
QuARS Express: A Tool for Evaluating Natural Language Requirements

A. Bucchiarone, S. Gnesi, G. Lami and G. Trentanni
Istituto di Scienze e Tecnologie dell’Informazione, CNR, Pisa, Italy

{antonio.bucchiarone,stefania.gnesi,giuseppe.lami,gianluca.trentanni}@isti.cnr.it

A. Fantechi
Dipartimento di Sistemi e Informatica
Universita’ degli studi di Firenze, Italy

fantechi@di.unifi.it

Abstract

Requirements analysis is an important phase in a soft-
ware project. It is often performed in an informal way by
specialists who review documents looking for ambiguities,
technical inconsistencies and incompleteness. Automatic
evaluation of Natural Language (NL) requirements docu-
ments has been proposed as a means to improve the quality
of the system under development. We show how the tool
QUARS EXPRESS, introduced in a quality analysis pro-
cess, is able to manage complex and structured requirement
documents containing metadata, and to produce an anal-
ysis report rich of categorized information that points out
linguistic defects and indications about the writing style of
NL requirements. In this paper we report our experience in
the automatic analysis of a large collection of natural lan-
guage requirements, produced inside the MODCONTROL
project using this tool.

1 INTRODUCTION

The achievement of the quality of system and software
requirements is the first step towards the development of a
reliable and dependable product. It is well known that in-
accuracies in requirements documents could determine se-
rious problems to the subsequent phases of system and soft-
ware development. The availability of techniques and tools
for the analysis of requirements may improve the effective-
ness of the requirement process and the quality of the fi-
nal product. Particularly, the availability of automatic tools
for the quality analysis of Natural Language (NL) require-
ments [13] is recognized as a key factor. QUARS (Quality
Analyzer for Requirements Specifications) [24] was intro-
duced as an automatic analyzer of such requirement docu-
ments. It performs a lexical analysis of requirements de-

tecting ambiguous terms or wordings. In this paper we in-
troduce QUARS EXPRESS, a modified version of QUARS,
specialized to be applied to the analysis of a large collec-
tion of NL requirements produced inside the EU/IP MOD-
TRAIN project, subproject MODCONTROL [12]. MOD-
CONTROL addresses the standardization of an innovative
Train Control and Monitoring System (TCMS) for the fu-
ture interoperable European trains. In the specification
phase for TCMS, project partners have gathered require-
ments from different existing sources. These requirements
had to be consolidated, harmonized and refined among the
various project partners. An analysis of the natural language
requirements by means of automatic tools has been consid-
ered as an added value for guaranteeing the successful out-
come of the project, due to the capability to point out po-
tential sources of ambiguity and other weaknesses. TCMS
requirements have then been stored in a single repository,
associating to each requirement several metadata attributes
providing several notions of traceability (to the author, to
the package, and so on). In order to be able to use QUARS
on the TCMS requirements it was necessary to interface it
with the repository. A modified version of the QUARS tool
(QUARS EXPRESS) has therefore been developed for the
MODCONTROL project, to address these needs. In par-
ticular QUARS EXPRESS is able to handle a more com-
plex and structured data format containing metadata and
produces an analysis report rich of categorized information.
The information grows as a function of the number of meta-
data items available (e.g. as a function of the number of
authors, the number of packages and so on) and the size
of the report grows consequently and can be composed of
several pages. As an improvement of the simple text based
report made by QUARS the new report exploits the HTML
technology to produce structured hypertextual pages. We
have analyzed using QUARS EXPRESS the Functional and
System Requirements of TCMS including more than 5700



requirements. The results of the analysis have shown that
the analysis process based on QUARS EXPRESS not only
can be able to point out linguistic defects, but can provide
also some indications on the writing style of different NL
requirements authors (from different partners) giving them
the opportunity to become aware of defects and of potential
improvements.

