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Document Structure

The present documentation upgrades what has been already presented -in
the last Comandos deliverable document on ODMS [ServDes88] . Many concepts
have been enhanced or  specified in more detail. In particular sect. 1.2
emends ODMS data model features. Sect. 1.3 revises the query language and
presents relevant updates to it. Sect. 2 illustrates the abstract specifications of
ODMS's internal components. Index Management is detailed in sect. 2.3.1
while the Query Processor abstract specifications is presented in sect. 2.4. The
Query Processor specifications have been used by ARG for implementing the
CIS prototype. Sect. 3 lists some of the ODMS dictionaries. Finally sect. 4 and
apendix give implementation level specification.

1 ODMS concepts

1.1 Overview

In order to simplify the understanding of the contents of the following
chapters, we would like to recall here the ODMS architectural framework.

The overall objective of the ODMS is to provide object management
facilities for advanced applications in LAN based environment. An important
component of the overall architecture is the Object Store, which represents
the whole set of objects within the system. The object store is distributed
across server and client workstations. We call one of such sites as Object
Store Nodes.

In the present design the ODMS plays a passive role with respect to the
overall Comandos computational model. In particular there is no notion of
message passing or behavior at the ODMS level. Therefore Objects migrates (at
least logically) from the Object Store to the sites where they are used.
However ODMS Objects react to  specific operations that are related to the
ODMS three major services:

» Management of classes. To accomplish this task the Class Manager
provides a uniform interface to access classes, even when there are different
implementations of the same class at the various Object Store Nodes.

» Distribution of class instances. This service is provided by an internal
component of the ODMS, called Placement Manager.

» Associative object access. A query language provides content based
access to objects and it is supported by the Query Processor. This last
component uses Index Manager facilities for performing fast object. The
Index Manager has a bigger task in ODMS, that is it supports also object
reconstruction.

» The Resource Manager manages resources in terms of usable space
for creating, instantiating and destroying classes.

Executions of Comandos applications follows a generic client/server model:
the client part of ODMS, on behalf of the application, requests services to the
server part of ODMS. In terms of activities, one can think of the
client/server model as an activity residing on one client node that at a given
time processes the methods of the client_ODMS instance in order to request a
service to the ODMS. When a service is requested to the client_ODMS for the
first time, the activity diffuses to the server node [ServDes88].



3) For a component property, we can specify the denoted object(s) either as
dependent or independent. An object is dependent when its existence depends
on another object. This means that when one object is deleted, all its
dependent component(s) are also removed from the database. Notice that the
model does not allow any cycle in the path constituted by the dependent
component links, at instance level; that is, each PART_OF object subgraph,
defined by dependent component links, is a tree. The concept of dependent
component can be defined both for single and multi_valued components.

4) We can give a default value to an attribute property. This is the wvalue

given to this attribute when the object is created, if the value is not specified
at instance creation time.

5) A property (both an attribute and a component) can be defined as c¢onstant
or variable. A constant property cannot be modified once a value is explicitly
assigned. A multi_valued component cannot be declared as constant.

6) A property (both a component and an attribute) can be defined as optional
or mandatory. The value of a mandatory property must always be specified
when the object instance is created. The value of an optional property can be

left null. Both a single and multi_valued component can be declared as
mandatory.

7) For a component property it is possible to specify the inverse component
property. Assuming that we define the property pcl of a class C2 as the
inverse component of a component property pc2 of a class C1, if an instance
object O1 of class C1 has a value O2 for the property pc2, then the instance
object O2 must have a value O1 in the property pcl. This capability is
available for single and multi_valued components.

1.2.2 Class Definition

In the sequel, we will give a BNF specification of the syntax for defining
class in the Data Model. This syntax will be used to implement an operation of
the Class Manager that creates a class template and that has a single
parameter which is a string belonging to the language generated by this
grammar. It is worth noting that the actual syntax does not constrain the
number of classes that can be defined on a type.

Syntactic conventions:

* 1= and | and angled brackets (<,>) are the usual metacharacters of the BNF

representing respectively the expansion of a synctatic category, the
alternatives of one expansion and, finally, words in boldface included
between angled brackets are the syntactic categories;

syntactic categories surrounded by square brackets ([,]) are optional i.e.
the specified synctatic category may or may not be present;

words in italics are “tokens" i.e. they represent synctatic categories that
can be recognized by a simple lexical analysis phase;

all the other words or characters are keywords of the class definition
language i.e. they are made of sequences of terminal symbols.

<class> = def_class <class_name>
of_type <type_name>
[<super_classes>]
{ <property_list> } ;



<super_classes> =

<class_list> =

<property_list> =

subclass_of <class_list>

<class_list> , <class_name>
<class_name>

<property_list> , <property>

I <property>
<property> = <attribute>
I <component>
<attribute> i=<attribute_name> :
[<multival>] <primitive_class> [<attr_spec>]
<component> n=<compon_name> :

<comp_spec>

<attr_spec>

<inverse_spec>
<multival>
<link_type>
<gptionality>

<variability>

<primitive_class> ::

<class_name>
<type_name>

i

pre—,

[<link_type>] [<multival>]
<class_name> [<comp_spec>]

<inverse_spec>

| <optionality>

| <variability>

(default <value>)

| <optionality>

| <variability>

( inverse < class_name>.<compon_name>)
set_of | sequence_of

dependent | independent

optional | mandatory

constant | wvariable

string | integer | real |boolean | date | text

= IDENTIFIER
2= IDENTIFIER

<attribute_mname> ::= IDENTIFIER

<compon_name>

<value>

N

= IDENTIFIER

STRING VALUE
INTEGER_VALUE
REAL VALUE
BOOLEAN VALUE
DATE_VALUE
TEXT VALUE

1.2.3 Types vs Classes.

In this section we will describe in a more precise manner the relationship
between types and classes in our Data Model. This relationship is extremely




important because the semantics of the type system of a generic object-
oriented programming language must be compatible with the corresponding
semantics in the Data Model; furthermore, some type constructors of the
programming language must be mapped onto types provided by the Data
Model.

The concept of type plays an important role in object-oriented
programming language due to the inheritance idea: a method of a supertype
can safely be applied to an object belonging to a subtype of that supertype.
This property of objects in object-oriented programming language "must be
valid also for objects retrieved from the database.

Types in object-oriented programming languages are placed in an
hierarchy and there are well defined rules that determine the place in the
hierarchy occupied by a particular type. The hierarchy in the most complex
case is a lattice and the relationship between a node T at a certain level and
another node T' in the next level connected to the previous node T is called
subtype relationship. The subtype relationship is reflexive (for every T:
T<=T), transitive (if T<=T' and T'<=T" then T<=T") and partial (the relationship
must not be defined for every genmeric T' and T"). Here are the rules that
govern the type and the class system in the COMANDOS Data Model:

1) Every type T is subtype of a type TOP;

2) Every primitive type P (string, integer, real, boolean, date, text) is a type
and primitive types are not in any relation each other;

3) the type of an aggregation is represented by the labeled set of types with
distinct labels, i.e. an aggregation is a finite set of pair
p_i=<label itype_i> i=1,n where each label_i is different;

4) the top of the aggregation hierarchy is represented by the NULL or ()
aggregate type; :

5) the aggregation constructor is the unique type constructor that
introduces hierarchical information in the type lattice; given two types
of aggregate AT1 and AT2, they are in a subtype relationship AT1<=AT2 if
and only if the set of labels of AT1 contains that of AT2 and for every
labeled type LT2 of AT2 the corresponding labeled type LT1 of ATI1 is in
the subtype relationship LT1<=LT2;

6) the type of a set of elements and of a sequence of elements is the ser and
sequence of the type of the elements; given two set or sequence types
S1(T1) and S2(T2), they are in the subtype relationship S1(T1)<=S2(T2) if
and only if Ti<=T2;

7) given a set of aggregation types AT1 ... ATN, the multiple inheritance
combines these types creating a new aggregation type AT with a union
operation based on labels; every pair <L,T> of AT is equal to the unique
one present in the union set or, if the same label L' occurs more than
once in AT1 ... ATN, it is equal to <L'T"> with T'=min{T": <L T"> in ATI ....
ATN}; .

8) the type of a class of an aggregation type T is equal to sequence(T) ;

9) the type of a single_valued component is equal to the type of the
component ;

10) the type of a multi_valued component is equal to sequence of the
aggregation type of the component ;

11) the type of a specialized class is sequence of the aggregation type
obtained using the multiple inheritance algorythm given in 7) where
the ATi i=1,N are the aggregation type associated to the superclasses
involved in the specialization.



1.2.4. Operations on Classes.

In this section we will describe the operations that are available at
programming level or query processing interface, i.e. the operations that a
language or query developer can use in order to implement its own
algorythms. They must not be intended for the end-user but instead for a
generic system programmer,

When a program begins its execution, there will be in the process address
space an instance of a database object, which logically represents the visible
part of the database for a particular user. This database object logically
maintains the association between class names and class definitions and also
preserves the extension of every class. In practice, it only handles a table of
association between class names and class objects.

This database object is the object from which the program starts to
manipulate classes and objects in classes. It will be indicated as DBobj of type
DBtype.

Every class will be represented at run_time by a suitable object which
responds to a set of messages similar to those available on sequence objects.
The class object, identified by CLobj of type CLtype, maintains the sequence of
objects belonging to the class. It stores on the secondary storage only those
objects that have the direct type of the class, i.e. only those objects that
belong to the aggregation type of the class and that are not also belonging to
any of its subtypes. Every class object has a cursor which remembers the
position of the last touched object.

We will use the following syntax to specify such operations, with the usual
conventions:

<operation> ::= [<type>] <rec_oid>.oper-name([<type-parms>])

<type-params> := <type> | <type>,<type-parms>

<rec_oid> ::= IDENTIFIER

<type> := [<type>]

The phrase “returns an object with identifier ..." means that the object
identifier, which is unique for every both persistent and volatile object, is
returned to the caller of the operation. Usually the ODMS interface will
return object identifier, except for primitive types.

Messages to which the DBobj answers:
1) CreateClass:string X string ———w»>ClassType

Syntax: Cl_obj DB_obj.CreateClass(strl,str2)

Semantics: This operation creates a new class object of name strl and
definition str2 and returns the new created object identifier Cl_obj. If a
class with name strl already exists, or the string str2 is not synctatically
correct, the operation will not succeed. The class object is opened and the
cursor is positioned before the first persistent object (it still has to be
inserted one object in the class).

2) OpenClass: string ——aClassObj

Syntax: Cl_obj DB_obj.OpenClass(str)

Semantics: This operation activates an existing class object of name str
and returns the new opened object identifier Cl_Oid. The cursor is
positioned before the first persistent object. If a class with name str is
already opened, or the string does not represent a class name, the
operation will not succeed.



3) DeleteClass: string ——&()
Syntax; DB_obj.DeleteClass(str)
Semantics: This operation closes and deletes an empty class. It removes
its definition, too. The class name is also removed from every superclass. If
the class object contains some instances of persistent objects, the operation

will not succeed. The CL_obj associated of the class object of name str
becomes invalid.

4) CloseClass: string —o ()
Syntax: DB_obj.CloseClass(str)
Semantics: This operation closes the class object having identifier
associated to str. If the class object was already closed, or the string str is
not associated to any class object, the operation will not succeed.

Messages to which the CLobj answers:
5) Get_First: () ——aDir_Type
Syntax: Dir_Type CL_obj.Get_First()
Semantics: This operation returns an object of type Dir_Type, that is
having the direct (aggregation) type of the class. If the class object was
already closed, or if it is empty, the operation will not succeed. The cursor

will be positioned between the first and the second object stored in the
class.

6) Get_Next:() ——&Dir Type
Syntax: Dir_Type CL_obj.Get_Next()
Semantics: This operation returns the next object of type Dir_Type. If

the class object was already closed, or if there is not any object after the

current position of the cursor (the sequence is empty or the cursor is after
the last element) the operation will not succeed. The cursor will be
positioned after the position occupied by the returned object.

7) Get_Last:() —wDir Type
Syntax: Dir_Type CL_obj.Get_ Last()
Semantics: This operation returns the last object of the class.. If the class
object was already closed, or if it is empty, the operation will not succeed.

The cursor will be positioned after the position occupied by the returned
object.

8) Get_Nth:Integer ———wDir Type
Syntax: Dir_Type CL_obj.Get_ Nth(int)
Semantics: This operation returns the n-th object of the class (the
sequence starts from one). If the class object was already closed, or if int
exceeds the number of objects of the class, the operation will not succeed.

The cursor will be positioned after the position occupied by the returned
object.

9) Cardinality: () & Integer :
Syntax: Integer CL_obj.Cardinality()
Semantics: This operation returns size of the class i.e. the number of

objects in the sequence. If the class object was already closed, the
operation will not succeed. The cursor will not be moved.

10) Subclasses: ()——w-Integer



Syntax: Integer CL_obj.Subclasses ()
Semantics: This operation returns the number of subclasses of CL_obj

class. If the class object was already closed, the operation will not succeed.
The cursor will not be moved.

11) Subclass: Integer——sString

Syntax: String CL_obj.Cardinality(int)

Semantics: This operation returns the name of the n-th subclass of the
current class CL_obj. If the class object was already closed, or if CL_obj has
less than int subclasses, the operation will not succeed. The cursor will not
be moved.

12) Insert: Dir Type ———a()

Syntax: CL_obj.Insert(NewObj)

Semantics: This operation inserts the object passed as parameter to the
sequence of objects of the class. It is inserted after the position indicated
by the cursor and the cursor advances one position. If the class object was
already closed, or the new object has not the direct type of the class, the
operation will not succeed.

12) Delete: Integer ——=a()

Syntax: CL_obj.Delete(int)

Semantics: This operation deletes the object that occupies the int
position in the sequence of objects of the class. The cursor will be
positioned before the object following the one deleted one in the sequence.
If the int parameter is equal to zero, then the object to be deleted is the one
following the cursor and the cursor is not modified. If the class object was
already closed, or the int parameter exceeds the size of the sequence, the
operation will not succeed.

Operations available on classes that represent the usual operations on
sequences are also provided for multivalued components. This means that it is
possible to open for scanning a particular component of an object member of
an opened class. The following operation provides this capability:

13) OpenComp: string ——CompObj

Syntax: Comp_obj CL_obj.OpenComp(str)

Semantics: This operation activates an existing component object of
name str and returns the new opened object identifier Comp_obj. The
cursor is positioned before the first persistent object of the multivalued
component. If that component is already opened, or the string does not
represent a component name, the operation will not succeed.

14) CloseComp: string ——ia()
Syntax: DB_obj.CloseClass(str)
Semantics: This operation closes the component object having identifier
associated to str. If the component object was already closed, or the string
str is not associated to any class object, the operation will not succeed.

15) Select: string ——wCL _obj
Syntax: CL_objl CL_obj2.Select(str)
Semantics: This operation performs the select operation on CL_obj2 . The
input  parameter represents the selection criteria against a single class.




The objid of a temporary class is returned. This class contains the subset

objids satisfying the selection criteria.

17) CreateObj: Cl_obj ———8 NewObj

Syntax: PropValObj Obj.ReadProperty(str)

Semantics: This operation reads the value of the property
input parameter.

17) ReadProperty: string ——e PropValObj

Syntax: PropValObj Obj.ReadProperty(str)

Semantics: This operation reads the value of the property
input parameter.

18) WriteProperty: PropValObj,string —a-( )
Syntax: Obj.WriteProperty(ProPValObj,string)
Semantics:this operation writes the value of the property
input parameters.

10
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1.3. Query Language concepts and updates.

In this section we recall some concepts of the Comandos query language already
described in [ServDes88], then we will discuss some updates to the language
grammar.

1.3.1 Query language basic features

In defining the query language we have followed the approach of specifying
first a logic based language, that we call calculus query language. In this
way we can express in more clean way the language. However, other languages
(such an SQL-like language) should be defined to be used by the application. In
this case mappings will be defined to express the semantic of these language in
terms of the calculus query language.

