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Abstract We describe a general phase-field model for hyperelastic multiphase materials.
The model features an elastic energy functional that depends on the phase-field variable and
a surface energy term that depends in turn on the elastic deformation, as it measures inter-
faces in the deformed configuration. We prove existence of energy minimizing equilibrium
states and �-convergence of diffuse-interface approximations to the sharp-interface limit.
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1 Introduction

Mathematical models of multi-component (or multi-phase) materials have attracted the at-
tention of researchers for decades. A prominent example of multi-phase materials is pro-
vided by shape memory alloys, i.e., intermetallic materials having a high-temperature phase
called austenite and a low-temperature phase called martensite, existing in many symmetry-
related variants, see [6, 9]. Mathematical analysis of elastostatic problems of such materials
is involved because of the lack of suitable convexity properties. In fact, these materials
exhibit complicated microstructures which are reflected in faster and faster oscillations of
minimizing sequences driving the elastic energy functional to its infimum. Consequently,
no minimizer generically exists and various methods have been developed to cope with this
difficulty.

A possibility to overcome the nonexistence issue is to search for a lower semicontinuous
envelope of the energy functional that describes macroscopic behavior of the specimen [13].
This provides us with a solvable minimization problem and ensures that every minimizer is
reachable by a minimizing sequence of the original problem. The downside of this method,
called relaxation, is that such envelope is usually not known in closed form. Another variant
of this approach is to look for Young-measure-valued minimizers, i.e., to enlarge a set of
admissible states of the body. This requires to extend the functional in a continuous way.
Nevertheless, the set of acceptable measure-valued states called gradient Young measures is
known only implicitly and only some strict subsets (laminates) are well-described. We refer,
e.g., to [10, 17] for this choice combined with dimension reduction problems.

A second option is to include a higher-order deformation gradient to the energy func-
tional. In this case, we resort to nonsimple materials, see, e.g., [5, 7, 8, 28, 34, 35] for var-
ious attempts in this direction. Here, a convex function of the second deformation gradient
(strain gradient) penalizes spatial changes of the first gradient, which introduces a second
length scale in the model and implies that oscillations in minimizing sequences have finite
fineness. Besides, some models that are discussed in the above contributions include surface
terms along the discontinuity set of the first deformation gradient, see also [15, 37].

A third option is the phase-field approach to multiphase materials, in which each phase
of the material is identified by some value of a suitable phase indicator. A surface energy is
generally assigned to each phase-separating interface, which prevents repeated phase jumps
at small scale, see for instance the general theory by Šilhavý [39–41]. In the gradient theory
of phase transitions, the surface area penalization is relaxed by assuming that the change
of phase takes place in a small but finite layer. This is the typical approach to the theory of
Cahn-Hilliard fluids [3, 22, 32, 42], the fundamental convergence result to the sharp interface
limit being established in [32] based on the Modica-Mortola Theorem [33].

In this paper, we consider an elastic model for multi-phase materials inspired by [39–41].
We introduce an energy functional depending on the first deformation gradient and a phase
indicator distinguishing particular material phases or variants. In particular, to each pair of
continuous phases we associate an interfacial energy, where interfaces are measured in the
deformed configuration. In fact, variational theories featuring Eulerian interfacial energy
terms can be traced back at least to [23] and have been considered, for instance, in [27,
29–31], among others.
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In the particular case of a two-component material, a diffuse-interface approximation
to the Šilhavý’s model was discussed in [21]. There, we proved that the approximations
�-converge to the sharp-interface model. The aim of this paper is to extend that theory in
several ways. We shall introduce a more general model, allowing for a finite number of ma-
terial components. For the treatment of this model, we shall further develop the analysis of
interfacial measures from [21], where a key role is played by the notion of mappings of finite
distortion [25]. In this regard, the characterization result that we shall provide in Theorem
4.2 is a generalization of [21, Theorem 2.2]. We shall also consider the borderline case of
deformations in W 1,p(�;Rn) with p = n, hence without requiring their Hölder continuity.