In the next section we briefly present the MODCON-
TROL case study. In section 3 we introduce QUARS and
in section 4 we show how it has been modified to cope with
the needs of the MODCONTROL project. In section 5 we
present the quality analysis process used in the project, in
which QUARS EXPRESS is used together with other tools
(i.e., IBM RequisitePro and SoDA). In section 6 we discuss
the experience made in MODCONTROL while conclusions
and future work are presented in section 7.

2 MODCONTROL TCMS CASE STUDY

A key objective of MODCONTROL is the standardiza-
tion of TCMS functional modules and their interfaces with
other subsystems on-board and external to the train. The
TCMS controls and monitors the various subsystems of a
train, providing the necessary information to the driver. It
also performs other integrational tasks like allowing train-
wide diagnosis and maintenance.

MODCONTROL approach is to elaborate a Functional
Requirements Specification (FRS) and a System Require-
ments Specification (SRS) for the new generation of TCMS.
These specifications will aim at the standardization of es-
sential interfaces of the TCMS with other major subsys-
tems of the train, such as Traction Control, Air Condition-
ing, Doors, Brakes or Auxiliary Power Distribution. Dur-
ing MODCONTROL’s specification phase, project partners
gather requirements from different sources such as specifi-
cations of existing trains, standards or drafted specifications
from other EU projects. These requirements are then con-
solidated, harmonized and refined among the project part-
ners in several review sessions.

For the production of harmonized and consistent FRS
and SRS, the collection of requirements into a common,
project-wide structure is essential.

The SRD (System Requirements Document) has been
generated from the common server of the MODTRAIN
project and it is the result of the input provided by the
project partners. The SRD expressed as Natural Language
sentences, in its current status, is composed of more than
5700 requirements categorized in the following way:

• Functional Requirements (FREQ): Requirements for
a TCMS function.

• System Requirements (SREQ): Requirements for de-
vices carrying some functions (or sub-functions).

• Glossary Items (TERM): Identifies all glossary items
within the project.

• Use Cases (UC): Description of use cases in the
project.

As previously said, MODCONTROL aims to produce
the Requirements Specifications (FRS and SRS) for a new
generation of train control systems. It is therefore evident
that the produced specifications should not be possibly mis-
interpreted due to weaknesses and ambiguities in the NL re-
quirements for TCMS. An added difficulty from this point
of view was the fact that requirements have been produced
by several partners and then merged in a single repository
with consequent problems due to heterogeneous writing
syles. A set of writing rules were enforced in the project
[11] and they were (almost always) followed when insert-
ing new requirements by the various partners. Using Requi-
sitePro [22] , each requirement has been stored in a reposi-
tory : a requirement is constituted by several attributes, that
are:

• Text: provides the NL text of a single requirement;

• Source: indicates from which previous product re-
quirements document, if any, the requirement derives.
It may reveal that a defective requirement has actually
been borrowed from some standard and hence it cannot
be resolved unless issuing a standard change request;

• Responsibility: refers to the person who has actually
inserted the requirement in the repository. Using it, is
possible therefore to ask an individual for the resolu-
tion of potential weakness, either by correction of the
requirements, or by recognition of a so called false de-
fect;

• Package: indicates which part of the system the re-
quirement refers to;

• Type: describes the category the requirement belongs
to (i.e., Functional, Architectural, Performance, Real-
time, etc.).

3 NL REQUIRMENTS ANALYSIS

A NL requirements document, composed by different
sources, may suffer differences in style and accuracy pro-
ducing an unbalanced and ambiguous final requirements
document. Several approaches can be followed to ensure
a good quality requirements document. One approach is the
linguistic analysis of a NL requirements document aimed
to remove as many readability and ambiguity issues as pos-
sible. Several studies dealing with the evaluation and the
achievement of quality in NL requirement documents can



be found in the literature and natural language processing
(NLP) tools have been recently applied to NL requirements
documents for checking the consistency and completeness.
Among such tools, QUARS[4, 3, 24], (see the next subsec-
tion) and ARM [9, 26] perform a lexical analysis of doc-
uments detecting and possibly correcting ambiguous terms
or wordings, while tools such as LOLITA [10] and Circe-
Cico [1] exploit syntactic analyzers to detect ambiguous
sentences having different interpretations.