A number of requirements arising from the data model have influenced the
design of the language.

A first requirement is the capability of navigating through the object structures.
In fact the data model allows to define objects as aggregate of other objects;
aggregations can be nested at several level. Queries must allow the restrictions
on objects based on predicates on component objects at any level in the
aggregation hierarchy. As an example let's suppose of having the class
definitions in table 1.

Class A: Class B: Class C:

_X: integer; Z: string; I: string;

Y: B; K: G J: integer;

End. End. End.
Figure 1

Let's suppose that we want to retrieve the value of property X for all objects of
class A having as value of property Y an object of class B, having in turn as
value of property K an object of class C having as value of property J an integer
equal to the constant 5. Supposing to have the relational calculus [MAIES83]
extended with the equality predicate among complex objects (see the following
subsection) this query would be expressed as follows:

{t(X) ] (EXISTS u) (EXISTS w) (A(t) AND B(u) AND C(w) AND
{Y)=u AND u(K)=w AND w(l)=5}

(EXISTS indicates the existential quantifier)

From the previous example it can be seen that this query requires to introduce
two wvariables # and w and two predicates ¢(Y)=u and u(K)=w to navigate
through the structure of complex objects. To simplify queries it is therefore
useful to introduce the dot function: given a variable x denoting an object
and a property name p , p.x returns the object wich is value of property p of
x. Dot functions can be nested.

A second requirement arises from the fact that components can be multivalued.
From the query language point of view this implies that queries must allow to
restrict objects by specifying for instance that all objects values of a multivalued
component satisfy a given predicate or that there exists an object among the

11



values of a multivalued component that satisfies a given predicate. Therefore a
predicate must be provided to test the membership of objects to such collection.

A third requirement concerns properties having alternative domains. This is a
common situation when modelling complex objects [BATO85]. The query language
should provide the possibility of restricting objects by specifying composite
predicates, for properties with alternative domains, of the form:

if domain(prop) is Cl then Pl ;
if domain(prop) is C2 then P2 ;

if domain(prop) is Cn then Pn ;

where:

prop is a property name of the class to which the query is

addressed;

Cl ,....., Cn are classes that are alternative domains for the property prop ; and
Pl ..., Pn are predicates expressed in terms of properties/and components of
classes C1 , ...... , Cn  respectively.

In the following we recall the BNF grammar of the language:

query ::= <aggregate formation> : <list_of_targets> : <condition>
<aggregate formation> 1= <X>; <R>; <F>

<X> = <list_of_objects>

<R> ::= <list_of_objects>

<list_of_objects> ::= <object> | <object>, <list_of_objects>

<F> = <list_of_f spec>

<list_of_f_spec> ::= <f_name> (<property>) |
<f_name> (<property>), <list_of_f_spec>

<list_of_targets> ::= <bind_spec> | <bind_spec>, <list_of_targets>
<bind_spec> (list_prop_names)!
<bind_spec> (list_prop_names), <list_of_targets>

<bind_spec> ::= <variable_nmame> / <class_name>

<condition> ::= <list_of_quantifiers> (<condition>) |
(<condition>) | NOT <condition> |
<condition> <bool_op> <condition>
<simple_cond>

<list_of_quantifiers> ::= <quantification> |
<quantification> <list_of_quantifiers>

<quantification> ::= (<quantifier> <bind_spec>) |
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(<quantifier> <bind_spec>: <quant_restr>)
<bind_spec> ::= <variable_name> /<class>
<class> := <class_name> | (<class> <bop> <class>)
<quant_restr> ::= ELEMENT_OF (<object>, <object>.<prop_name>)
<quantifier> ::= EXISTS { FOR EACH

<simpl_cond> ::= <property> <num_pred> |
<property> <str_pred> |
<property> <join_pred> |
<property> <text_pred> |
ELEMENT_OF(<object>,<property>) |
CLASS_OF (<object>) <str_pred> |
<class_name> (<variable_name>) |
<composite_pred>

<object> = <variable_name> | <property>
<property> = <variable_name>.<property_spec>
<property_spec> = <property_name> |

<property_name>.<property_spec>

<list_prop_names> := <property_spec> |
<property_spec>, <list_prop_names>

<num_pred> := <rel_operator> <num_value> |
BW (<num_value>, <num_value>)
IS IN { <list_of num_values> }

<str_pred> = <rel_operator> <str_value> |
LIKE <str_value>!
IS IN { <list_of_str_values> }

<comp_pred> ::= <rel_operator> <object>
<composite_pred> ::= (CLASS_OF(<object>) = list_of_alternatives)
<list_of_alternatives> ::= [<class_name> : <condition>] |

[<class_name> : <condition>]
<list_of_alternatives>

<text_pred> ::= CONTAINS {<list_of_strings>}

<f_name> ::= AVG | SUM | MIN | MAX | COUNT
<rel_op>i==I>I<l<=li>=

<bool_op> ::= AND | OR

<list_of_string> ::= <str_value> | <str_value>, <list_of_strings>

<class_name> ::= STRING .



<variable_name> ::= IDENTIFIER
<property_name> :i1= IDENTIFIER
<num_value> ::= INTEGER | REAL

<str_value> ::= STRING

Two query examples expressed against the set of classes below :

Class Projects

p_name : string;

target :  string;

participants :collection of TEAMS;
End. :
Class Teams

t_name : string;

t_addr : ADDRESS;

staff : collection of EMPLOYEE;

End.

Class Employees
e_addr : ADDRESS;

End.

Class Address
nation : string;
city: string;
num : string;
street: string;
code: string;
phone: string;

End.
are the followings:
* Retrieve the name and the status of all employees of IEI andARG.
= e/Employee (e_name, status):
(EXISTS t/Teams) (t.t_name IS IN { "IEI", "ARG"} AND
ELEMENT_OF(e, t.staff)).

* Retrieve the Project name in which employees of Pisa or Milano work.
= p/Project(p_name)

(EXISTS t/Teams: ELEMENT_OF(t,p.participants)

(EXISTS e/Employee

14



( (e.e_addr.city = 'PISA' OR e.c_addr.city = '"MILANO' ) AND
ELEMENT_OF(e, t.staff))).

1.3.2 Query Language Updates.

The Query Language has been shown to satisfy the Comandos major
requirements. This has been proved by mean of the prototype implemented for
CIS. From this experience we have identified the following enhancements to the

language grammar:

1) the target list specification should contain the SELF operand (denoted as
"."). It is useful whenever the OID of the current object satisfying the query

is explicitly required in the target list.

ii) the "always true" restriction clause must be added in order to allow
queries like “"get all the XProperty values of class C" or "get all object of class

cn.

iii) The class domain of a query should be extended to subclasses. Since this is

not always agreeable, domain extension should be explicitly specified .

iv) It has been outlined that structural equality is a desirable feature in the
context of object oriented data base. In addition equality to NIL object should

be directly supported by the language.

v) Null values for attributes should be explicitly managed. This improves the

system performance at null field retrieval time.

The points above suggest the following extensions to the query language

grammar (see [SERVDES88] page 21-23):

i) the followings should be added to the list_of_targets syntax:

<list_of_targets> ::= <bind_spec > (<self>, <list_prop_names>)
| <bind_spec> (<self>,<list_prop_names> ) , <list of targets>

being

<self>i= '

For example, let us to refer to the following class schema:

class Project
{ int DepartmentCode ;
Employee Manager; }

class Employee
{ int EmpCode;
string EmpName; }

The query "get Projects of department '123' and their Manager Names "
be formulated as:

can




pl/ Project( . , p.Manager EmpName) :

( p.DepartmentCode=123)
ii) the followings should be added to <condition> syntax:
<simple_cond> ::= TRUE
iii) the followings should be added to the <bind_spec> syntax:
<bind_spec>:: = <variable_name>'$'<class>
Example: the query

pS$Project( . ) :
( TRUE);

gets all the Projects examining possible Project subclasses.
iv) <comp_pred> should be replaced by:

<comp_pred>: <IdnEquality_op> <object>
| <StrtEquality_op> <object>

object: property | OID | NIL

v) <rel_op> should be added with the following operator:

I IS_NULL.
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2 ODMS components abstract specifications.
2.1 Resource Manager

In order to create classes, the user must have the right to use ODMS resources. At
present the only type of resource managed inside the ODMS is.the ObjectSpace.
The ObjectSpace organization is flat. The ObjectSpace definition holds the name

of the ObjectSpace, the owner and the physical specifications in term of memory
amount managed by the Comandos Storage Subsystem.

2.2 ObjectSpaces Acquisition and Administration

Not everybody can obtain and use ObjectSpaces. The privilege of obtaining the
ObjectSpaces is controlled by the authorization mechanism. However the user is
allowed to create classes even without having the privilege of obtaining
ObjectSpaces . This is possible because a special user, let us call him ODMS
Administrator (ODMSA), can allocate ObjectSpaces for other users. The space
administration is accomplished by mean of two commands:

« GetObSpace [owner] ObjectSpaceName [PhysicalSpecs];
« DropObSpace ObjectSpaceName.
Owner is mandatory when ODMSA allocate ObjectSpace for other users.

2.3 Index Manager
2.3.1 Index manager Concepts

In this section the indexing method adopted in Comandos is described. This topic
has been already discussed in the previous ODMS documentation [ServDes88].
However a number of concepts have been  either enhanced or refined , while
others aspects have been simplified.

Indices are auxiliary structures for increase the efficiency of constrained
retrievals. Object oriented database offers some peculiarities with respect usage
of indices. The most relevant are the followings. One might want to find an object
containing other given objects. In this case indices should consider the PART_OF
hierarchy and the search condition can be possibly defined on the object
identity. In addition the domain on which the search is performed  possibly
includes the instances of subclasses.

The ODMS supports directly the concept of strong identity ( that is object identity
is not implemented by using concepts like primary keys or tuple identifier or
other tricks). Every object in the ODMS has -a persistent identifier called

surrogate ( the opportunity of using surrogates are deeply discussed in
[Kho86]) .

The surrogate is a system generated entity, and it is always referred to one ODMS
object (the object must exist). The Low Level Identifier defined in Comandos
Kernel Design could partially match the structure of the surrogate. In fact the
surrogate is independent from the physical locations, and holds inside the class
to which the object belongs.
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The purpose of index in the ODMS is twofold:
- to support the fast retrieval required by the query processor;

+ to support the object reconstruction. Indices implement efficiently the link
between the current object and the father object in the PART_OF hierarchy.
In this way the usage of index can speed the reconstruction of one object by

navigating either in Top-Down or in Bottom-Up mode the object PART_OF
structure.

Indices are specified via path expressions (briefly path). The path is a
structural notation, such as:

cl.pl.p2...pn

where ¢l is the (abstract) class name and pi are property names. The first
element of the path is called prefix . The subpath pl..pn is called suffix. We will
use the dot notation instead of message notation for simplicity. A path prefix is
always a class name . Let A, B and C classes defined as follows:

class A class B class C
pl:B p2:C p3: integer;
end A; end B; end C;

then A.pl.p2.p3 is a legal path. In this case p3 is a numeric basic type ( in
Comandos those properties have been called attributes) therefore the index

can be used for evaluating numeric predicates on queries. We will call this kind
of index value index.

More generally however the last element of the index path can be a
component (i.e. a structured object). This case is specific for O-O environment.
For example the path A.pl.p2 is still a legal index declaration path. Such indices
are used for evaluating expressions containing predicates on "object identity"
(we will call this kind of index object identity index). For example the
expression "Project.manager EQ a_given_employee” can appear in queries
testing in which projects a given employee has management position. Let us
suppose Project and Employee classes being defined as :

class Project class Employee
Manager: employee; FirstName: string;
: LastName:string;
JobCode:integer
end; end;
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Therefore the declaration of index Project.manager speeds the query
execution up.

The mechanism for index creation wused in Comandos derives from the
mechanism adopted in Gemstone [mai86] . However the ~original technique  has
been modified and multivalued properties and the explicit use of join indices
[val87] have been included.

The previous ODMS has discussed the idea of join indices. Here we recall the main
usage of join indices.

Join indices implements father- son object link. This link is generally a couple
(su_2,su_1) where:
- su_l is the surrogate of one object (the father);

- su_2 is the surrogate of the object that is-a direct component of father.

Therefore, for a set of objects , join indices are a set of binary tables that
materialize the PART_OF relationships. The usage of join indices is in general
more spread ,since the link can be specified on predefined operations and not
only values. This feature is not considered here.

Indices definitions originated a lattice in the following way. The index defined as
A.pl.p2.p3 implicitly defines all the subpath associated indices, namely the
object identity indices A.pl.p2, A.pl and ClassOf(pl).p2. The last one defines
in tum  ClassOf(p1).p2.p3 and ClassOf(p2).p3 (ClassOf(pi) denotes the class
name of property pi ).

Indices sharing  subpath's suffixes share the same data structures. That means
that the index B.p2.p3 shares the data structure of A.pl.p2.p3, or, in other
words, that the B_tree used for indexing the string of p3 is used possibly by the
indices C.p3, B.p2.p3 and A.pl.p2.p3 and so on. The sharing of the data
structure is made easier by using surrogates.

The data structures used for implementing indices are of two kinds: index
dictionary and B-trees . Their usage is discussed below.

2.3.2 B_Tree usage

The usage of B_tree is twofold:

° to index attributes: in this case the B-tree links the value of the attribute to
the surrogate of the object to which it belongs.

e to improve the access to join index table's columns for object reconstruction.
Two (binary) and three entries join indices are considered. Three entries join
indices are used for handling multivalued properties.
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For example the implementation of the index

i) department.department _location.building numb

defined on the class schema:

department location
: building_name: string
department_location: location; building_numb: integer
end ; end;

uses two B_trees :

* integer->location_sur B_tree performs fast access to building numbers
returning the surrogate of Location objects (location_sur);

 location_sur->department_sur B_tree performs a fast access on the
binary table (location_surrogate, departments_surrogate). This table
implements the join index holding the link between Location and Department
objects. B_Tree can be defined as indexing either the second surrogate
column (we call it TopDown join index) or the first surrogate column
(BottomUp join index) .

In the proposed mechanism the values of a property are always indexed in the
same B_tree and there is not any memory about which index has originated the
index entry for that value. Therefore additional run-time computation is
required for chaining back the join indices. In the previous schema let be:

ii) location.building_number

an additional index defined on Location class. Occurrences of Location can be
inserted without being PART_OF Department objects. However every location is
indexed through the same B_tree. The evaluation of the query “retrieve the
departments in building 123" is performed by using the index i) . Therefore
the B-tree location_sur -> department_sur must be accessed in order to check
whether a location_sur surrogate found in the B_tree integer -> location_sur
refers to an object PART_OF of an instance of Department

This run time computation can be expensive and depends on the complexity of
the object hierarchy. On the other hand this mechanism allows to easily support
query on all the class instances whatever is the object hierarchy that has caused
the entry in the index. Other methods might keep memory of that hierarchy, but
in this case the maintenance of indices becomes very complex.

A specific case, due to the Comandos data model, occurs if pi is a multivalued
property. The semantic of index defined on multivalued properties is discussed
below. Let us consider the following class schema:
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class project
p_name : string;

partners: collection of Team;

end;

class team
t_name: string;
t_address: Address;

staff: collection of Employee;
end;

class employee
e_name: string;
e_address: Address;

end;

class address
street: string;
city : string;

end;
Table. 2

Let idx_I be the index defined on class project having the following path:
project.partners.i_name. Since partners is a multivalued property of
project, this index may be used for retrieving the projects in which a given
team appears in the set of participants. In particular such indices can be used for
evaluating the Element_of predicate of queries .

2.3.3 Index dictionary.

The index dictionary describes the index structure. As already mentioned in
[SisServ88] the ODMS  adopts the data dictionary approach. Therefore Index
dictionary is spread over several system classes. The Class Manager and the
Query Processor obtain informations on indices by querying directly the index
dictionary.
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Logically the index dictionary describes a lattice, since path expressions
defining indices can partially overlap. In sect. 3.3 the design of ODMS classes
structuring the index dictionary as well as the operations for maintaining the
dictionary are discussed.