Let � ⊂ R
n, n ≥ 2, be an open domain representing the reference configuration of a

multi-component material. The composition of the material at each point is described by
a component vector z(x) = (z1(x), . . . , zh(x)) ∈ R

h. For instance, a mixture of h chemical
species can be described by the relative mass fraction zi ∈ [0,1], of the ith component of
the mixture for i = 1, . . . , h. If the components are immiscible, then at each point x ∈ � we
have zi(x) ∈ {0,1} and zi(x) = 1 if and only if the material component i is present at x.
As a second example, we can mention ferromagnetic materials, in which the spontaneous
magnetization vector z(x) ∈R

3 can serve as the component descriptor of the phase.
We introduce the discrete set P = {pα ∈ R

h | α = 1, . . . ,m}, m ≥ 2, of stable phases
characterized by the component vectors z = pα . The relation between the components num-
ber h and the number of stable phases m depends on the specific model. For instance, in an
immiscible mixture with h components, we may have m = h and (pα)i = δiα , where (pα)i

is the ith component of pα . On the other hand, if the component vector z ∈ R
3 represents

the (saturated) magnetization vector of an anisotropic magnetic crystal, for instance with
cubic anisotropy, one needs to consider m = 2h = 6 stable phases corresponding to the six
magnetization directions ±(1,0,0), ±(0,1,0), ±(0,0,1).

Sharp Interface Model In the sharp-interface setting, given a component-configuration
field z : � → R

h taking values in P , we let Eα(z) := {x ∈ � : z(x) = pα}, α = 1, . . . ,m. The
sets (Eα)α form a partition of � describing the spatial distribution of phases. For a given
deformation y : � → �y ⊂ R

n, we let ζ : �y → R
h denote the associated indicator function

in the deformed configuration, i.e., ζi := zi ◦ y−1, i = 1, . . . , h. The set Ey
α := y(Eα) is the

region occupied by phase α in the deformed configuration.
We consider the stored energy functional for an elastic multiphase material

F0(ζ, y) =
∫

�

W(∇y(x), ζ(y(x))) dx + 1

2

m∑
α,β=1

dα,βHn−1(E
y

α,β) (1.1)

where W is the stored bulk energy and

E
y

α,β := ∂∗Ey
α ∩ ∂∗Ey

β ∩ �y

is the interface between Eα and Eβ in the deformed configuration. Here, ∂∗ denotes the
reduced boundary. The coefficients dα,β are suitable surface-tension parameters such that
dα,β = dβ,α ≥ 0 and dα,β = 0 if and only if α = β . The coefficients are assumed to satisfy
the following inequalities

dα,β + dβ,γ ≥ dα,γ (1.2)

for any admissible triple of indexes α, β , γ . This condition is necessary for lower semicon-
tinuity of F0, see [1]. Indeed, assume that dα,γ > dα,β + dβ,γ for some triple of phases and
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consider a sequence of states where a layer of the phase β , of thickness tending to zero,
is inserted between the layers α and γ . The bulk contribution in (1.1) tends to the value
taken in absence of the phase β (the limit state); instead, the interfacial energy undergoes
an increasing jump discontinuity in the limit process. The meaning of (1.2) also resides in
its relation with the notion of separability of interfaces from [40], which would require the
existence of coefficients gα , α = 1, . . . ,m, such that dα,β = gα + gβ for any α and any β

between 1 and m. The separability assumption implies (1.2) and the two are equivalent if
m = 2,3.

This model, as in [3], features a standard sharp interface term for a multiphase material.
On the other hand, the interface penalization is complemented by an elastic energy term
that accounts for macroscopic deformation of the specimen, and the choice of taking the
interface term in the deformed configuration is an example of interface polyconvex energy as
described by [39–41]. In particular, we restrict to one specific example from the general class
introduced in [39–41], paving the way to a more specific existence theory, under tailored
conditions.