3.1 QuARS

In the context of MODCONTROL the tool QuARS
(Quality Analyzer for Requirements Specifications) was
initially chosen for the evaluation of the TCMS require-
ments document, since it was used also in previous several
projects [2, 5, 6]. QUARS performs an initial parsing of the
requirements for automatic detection of potential linguistic
defects that can determine ambiguity problems impacting
the following development stages.

The functionalities provided by QUARS are:

• Defect Identification: QUARS performs a linguistic
analysis of a requirements document in plain text for-
mat and points out the sentences that are defective ac-
cording to the expressiveness quality model described
in [4, 3]. The defect identification process is split in
two parts: (i) the ”lexical analysis” capturing option-
ality, subjectivity, vagueness and weakness defects, by
identifying candidate defective words that are identi-
fied into a corresponding set of dictionaries; and (ii)
the ”syntactical analysis” capturing implicitly, multi-
plicity and under-specification defects. In the same
way, detected defects may however be false defects.
This may occur mainly for three reasons: (i) a correct
usage of a candidate defective word, (ii) a usage of a
candidate defective wording which is not usually con-
sidered a defect in the specific system or domain, and
(iii) a possible source of ambiguity inserted on purpose
to give more freedom to implementors. For this reason,
a false positive masking feature is provided.

• Requirements clustering: The capability to handle col-
lections of requirements, i.e. the capability to high-
light clusters of requirements holding specific proper-
ties, can facilitate the work of the requirements engi-
neers.

• Metrics derivation: Metrics have been defined in
QUARS for evaluating the quality of NL requirements
document with respect to measures on the readability
of the document plus measures on the percentage of
defects throughout the whole document. Among the
metrics calculated by QUARS, we cite the readabil-
ity index and the defect rate. The readability index is

given by the Coleman-Liau Formula [17]. The refer-
ence value of this formula for an easy-to-read technical
document is 10, if it is greater than 15 the document is
considered difficult to read. The defect rate is the per-
centage ratio calculation of defects distribution in the
document with respect to the performed kind of analy-
sis.

• View derivation: A View is a subset of the input re-
quirements document, consisting of those sentences
that deal with particular quality attributes or other
non-functional aspects of the system. The view de-
river identifies and collects together those sentences
belonging to a given View. The availability of Views
makes the detection of inconsistencies and incomplete-
ness easier because the reviewer only has to consider
smaller sets of sentences where possible defects can be
found with much less effort.

4 QuARS Express

QUARS EXPRESS exploits the same core engine of
QUARS, but the huge number of requirements to be ana-
lyzed claimed the availability of a simpler to use tool pro-
ducing richer reports and able to manage a minimum meta-
data set. To address these needs, four improvements have
been implemented:

• a new graphical user interface has been developed al-
lowing the user to perform the time-consuming analy-
sis in a click (Figure 1 );

• since the requirements and the metadata are stored in
a repository based on RequisitePro, the tool has been
interfaced to it by means of the SoDA plug-in [23].
This has required the definition of a text format that
has been established to handle the five metadata fields:
a requirement unique ID, the Responsibility, the Type,
the Source, and the Package. Any requirement is trace-
able by means of at least one of its five metadata fields
and the produced report is tailored to be used both for
analysis and correction purposes, or for productiveness
investigations. The text format is illustrated in Figure
2 with an example;

• several readability analysis has been introduced allow-
ing the requirement authors to improve their writing
style;

• the set of metrics has been enriched adding statistics
both on the whole document and on requirements sub-
sets singled out by means of metadata fields.

Figure 3 shows a feature based comparison between
QUARS and QUARS EXPRESS. Although most of the fea-



Figure 1. QUARS EXPRESS Graphical User Interface

Figure 2. The Interchange Data Format with an example

tures are shared, it is clear that the two tools are comple-
mentary rather than one the extension of the other.