2.3.4 Revised Index Definition Statement Grammar.

The index definition statements have been revised since the last version
[ServDes88]. The new BNF grammar is the following.

<index_operations>::= DEFINE INDEX <path_exp> <option_list> AS <index_name> |
DROP INDEX <index_name>

<path_exp> = <class_name> . <suffix_path>
<suffix_path> ::= <property>.<suffix_path> | <property>
<option_list> ::= <option>, <option_list> | nil

<option> ::= TopDown | BotUp ! Inherited | ASC | DSC
<index_name> ::= string

ASC and DSC mean that the collating order of indexed values is from low to high
and from high to low respectively. Of course ASC and DSC apply only to the last
suffix_path and only if it is a value index. In this case if the suffix is shared (i.e.

already existing) then ASC and DSC apply only when the first index definition is
made.

2.3.5 Notes on Placement Manager.
Since the first design of ODMS is centralized, no further activities have been

developped on Placement Manager specifications . Therefore the specification
level for this component is the one which has been described in [Servdes88].
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24 Query Processor.

In this chapter the overall description of the Query Processor (QP) logical
architecture is discussed . Although the architecture of the QP has been already
described in [SERVDES88], the basic concepts will be  briefly revisited first.

Most of the considerations that will be outlined in this section have been
conceived during the collaboration of CNR researchers and ARG staff involved in
the implementation of CIS. The collaboration was aimed at the implementation of
the first QP prototype in Comandos.

The present design of QP is based on a Client - Server architectural frame.
Client and Server do not identify two different physical levels (for example two
machines having special hardware). In fact this bipolar  architecture has been
used for splitting logical functionalities. Therefore QP_Client and QP_Server can
be thought as processes or Comandos Activities running on the same or on
different  physical sites.

Among different possible Client Server configurations (see [SERVDESS88], QP
section), the following onme has been chosen. The QP_Client performs the syntax
checks of queries and constructs a linearized parse tree. The parse tree is then
sent to the QP_Server that performs the query type checking and executes the
query.

The QP accepts a string containing the query. Queries are specified by
means of Query Language grammar . The Query Language Grammar is described
in the previous Comandos documentation [SERVDES88] and in this documentation
on chap. 2.4 where some updates have been discussed. However the implemented

prototype do mnot include these improvements. The major purpose of the
languages are:

e To allow multiclass target list and restrictions, i.e. the query can involve
objects belonging to several classes.

* Aggregate functions (Average, Mean , Group By) can be specified in the
target list.

* A number of predicates can be specified on simple values . Equality of
object identity can be possibly specified for testing (nonstructural) object
equality (i.e. two objects are equal if they have the same identity).

° Restrictions on multivalued components can be specified and the
Element_Of operator allows to handle object having multivalued components.

e Usual Join predicates can be applied to objects belonging to different
classes. ‘

2.4.1 Embedding query language into Comandos language.

This part has not been covered in the past. Here we do not intend to give the
implementation solution of the embedding of the Comandos Query Language into
the Comandos Language. In fact this section suggests some alternatives to the
language implementors in order to attain this difficult task. Pro and cons of two
different approaches are considered.
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One possibility is to fully merge the Query Language within the
programming language. This solution is the most agreeable for the performance
point of view but it is the most complex to realize and inflexible for the following
reasons:

1) the language syntax must be upgraded in order to host query language
gramimar.

2) Query must be type checked and optimized. In order to perform type
checking the compiler must access  classes's informations. Query optimization
strategies should be considered among the actions performed by the compiler.

3) After program compilation the strategy chosen by the optimizer can be
invalidated because of physical schema changes (for example after adding or
deleting indexes). Therefore the program must be recompiled and the plan
reevaluated. That constrains the program to be tightly bound to the  physical
data storing, while the physical data independence of user applications is
an agreeable property.

One alternative is to charge the QP of query type checking and query
optimization. More precisely the control flow may be the following:

1) The Query Language statements are syntactically checked and parsed by
the language compiler.

2) The Query Language statements are extracted from the source program.
They are replaced with special QP method invocation ( for example

ExecuteThisQuery) . The string containing the query can be passed as argument
to the QP.

3) The QP create a new optimized plan. This action can be issued either by
interpreting or compiling the query (see below).

4) The plan is called at runtime. If the plan is invalidated the QP should be
able to regenerate a new plan and to bind it to the program. In this way the
application is unaware of the plan implementation, and physical data
indipendence is warranted.

It is clear that the previous mechanism consider a preprocessing phase of
the source code.

One additional problem is the management of objects returned from  the
query execution. Query results can not be associated to a defined type. On the
contrary very often the query define implicitly a new type to which the
resulting objects match. One solution to this problem is to let a preprocessor to
analyse the target list of the query and to create a mew type having a generic
scan  operation (this is similar to the concept of cursor in database [DATES6])
allowing to browse the resulting set of objects.

2.4.2 Interpretation vs. Precompilation strategy.

The section above has sketched one possible approach to the problem of
embedding the query language into Comandos language. By insulating the
query statements outside the source program and by charging the QP of
compiling or interpreting them , the language is mnot affected by schema
changes and do not need to perform semantic actions on query statements.
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Two alternatives can be adopted for the interaction between the language
and the QP. First , interactions happen only at runtime. In this case the query
interpretation seems to be the most natural way. Query interpretation is not very
efficient, in particular if optimizer is called any time the query is evaluated.

Queries can be compiled at compilation time. Query compilation requires in
the average more time than the interpretation in order to be issued. However it is
a better approach because no overhead is required at run time and because error
the query type checking is performed at compilation time. In the query
language is mnot syntactically integrated with the programming language, than a
precompilation phase can be use for:

i) performing query syntax checks;
ii) parsing the query;
iii) replacing the query statements into the source program (sece below point 2).

After the precompilation , the source program compilation and the query
compilation can be performed in parallel by the compiler and by the QP
respectively.  The output of the QP is a executable optimized plan. It must be
catalogued in order to be loaded for later executions.

2.4.3 QP present design.
Although the first prototype of the QP in CIS implements an interpreted

version, the design of QP can be adapted to both of the two strategies mentioned
above. Let this feature be shown by recalling the functional steps of QP:

- Syntax checks and query parsing phase.

The QP_Client performs a syntactical analysis of query statement and
produces a parse tree.

*  Query type checking phase.

The QP_Server gets as input the parse tree and performs the checks on
classes, properties and predicates on them. The type checker needs to access
the class catalogs. Class catalogs are secondary storage data structure holding
metainformations on classes, properties, indexes etc..

*  Query decomposition phase.

The original query is decomposed, when possible, intc a number of
subqueries, according the algorithm described in [SERVDESS88]. During this
phase the query connectivity is also tested. Query connectivity states
whether the query has been correctly formulated by the user and can be
reduced to disjointed queries without operating any transformation.

*  (sub)query scheduling and optimization phases

This is the crucial phase. The data structures describing the steps performed
by the executive are generated. These data structures are called evaluation
tree. It is generated according to optimization rules. Therefore if the
compilation approach is taken, the evaluation tree must represents the
compiled version of the query. They can be stored in secondary memory and
reload at any later evaluation of the query.



° (sub)query execution phase.
The evaluation of query is performed on object at the time. The evaluation
tree is visited and the predicates are evaluated. A result is returned
according to the target list specifications.

Since the parsing, type checking and decomposition phases have been
already detailed in the previous Comandos documentation, major emphasis will
be given in the next sections to the behaviour of QP during the scheduling,
optimization and execution phases.

2.4.3.1 Parsing phase

The query processing is then organized by performing first the query parsing at
the Client QP. During this phase the program variables occurring in the query
are detected and their values fetched and substituted within the query. The result
of this phase is the query parse tree. The parse tree, in linear form. The
structure of parse tree is relocatable by mean of relative references within the
parse tree data structure.

2.4.3.2 Type Checking phase

This module performs the checking of the query, i.e. it verifies the consistency
of each entity appearing within the query statement (classes, attributes,
components, variables) with respect to the operand to which it is applied. In the
following we discuss the actions performed by the type checker in order to
verify the type consistency of the query.

We make the assumption that information on classes are obtained from the
Abstract Class Definition Manager (a component of the Server Subsystem).
However for the moment we do not make any hypothesis on how these

information are organized in main memory, since this is not relevant for the
following discussion.

As stated in the previous sections the query is constituted by the
target part and the qualification part.

The type checker must perform the following checks on the target part:

* The classes appearing within the <list_of binding> (see the Calculus grammar)
must be existing classes.

¢ Variables defined in the <list_of binding> must be declared only once within
the scope of the query (uniqueness check). In addition variables declared in the
target part can appear in the qualification part as not bounded wvariables. The
consistency of the use of those variables must be verified. In the the example 1.
of the "Query language" section, the type of x and y must match with the type of
the property of the left hand term.

o If aggregate functions are present then the domains of the aggregate
functions must be legal variables for that functions (for example AVG and SUM
accepts only numeric domains).

The type checker performs the following checks on the qualification part:
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Classes that are domains of \f2existentialMfl and \f2universal\fl quantifier must
be existing classes. Furthermore only variables defined with EXISTS and
FOR_EACH can appear within the qualification part (in addition to the variables
which are declared in the target part).

Properties that are specified as parameters of the "dot" function must be
properties of the class on which the "dot" function is applied. Checking that the
"dot" function is applied correctly is more complex when several "dot" function
are nested as in the following example:

Class A {....; integeri ; ...}

ClassB {.... A x;..}
ClassC{...; B vy ;..}
z/C

z.y.X.i

In this case the checker must verify that y is a component of C, as well as that x is
a component of the class domain of y (i. e.

B), and so on recursively, until the attribute i is reached.

<property> BETWEEN (<num_valuel>, <nume_value2>).

The following conditions must be verified: the type of <property> must be
numeric (i.e. the type of the object resulting from a READ operation).
Num_valuel must be less than num_value?2.

<property> IS IN <list_of num>.

the type of <property> must be numeric. Objects in <list_of num>
must be numeric.

<property> IS IN <list_of_string>

the type of <property> must be string. Objects in <list_of_string> maust
be of string type.

<property> LIKE <str_value>
<property> must be of type string as well as <str_value>.

<property> CONTAINS <list_of_string>
<property> must be of type text.

ELEMENT_OF (<objectl>,<object2>.<property>)

<property> must be a multivalued property containing values elements having
the same type than <objectl>; <property> must be a property of <object2>.

Relational operators can be applied only to objects belonging to basic classes as
usually. The comparison operator "=" can be applied to objects of any type.

2.4.3.3 Query decomposition




The following rules have been already discussed in [SERDES88] . However they
are represented for completeness.

The heuristics discussed in the previous section do not imply query
transformations. However the query execution may well .become wunbearably
complex, if the query involves many join and not join predicates. In addition one
should keep in mind that, since objects can be very complex and large, the
performances are bound to the memory capability of the machine more than in
the traditional database environments.

Therefore the approach that has been followed is to reduce (if possible) an
arbitrary multiclass query to a sequence of subqueries. This process, called
decomposition, allows to simplify the query optimization by performing simpler
queries in turn. At this aim a technique similar to that used for QUEL [WONG76] is
used. This mechanism allows to split the query into pieces (so called irreducible
components) which are joined to the remainders by a single joining class.
However, once irreducible components are detected, the methods discussed in the
previous section are used for performing the subqueries instead of the Tuple
Substitution algorithms adopted in QUEL.

In addition an adjustment to the decomposition procedure has been introduced in
order to conmsider the fact that not relational tuples but objects are managed. This
extension involves the way join predicates are detected. If the cost estimate of a
predicate like "root.comp.attr operator value" approximates the cost of the join
(again, the class implementor must decide it), then this predicate is considered as
a join during the decomposition process.

The following example will help the reader in understanding the decomposition
process (the class schema is that in Chapter 2.4).

Retrieve the team name and the title of all documents containing the
word ‘computer’ in the abstract published by P.Rossi.

Q = d/Documents(d_name), t/Teams(t_name):

(EXISTS e/Employee)

1 (d.abstract LIKE "computer" AND
2 e.ename.fname LIKE "P*" AND
3 e.ename.lname LIKE "Rossi" AND
4 ELEMENT_OF(e,tm.staff) AND

5  ELEMENT_OF(e,d.authors) AND

Let C=(C1,C2,...CN) denote the classes of query Q and let T(C) and B(C) denote the
target list and qualification respectively. B(C) is the set of the clauses in Q that,
according the query specifications, are in conjunctive normal form. Consider
the matrix with n columns corresponding to classes CI1...CN, and k+1 rows
corresponding to T(C) and the k clauses. An entry is set to 1 if the class (column)
appears in the given clause (row). This matrix, is called incidence matrix. For the
query Q the matrix above is given below. One should notice that clauses 2 and

3 are considered two class rows, i.e. we suppose the class implementor's estimate
costs for them are compared to that of join.

Team Employee Document Name
T 1 0 1 0
1 0 0 1 0
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First of all the query connectivity is tested. The connectivity algorithm reduces
step by step the initial matrix. It the process results in a matrix with a single row
which is mnot all 1's, the the class corresponding to the zero entries can be
eliminated. If the final matrix is not one row, then the sets of wvariables

corresponding to different rows must be disjoint. The procedure for reducing the
matrix is the following :

- find the rows having 1 on the first column;
- perform the logical OR of all those rows;

- apply the previous two steps on the reduced matrix, finding the rows with 1 on
the second column and so on.

The matrix above will be reduced as follows:

Team Employee Document Name

T4 1 1 1 0
1 0 O 1 0
2 0 1 0 1
3 6 1 0 1
5 0 1 1 0
Team Employee Document Name
T.4.2,3,5 1 1 1 1
1 0 0 1 0
Team Employee Document Name
T4,2351 1 1 1 1

The query is therefore connected. The second step is the reduction into
irreducible components. Let Q be a connected multiclass query, then it is
reducible if the elimination of any one variable results in Q being disconnected.
The variable having this property is called joining variable. Thus if such a
variable does mnot exist then the query is irreducible. The interesting aspect of
the technique is that in order to obtain the irreducible components, the
connectivity algorithm can be used.

The procedure is made by eliminating each column of the matrix in turn and by
testing for the comnectedness. This procedure is applied to the submatrix of the
incidence matrix, obtained by discarding every one class row (i.e. the rows
having just one 1). For the example above the steps are the followings:

Eliminate class Team.

Employee Document Name
T 0 1 0
2 1 0 1
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3 1 0 1

4 1 0 0

5 1 1 0
Employee Document Name

T 0 1 0

2,345 1 1 1

T,2,3,4,5 1 1 0

Class Team does not disconnect.
Eliminate Employee.

Team Document Name

T 1 1 0

2 0 0 1

3 0 0 1

4 1 0 0

5 0 1 0
Team  Document Name

TA4 1 1 0

2 0 0 1

3 0 0 1

5 0 1 0
Team Document Name

T,4.,5 1 1 0

2 0 0 1

3 0 0 1
Team Document Name

T.4,5 1 1 0

2,3 0 0 1

Class Employee disconnects the matrix into two components..

Since Class Name can be discarded from the component (T,4,5) and (2,3)
components result in being a zero's matrix, those components con not be further
decomposed. Therefore the irreducible components correspond to the following
subqueries:

Q1: z/Employee:
2  (e.ename.fname LIKE "P*" AND
3 e.ename.lname LIKE "Rossi” )

Let Z be the set of Employee's instances resulting from Q1.

Q2: d/Documents(d_name), t/Teams(t_name):

(EXISTS e/Z)
1 (d.abstract LIKE "computer" AND
4 ELEMENT_OF(e,tm.staff) AND

5 ELEMENT_OF(e,d.authors));




As stated before, those subqueries can be executed separately. For obtaining the
right sequence of evaluation the reduced incidence matrix (i.e. the one that
contains components) might be rearranged (it is convenient for example that
the component containing the target list is the last row and so on). Q1 and Q2 can
be then executed according the heuristics given in the previous section.

