γ−(x) = xp−(x), γ+(x) = (1− x)p+(x) (A2)

since x and 1 − x represent the probabilities to select
a variable in the state 1 or 0, respectively. Therefore,
expanding Eq.(A1) for large N ’s, one obtains:

log(p+(x)) −NV (v) = (A3)

log(p−(x)) +
ṗ−(x)

p−(x)

1

N
−NV (x)− V̇ (x)− V̈ (x)

2

1

N
,

and comparing terms of the same order in 1/N :

V̇ (x) = log(p−(x)) − log(p+(x)),

log(p−(x)) + log(p+(x)) = C (A4)

where C is a constant. Plugging Eq.(A2) into Eq.(9) and
using Eq.(A4) one finally obtains:

PS(x,N) ∼ e−N(V (x) + x log(x) + (1 − x) log(1 − x)))
√

x(1− x)
.

(A5)
The detailed balance implies that a given configuration
{σi} has a probability PE({σi}) ∼ e−NV (x({σi})). Then,
one readily has

PE(x,N) ∼ e−NV (x) N !

(xN)!((1 − x)N)!
(A6)

where the binomial factor represents the numbers of
states where a fraction of nodes x is in state σi = +1.
Using the Stirling approximation for the factorials, one
recovers PE(x,N) = PS(x,N), which shows that the re-
sult in Eq.(9) leads to the correct prediction when the
detailed-balance condition holds.

Appendix B: A comparison with the standard
Fokker-Planck equation approach

The master equation (1) can be rewritten as:

P (n, t+ 1)− P (n, t)

=
1

2
{P (n+ 1, t)[γ+(n+ 1) + γ−(n+ 1)]

+P (n− 1, t)[γ+(n− 1) + γ−(n− 1)]

−2P (n, t)[γ+(n) + γ−(n)]}

+
1

2
{P (n+ 1, t)[γ−(n+ 1)− γ+(n+ 1)]

−P (n− 1, t)[γ−(n− 1)− γ+(n− 1)]}. (B1)

Introducing the fraction x and taking the limit for large
N one obtains the usual Fokker-Planck equation:

∂P (x, τ)

∂t
=

∂

∂x
((γ−(x)− γ+(x))P (x, τ))

+
1

2N

∂2

∂x2
((γ−(x) + γ+(x))P (x, τ))(B2)

where the time τ = t/N , that can be considered a con-
tinuous variable, is measured in terms of N microscopic
steps. Its associated stationary solution reads:

PFP (x,N) ≃ K

exp

(

−N

∫ x

c

2
γ−(x′)− γ+(x′)

γ−(x′) + γ+(x′)
dx′

)

γ−(x) + γ+(x)
(B3)

The stationary solution of Eq.(B2) is different from the
solution obtained from the master equation in the largeN
limit in Eq.(9). In particular, in Figure 4 we compare the
exact distribution Pst(x) given by Eq.(3), the expansion
for large N in Eq.(9) and the stationary solution of the
Fokker Planck approach in Eq.(B2). We observe that
PFP (x,N) describes accurately the distribution around
its maximum. However, rare events in the large deviation
regime are given by Eq. (9). In this perspective, one
can observe that around the maximum of the probability
where the difference γ−(x) − γ+(x) = ǫ(x) is small, the
expression in the exponential in Eq.(B2) coincides with
the exponential in Eq.(9) up to the second order in the
small parameter ǫ(x).

The difference between the stationary solution ob-
tained via the Fokker Planck equation and the stationary
solution in Eq.(9), which correctly describes the large
deviation of the system, can be ascribed to a different
expansion in the small parameter 1/N . Let us expand
directly in 1/N the master Equation (1) in term of the
fraction x. We get:

P (x, t+ 1)− P (x, t) = −P (x, t)(γ+(x) + γ−(x))

+
∑

k

1

Nkk!

∂kP (x, t)γ−(x, t)

∂xk
+

∑

k

(−1)k

Nkk!

∂kP (x, t)γ+(x, t)

∂xk
. (B4)
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Figure 4: Stationary probability distribution for a
mean-field dynamics. We take γ−(x) = 0.5x and γ+(x) =
0.2(1−x), i.e. at each step we chose randomly a variable; if it
is in the state +1 the site is turned to 0 with probability 0.5
while, if it is in 0, it is turned to 1 with probability 0.2 (N is
set to N = 400). Dots represent the exact stationary distribu-
tion Pst(x,N) computed using formula (3). The continuous
line represents the expansion for large N large-deviation ap-
proach, PS(x,N) obtained in Eq.(9) and the dashed line is the
prediction obtained from the stationary solution PFP (x,N) of
the Fokker-Planck equation.

Clearly the terms −P (x, t)(γ+(x) + γ−(x)) exactly can-
cel out with the first term of the summations. There-
fore, if we truncate the summation up to k = 2 we
exactly recover the Fokker Planck equation (B2). Let
us now impose in Eq.(B4) the stationary condition:
P (x, t + 1) − P (x, t) = 0. We now expand the sta-
tionary distribution according a large deviation formula
P (x, t) = exp(−NF (x) − g(x) − N−1h(x) + . . . ). If we
plug this formula in (B4) imposing that the first and the
second terms in 1/N are vanishing, we get that F (x)
and g(x) exactly satisfy conditions in Eq.(8). Therefore,
in this way we obtain that the stationary distribution is
given in the large N limit by Eq.(9).
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