In the following, the QUARS EXPRESS features are de-
scribed more in detail.

Defect Identification As we already said, QUARS EX-
PRESS shares with QUARS the core analysis engine and
produces the same analysis results. These are based on the
same quality model, and divided in lexical analysis, cap-
turing optionality, subjectivity, vagueness and weakness de-
fects, and syntactic analysis, capturing implicitly, multiplic-
ity and under-specification defects, as well.

Readability Analysis In QUARS EXPRESS, seven read-
ability indexes have been introduced. This new feature ex-
ploits the GNU program called ”Diction/Style” [14]. The
Style program analyzes the surface characteristics of the

writing style of a document and calculates the values of
seven readability indexes well known in the readability re-
search field: Kincaid[19], ARI [15], Coleman-Liau[17],
Flesh[18], FOG[20], LIX[21], SMOG[16].
These readability indexes are a mathematical attempt, based
on word and syllables count, to point out the minimum US
school grade the reader needs to understand the text. As
a consequence, there isn’t an actually good value for any
of them, but we can assume that technical writings, as re-
quirements documents are, present an unavoidable reading
difficulty that leads to scores higher than those presented by
common popular writings such as newspapers, novels etc.
The readability analysis scores are shown in each report file
for each defective sentence such as the lexical analysis and
the syntactic analysis. Moreover the readability scores cal-
culated for all the sentences, even the not defective ones,
and for the whole document are reported as well but in sep-



Figure 3. QUARS vs QUARS EXPRESS

arate files.

Metrics and Statistics derivation The set of metrics has
been enriched with the analysis defect rate and error defect
rate, explained in detail in the following.

• Defect Rate. It is the percentage ratio between the
number of requirements with at least a defect and the
total number of analyzed requirements. Moreover, the
same ratio is calculated with respect to requirements
subsets catalogued by metadata fields.

• Analysis Defect Rate. It is the percentage ratio be-
tween the number of requirements with at least a defect
of a chosen type (Optionality, Subjectivity, Vagueness,
Weakness, Implicity, Multiplicity, Underspecification),
divided by the number of defective requirements found
in the document. The same ratio is calculated with re-
spect to requirements subsets belonging to metadata
fields as well.

• Error Defect Rate. Since more defects can be found
in a single requirement, this finer metric gives the per-
centage ratio of defects of the chosen type and the total
number of defects found.

Note that all the defect rates are calculated with respect
to both general analysis results, and to any single cho-
sen kind of analysis. Moreover QUARS EXPRESS sepa-
rately produces metrics reports based on requirements sub-
sets related to the metadata fields (e.g. Responsibility, Type,
Source and Package).

False Defects masking/hiding During the evaluation
false defects may be detected. QUARS EXPRESS provides

a simple mechanism to mask to the analysis engine false
defective wording. Due to the handling metadata included
in QUARS EXPRESS, the management of false positive de-
fects can be done with the granularity of the classification
given by metadata. For this reason we have not maintained
in QUARS EXPRESS the more refined false positive man-
agement implemented in QUARS.

4.1 QuARS Express Report Structure

QUARS EXPRESS produces an analysis report rich of
categorized information. The information grows as a func-
tion of the number of metadata items available (e.g. as a
function of the number of authors, the number of packages
and so on) and the size of the report grows consequently and
can be made of several pages. As an evolution of the simple
text-based report made by QUARS, the new report exploits
the HTML technology to produce structured hypertextual
pages, organized in a main directory and five subdirectories
(Figure 4).

Figure 4. The Report structure

The name of the main directory is formed by the fixed



string ”QuARSxpsReport” followed by the ”ReportID”, a
unique report identifier based on the time of generation,
that allows users to store several reports without overwriting
risks. The main directory contains general report files, the
ReferenceFiles directory and four additional subdirectories.
The general report files show the analysis performed on the
whole document and give a general idea of the defects dis-
tribution showing concise overview tables and global statis-
tics. The ReferenceFiles directory contains explanations
about how the tool works and about the meaning of the
various analysis performed, the statistics calculated and the
readability indexes formulas utilized.