2.4.3.4 Detailed description of scheduling/optimizing phases.

2.4.3.4.1 Overview

In the present design of the query optimizer, sophisticated optimization
techniques are not provided, rather few heuristics will be addressed. This choice
is motivated by the fact that query optimization in the framework we are
addressing requires the optimizer being flexible enough to manage all the
possible access methods provided by the underlying store nodes. Since the
optimizer must adapt to a number of subsystems, this requires the set of
alternative strategies for executing queries be represented as input parameters
rather than being embedded in the optimizer code. The class implementor should
then provide those data as part of the integration. Although some experiences on
the field of extendible optimizer are under development, the problem is still a
open research issue [LOHMS87]. This is outside the scope of the first prototype
development.

In particular we make the following assumptions:

° Queries are in Prenex form, that is in the qualification part of the query
there are first all the quantifiers, followed by the query predicates. Furthermore
we assume that the query predicates are in conjunctive normal form. These
assumptions do not lead the generality of the discussion since queries in general
form can be transformed in this form.

o No information about the class cardinality (or other statistical
information) are available.
° Information about the indexes available at the underlying system

interface include the class properties on which the indexes are defined and the
types of relational operators supported by the indexes.

Instead no information about the access costs of the various indexes are
available.

2.4.3.4.2 Optimization Concepts.

During those phases an Optimized Plan is produced. In the present design
the Optimization Plan is composed of two data structures called Variable
Evaluation Tree and ElementOf Evaluation Tree (shortly VarTree and ElofTree).

The first structure is wused for evaluating predicates not involving
multivalued components while the second is wused for solving predicates
involving only predicates on multivalued components.

In other words the ElofTree keeps the left-hand variable of ElementOf.
Giving the expression <QU v/ Class ElementOf (v,mc)> where QU is either the
quantifier EXISTS or FOREACH , v is a variable name and mc is the path expression
denoting a multivalued component, then v is kept inside the EIOf tree (we will
call those variables ElofVar ). Other variables are Join wvariable or
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Simple_variable ( shortly JoinVar and SimpVar respectively) . The JoinVar are
the variables that appear in join predicates while the SimpVar do not. Both of
them are handled into VarTree.

In order to illustrate steps performed in the scheduling/optimizing phase for
the construction of ElofTree and VarTree, let us refer to the following class
schema:

Class A:  { int al;
int a2 ; /* a2 is key , i.e. has and index */
collection a3 of C};

Class B: { int bl;
int b2; }

Class C { int ¢l
int ¢2 };

Class D:  { int dl;
int d2; }

and the query:

(q1) a/A (al) , d/D(dl):
( EXISTS b/B  AND
a.a2 = d.dl AND
b.b2 =345 AND
( EXISTS ¢/C : ElementOf(c,a.a3) AND
c.cl=b.bl AND c.c2= 123) );

In this case a and d are JoinVar, b is the SimpVar and c is the ElofVar.

The construction of the VarTree is issued in the following way (see fig 1.):
1) JoinVar are detected and positioned randomly into VarTree.

2) The VarTree is then revisited and the original tree is changed depending
on the variable selective level . The most selective variable is moved down to
the tree (see below ).

3) a conjunct list is associated to each node. The list contains all the
predicates that are defined on the variable representing the node. If the
predicate is a join then it is associated to the variable that has been placed in
a lower node (i.e. higher tree level).

4) the conjunct list is then analysed for selecting the better way for
accessing the class.

5) SimpVar are positioned into the VarTree. They are set at the first level

nodes of the tree ( the tree root is a dummy var) and they are fathers of the
JoinVar beginning the join chain down to the tree.
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Var Tree

var: a

sequential scan

of D class

conjunct list

EMPTY

b2 = 345

conjunct

indexed access to
A class on a2

conjunct list

EMPTY

conjunct list

var: b

sequential scan
of B class

c2 = 123 ¢l = b.b1

list
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Therefore each node of VarTree specifies: the class which has to be accessed
; and how to access it.

The class access method must be as much selective as possible. It generally
depends on several factors: the size of its class, the existence of indexes and how
selective those index are, how data are physically clustered in secondary

memory. The present design of QP takes into account mainly the index existence:
that is issued in the following way.

Let us consider again query ql. The positioning of a and d variables within
the VarTree cause which of the A and B class is accessed first. The following
cases are considered:

* an index exists only on property a2. Then b variable is positioned in the
upper node. This node becomes father of node of variable a.

° an index exists only on property bl. Then a variable is positioned in the
upper node. This node becomes father of node of variable b.

e indexes exist on both properties. Then the conjunct lists related to both
variables are analysed. The wvariable with the higher number of
conjuncts is moved to the upper node.

° mno indexes exist at all. As in the previous case, the comjunct lists related to
both variables are analysed. The variable with the higher number of
conjuncts is moved to the upper node.

The construction of the ElofTree takes into account some restrictions of the
languages. In particular the join operation between ElofVar is not allowed. A

more interesting operation is the chain of ElofVar (that originates subtrees of
ElofTree) defined as:

ElementOf(x,y.y1) AND ElementOf(z,x.x1) AND ElementOf(w,z.z1) etc....

This case has been considered in the present design. In fact while in the
VarTree the hierarchy is originated by chain on join predicates, in the ElofTree
the hierarchy is originated by chain of ElementOf cascades.

Therefore the ElofTree construction is similar to that of VarTree :
6) detect ElementOf cascades and create subtree of ElofTree;

7) if the same ElofVar is used inside two ElementOf predicates then the
Optimizer - applies rules that are similar to the ones listed above. In
particular the access priority is evaluated in the opposite way, i.e.: the
multivalued  having keyed access available is accessed before the one which
has not keyed access and so on. The difference here is that once a
multivalued  is accessed, the other ElementOf takes the meaning of testing
whether a given object is member of a multivalued component.
Unfortunately the present design consider the OID never being key.

The last two steps need to be exemplified. Let us consider the following class
schema:



Class A:  { int al;
int a2 ;
collection a3 of C};

Class B: { int bl;
collection b2 of C ; }

Class C { int cl
collection c2 od D } ;

Class D:  { int dl;
int d2; }

and the query:

(q2) a/A (al) , b/B(bl):

( ElementOf (c,a.a3) AND
ElementOf (c,b.b2) AND
c.c1<100 AND
(EXISTS d/D : ElementOf(d,c.c2) AND
d.d1>1000));

The query q2 represents the case in which an ElementOf cascade occurs (of
variables ¢ and d) and the case in which ¢ appears twice in the ElementOf
predicate.

The Optimizer must select which of the two ElementOf has to be evaluated
first (i.e. which multivalued component should be scanned first). Since the CIS
data model supports key operations on multivalued components ( namely
KeyFirstComponent and KeyNextComponent ) , the  selection depends strictly
from the existence of keys.

For example, if property cl is key and can be used for accessing multivalued
component a3 but not b2, then a3 is accessed first by using c1<100 as key search
argument. Once the object belonging to the multivalued a3 has been found, let
us say OID1, then multivalued b2 can be lately scanned in order to test whether
OID1 belongs to it as well.

The authors are aware of the weakness of some of the previous heuristic. The
reader can easily imagine other strategies once statistics on class or multivalued
components are accessible or index selective power is known. Further
developments of the QP may address those improvements.

2.4.3.5 Detailed description of Execution phase.

The Execution phase is performed by visiting the VarTree and the ElofTree.
The tree nodes contain all the informations needed for accessing one class or a
multivalued component and for evaluating predicates.

The Executive translates those informations in terms of class generic

operations described in the Comandos Data Model, then it issues class access
requests to the Object Server (either the ClassManager or CIS). The Object Server
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is represented by a component called ObjectServerInterface. In particular for
each VarTree node the Executive performs the following steps

= if the class is keyed accessible, then it requests a KeyFirst/KeyNext access
to the ObjectServerinterface passing the search argument (i.e. the predicate
simple or composite that must be verified);

« if only sequemial scan is available on class then it requests a First/Next
access to the ObjectServerlnterface;

= once the object has been accessed and the OID is returned it evaluates
other conjunct predicates by issuing ReadAttribute requests to the
ObjectServerinterface.

Then the Executive visits the ElofTree. For each ElofTree node the Executive
performs the following step

e if the multivalued component is key accessible then it requests a
KeyFirstComponent/KeyNextComponent access to the ObjectServer Interface
passing the search argument.

- if only sequential scan is available on «class then it requests a
FirstComponent/NextComponent access to the ObjectServerlnterface.

= once the object has been accessed and the OID is retumed it evaluates
other conjunct predicates by issuing ReadAttribute requests to the
ObjectServerlnterface.

Finally the Executive builds the query result (one object at the time) by
examining the target list. Since the query has been checked to be connected
(i.e. each target list variables are referenced at least once within the restriction
part, see [SERVDESS88]), the result is producted by issuing additional ReadAttr or
ReadComp operations on the already accessed objects.
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3. ODMS dictionary

The following  classes describe metadata for handling : resources, classes,
properties and indices. As already mentioned in [SysServ88] the  approach
adopted in the ODMS is the data dictionary approach, in which system owned
classes hold informations about themselves plus the informations of any other

class handled by ODMS. In this way system classes are kind of metadata which are
cached at the ODMS start time .

3.1 ObjectSpace Dictionary.
Class ObjectSpace

ObjSpaceName string;

Owner surrogate;

NClass int;

Containers: collection of ContainerInfo*;
end;

« ObjSpaceName name of the object space;
« Owner surrogate of the owner of the ObjectSpace;
« NClass  number of classes created in the ObjectSpace.

*: ContainerInfo class is not specified. It hold memory amount information
matching the Comandos Storage Subsystem specifications.

3.2 Class and Property Dictionary.
Class ClassDictionary:

ClassGroup string;
ClassName: string;
Owner: surrogate;
ClassType: int
SuperClass: surrogate;
Properties: collection of PropertyDictionary;
ClassSpace: surrogate
OccurrenceCount: int
end;

®

ClassGroup environment in which the class is created;
e ClassName : holds the class name.
 Owner : is the surrogate of the object's owners.

e ClassType: is the type of the class. At present classes can be real or virtual.
Virtual classes are similar to Views in Relational Databases.

e SuperClass: So far we have implicitly supposed to deal only with single
inheritance. Surrogate 0 corresponds to the TOP class.

e Properties: is a multi-valued property whose components store the description
of properties of the class.
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 ClassSpace: is the reference to the descriptor of the physical space in which
the class has been created.

» OccurrenceCount: is the number of the objects of the class. Is used by query
optimiser.

Class PropertyDictionary.

PropertyName: string;
Offset: integer;
PropertyType: string;
Length: integer;
IsNull: int
OccurrenceCount: int
AveragelLength:int
IdxMainElement: collection of IndexMainDescriptor;
IdxElement: surrogate;
end:

° PropertyName : stores the name of the property.

* Offset : contains the offset (the sequential number) of the property in the
class.

o PropertyType : stores the type of the property; legal values are basic types
and class names. For multivalued object (attribute or component)
PropertyType is the type of the objects belonging to that collection.

= Length: stores the length associated to the type declaration.

» IsNull: specifies whether NULL values or objects are allowed.

o QOccurrenceCount: is the number of unique values in the property. It is used as
statistic by the optimizer.

° Averagelength: average length of property values.

» IdxMainElement : references to the index main element instances describing
the indices defined on this property (see sect. 4.2.)

» JdxElement : this value can be either nil or a surrogate of an

IndexIntermDescriptor or an IndexFinalDescriptor instance. This

property has been added for performance reasons (see index maintenance in
section 5.1) .

3.3 Index Dictionary.

The dictionary is a logical entity constituted of several classes. It is structured in
three levels:

= The Main Descriptor level describes the hole index in terms of offsets of
properties inside their classes.
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« The Intermediate Descriptor level describes not final suffix elements, it
contains references to Join Indices structures and it allows the sharing of
subpaths between different index definitions.

« The Final Descriptor level implements the link between attribute's values and
its class object and it allows the sharing of final subpaths between different
index definitions.

Logically the index dictionary describes a lattice since elements of the suffix
can be shared by many indices. Some information are stored also in a system
maintained classes holding the metadata of classes, called ClassDictionary and
PropertyDictionary. For indexing purpose the relevant properties of this
class are the followings:

class IndexMainDescriptor

IldxName: string;

IdxType: integer

PredicateType: integer;

PathLength: integer;

IdxStructure: collection of PathDescriptor;
end;

» IdxName : the name of the index.

* IdxType: says whether the index is used for evaluating predicates on object
identity or object equality (i.e. on attributes).

e PredicateType: is significant only for the object equality index. It stores the
type of last component of the path.

° PathLength: holds the length of the suffix part of the index definition.

o IdxStructure: the elements of this multivalued describe the structures of the
index path defined on the properties in terms of offsets.

class IndexIntermDescriptor

BottUpJoin: surrogate;

TopDownlJoin: surrogate;

JoinTable: surrogate;

OperationType: integer;

TotalSharingDegree: integer;
InheritanceDescriptors: collection of Surrogate;

IdxStructure: collection of PathDescriptor;
end;

This class describes intermediate links in the path suffix.

° BottUpJoin: objid of the B_tree implementing the join index in which
surrogates are clustered on in the bottom_up way (that is the access is made on
the component object surrogates), or nil value.

* TopDownJoin: objid of the B_tre¢ implementing the join index in which

surrogates are clustered on in the top-down way (that is the access is made on
father the object surrogates), or nil value.
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JoinTable: objid of the JoinIndex class instance describing the physical join
index table.

OperationType: defines the type of operators supported by this level join
index. For all components but last only identity operator is legal. For last
component of an identity index, the legal operator is also  the identity

operator. For last component of an equality index, legal operators are
relational  or string operators.

TotalSharingDegree: stores the overall number of index paths sharing this
component.

InheritanceDescriptor: the members of this multivalued are, if any, the
surrogates of all the Index Interm Descriptors corresponding to the current
property in the direct sub-classes. If the IS-A hierarchy doesn't exist or the
index is not inherited then the content of this property is nil.

IdxStructure: is a multi_valued property whose elements store the offset and
the surrogate of the next links of each index path sharing this component.

class IndexFinalDescriptor

BTreeRoot : surrogate;

Classldentity: surrogate;

PredicateType: integer;

InheritanceDescriptors: collection of surrogate;
ObjectSize: integer;

TotalSharingDegree: integer;

end;

This class describes the last link in the path suffix.

BTreeRoot: contains the objid of the B_tree's root that provides for fast
retrieving  from attribute values to surrogate values.

Classldentity:  stores the surrogate of the class to which the current attribute
belongs. If the attribute is a multivalued one it contains the surrogate of
IntList, RealList, CharList or StringList depending on the attribute type. The

three classes above are employed for storing the object instances of the
collections of basic types.

PredicateType: stores the basic type of the last component of the path; legal
values are the following : INT, REAL, STRING and CHAR.

InheritanceDescriptor: as in the class above but with regard to Index Final
Descriptors.

ObjectSize: length in bytes of the records containing the instances of the class
to which this attribute belongs. This Property has been added for
performance reasons

TotalSharingDegree: as in the class above;
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class PathDescriptor

Offset: integer;

IndexElement: surrogate;

SharingDegree :@ integer;
end:

o Offset: offset of the path element inside its class;

 IndexElement: contains the surrogate of either an IndexFinalDescriptor or of
an IndexIntermDescriptor.

» SharingDegree: stores the number of index paths sharing this single
PathDescriptor. Inside IndexMainDescriptor the only possible value of this
property is one.

class JoinIndex

TwoEntryJI: collection of SurCouple ;
ThreeEntryJI: collection of SurTriplet;
end;

« TwoEntryJI: ; two entries join index table
e ThreeEntryJI: ; three entries join index table

class SurCouple
SonSur :Surrogate
FatherSur: surrogate
end;

class SurTriplet
SonSur :Surrogate
FatherSur: surrogate
GranFatherSur: surrogate

end;
* GranFatherSur: surrogate of the object containing the multivalued

« FatherSur: surrogate of the father or of the multivalued
e SonSur :Surrogate of members of the multivalued.
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4. ODMS internal component specifications

4.1 Index Manager Specifications

The Index Manager (IDXM) interface provides with functions for creating,
deleting indices and updating index entries. The internal structure of IDXM is
layered in two levels: the IDXM High Level Component (IDXHC) and the IDXM
Low Level Component (IDXLC). While the IDXHC performs operations on the hole
index, the IDXLC reacts to operations on simple links and interfaces the
Comandos memory management layer. The following subsections depict their
behaviour.