Diffuse-Interface Model We are interested in providing a diffuse-interface approximation
of the above energy. In a diffuse-interface model, the phase field z takes values in R

h. The
phase-field functional is defined as

Fε(ζ, y) = Fbulk(ζ, y) +F int
ε (ζ, y),

where

Fbulk(ζ, y) :=
∫

�

W(∇y(x), ζ(y(x))) dx, F int
ε (ζ, y) :=

∫
�y

ε

2
|∇ζ(ξ)|2 + 1

ε
�(ζ(ξ)) dξ,

and where we denote by ξ (here and through the paper) the variable in deformed configura-
tion, i.e., ξ ∈ �y . We have introduced a continuous multi-well potential � : Rh → R

+ with
zeros only at p1, . . . pm. The relationship between the two models is established by letting

dα,β := d�(pα,pβ), α = 1, . . . ,m, β = 1, . . . ,m, (1.3)

where d� the Riemannian distance in R
h induced by

√
2�, i.e.,

d�(p,q) := inf

{∫ 1

0

√
2�(γ (t))|γ ′(t)|dt : γ ∈ C1

pw([0,1];Rh), γ (0) = p, γ (1) = q

}
.

In the latter, the subscript pw stands for piecewise. It is a standard matter to check that d�

is a distance. Indeed, symmetry comes from the invariance of the integral under the trans-
formation t �→ 1 − t , nonnegativity and the fact that d�(p,p) = 0 are clear. Nondegeneracy
comes from the fact that � is continuous, nonnegative, and vanishes just at P , which is a
finite set of points. Finally, the triangle inequality is an easy consequence of the definition
of d� as infimum of line integrals over paths connecting two points, given the composition
property of the admissible paths.

Plan of the Paper We first state our main results in Sect. 2. In particular, we address the
existence of minimizers for the sharp-interface, as well as for the diffuse-interface func-
tionals Fε and F0 in Theorems 2.1 and 2.2, respectively. Theorem 2.1 complements the
existence results for interface polyconvex energies from [39–41], which require different
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assumptions, see also [21, Sect. 2.5] for a detailed discussion on this topic. The approxi-
mation result is stated in Theorem 2.3. Properties of admissible deformations are reviewed
in Sect. 3 whereas properties of interfacial measures, implicitly introduced in [40, 41], are
detailed in Sect. 4. Our results mainly rest on proving a �-convergence statement. Indeed, a
proof of the fact that F0 is a lower bound for Fε is contained in Sect. 6. Eventually, proofs
of the main theorems can be found in Sect. 7.

2 Main Results

Let � ⊂ R
n, n ≥ 2, be a bounded open Lipschitz set representing the reference configu-

ration. In this section, we introduce the set of admissible couples (y, ζ ) (deformation and
phase indicator) and we state the main results.

2.1 Admissible States

Following [21], we introduce the functional spaces of the admissible states. For fixed
q > n − 1 and p ≥ n (not included in the notation for simplicity), we define the space
of admissible deformations as

Y :=
{
y ∈ W 1,p(�;Rn) | det∇y > 0 a.e. ,

∫
�

det∇y(x)dx ≤ |�y |, Ky ∈ Lq(�)

}
. (2.1)

Here, Ky denotes the optimal distortion function associated to the deformation map y, see
Definition 3.1 below. Any element of Y has a continuous representative which is a homeo-
morphism. This is a consequence of the Ciarlet-Nečas [12] condition appearing in (2.1) and
of the Lq integrability of the distortion function as shown in [21] for n = 3. The arguments
therein straightforwardly apply for any dimension n ≥ 2. Later in Sect. 3 we shall derive
more properties of the set of admissible deformations.

Recalling that P ⊂ R
h is the finite set of stable phases, we define the sets of the states,

including the states for the sharp interface model

Q := {(y, ζ ) | y ∈ Y, ζ ∈ BV (�y;Rh), ζ(ξ) ∈ P for a.e. ξ ∈ �y},
and for the diffuse interface model

Q̃
R := {(y, ζ ) | y ∈ Y, ζ ∈ W 1,2(�y;Rh), |ζ(ξ)| ≤ R for a.e. ξ ∈ �y},

where R > 0. A natural compatibility condition for the two models is R > maxα∈{1,...,m} |pα|,
so that for a couple (y, ζ ) ∈ Q̃

R , ζ may take values in P .
Letting �0 ⊂ ∂� be relatively open in ∂� with Hn−1(�0) > 0, and letting y0 ∈ Y be

continuous up to ∂�, we introduce the associated function spaces with Dirichlet boundary
conditions

Q(y0,�0) := {(y, ζ ) ∈Q | y = y0 on �0}, Q̃
R
(y0,�0) := {(y, ζ ) ∈ Q̃

R |y = y0 on �0},
where the relation y = y0 on �0 is understood in the sense of traces. Moreover, y0 is required
to be nonconstant on �0 (i.e., the image of �0 does not shrink to a point). We further define
Qy0 := Q(y0,∂�) and Q̃

R
y0

:= Q̃
R
(y0,∂�).