The other four subdirectories, namely Responsibility,
Type, Source and Package, are the metadata related ones,
containing report files about the analysis filtered through
the metadata field values. Each of them can contain several
HTML files, depending on how many values the specific
metadata field contains. Each of these files gives a projec-
tion of the performed analysis over the subset of the require-
ments catalogued by means of the metadata field, hence pro-
viding help for traceability with respect to authors, source
document, requirement type or originating package.

All the HTML pages are dynamically produced follow-
ing a common structure. The header, the Table of Contents
and the analysis results are organized in tables providing
hypertext links to allow for easily jumping from a detailed
point of view to a more general one and vice versa.

The HTML pages share one each other common items:

• the heading of the file that specifies the path of the an-
alyzed requirements file, the belonging to the metadata
item and its name, the session pointed out by the uni-
voque Report ID and the date of the performed analy-
sis;

• a Table of the page Contents: a list of links pointing
the related sections of the page;

• the index of defective sentences by means of their ID
where every ID is a link pointing to the complete defect
description;

• a synoptic view of all defective sentences shown as a
table, with associated the defect wording and the kind
of analysis performed, where exist a link pointing to
the complete description (full view) of the requirement
analysis.

• some statistics (i.e., Analysis Defect Rate, Error De-
fect Rate, etc.) related to the whole document. In Fig-
ure 5 we show an example of this kind of output.

Figure 5. Analysis Statistics

5 Quality Analysis Process

The overall Quality Analysis Process adopted in the
project is depicted in Figure 6 and is summarized in the
following: (a) The partners of the project create a new file
project in RequisitePro [22] and insert the requirements
with all the required attributes (Name, Text, Responsibility,
Package, etc.).
(b) The different requirements are stored in a Requirements
File, one for each requirement class.
(c) At this point, in an automatic way, the tool SoDA [23]
generates a text document containing the requirements and
the relevant attributes, and saves it in txt format (alternative
formats are DOC, HTML and XML). A specific template
has been defined for SoDA in order to allow QUARS
EXPRESS to properly interpret the information contained in
the generated document.
(d) The obtained txt file is input to QUARS EXPRESS that
analyzes the sentences (requirements) and gives as output
the Defects Requirement Reports (DRR), for both FREQ
and SREQ documents, together with the calculation of
relevant metrics.
(e) In the case QUARS EXPRESS points to some defects, a
refinement activity is needed, possibly followed by another
quality analysis step. The DRR should be filtered by
experts, in a ”false defect survey” (f), in order to establish
whether a refinement is really necessary or not.
(g) Otherwise, the approved requirements document is
released.

6 THE RESULTS OF THE ANALYSIS OF
MODCONTROL REQUIREMENTS

In MODCONTROL project, we have analyzed by means
of QUARS EXPRESS the whole set of produced require-
ments, that is the SREQ and FREQ documents. The results
of the analysis have shown that the underlying process not



Figure 6. Evaluation Process

only can be able to point out linguistic defects, but can pro-
vide also some indications on the writing style of different
requirements authors (from different partners), giving them
the opportunity to become aware of defects and of poten-
tial improvements. In particular, it has been noted that a
requirement author is inclined to repeat the same type of
mistakes, unless becoming aware of them. In Figure 7 we
can see the number of requirements (SREQ or FREQ) writ-
ten by the partners (A,B,C, and Others for the requirements
that have been recorded without the author indication). The
project partner B has had apparently more responsibility on
system requirements, while C has had more responsibility
on functional requirements.