The emphasis of the presented indexing mechanism is on index definitions
organization. Lower features like B_Tree implementations are not considered.
Therefore the pseudocode described in Appendix 1 and 2 makes the assumption
that a B_Tree based lower component exists (in this case C_ISAM features have
been considered)

Note: the uppercase parameter type specifications are specified in Appendix 1
and 2.

4.2 High Level Index Manager Component

This component provides for the management of indices definitions lattice and
index look-up.

= create idx ( runner, idx name, idx path .options )

runner : surrogate
needed for authorization checking

idx_name : string
name of the index to be built.

idx _path : string.
is a legal path expression (see section 2.3.1)

options: T_OPTION_SPECS
it specifies option list (see 2.3.4).

This function updates the index dictionary entry. The new index definition is
inserted and  already existing subpath of index path are shared. BTrees are
initialized.

¢ delete idx ( _idx name )

idx_name: string;
name of the index to be deleted.

This function remove the definition of the index to be deleted from the index
dictionary. Sharing degrees of shared subpaths are decreased. This function
deletes  BTree entries implementing Join Indices and possibly BTree entries for
attribute wvalues.

« lookup idx (sarg., scanObi.mode)
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sarg: SEARCH_ARGUMENT.
parsed form of the predicate to be used as index search argument.

scanObj: is NIL the first time the function is called. Otherwise it holds the scan
identifier of the multipath index . This identifier is set by look.up the first time it
is called.

mode: int

has to be passed to the lower component in order to specify the index scanning
modality (namely FIRST, NEXT, CLOSE).

The call to this function is generated by the optimizer. The optimiser choices the
index to be used for evaluating a query restriction. Hence it compacts a search
argument that can be used with the index. The search argument is coded in
parsed form . The expression to be evaluated is in prenex canonical form. The
sequential scan (NEXT) allows to retrieve sequentially object according the index
collating order while the random access is used when one single object is needed
to be accessed (FIRST). In last case all the links involved in the index path are
opened . On the other way CLOSE closes all opened links.

4.3 Low Level Index Manager Component.

In this section we will call link either the couple describing: i) the connection
between an attribute value and the surrogate of the object to which it belongs ;
i1) the connection between an object component surrogate and the surrogate of
the object to which it belongs (the Joinlndex entry). Whenever differentiation is

needed , the link of type i) will be called value_link while link of type ii) will
be called sur_link.

The operations on index at this level is restricted to single links. Therefore this
interface provides with the insertion (insert_link), the deletion
(delete_link) and the modification (modify link) of links. In addition the
access to information about indices (idx_cmp_information), the opening
(open_link) and the closing (close_link) of scannings as well as sequential
(value_sequential_scan, join_sequential scan) and random
(value_index_scan, join_index_scan) access to Indices will be described.
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s close link ( scanQObid

scanObj: T_LOW_SCAN_OBJECT
returning data from the opening operations below.

This function closes the specified link.

s ingert link idxElement ] I Sur, c¢mpValue, mcSur )

idxElement : surrogate;

surrogate of the IndexDescriptor (Interm or Final) relative to B_tree(s) to be
updated.

isColl : boolean;

FALSE indicates that the link to be inserted is related to either an attribute or to a
single_valued component, whereas TRUE indicates that the link is relative to a
multi_valued component.

fSur : surrogate;
surrogate of father object.

cmpValue : T_PROP_VALUE;

this parameter stores either the basic type value (integer, real or string) if the
link is a value_link or a surrogate if the link is a sur_link. This depends whether
idxElement is a final or intermediate IndexDescriptor respectively.

mcSur :  surrogate;

this parameter is significant only if isColl value is TRUE. It stores the surrogate
of -the multivalued component of a (three entries) Join Indices.

This function  updates for insertion either BTree holding value_link or BTree

holding sur_link. Appendix A2 provides for the detailed description of this
function.

o delete link ( idxElement, delSpecs, delObj )

idxElement: surrogate;
as in the function above.

deilSpecs integer;

if idxElement object is an FinallntermDescriptor then this parameter specifies
that the current link is a value_link (BTREE). In the other case it is a sur_link .
In addition the link can be related to a BottomUp link (see section 3) or to a
TopDown link. This parameter details also if the current Join Indices table has
TWO or THree entries. Furthermore, in the bottomUp delete case relative to a
three entries Join Indices table it is also necessary to specify whether delObj
object is a single_valued Component or a Multi_valued component. Therefore

this parameters takes one of the following values: BUTWO, BUTHC, BUTHM, TDTWO,
TDTHR.

delObj : surrogate;
surrogate of the object to be deleted.
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This function updates for deletion either BTree holding value_link or BTree
holding sur_link. Appendix A2 gives the detailed description of this function.

» _modify link ( idxElement, isColl, fSur, cmpValue, mcSur )

idxElement: surrogate;
as in the function above.

isColl : boolean;
analogous as in the insert_link function .

fSur : surrogate;
surrogate of the father object

cmpValue : T_PROP_VALUE;
as in insert_link function; it is the new attribute/component value.

mcSur :  surrogate;
as in insert_link function; it is the possible new multivalued component value.

This function updates for value modification either BTree holding value_link or
BTree holding sur_link.

e idx cmp _information (clsSur, propName, idxCmplInf)

clsSur: surrogate;
surrogate of the class .

propName: string;
name of the property on which index existence is queried.

idxCmplnf: T_IDX_CMP_INFORMATION;

this is an output parameter; it is the object that the procedure has to fill (see
appendix A2.).

This function return information about index existence on a given property.

= _open link (idxElement, openSpecs, mode, lockSpecs. lowScanQbj)
idxElement: surrogate;

IndexDescriptor related to the index component on which the scan must be
opened .

openSpecs: integer;

The values allowed for this parameters are those already specified for dellnf in
delete_link. Therefore it  specifies whether the scan must be open on a final
component (BTREE value), or on an intermediate component. In the latter case it
must specify whether the scan is opened on either bottom_up or top_down Join
Indices and component is single or multivalued.

mode: integer;
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specifies whether the index component is to be opened for reading, writing or
both; legal values are the following comstants: INPUT, OUTPUT and INOUT
respectively.

lockSpecs: integer;

specifies locking informations Three locking modes are allowed: exclusive lock
(EXCLLOCK constant value), manual lock (MANULOCK) and automatic lock
(AUTHLOCK). The first mode locks all the links of the current index component
from the opening to the closing time. The second mode locks a link object omly if
at the reading time the user submits the explicit request using the LOCK flag (see
value_sequential_scan algorithm). Finally the automatic lock is set by system
before the read of the link is performed.

lowScanObj: T_LOW_SCAN_OBIECT;

this is an output parameter; it is the data structure the procedure has to fill (see
appendix A2).

This function causes the opening of the index either for sequential or random
access.

This function causes the closing of an already opened index.

o _value sequential scan (owScanObj, mode, lspecs, btreeQbj)

lowScanObj: T_LOW_SCAN_OBIJECT;
the state of this object identifies the required sequential scan.

mode: integer;
it is used to indicate that the current (CURR constant value), first (FIRST) or next
(NEXT) link in the specified value index is to be read.

Ispecs: integer;

only values for this parameter are the constants LOCK and NLOCK. LOCK value is
legal only if manual lock has been specified at scan opening time and in this
case the link is locked before being read (that is Ispecs set to LOCK is the explicit
request submits by the user that wishes an object to be locked).

NLOCK value indicates that either no manual locking mode has been specified at
scan opening time (other possible locking modes are: exclusive and automatic) or
it has been specified but the user doesn't wish this object to be locked for
reading.

btreeObj: T_FINAL_LINK;

this is an output parameter; it is the object that the procedure has to fill (see
below).
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This function reads class instances according to the order ( ascending or
descending) specified for the index at index definition time.

ial lowScanObi leo 1 i0inObj

lowScanObj: T_LOW_SCAN_OBJECT;
as in the function above.

mode: integer;
as in the function above.

Ispecs: integer;
as in the function above.

joinObj: T_INTERMEDIATE_LINK;

this is an output parameter; it is the object t the procedure has to fill (see
Appendix A2).

The join index specified by lowScanObj is scanned sequentially.

+ val in n (lowScanQObj, operator, basSchVal, Ispecs.,
idResult)

lowScanObj: T_LOW_SCAN_OBIJECT;
the state of this object identifies the required scan.

operator: integer;
legal specifications are: EQ, GT, GE, LT, LE, LIKE.

basSchVal: T_FINAL_LINK_VALUE;

this object contains the value to be matched. (See appendix A2 for this type
specifications).

Ispecs: integer;
as in the function above.

idResult: surrogate;
this is an output parameter; it is the object that the procedure has to fill .

- _join_index scan (lowScanQbj, idSchVal, scanSpecs, Ispecs.
idResult)

lowScanObj: T_LOW_SCAN_OBIJECT;
as in the function above.

idSchVal: surrogate;
it is the searched key value.

scanSpecs: integer;

legal values of this parameter are the following constants: SHCTWO (search for
idSchVal in object component entries of a two entries Join Indices), SHCTHR
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(search for 1idSchVal in object component entries of a three entries Join
Indices) and SHMTHR (search for idSchVal in multivalued object component
entries) for a bottom_up join scan and RTCTWO (return object component
surrogate of the located (two entries) Join Indices link), RTCTHR (return object
component surrogate of the located (three entries) Join Indices link) and
RTMTHR (return multivalued object component surrogate of the located Join
Indices link) for a top_down join scan. )

Ispecs: integer;
as in the function above.

idResult: surrogate;

this is an output parameter; it is the object that the procedure has to fill (see
appendix A2).
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4.3 Example

The Example in fig. 2 shows the data structures used for implementing the index
project.p_name. In the figure su_i are surrogates. Circles bound multivalued
components. A multivalued component has a surrogate itself. Dictionaries entries
and B_trees (triangles) are labeled with surrogate as well. Each B_tree is shown
whether it indices attributes or surrogates (join indices). In the first example
(fig. 2) no join indices appecar, since the p_name value (a string) is associated
directly to the surrogate of the occurrences of the class Project.

The sequence of steps following the create_ idx(Userl, "index1",

"project.p_name") request (which create the data structures of Example 1) are
the followings:

« [Initially only ClassDictionary and PropertyDictionary entries exist. The
properties IdxMainElement and IdxElement of PropertyDictionary are set to
nil.

¢ The occurrence of IdxMainElement which has surrogate su_4 is created.

 the IndexMainDescriptor entry su_5 is created as element of the multivalued
su_4. EQ means that the index is an "equality index", i.e. it is used for
evaluating relational predicates (<,>= etc..) or specific predicates on strings
(LIKE, etc..). String_code is the numeric code specifying that legal operator
are string operators. 1 is the path length. index1 is the index name.

» The occurrence of IdxStructure is created with surrogate su_6.

* An element of su_6 (a PathDescriptor's occurrence) is created having
surrogate su_7. The offset of p_name inside Project class is 1.

« The IndexFinalDescriptor entry is created with surrogate su_8.  String_code
gives the type of the B_tree associated. A B_tree is initialized having surrogate
su_9. The property TotalSharingDegree is set to 1 since this final component is
shared by one index. The surrogate of this element is recorded in IdxElement
of the PropertyDictionary entry describing p_name.

Let now make some considerations on object insertion. The insertion of one
instance of the class Project, is done "one property at a time". Therefore first
an occurrence of Project must be created (obtaining back the surrogate, for
example su_100) then the Write operation is performed on the property
project_name passing the property value, for example "Comandos".

At insertion time it is asked to the IDXM to check whether indices exist defined on
that property and, if positive, it finds the B_tree to be updated by querying the
index dictionary (IdxElement property value of the current PropertyDictionary
instance).

In our case such query returns su_8, in fact the IndexFinalDescriptor having
su_8 surrogate gives the reference of the B_tree to be updated.

In the second example (fig.3) an index is added defined as
Project.partners.t_address.city. This case considers the multivalued

property partners as suffix's element. Let us give some comments for this
example.
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- the object su_12 is a multivalued object containing the description of the
index structure. Surrogates stored in the IndexElement property
references  two intermediate elements su_16 and su_21 implementing the
link (partners,team) <-> project and address <-> team. In the first case the
join index has three entries because partners is a multivalued property.

- The object su_15 references a final descriptor implementing the index on the
attribute  city.

¢ In order to increase the efficiency of the create idx algorithm, the
surrogate su_16 , su_ 21 and su_26 are stored in the IdxElement property of
the corresponding PropertyDictionary instances: partners (su_3),
t_address (su_53) and city (su_94) respectively ( fig. 2.4 shows the
overall situation).

The example in fig4 and 5 is more complex. It shows how the proposed

mechanism shares dictionary data structures. Fig.4 shows the status of
PropertyDictionary after the index : Projects.partners.staff.e_address.city
is added to the situation depicted in fig.3. Here object su_10 contains the

MainDescriptors of the two indices defined on partners. Su_29 contains the
description of the new index. The object su_l6 is the descriptor of the partners
property that is now shared by two indices. In fact su_29 and su_12 (fig. 3)
contains the surrogate su_16. The TotalSharingDegree of su_16 is thus set to 2.
Likewise the final descriptor su_26 (related to Address.city) is shared by the two
indices therefore the TotalSharingDegree is 2. One should notice that a new
PathDescriptor instance (su_34) is added in su_19 because the indices suffix
matches on  the first suffix element partners but no on the second suffix
element, t_address in the former case and staff in the latter case.
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INDEX  Project.p_name

su_0 | Project {user_1| su_1 ClassDictionary.

su_l

string
c_Team Property
Dictionary.
su_4
su5 |idx1 | EQ | string code| 1| su_6
IndexMain
Descriptor.
su_6
Path
su7 (1]su8]1 Descriptor.
su_8 | su_9 |string code| 1 IndexFinal
Descriptor.
su_9
Z B_tree

p_name -> project surrogates

Fig. 2

52




Add INDEX

Project.partners.t_address.city

Project | user_1

su_0

su_1

ClassDictionary

su_l

Property
p_name string Dictionary
| partners c_Team-
su_10
su_l1 |idx2| EQ | string_code| 3| su_12
IndexMain
Descriptor
Path
Descriptor
su_16 su_17 | su_18 |ident| 1 |su_19
IndexInterm
su_19 Descriptor
Path
Descriptor
su_21 su_22 | su_23 |ident| 1| su_ 24
IndexIntermDescriptor
su_24
su_25 13 isu26]1 PathDescriptor
su_26 |su_27 |string_code |1 IndexFinalDescriptor
su_17 su_18 su_27

AN

(pa_s,t_s)->pj_s

pi_s->(pa_s,t_s)

d-sqfar t

S

A

t.s->ad s city_value->ad_s

Fig 2.3




su_0 | Project user_1 | su_1 | ClassDictionary.

su_50 | Team user_2 |su_ 51

su_70 | Employee | user_3 {su_71

su_90 [ Address | user 4 | su. 01 gﬂgggﬁgw
su_1

St
et

su_2 |p_name string | 30| su_4 | su_8

partners

t_name
t_address
staff

su_72 |e_name 1 | string
e_address | 2 | ADDR

su_91

su_92 | street

_ string | 30 | nil | nil
integer| 01 | nil | nil
string | 12 | nil | su_26

string | 06 | nil | nil

su_93 | number

su_94 | city

BN OS] BN O B

su_95 | zip

Fig. 3
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Add INDEX Project.partners.staff.e_address.city.

su_10

string_code

string_code

Index
MainDescriptor
Path
Descriptor
su_16 | su_17 |su_18 |ident| 2 |su_19
Index
su_19 IntermDescriptor
Path
Descriptor
su_35 | su_36 |su_37 |ident| 1 | su_38
Index
su_38 IntermDescriptor
Path
Descriptor
su_40 | su_41 | su_42 |ident | 1 | su_43
Index
Su_43 IntermDescriptor
Path
Descriptor
. Index
su_26 | su_27 |string code| 2 FinalDescriptor
42
su_37 su_41 o
* AN
(st_s,e_s) > t_s t_s -> (st_s,e_s) ad_s->e_s e s->ad_s

Fi 4
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4.4 Query Processor Specifications

The following functions describe the major steps of query processor. Their
behaviour has been detailed in sect. 2.4

Client side.