Given y0 ∈ Y, the compatibility between the boundary condition y = y0 on �0 and the
choice of the energy functional is enforced by assuming that

there exists (y, ζ ) ∈ Q(y0,�0) such that F0(y, ζ ) < ∞. (2.2)



D. Grandi et al.

2.2 The Elastic Energy

The elastic energy, both in the diffuse- and in the sharp-interface case, is given by the bulk
integral functional Fbulk(ζ, y). The following assumptions are made for the energy density
W :Rn×n ×R→ (−∞,+∞].

The map W(·, ·) is lower semicontinuous in R
n×n ×R

h,

for any z ∈R
h, the map F �→ W(F, z) is polyconvex,

W(RF, z) = W(F, z) ∀R ∈ SO(n), ∀F ∈R
n×n, ∀z ∈R

h,

(2.3)

where SO(n) appearing in the standard frame-indifference property is the special orthogonal
group, i.e., SO(n) = {R ∈ R

n×n | RRT = I, detR = 1}. The notion of polyconvexity [4]
requires that the map F �→ W(F, z) can be written as a convex function of all of the minors
(subdeterminants) of F . For instance, if n = 3,

W(F, z) :=
{

w(F, cofF,detF,z) if detF > 0,

∞ otherwise

for a convex function w(·, z) : R19 → R, at all z ∈ R
h, where cofF denotes the cofactor

matrix of F . We further assume that W(·, z) satisfies a suitable coercivity property. More
precisely, we require that there exists C > 0, p ≥ n, r > 1, and q > n − 1 such that

W(F, z) ≥ C

(
|F |p + (detF)r + |F |nq

(detF)q

)
− 1

C
∀F ∈R

n×n, ∀z ∈R
h. (2.4)

The third term on the right-hand side of (2.4) ensures that deformation gradients F = ∇y

with finite energy will have a q-integrable distortion function F �→ |F |n/detF . Notice that
F �→ |F |n/detF is polyconvex on the set of matrices with positive determinant. On the
other hand, we mention that it is possible to drop the restriction W(F, z) ≥ C(detF)r in
case p > n.

A typical example of a bulk energy functional W is

W(F, z) =
h∑

i=1

z+
i Wi(F ) +

(
1 − (z1 + · · · + zh)

)+
Wh+1(F ), (2.5)

where we assume that the listed properties (2.3)-(2.4) are uniformly satisfied by every elastic
potential Wi at the place of W . The latter corresponds to a mixture ansatz, where notation is
prepared for the general case z ∈R

h of the phase-field approximation. In the sharp-interface
case, we have that z ∈ P , where the set P of stable phases includes the origin and the
standard orthonormal basis of Rh (thus, m = h + 1) and the latter elastic energy takes the
classical form

W(F, z) =
h∑

i=1

ziWi(F ) + (1 − (z1 + · · · + zh))Wh+1(F ), z ∈ P.

We also note that the assumptions (2.3)-(2.4) on W could be imposed in the physical case
z ∈ Conv(P ) first, and then extended to the whole R

h by a suitable projection construction.
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2.3 Statement of the Main Results

Owing to the above-introduced notation, we are now in the position of stating the main
results of the paper. In the next three statements, the following underlying assumptions are
understood to hold. � is a bounded open Lipschitz domain. The exponents p, q in the
definition of the set of admissible deformations Y are of course given by assumption (2.4).
As discussed in the introduction, the multi-well potential � : Rh → R

+ is continuous and
vanishing only at points of P , and the coefficients dα,β appearing in (1.1) are given by (1.3).
About the Dirichlet datum, we require that y0 ∈ Y is continuous up to the boundary of �

and not constant on �0. Here, �0 ⊂ ∂� is relatively open in ∂� and Hn−1(�0) > 0.