Figure 7. Requirements for each partner

In Table 1 and 2 we can see the number of defective re-
quirements and the ”Defect Rate” associated to each part-
ner of the project after the QUARS EXPRESS application on
SREQ and FREQ documents. These numbers, once false

defects have been filtered out, can give an indication on
which partner can be considered less accurate in the pro-
cess of writing requirements. Another important informa-
tion is on what type of defects is more often introduced in
the writing.

Partners Analyzed Defective Errors Defect Rate(%)
A 388 238 585 61
B 596 296 558 50
C 1803 1046 2516 58
Others 422 67 136 15
Total 3209 1647 3795 51

Table 1. FREQ: Defect Rate and Errors

Partners Analyzed Defective Errors Defect Rate(%)
A 710 353 900 61
B 1153 524 998 45
C 208 46 88 22
Others 497 356 836 72
Total 2568 1282 2822 50

Table 2. SREQ: Defect Rate and Errors

In Table 3 and 4 we can notice the multiplicity and vague-
ness are more frequent. Table 5 gives some results about
the execution time needed to perform the described analysis
over such large documents. The differences in the execution
speed between FREQ and SREQ, depends on the text length
for each requirement. SREQ requirements tend to be more
concise than FREQ ones: apparently, describing functions
requires more verbosity.
The last analysis performed is the Readability Analysis. Ta-
ble 6 shows the readability average scores of the two docu-
ments, FREQ and SREQ.
Note that the SREQ document results to be more readable
than the FREQ one. In fact, the indexes values of the
SREQ document stand in reasonable ranges according to
their technical nature, whereas the scores of the FREQ doc-
ument are higher than we expected.
Indeed, values of the Kincaid, ARI, Coleman-Liau, FOG,
SMOG indexes higher than 15, of the LIX index higher than
58, and of the Flesh index lower than 60 give the indication
of a hardly readable document. In our case FREQ exceeds
most of such indexes, and it is close to the limits for the
other ones: though this is not a dramatic defect, it is advis-
able to improve the readability of functional requirements,
for example shortening phrases and splitting paragraphs.



Analysis Defects % Errors %
Optionality 35 2 47 1
Subjectivity 39 2 54 1
Vagueness 353 22 652 18
Weakness 128 8 164 4
Implicitly 116 7 251 7
Multiplicity 847 51 2437 64
Underspecification 129 8 190 5

Table 3. FREQ: Defects for Type

Analysis Defects % Errors %
Optionality 23 2 29 1
Subjectivity 39 3 61 2
Vagueness 396 31 613 22
Weakness 54 4 61 2
Implicitly 66 5 129 5
Multiplicity 633 49 1809 64
Underspecification 68 6 120 4

Table 4. SREQ: Defects for Type

Doc. N. Req. Time(min) Speed(Req/min)
FREQ 3209 210 15.28
SREQ 2568 52.8 48.63

Table 5. Execution Time of Analysis

6.1 Review Process

In MODCONTROL, after the first evaluation process ex-
ecution, the partners have been invited not only to correct
defects, but also to return knowledge about false defects.
We have hence indeed identified some typical sources of
false defects, such as:

• Words usually indicating vagueness are used to allow
for implementation freedom by the manufacturers, that
is not to impose implementation choices.

• Sometimes the use of passive voice, in verbs, can be
deliberately chosen by authors not to address a specific
subject for a specific requirement. But in such cases, a
discussion of that requirement among experts, is use-
ful to clarify the intended meaning of the requirement.
Some defects are originating from previous guidelines
as norms, which are taken as they are.

Readability Index FREQ Scores SREQ Scores
Kincaid 13.5 7.4
ARI 15.6 7.6
Coleman Liau 14.2 13
Flesch Index 44.8/100 63.4/100
Fog Index 16.8 10.4
LIX 56.5 40.7
SMOG-Grading 14.2 10.1

Table 6. Readability Analysis Results

Consider these examples of false defects, taken from the
requirements related to the lighting systems:

• FREQ2349:... lighting shall provide a comfortable
and pleasing visual environment.