. gp._parser(externalQuery)

externalQuery: : string.

It is a string containing the query formulated according the query language
grammar. This function create a flat byte stream that can be sent over the
network and reinterpreted by the server using the parser data structures

described in Appendix A3.

Server side.

° gp_checker(querv.cArea)

query : struct Query;
header for query data. (See Appendix A4).

cArea: struct ControlArea;
Output formatted data describing query data in easier way. See Appendix A3.

. ap_decomposer(subquervHeader, cArea)

subqueryHeader: struct SubgHead;
header structure pointing to the evaluation trees.

cArea: struct ControArea;
See above and Appendix A3.

° 4qp_executive(cArea.subquervHeader.subgNum)

subqueryHeader: struct SubqHead
See above and Appendix A3.

cArea: struct ControArea
See above

subgNum: int
subQuery to be evaluated.
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APPENDIX

In th
Index

e following appendices the flows of the most relevant functions of the
Manager are presented (App. 1 and 2). The functions that will be detailed

concern the management of the index definition lattice. Revised Query processor
data structures are also given in App. 3.

Al

High Level Index Manager Functions descriptions

» create idx ( runmer, idx name, idx path .options )

- 10

< 11

ThisClass = GetPrefix(idx_path ).

retrieve  in ClassDictionary where (ClassName == ThisClass). Let class_des
the surrogate of this entry.

properties_des=SurrogateOf(class_des.Properties).

check authorization for "creating index " being performed by this user.

suffix_pos = 1.
suffix_element=GetSuffixElement(idx_path , suffix_pos).

retrieve element of properties_des in PropertyDictionary where
(PropertyName==suffix_eclement). Let curr_property = SurrogateOf(
this_property).

/* this step is performed by scanning sequentially properties_des
multivalued object. In order to increase efficiency of the algorithm an

index can be defined on the PropertyDictionary's property PropertyName
*/

if curr_property.IdxMainElement == nil
then create IdxMainElement object and store the surrogate in  curr-
_property.IdxMainElement.

else if curr_property.IdxMainElement exists then if IndexMainDescript

addresses an index_path == idx_path then signal "index previously
defined" and goto step 17.

create new member in curr_property.IdxMainElement and
set curr_main=sur_of_this_member.

create IdxStructure object and set

curr_main.IdxStructure=surr_of_  this_object.

e 12

« 13
set

set First = TRUE.

create a member in the multivalued curr_main.IdxStructure and
curr_path_desc=sur_of_this_member.
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14 set curr_path_desc.Offset ;
set curr_path_desc.SharingDegree=1.

« 15 if IsAttribute(curr_property) == TRUE then
15.1 if curr_property.IdxElement==nil then

15.1.1 set new_descriptor= create_descriptor‘(FINAL,
class_des, suffix_element).

/* create_descriptor is described below. */

15.1.2 curr_path_desc.IndexElement = new_descriptor.
15.1.3 curr_property.IdxElement = new_descriptor.
15.1.4 if not First then

15.1.4.1 create a member in the multivalued
curr_interm.IdxStructure and set

new_path_desc = sur_of_this_member.

15.1.4.2 set new_path_desc.Offset.

15.1.4.3 new_path_desc.IndexElement =

new_desriptor.

15.1.4.4 set new_path_desc.SharingDegree = 1.
15.2 else

/* the present path index component descriptor already exists in
the index dictionary so it will be shared (by simply increasing
the corresponding TotalSharingDegree property, see below)  */

15.2.1 new_descriptor=current_property.IdxElement.
15.2.2 increase new_descriptor.TotalSharingDegree.
15.2.3 curr_path_desc.IndexElement=new_descriptor.
15.2.4 if not First then

15.2.4.1  retrive object of curr_interm.Idx
Structure where (object.Offset==
Offset_of_suffix_element) and set
new_path_desc=sur_of_this_object.
15.2.4.2  if new_path_desc <> nil
then increase new_path_desc.Sharing
Degree.
else {
create a member in the multi_ valued
curr_interm.IdxStructure and set
new_path_desc
= sur_of_this_member.
set Offset of new_path_desc.
new_path_desc.IndexElement =
pew_descriptor.
set new_path_desc.Sharing
Degree = 1.

}
15.3 set properties ( IdxName, IdxType, PredicateType and
PathLength) of curr_main object.

= 16 if curr_property is not an attribute then
16.1 if curr_property.IdxElement==nil then

16.1.1 set new_descriptor=create_descriptor (INTERM,
class_des, suffix_element).
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16.1.2 curr_path_desc.IndexElement = mnew_descriptor.
16.1.3 curr_property.IdxElement = new_descriptor.
16.1.4 if not First then

16.1.4.1 create a member in the multivalued
curr_interm.IdxStructure and set

new_path_desc= sur_of_this_member..

16.1.4.2  set Offset of new_path_desc.

16.1.4.3 new_path_desc.IndexElement =

new_desriptor.

16.1.44  set new_path_desc.SharingDegree = 1.

16.2 else
/* the present path index component descriptor already exists in
the index dictionary so it will be shared (by simply increasing
the corresponding TotalSharingDegree property, see below)  */
16.2.1 new_descriptor=current_property.IdxElement.
16.2.2 increase new_descriptor.TotalSharingDegree.
16.2.3 curr_path_desc.IndexElement=new_descriptor.
16.2.4 if not First then
16.2.4.1 retrive object of curr_interm.ldx
Structure where (object.Offset==
Offset_of_suffix_element) and set
new_path_desc=sur_of_this_object.
16.2.4.2  if new_path_desc <> nil
then increase new_path_desc.Sharing
Degree.
else {
create a member in the multi_valued
curr_interm.Idx  Structure and set
new_path_desc
= sur_of_this_member.
set Offset of new_path_desc.
new_path_desc.IndexElement =
new_descriptor.
set new_path_desc.SharingDegree = 1.
}
16.3 increase suffix_pos.
16.4 suffix_element=GetSuffixElement(idx_path ,suffix_pos)
16.5 if suffix_element==nil then
/* it is an object identity index */
16.5.1 set properties (IdxName, IdxType, PredicateType
and PathLength) of curr_main object.
16.5.2 goto step 17.
16.6 prefix = curr_property.PropertyType.
/* if curr_property is a multivalued then consider the
type of the objects belonging to the collection */
16.7 retrive descriptor in ClassDictionary where (ClassName ==
prefix) and set class_des = sur_of_this_descriptor.
16.8 set properties_des = sur in class_des.Properties.
16.9 retrive element of properties_des in PropertyDictionary

where (PropertyName==suffix_element)
and set curr_property=sur_of_this_property.
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16.10 set curr_interm=new_descriptor.
16.11 First=FALSE.
16.12  goto step 13.

17 END.

s SURROGATE g¢reate descriptor (type. class des. property name)

type : integer
holds the type (INTERM or FINAL) of index descriptor to be instantiated.

class_des :surrogate

surrogate of the class to which the property relative to the index descriptor
to be created belongs.

property_name: string
name of the property.

This function instantiates a new  Index Intermediate or Final Descriptor
class entry and returns its surrogate. This is achieved either by
instantiating the appropriate Index (Intermediate or Final) Descriptor or by
simply increasing the TotalSharingDegree. Furthermore it recoursively
expands the instantiation within the subclass hierarchy

{

SURROGATE: new_descriptor, inh_des, sub_class_des, properties_des,
curr_property, other_descriptor;

° if (type==FINAL) new_descriptor=new.IndexFinalDescriptor
e else new_descriptor= new.IndexIntermDescriptor ;
° <initialize properties of new_descriptor>

° if ((sub_class_des = SubClassesOf(class_des)) == nil) {
new_descriptor.InheritanceDescriptors=nil;
return (new_descriptor); }

else {
<create InheritanceDescriptors object and set
inh_des = sur_of this_object>;

new_descriptor.InheritanceDescriptors=inh_des;

while ( sub_class_des != nil) {

= properties_des=sub_class_des.Properties;

» <retricve element of properties_des in Property Dictionary where
(PropertyName == property_name) and set curr_property =

surr_of_this_property>;

« if (curr_property.ldxElement==nil) {
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- other_descriptor = <create_descriptor (type, sub_class_des,
property_name);

» inh_ des object=other_descriptor

e curr_property.IdxElement = other_descriptor; }

else {
++ curr_property.IdxElement.TotalSharingDegree;
inh_des=curr_property.IdxElement }

» sub_class_des = GetNextSubClass (class_desc);

}
}

return  (new_descriptor);

}

* delete idx ( class, idx name )

class: string;
prefix class name of the path expression describing idx_name index.

idx_name: string;
name of the index to be deleted.

Description.

An informal description of the delete_i“dx procedure is given below. The
procedure delete the entries in the index dictionary and the B_trees related to the
index specified by index name. .

Steps:
» 1 retrive descriptor in ClassDictionary where (ClassName == class)
and set class_desc = sur_of_this_descriptor.
o 2 set prop_desc = class_desc.Properties.
e 3 retrieve in prop_des.IdxMainElement where Index
MainDescriptor.IdxName = idx_name ) and set curr_main =

sur_of_this_Descriptor.

s 4 set path = curr_main.IdxStructure.

« 5 delete  curr_main .
If this was the only instance of the corresponding IdxMainElement
multivalued object then delete also it and set the
prop_desc.IdxMainElement = nil.

< 6 set curr_path_desc = FirstComp (path,nil).
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/* FirstComp function returns the surrogate of a PathDescriptor

object */
« 7 set curr_descriptor = curr_path_desc.IndexElement.
- 8 if curr_descriptor object is an IndexIntermDescriptor instance
then
8.1 if  curr_descriptor.TotalSharingDegree == 1 then
8.1.1 set curr_idx_structure = curr_descriptor.Idx
Structure.
8.1.2  set next_path_desc = NextComp (path,
curr_path_desc).
8.1.3 if (next_path_desc != nil) then
8.1.3.1 set nx_offset = next_path_desc.Offset.
8.1.3.2 retrieve in curr_idx_structure
collection where (instance.Offset ==
nx_offset) and set path_desc = sur_ofthis_instance.
8.1.3.3 remove path_desc instance from

8.2

8.1.4

8.1.5

else

/*

curr_idx_structure collection.
delete (no tranmsitively ) curr_idx_structure

object.

< retrive element of <class_desc.Properties in
PropertyDictionary where (Offset == curr_path_
_desc.Offset) and set curr_property = sur_of_this_
_property >.

/* curr_property stores the surrogate of the property
related to the index descriptor to be deleted with regard to
the current path index (see below). */

set curr_inh_desc = sur in cursy _

_descriptor.InheritanceDescriptors.

delete (no transitively) curr_descriptor object.

set IdxElement definitional property of the Properiy

Dictionary instance (it has surrogate value equal to

curr_property) related to curr_descriptor object to il

value.

if (curr_inh_desc != nil)

then  delete_inh_descriptor (class_desc, curr_
_inh_desc, curr_property.PropertyName).

/* delete_inh_descriptor function provides for the
updating of the related Is_a hierarchy; */

curr_descriptor.TotalSharingDegree > 1, that is this path index

component descriptor is shared by several path indexes. This
descriptor has not to be deleted. It is only necessary to reduce the
corresponding TotalSharing Degree property . Updates to the
relative Is_a hierarchy are not necessary. */

8.2.1
8.2.2

decremente curr_descriptor.TotalSharingDegree.
set curr_idx_structure = sur in curr_descriptor.Idx
Structure.
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8.2.3  set next_path_desc = NextComp (path,
curr_path_desc).

8.2.4 if (next_path_desc != nil) then
8.2.4.1 set nx_offset = next_path_desc.Offset.
8.2.4.2 retrive instance in curr_idx_structure
multivalued component where '
(instance.Offset == nx_offset) and set
path_desc = sur_of_this_instance.
8.2.4.3 if path_desc.SharingDegree == 1

then remove path_desc instance from
curr_idx_structure collecticn.
else decremente path_desc.Sharing

Degree.
9 if curr_descriptor object is an IndexFinalDescriptor instance
then
9.1 if curr_descriptor.TotalSharingDegree == 1 then

9.1.1 < retrieve element of class_desc.Properties in
PropertyDictionary  where (Offset == curr_path_
_desc.Offset) and set curr_property = sur_of_this_
_property >.

/* curr_property stores the surrogate of the property
related to the descriptor to be deleted with regard to the
current path index . %/

9.1.2  set curr_inh_desc = sur in curr_ _descriptor.Inheritance
Descriptors

9.1.3  delete (in no transitive way) curr_descriptor
object.

9.1.4  set IdxElement definitional property of the Property
Dictionary instance (it has surrogate value equal to
curr_property) related to curr_descriptor object to nil
. value.

9.1.5 if (curr_inh_desc != nil)
then delete_inh_descriptor (class_desc, curr_

_inh_desc, curr_property.PropertyName).
/* delete_inh_descriptor utility provide for updating
of the pertinent Is_a hierarchy; this procedure is
described below. */
9.2 if (curr_descriptor.TotalSharingDegree > 1) then

9.2.1 decrement curr_descriptor.TotalSharingDegree.

10 remove curr_path_desc instance from path multivalued object.

11 retrieve descriptor in ClassDictionary where (ClassName == curr_
—property.PropertyType) and set class_desc = sur_of_this_
_descriptor.

12 set curr_path_desc = NextComp (path).
13 if  (curr_path_desc != nil) then goto step 7.

14 delete (in no transitive way) path object.
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< 15 END.

e delete inbh descriptor {(class desc. inh desc. property name)

class_desc: surrogate
surrogate of the class to which the property of the index to be deleted
belongs.

inh_desc: surrogate

surrogate of the multivalued storing the references of the index descriptors
corrisponding to property name and which reflects the direct sub_classes
of class_desc in the Subclass hierarchy.

property_name: string

name of the property mentioned above .

This function recoursivelly expand index deletion to the index inherited by
class_desc subclasses. This aim 1is achieved either by removing the appropriate
index descriptor or by simply decreasing their associated TotalSharingDegree
properties.
SURROGATE sub_class_desc, properties_desc, curr_property, other_desc;
» sub_class_desc = nil;
- while ( < inh_desc isn't an empty collection > ) {

other_desc = FirstComp (inh_desc);

sub_class_desc = NextComp (class_desc.SubClasses,

sub_class_desc);

/* Notice: if the second parameter of NextComp is equal to nil then it has the
same behaviour as FirstComp function. #/

if (other_desc.TotalSharingDegree == 1) {

delete_inh_descriptor (sub_class_desc, other_
_desc.InheritanceDescriptors, property_name);

< delete (in no tramsitive way) other_desc object >;

properties_desc = sub_class_desc.Properties;

<retrieve element of properties_des in Property Dictionary where
(PropertyName == property_name) and set curr_property =
surr_of_this_property>;

curr_property.IdxElement = nil; }

o else -- other_desc.TotalSharingDegree;
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< remove other_desc surrogate from inh_desc collection >;

}
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A2. Low Level Index Manager Component Specifications

The functions of the Low Level are supposed to interact with an additional lower
layer for the handling of access data structures like B_trees or Hash tables. In
our case C_ISAM-like functionalities are supposed to be available on this lower
layer. The informal description of functions partecipating to - this level is given
below.

e insert_link (idxElement, isColl, fSur, cmpValue, mcSur )

Description.
Let us define some useful types using C-like syntax.

T_PROP_VALUE type has the following definition:

typedef  struct {
T_PROP_VALUE_TYPE type;
T_VALUE value;
} T_PROP_VALUE;

furthermore:

typedef  enum {
INT,
REAL,
STRING,
’ SURROGATE,
} T_PROP_VALUE_TYPE;

typedef  union {

int intvalue;
double realvalue;
STRING strvalue;

SURROGATE survalue;
} T_VALUE;

typedef char STRING [MAXNAME];

So far we have defined the surrogate of an object as being composed of: 1) the
unique identifier of the class, to which the object belongs, within the Class
Dictionary ; 2) the unique identifier of the object within its own class.

typedef  struct {
long Clsld;
long Objld;
} SURROGATE;

Here and in the next algorithms the GetProp has been used for accessing
properties of classes. Two parameters must be passed to it: the class's surrogate
and the name of the property to be read. It returns its value. An informal
description of the insert_link procedure is given below. The procedure creates
the new entries in the specified B_tree(s) and, then it inserts it into the
respective Join Indices Table if the given link is an intermediate link,.
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Steps:

if IdxElement object is an IndexIntermDescriptor instance then

1.1

1.2

1.3

JoinTablelnsert ( GetProp(idxElement, JoinTable), isColl,
fSur, cmpValue.value.survalue, mcSur ).

/* JoinTablelnsert function provides for the insertion of the
specified link into the table storing the Join Indices of this level.

*/
set cmpUse = Use ( idxElement ).

/* Use function returns one of the following possible values:
BOTHIJOIN, for that intermediate component both Join Indices
exist in which surrogates are clustered either in the bottom_up

way and in top_down way, BOTTUPJOIN or TOPDOWNIJOIN in the
other cases. */

switch (cmpUse) {
case "BOTTUPJOIN":

set root=GetProp (idxElement, BottUpJoin).
if isColl== then

/¥ it is a two entries Join Indices */

BTreelnsert (root, cmpValue.value.survalue,

fSur).
/* BTreelnsert function has the task of updating the
B_tree whose root surrogate is root. This operation is to
be made in accordance with root.Clsld value since it
specifies whether you have to update a bottom_up Join
Indices, a top_down Join Indices, or a final B_tree. *f

else [* it is a three entries Join Indices */
MultBTreelnsert (root, mcSur, cmpValue.
value.survalue, fSur).

/* MultBTreelnsert function has the same
behaviour as BTreelnsert function but with
regard to a three entries B_tree. */

break.
case "TOPDOWNJOIN":
set root=GetProp (idxElement, TopDownJoin).
if isColl==0 then
BTreelnsert (root, cmpValue.value.survalue,
fSur).
else
MultBTreelnsert (root, mcSur, cmpValue.
value.survalue, fSur).
break.
case "BOTHIJOIN":
if isColl==0 then
set root=GetProp (idxElement, BottUpJoin).
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BTreelnsert (root, cmpValue.value.survalue,
fSur).

set root=GetProp (idxElement, TopDownJoin).

BTreelnsert (root, cmpValue.value.survalue,
fSur).

clse

set root=GetProp (idxElement, BottUpJoin).

MultBTreelnsert (root, mcSur, cmpValue.

value.survalue, fSur).

set root=GetProp (idxElement, TopDownlJoin).

MultBTreelnsert (root, mcSur, cmpValue.

value.survalue, fSur).

break.
}
- 2 if idxElement object is an IndexFinalDescriptor instance then
2.1 set root=GetProp (idxElement, BTreeRoot).
2.2 switch ( GetProp(idxElement, PredicateType) ) {
case "INT™:
BTreelnsert (root, compValue.value.intvalue,
fSur).
break.
case "REAL":
BTreelnsert (root, compValue.value.realvalue,
fSur).
break.

case "STRING":
BTreelnsert (root, compValue.value.sirvalue,
fSur).
break.

3 END.

> delete_link ( idxElement, dellnf, delObj )

Description.

Th considerations made in insert_link procedure are also significant for this
procedure.  An informal description of the delete_link procedure is given below.
The procedure removes the specified entry(entries) and/or leaf(leaves) relative
to delObj parameter from the appropriate B_tree(s) and, if the current descriptor
is an intermediate descriptor, then it deletes every link holding delObj
parameter from the respective Join Indices Table .

Steps:

e 1 if IdxElement object is an IndexIntermDescriptor instance then
1.1 set cmpUse = Use ( idxElement ).

/* Use function is described in insert _link algorithm */

1.2 switch (dellnf) {
case "BUTWO":
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1.3

}

case "BUTHC":
case "BUTHM":

if (cmpUse==BOTHIJOIN :: cmpUse==BOTTUPJOIN)
then JoinTableRandDelete ( GetProp (idxElement,
JoinTable), dellnf, delObj).

/¥ JoinTableRandDelete function uses in this
specific case the BottomUp Join Indices for direct
search in the specified Join Indices table (key value is
delObj) .Then it delete all the links holding delObj
parameter. */

else JoinTableSeqDelete ( GetProp (idxElement,
JoinTable), dellnf, delObj).

/* JoinTableSeqDelete  function provides for the
same behaviour as JoinTableRandDelete function but
the table is now entered in sequential way. */

break.

case "TDTWO":
case "TDTHR":

if (cmpUse==BOTHIOIN :: cmpUse==TOPDOWIJOIN)

then  JoinTableRandDelete ( GetProp (idxElement,
JoinTable), dellnf, delObj).

else JoinTableSeqDelete ( GetProp (idxElement,
JoinTable), dellnf, delObj).

/* the deletion in top down way removes more than one
link only in TDTHR case. */

break.

switch (cmpUse) {
case "BOTTUPJOIN":

set root=GetProp (idxElement, BottUpJoin).
if (delInf==BUTWO :: dellnf==TDTWO)
then BTreeDelete (root, dellnf, delObj).

/* BTreeDelete function performs the task of
removing either the entries related to delObj parameter
from the two-entries B_tree whose root surrogate is
root. This operation has to be made according to the
dellnf value which, in the current case (: BOTTUPIOIN,
specified by root.ClsId value) is equal to TDTWO (delete
leaf) or BUTWO (delete entry(entries) ). */

if (delinf==BUTHC :: dellnf==BUTHM ::
dellnf==TDTHR)
then MultBTreeDelete (root, dellnf, delObj).

/* MultBTreeDelete function has the same behaviour

of BTreeDelete function applied to three entries B_tree.
* /
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break.
case "TOPDOWNJOIN":
set root=GetProp (idxElement, TopDownJoin).
if (delinf==BUTWO :: dellnf==TDTWO)
then BTreeDelete (root, dellnf, delObj).
if (delinf==BUTHC :: dellnf==BUTHM ::
dellnf==TDTHR)
then MuliBTreeDelete (root, dellnf, delObj).
break.
case "BOTHIJOIN":
if (dellnf==BUTWO :: dellnf==TDTWOQ)
then set root=GetProp (idxElement, BottUpJoin).
BTreeDelete (root, dellnf, delObj).
set root=GetProp (idxElement, TopDownlJoin).
BTreeDelete (root, dellnf, delObj).
if (dellnf==BUTHC :: dellnf==BUTHM ::
dellnf==TDTHR)
then set root=GetProp (idxElement, BottUpJoin).
MultBTreeDelete (root, dellnf, delObj).
set root=GetProp (idxElement, TopDownlJoin).
MultBTreeDelete (root, dellnf, delObj).

break.
}
o 2 if idxElement object is an IndexFinalDescriptor instance then
2.1 set root=GetProp (idxElement, BTreeRoot).

2.2 BTreeDelete (root, BTREE, delObj).

= 3 END.

» modify_link ( idxElement, isColl, fSur, cmpValue, mcSur )

Description.

Considerations made in insert_link and delete_link procedures are also relevant
to this procedure. An informal description of the modify_link procedure is
given below. The procedure updates B_tree(s) and, if the current descriptor is
an intermediate descriptor, deletes every link holding fSur parameter from the
Join Indices table; then it inserts the specified new link.

The algorithm does not provide for the deletion of the bottom_up links of the old
component value since either that object continues to exist within the database
as independent object or the application will delete it by invoking again the
delete_link function.

Steps:

e 1 if idxElement object is an IndexIntermDescriptor instance then
1.1 set cmpUse = Use ( idxElement ).

/* Use function is described in insert_link algorithm */

1.2 if (cmpUse==BOTHIOIN :: cmpUse==TOPDOWNJOIN)
then JTRandModify ( GetProp(idxElement, JoinTable), isColl,
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1.3

fSur, cmpValue.value.survalue, mcSur ).

/¥ JTRandModify function performs the direct search in the
specified Join Indices table (key value is fSur). Hence it either
1) updates the retrieved link (old object component surrogate is
substituted with cmpValue.value.survalue) or 2) deletes all links
holding fSur parameter, then it inserts the specified link
corresponding to first component instance of the wupdated
collection, depending on whether the isColl value is 0 or 1
respectively. In the latter case the links corresponding to
possible other component instances must be inserted by invoking
again insert_link . */

clse JTSeqModify ( GetProp(idxElement, JoinTable), isColl,
fSur, cmpValue.value.survalue, mcSur ).

/* JTSeqModify function has the same behaviour as JTRand
Modify but the table is now entered sequentially . */

switch (cmpUse) {
case "BOTTUPJOIN":
set root=GetProp (idxElement, BottUpJoin).
if isColl==0
then BTreeDelete (root, TDTWO, {Sur).

BTreelnsert (root, cmpValue.value.sur
value, fSur).
else MultBTreeDelete (root, TDTHR, fSur).
MultBTreelnsert (root, mcSur, cmpValue.
value.survalue, fSur).
break.
case "TOPDOWNIJOIN":
set root=GetProp (idxElement, TopDownJoin).
if isColl==
then BTreeDelete (root, TDTWO, fSur).
BTreelnsert (root, cmpValue.value.sur
value, fSur).
else MultBTreeDelete (root, TDTHR, fSur).
MultBTreelnsert (root, mcSur, cmpValue.
value.survalue, fSur).
break.
case "BOTHJOIN":
if isColl==0 then
set root=GetProp (idxElement, BottUpJoin).
BTreeDelete (root, TDWO, fSur).
BTreelnsert (root, cmpValue.value.survalue,
fSur).
set root=GetProp (idxElement, TopDownJoin).
BTreeDelete (root, TDWO, fSur).
BTreelnsert (root, cmpValue.value.survalue,
fSur).
else
set root=GetProp (idxElement, BottUpJoin).
MultBTreeDelete (root, TDTHR, f{Sur).
MultBTreelnsert (root, mcSur, cmpValue.
value.survalue, fSur).
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set root=GetProp (idxElement, TopDownJoin).
MuliBTreeDelete (root, TDTHR, fSur).
MultBTreelnsert (root, mcSur, cmpValue.
value.survalue, fSur).

break.

}

if idxElement object is an IndexFinalDescriptor instance then
2.1 set root=GetProp (idxElement, BTreeRoot).
2.2 BTreeDelete (root, BTREE, fSur).
2.3 switch ( GetProp(idxElement, PredicateType) ) {
case "INT":
BTreelnsert (root, compValue.value.intvalue,
fSur).
break.
case "REAL":
BTreelnsert (root, compValue.value.realvalue,
fSur).
break.
case "STRING":
BTreelnsert (root, compValue.value.strvalue,
fSur).
break.

e 3 END.
* idx_cmp_information (clsSur, propName, idxCmplInf)

Description.

This procedure checks whether indices exist that are defined on propName.
Hence it finds the reference (surrogate) of the IndexDescriptor (Final or
Intermediate) structure by accessing the index dictionary.

The type of the returned object has the following C-like definition:

typedef  struct {

SURROGATE idxElement;

int idxCmpUse;

char statinf [MAXINF];
} T_IDX_CMP_INFORMATION;

idxElement : legal values are either nil (on propName property no index has
been defined) or the surrogate of an IndexDescriptor (intermediate or final)
instance if index has been defined on propName .

idxCmpUse : is significant only if idxElement is not equal nil. If idxElement
value is the surrogate of an IndexIntermDesriptor instance then it holds the
access type ( bottom_up, top_down, or both) provided by the Join Index.
Therefore legal values are the following constants: BOTTUPJOIN, TOPDOWNJOIN
and BOTHJOIN. The tegal value of this field for the case of IndexFinalDescriptor is
BTREE.
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statInf

it is significant only if any index is defined on propName property,

in this case it holds index statistics (among other data the key cardinality, key
size, index component entries cardinality, etc..).

An informal description of the algorithm follow s.

Steps:

1

access the instance having clsSur surrogate into ClassDictionary and set
props_des=GetProp (clsSur, Properties).

retrieve element of props_des object where (PropertyName==propName )

cand set curr_prop=sur_of_this_ property.

/¥ this step is performed through the sequential scan of the multivalued
props_des . In order to increase efficiency of the algorithm an index
should be defined on the property PropertyName of PropertyDictionary
class */

set idxCmplnf.idxElement=GetProp (curr_prop, IdxElement).

if 1dxCmplInf.idxElement==nil
then /* no index is defined on propName, the other
fields of idxCmplnf structure are so unneeded. */
goto step 7.

/* at least one index is defined on PropName */
if idxCmplnf.idxElement object is an IndexIntermDescriptor instance
then set idxCmpInf.idxCmpUse = Use ( GetProp(curr_prop,
IdxElement) ).

/¥ Use function is described in insert_link
algorithm */

else set idxCmpInf.idxCmpUse = BTREE.

get statistic informations (by querying ClassDictionary class) and store it
into idxCmplnf.statInf string.

END.

open_link (idxElement, openSpecs, mode, lockSpecs,

lowScanObj)

Description.

This procedure opens either the value-index or the join index  specified in
idxElement , in order to process the index scan.

lowScanObj identifies the active scan for subsequent accesses to this index
(therefore it allows the IDXM to manage several active scannings).

The type of the returned object has the following description

typedef struct  {
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int fdldxCmp;

SURROGATE idxElement;

int openSpecs;
} T_LOW_SCAN_OBJECT;

fdldxCmp: in the first design it has been chosen to use files as containers for
persistent objects. More precisely it is the descriptor of the file storing either the
Join Indices table (if the scanning is demanded on an intermediate component)
or the data file (if the scanning is demanded a final component).

idxElement:  holds the reference of the Index Descriptor of the opened scan

openSpecs: describes the scan type (see above) .

Steps:
o 1 if (openSpecs == BTREE)
then openClass = GetProp (idxElement, Classldentity).
else openClass = GetProp (idxElement, JoinTable).
/* openClass holds the surrogate of an instance of ClassDictionary, more
precisely it holds the surrogate of the class to be opened for processing
the current { value/join) index scam. */
o 2 openFile = GetProp (openClass, FileName).
e 3 lowScanObj.fdldxCmp = Open (openFile, mode, lockSpecs).

/* Open function returns the file descriptor that should be used for
processing the scan */

- 4 according to  openSpecs initialize the current settings for the file (Join
Indices table or data file) .

= 5 lowScanObj.idxElement = idxElement.
e 6 lowScanObj.openSpecs = openSpecs.
o 7 END.

» close_link (lowScanObj)

Description.

This function closes the scan of the specified value or join index. The file
containing the entries of such index is closed and all the active locks are
released.

e value_sequential_scan (lowScanObj, mode, Ispecs,
btreeObj)

Description.

)




According to the specified mode , Ispecs and lowScanObj the sequentially
located B_tree link is read from secondary memory into btreeObj object.
The btreeObj type definition follows :

typedef  struct {
T_FINAL_LINK_VALUE atrvalue;
SURROGATE fhidentity;
}  T_FINAL_LINK;

typedef  struct {

T_BASIC_TY?E type;

T _BASIC_VALUE value;
}  T_FINAL_LINK_VALUE;

typedef  enum {
INT,
REAL,
STRING,
} T_BASIC_TYPE;

typedef  union {

int intvalue;
double realvalue;
STRING strvalue;

} T_BASIC_VALUE;
where:

atvalue: basic type value in a final link.
fhidentity: surrogate of the father object in a final link.

value_sequential_scan  algorithm prepares and forwards the parameters
required by underlying retrieval system (recall the assumption made at the
beginning of this section) .