In this case the judgment about a ”comfortable” and
”pleasing” (two vague words) lighting level for pas-
sengers is left to the manufacturers, which will follow
also marketing criteria. Anyway, this requirement is
derived from European guidelines, and hence it has
been imported as it was.

• FREQ2351: The emergency lighting shall be suffi-
cient to enable continued occupation or safe egress
from the vehicle.

In this case the vague word ”sufficient” is indeed
weak, since a standard is expected to predicate more
precisely about emergency issues. However, this text
is taken as it is from the same European guidelines.

• FREQ1760: The emergency lighting system shall
provide a suitable lighting level in the passenger and
in the service areas of at least 5 lux at floor level.

In this case, the vague word ”suitable” is indeed a
vagueness defect, but we can note that the lighting
level is specified in the next line: this is actually a re-
dundant requirement, that should be better written as:

The emergency lighting system shall provide, in the
passenger and in the service areas, a lighting level of
at least 5 lux at floor level.

These examples show that for the detection of most false
defects the domain knowledge of the experts who have writ-
ten the requirements is needed. Collecting the feedback
from experts on false defects, we will be able to tune the



tools in order to diminish the false defects percentage. Actu-
ally, in MODCONTROL this collection has been performed
point-wise, and no systematic means to collect feedbacks,
and hence to measure the false defect rate, was established.
This is a point to improve in future applications of the ap-
proach. Anyway, the application of QUARS EXPRESS to
check the quality of the requirements has been appreciated
at the project level, as an added means to consolidate the
results of the project.

7 Conclusions and Future Works

In this paper we have presented the tool QUARS EX-
PRESS aimed at the analysis of Natural language require-
ments, and we have reported on its application to the anal-
ysis of a large set of requirements coming form the MOD-
CONTROL project. We discuss in the following the two
key points that have emerged after this experience and the
main issue that we would like to consider in the future.

• Process automation and learning phase: the evalu-
ation process introduced in Figure 6 is very simple to
use and has a high degree of automation. The user is
demanded to learn the use of the tools, to insert the
requirements in the database and to define the SoDA
template in order to generate, in an automatic way, the
requirements document that is going to be analyzed by
QUARS EXPRESS.

• Scalability: QUARS EXPRESS has been shown to
easily scale up by an order of magnitude. Moreover,
the documents analyzed for MODCONTROL were not
only text lines, but included metadata which have been
used for a better and more accurate presentation of re-
sults. Another direction of the flexibility of QUARS
EXPRESS is witnessed by the connection to Requi-
sitePro by means of the SoDA documentation tool or
any other tool able to export in a customized txt format
accepted by QUARS EXPRESS (e.g. DOORS [25]).

Another important issue in requirements management
is semantic consistency among requirements coming from
different sources. This issue has been for example dis-
cussed in [8], but is currently not addressed by QUARS
EXPRESS. On the other hand, in the context of MODCON-
TROL project semantic consistency has been addressed by
separation of concerns, giving responsibility of each differ-
ent function or subsystem to one partner.

8 Acknowledgments

This work has been partially supported by the Eu-
ropean project MODTRAIN (FP6-PLT-506652/TIP3-CT-

2003-506652) subproject MODCONTROL. Moreover au-
thors thank Andreas Winzen of Siemens AG, Erlangen, Ger-
many, for his valuable insights about this work.

References

[1] V. Ambriola and V. Gervasi. Experiences with
Domain-Based Parsing of Natural Language Require-
ments, Proc. 4 th International Conference NLDB ’99,
Klagenfurt, Austria, 1999.

[2] A. Bucchiarone, S. Gnesi and P. Pierini. A Qual-
ity Analysis of NL Requirements: An Industrial Case
Study, Proc. of the 13th IEEE International Require-
ments Engineering Conference, Paris, France, (RE
2005).

[3] S. Gnesi, G. Lami, G. Trentanni, F. Fabbrini and M.
Fusani. An automatic tool for the analysis of appli-
cation of Natural Language Requirements, Computer
Systems Science and Engineering Vol. 20, N. 1, pp
53-62, CRL Publishing 2005.