« join_sequential_scan (lowScanObj, mode, isMult, Ispecs,
joinObj)
Description.
According to the specified mode ., Ispecs and lowScanObj the sequentially

located Join Index 1 link is read from secondary memory into joinObj object.
The joinObj type definition follows :

typedef  union {
T_THREE_ENTRIES thrjoinindices;
T_TWO_ENTRIES twojoinindices;
} T_INTERMEDIATE_LINK;

typedef  struct {

SURROGATE mulcmpidentity;
SURROGATE cmpidentity;
SURROGATE fhidentity;

} T_THREE_ENTRIES;
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typedef  struct {
SURROGATE cmpidentity;
SURROGATE fhidentity;

} T_TWO_ENTRIES;

where:

mulcmpidentity: surrogate of the multi_valued object component in the
intermediate link.

cmpidentity: surrogate of the object component in the intermediate link.
fhidentity: surrogate of the father object in the intrmediate link.

join_sequential_scan algorithm prepares and forwards the parameters
required by wunderlying retrieval system (recall the assumption made at the
beginning of this section) .

» value_index_scan (lowScanObj, operator, basSchVal,
Ispecs, idResult)

Description.

According to the specified operator, basSchVal and Ispecs parameters the
value index identified by lowScanObj parameter is randomly accessed, then the
father object surrogate of the located B_tree link is read into idResult output
parameter. If no entry (having key value specified in basSchVal)is found
then a specific error code is returned.

value_index_scan algorithm prepares and forwards the parameters required
by underlying retrieval system (recall the assumption made at the beginning of
this section) .

« join_index_scan (lowScanObj, idSchVal, scanSpecs, Ispecs,
idResult)

Description.

In accordance with the specified idSchVal and Ispecs parameters the join
index identified by lowScanObj is randomly accessed (the operator parameter is
not needed since only equality predicate are allowed ). Hence depending on
scanSpecs parameter either the father object surrogate (bottom_up join scan)
or the (single/multi_valued) object component surrogate (top_down join scan) of
the located Join Indices link is read into idResult.

join_index_scan algorithm prepares and forwards the parameters required
by underlying retrieval system (recall the assumption made at the beginning of
this section) .
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A.3 Query processor Data Structures

A.3.1 Parser Data Structure

Parse tree structures.

Structures

Query
Aggregate
Object_list
F

Target
Class
Bind_spec
Condition
Quantifier
Object
Property
Prop_Spec
Prop_List
Num_Predicate

Common
Str_Predicate
Join_Predicate
Text_Predicate
Memmerédicate
Class_Predicate
Comp_Predicate

Alt_List
In_Predicate

Namelist
Num_Value
Str_Value

The structures listed in the following form the parse tree.

Signification

Root node of the parse tree.

Root of the aggregate part.

Element of an object list.

Element of an aggregate function list.
Root of the target part.

Node containing a class specification.
Element of a list of bind specification.
Root of the condition part.

Element of a list of quantifier specification.
Object specification node.

Initial property specification node.
Intermediate property specification node.
List of property specification nodes.
Node contailning a numerical predicate
specification

Node containing information in common between
a string predicate and a class predicate.
Node containing a string predicate
specification.

Node containing a join predicate
specification.

Node containing a text predicate
specification.

Node containing a membership predicate
specification.

Node containing a class predicate
specification.

Node containing a composite predicate
specification.

Element of a list of alternatives.

Node containing a composite predicate
specification.

Element of a list of names.

Element of a list of numerical values.
Element of a list of string values.

struct Query {
int aggr_formation;
int target_list;
int first_cond;

}i

struct Aggregate {
int x_spec;
int r_spec;
int f_spec;
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Y

struct Object list {
int obiject;
int next;
}i

struct F {
int Aggr_Function; /* values AVG, SUM, MIN, MAX, COUNT */
int object;
int next;

}i

struct Target {
int bind;
int prop_names;
int next;

struct Class {
int class_spec; /* values: SIMPLE or COMPLEX */
int class_name;
int classl;
int class2;
int bool_op;
y:

struct Bind spec {
int var_name;
int class;

}i

struct Condition {
int cond_type; /* values : PT_QCOND, PT_ANDCOND,
PT_ORCOND, FT_NOTCOND, PT_TERMCOND */
int termtype; /* values (only in case of PT_TERMCOND */
int 1_quant; /* only for PT_QCOND */
int condl; /* NULL in case of
PT_TERMCOND */
int cend2; /* NULL in case of PT_QCOND,
PT_TERMCOND, PT_NOTCOND */

unien {

int num_pred;

int str_pred;

int join_pred;

int text_pred;

int memb_pred;

int class_pred;

int comp_pred;

int in_pred:

} pred;

bi

struct Quantifier ({

int quantifier; /* PV_EXISTS, PV_FOR_EACH */
int bind;
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int memb_pred;
int next;

struct Object ({
int object type:;
union {
int var_ name;
int property;
} otype:

struct Property {
int var_name;

int prop;

struct Prop Spec {
int prop_ name;
int next;

}i

struct Prop List {
int prop;
int next;

struct Num_Predicate {
int property:
int operator;
int num_vall: -
int num_val2; /* only for PV_OPER BE*/

struct Common ({
int operator;
int str_value;
}i

struct Str_Predicate {
int property:
int common;

struct Jein_Predicate {
int objectl;
int operator;
int object2;

struct Text_Predicate {
int property;
int operator; /* PV_OPER_CON */
int str_list;
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struct Memb_ Predicate {
int obj;
int m_property;
b2

struct Class_Predicate {
int obj:
int common;

}i

struct Comp_Predicate {
int obj;
int alternative;
}i

struct Alt_List {
int class_name;
int condition;
int next;

}:

struct In_Predicate {
int property;
int set_type;
union {
int str_list;
int num list;
} set;

}:

struct Namelist {
char name [STRING_LENGTH];
int next;

Yi

struct Num Value {
int val_type; /* values: PT_INTVAL, PT_REALVAL */
int intval;
double realval;
int next;

struct Str_Value ({
char str [STRING_LENGTH]:
int next;

/****‘k*******k*'k*'k**'k**********************************************/

/% */
/* Other data structures */
/* */

/***********‘k*****************************************************/

struct Lin_Ptree {
int p_length:;
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struct

struct

char *ptree;

}7

Stack { /* Query parse tree stack */

int st_hi; /* Height of

the stack; O=empty */

struct Condition *co_ptr[MAXDIM];
int co_ty{MAXDIM]; /*type of condition: OR or AND*/
/* array of pointers to the Conditions */

/*
*
*
*

*

x/

i

Whenever there is no left brach in
the current condition, the pointer
at the top of the stack is used;
empty stack indicates end of parse
tree

Path { /* This structure contains informations
about the left or right hand of a

predicate. */
int num_el;

char prop(MAX PATH] [NAME_LENGTH]:
char «class[MAX PATH] [NAME_ LENGTH];

int type (MAX_PATH];
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. A.3.2 Type Checher Data Structures

/******************************‘k************************/

/% */
/* TABLES CONTAINING INFORMATION ABOUT THE QUERY */
/* */
/* The structure Control Area is the master */
/* control structure and points to all the other */
/* structures needed */
/* */

/‘k‘k'k*'k’k‘k‘***‘k‘k*~k*'k*‘k‘k‘k‘k*****k**'k**************************/

struct Control Area {
struct B Table *b_table;
struct C_Table *c_table;
struct D_Table *d_table;
struct F_Table *f_table;
struct X Table *x table;
yi

/* This structure contains the list of bindings */

struct B Table {

int num_element;

struct BElement *b element [BTABLESIZ]);
}:

/* This structure contains the list of conjuncts */
struct C_Table {

int num_element;

struct CElement *c_element [CTABLESIZ];

Y:

/* This structure contains the list of disjuncts */
struct D_Table ({

int num_element;

struct DElement *d_element [DTABLESIZ];

bi

/* This structure contains the list of aggr. functions */

struct F_Table ({

int num_element;

struct FElement *f element [FTABLESIZ];
i

/* This structure contains the list of grouping obijects */
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struct X Table {

int

}i

num_element;
struct XElement *x_element [XTABLESIZ];

struct BElement {
var_name [NAME LENGTH];
class_name [NAME LENGTH];

char
char
int

int

int

quantifier;

restricted;

me_pred;

struct CElement {

int ¢

int t

_loc;

ype;

int disi:

struct DElement {

/*

/*

/*

/*

it can assume the following
values: PV_EXISTS, PV_FOR_EACH,
TARGET */

i1f 0 the variable is not
restricted to a range of a
multivalued component */
offset inside the parse tree
of the membership predicate */

offset inside of the parse tree
of this disjunct */

if TRUE the conjunct contains
several disjunct; otherwise is
simple predicate */

char var_name [NAME_LENGTH]; /* name of the variable

representing the object
on which the predicate is
applied */

char var_namel [NAME LENGTH]; /* name of the variable

int

int

int

int

int

int

d_loc;

type;

opr

mv;

inv;

c_entry;

/%
/*

/*
/*

/*

/-k

/*

representing the second
object in the predicate,
only for predicates
that involve two objects */
offset inside of the parse tree
of the predicate */
type of the predicate */
the possible types are listed before */
operator used in the predicate
it is significant only for the
following predicates:
num_pred, str_pred, join_pred, class_pred */
if TRUE the predicate concerns
a multi-valued component */
if TRUE the predicate has a NOT
before */
entry in the C_Table of the
conjunct of this disjunct */
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struct Path path name; /* path name for the object in the pred. */
struct Path path namel;
}i

struct FElement {

int £ _loc;
int function;

struct XElement |

int type;

int X_loc;

char varname [NAME LENGTH];
char class [NAME LENGTH];
int in_R;

struct Path path;

char *res_ptr;

. A.3.3 Scheduler and Executive Data Structures

/-k*:k***'k*'k*******-k***'k'k***:k****-k****************************************
*

*

* constants, types and variables for scheduler*

*

******‘k*‘k‘k***********************‘k*‘k*******************************‘k***/

#define VOIDNAME (nullstrng)
#define VARNULL -1

#define is_component (pth,prn) ((pth).type[ (prn)] == SCOMP (| \

(pth) .type[(prn)] == MCOMP || (pth).type[(prn)] == VAR)
#define is_sing_comp(pth,prn) ((pth).typel(prn)] == SCOMP)
#define is_eof (pnum) (dtabpoin->d_element [ (pnum)]->type == MEMB_PRED)
#define is_join(pnum) (dtabpoin->d_element] (pnum))->type == JOIN_PRED || \

) dtabpoin->d_elenment { (pnum) ]->type == OBJECT_JOIN_PRED)
#define is_sjoin(pnum) (dtabpoin->d_element [ (pnum)]->type == JOIN_PRED)
#define is_simple(pnum) (! is join(pnum) && ! is_eof (pnum) )

#define is_restricted(bnum) (btabpoin->b_element [ (bnum)]->restricted)
#define is_void(poin) ((poin) == QPNULL)

#define disjelem(pnum) (dtabpoin~>d_element [ (pnum) 1)

#define pathsize (pnum) {dtabpoin->d_element [ (pnum) ] ->path_name.num_el)
#define pathsizl (pnum) (dtabpoin—>d~element{(pnum)]—>path_namel.num~el)
#define predconi(pnum) (dtabpoin->d_element { (pnum) ]~>c_entry)

#define predvarb (pnum) (dtabpoin—>d_element[(pnum)]—>var_name)

#define predvarl (pnum) (dtabpoin->d_element[(pnum)]—>path_name1.prop[0])
#define predpath (pnum) (dtabpoin->d_element [ (pnum) ] ~>path_name)

#define predpatl (pnum) {dtabpoin->d_element [ (pnum) ] ~>path_namel)
#define btabvarb (pnum) (btabpoin->b_element [ (pnum) ] ->var_name)
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#define xtabvarb(pnum) (xtabpoin->x_element [ (pnum)]->varname)
#define xtabpath(pnum) (xtabpoin->x_element [ (pnum)]->path)
#define is_foreach(bnum) (btabpoin->b_element [ (bnum)]->quantifier == PV_FOR_EACH)

/************k‘k******'k*********k‘k*‘k***’k*****************************‘k*******/

/% ' */
/* INCLUDE FILE FOR QUERY EXECUTIVE */
/* */
/* Version : 1.0 */
/* */

/**********‘k*‘k******‘k*****************************‘k****’k********k**********/

/* Type of operation for the selected access method: */

typedef enum {

KEYEDACC, /* A simple or composite keyed access is */
/* detected. */
JOINVAR, /* The access 1is made by reading the fjoinva- */
/* riable OIDs from temporary file. */
SEQSCAN, /* the access is made by sequential scanning. */
MULTIKEY, /* multivalued accessed by key */
MULTSCAN /* multivalued accessed by scanning */
} QP SKIND;

/* Type of varlable into VarList */

typedef enum {

NEWTARGET, /* the variable is the new target after decomp. */
NEWJOINV, /* the variable is the join variable after dec. */
UNCHANGED /* the variable is unchanged after decomposit. */

} QP _MODIF ;

/* SubgHead: for each subquery points to its Bindings and Conjuncts in
Btable and Ctable */

struct SubgHead {

int subgnumb ; /* num of subqueries */

/* Btab elements of this subguery */
struct VarList *vlist[MAXSUBRQ);

/* Ctab elements of this subquery */
struct Conjlist *clist [MAXSUBQ]:;

/* evaluation tree */
struct VarTree *vtree[MAXSUBQ];

/* element of part tree */
struct VarTree *eloftree[MAXSUBQ];

}i
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/* VarTree: variable for this subquery :

struct VarList |{
int btabindx ;
QP _MODIF newbvar ;
struct VarList *next;
}i

initialized by decomposer */

/* entry in Btable */
/* newtarget or newbind or unchang */
/* ptr to next element */

/* ConjList: points to the Celement of this subquery

struct ConijList {

(initial. by decomp */

int ctabindx ; /* entry in Ctable */
struct ConiList *next /* ptr Lo next elem */
)i

/* VarTree: implements the variable tree and the element of tree */

struct VarTree |
int btabindx ; /* entry in Btable */
int dtabindx ; /* ind in Dtab case ELOFP */
QP_MODIF newbvar ; /* newtarget or newbind  */
QP_SKIND acckind; /* access method type */
T OID curobj ; /* cur. obj in multival. */
struct Schedule *selem; /* ptr to the sched.list */
struct Schedule *acclist; /* ptr to the accmetn.list*/
struct PathDesc *pathd; /* ptr to the path descr. */
char *predicate; /* ptr to predic. if key */
char predname [NAME LENGTH] ; /* name of this predicate */
struct VarTree *prev; /* ptr to previous elem */
struct VarTree *next ; /* ptr to next elem */
struct VarTree *side ; /*vptr to side e.em */

/* Schedule : schedule list element */

struct Schedule {
int cost;
int ctabindx ;
struct Schedule *next ;
bz

/* cost for evaluate this */
/* index in ctable */
/* ptr next schedule elem */

/* structure holding the path descriptions and the OBJids */

struct PathDesc {
char prop([NAME_LENGTH]
T_OID thisobj;
struct PathDesc *next;
struct PathDesc *side;
}i

~
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/* undelying

interface */

struct CisInterf {

int

char

char

char

char

T_OID

T_OID

T_OID
T_ATTR_VALUE
char

i

op;
schema [NAME LENGTH] ;
name (NAME LENGTH];
prname [NAME LENGTH];

predicate [PRED STRING LENGTH] ;

objl;
obij2;
retobi;
retval;
*retptr;

88

/*
/*
/*
/*
/*
/*
/*
/-k
/*
/*

called operation
schema name
class/multiv name
predicate name.
predicate string
current class obiject
current compcnent obj.
returned object
returned value
returned pointer

*/
*/
x/
*/
*/
*/
*/
*/
*/
*/