[4] F. Fabbrini, M. Fusani, S. Gnesi and G. Lami. The Lin-
guistic Approach to the Natural Language Require-
ments Quality: Benefits of the use of an Automatic
Tool, Proc. of 26th NASA Software Engineering
Workshop, IEEE November 2001.

[5] F. Fabbrini, M. Fusani, S. Gnesi and G. Lami. An
Automatic Quality Evaluation for Natural Language
Requirements, Proc. of 7th Int. Workshop on Require-
ments Engineering: Foundation for Software Quality
(REFSQ’01), Interlaken, Switzerland, June 4-5, 2001.

[6] G. Lami and R. W. Ferguson. An empirical study on
the impact of automation on the requirements analysis
process, In: Journal of Computer Science and Tech-
nology, vol. 22 (3) pp. 338 - 347. Springer, 2007.

[7] R. H. Thayer and M. Dorfman. IEEE Software Re-
quirements Engineering, Second Edition, IEEE Com-
puter Society, New York, NY. 1997.

[8] M. Sabetzadeh and S. M. Easterbrook. An Algebraic
Framework for Merging Incomplete and Inconsistent
Views. Proc. of the 13th IEEE International Require-
ments Engineering Conference, Paris, France, (RE
2005).

[9] W. M. Wilson , L. H. Rosemberg and L. E. Hyatt. Au-
tomated Analysys of Requirement Specifications, Pro-
ceedings of the 19th International Conference on Soft-
ware Engineering (ICSE-97), Boston, MA, May 1997.



[10] L. Mich and R. Garigliano. Ambiguity Measures in
Requirement Engineering, International Conference
on Software Theory and Practice. ICS 2000, Beijing,
China.

[11] A. Winzen. Process for MODCONTROL, Technical
Report of the MODTRAIN-MODCONTROL project,
2004.

[12] MODTRAIN: Innovative Modular Vehicle Concepts
for an Integrated European Railway System. See:
http://www.modtrain.com/.

[13] D. Berry, E. Kamsties, Ambiguity in requirements
specification, In: Perspectives on Requirements En-
gineering, Kluwer (2004) 7-44

[14] Diction/Style reference site. See:
http://www.gnu.org/software/diction

[15] E. A. Smith, R. J. Senter. Automated Readability Index
(ARI) Wright-Patterson AFB, OH: Aerospace Medical
Division. AMRL-TR, 66-22, 1967.

[16] H. McLaughlin. SMOG grading - a new readability
formula, Journal of Reading, 22, 639-646, 1969.

[17] M. Coleman and T.L. Liau. A Computer readability
formula designed for machine scoring, Journal of Ap-
plication Psychology, 60, 283-284, 1975.

[18] R. Flesch. How to Write Plain English, HarperCollins
- 1st edition (August 1979)

[19] J. P. Kincaid, R. P. Fishburne, R. L. Rogers and B. S.
Chissom. Derivation of new readability formulas for
navy enlisted personnel. (1975).

[20] R. Gunning. The Technique of Clear Writing.
McGraw-Hill New York, 1952

[21] J. Anderson. Analysing the Readability of English and
Non-English Texts in the Classroom with Lix Paper
presented at the Australian Reading Association Con-
ference, Darwin, August (ED 207 022).

[22] IBM Rational RequisitePro.
http://www-306.ibm.com/software/awdtools/reqpro/.

[23] IBM Rational SoDA.
http://www-306.ibm.com/software/awdtools/soda/.

[24] QuARS (Quality Analyzer for Requirements Specifi-
cation).
http://www.quars.isti.cnr.it.

[25] Telelogic DOORS/ERS.
http://www.telelogic.com/products/.

[26] Automated Requirement Measurement (ARM) Tool.
http://satc.gsfc.nasa.gov/tools/arm/.