Theorem 2.1 (Existence for the sharp-interface model) Under assumptions (2.2), (2.3),
(2.4), the functional F0 admits a minimizer on Q(y0,�0).

Before moving on, let us compare this result with the former existence theory from [39–
41] by pointing out that indeed the class of interfacial energies densities considered therein
is more general. In the notationally simpler two-phase case and in dimension 3, such general
interfacial energy densities are written in Lagrangian variables as


(n,∇Sy × n, (cof∇Sy)n), (2.6)

where the function 
 : R15 → R is assumed to be positively 1-homogeneous and convex,
and to depend on the normal n to the phase interface in the reference configuration, on the
surface gradient ∇Sy of the deformation, and on the cofactor of the surface gradient. Here,
∇Sy × n is defined by (∇Sy × n)a = ∇Sy (n × a) for any a ∈R

3.
Our current model corresponds to the specific choice


(n,∇Sy × n, (cof∇Sy)n) = d |(cof∇Sy)n|, (2.7)

where d > 0 is a surface-tension coefficient, and is hence a special case from the modeliza-
tion in [39–41], see [39, Example 2.6.5]. Still, the restrictive assumption (2.7) allows us to
rewrite the interfacial energy in Eulerian variables as the perimeter of the set occupied by
one of the two phases in the deformed configuration, or as the more general term in (1.1) in
the multiphase case. This is due to the characterization result that we shall prove in Sect. 4.
In addition, in [39–41] it is assumed that the function 
 in (2.6) is coercive in all variables,
whereas our coercivity assumption is of course weaker, for it is tailored to the fact that 


depends on (cof∇Sy)n only, see (2.7).

Theorem 2.2 (Existence for the diffuse-interface model) Let ε > 0 and R > 0 be fixed.
Suppose that (y, ζ ) ∈ Q̃

R
(y0,�0) exists such that Fε(y, ζ ) < ∞. Let assumptions (2.3), (2.4)

hold. Then, there is a minimizer of Fε on Q̃
R
(y0,�0).

The third main result states that the phase-field indeed approximates the sharp-interface
model, namely F0 is the �-limit [14] of the family (Fε)ε . It requires an additional assump-
tion on the boundary datum y0. Namely, we ask for �0 = ∂�, i.e., Dirichlet conditions are
imposed on the whole boundary, and �y0 is assumed to be a Lipschitz domain. Moreover,
assumptions on W have to be strengthened by additionally asking

the map W(F, ·) :Rh → (−∞,+∞] is continuous for any F ∈R
n×n. (2.8)
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We shall also require that for any R > 0, given y ∈ Y and given z ∈ L1(�;Rh) such that
|z| ≤ R a.e. in �, there holds

∫
�

W(∇y(x), z(x)) dx < ∞ ⇒
∫

�

sup
{z∈Rh:|z|≤R}

W(∇y(x), z) dx < ∞. (2.9)

When considering the mixture example (2.5), the latter assumption is satisfied under the
following comparability condition between the elastic potentials of the different phases:
if y ∈ Y is such that Wi(∇y) is integrable on � for some i = 1, . . . ,m, then Wj(∇y) is
integrable on � for any j �= i.

Theorem 2.3 (Phase-field approximation) Let assumptions (2.2), (2.3), (2.4), (2.8) and
(2.9) hold. Let y0 ∈ Y be such that �y0 is a Lipschitz domain. There exists R0 > 0 such
that if R > R0 the following holds. For every vanishing sequence (εk)k of positive numbers
and every sequence (yk, ζk)k of minimizers of Fεk

on Q̃
R
y0

, there exists (y, ζ ) ∈Qy0 such that,
up to not relabeled subsequences,

i) yk → y weakly in W 1,p(�;Rn) as k → ∞
ii) ζk → ζ strongly in L1(�y;Rh) as k → ∞

iii) (y, ζ ) minimizes F0 on Qy0 .

Remark 2.4 (Incompressibility) The above results can be specialized to the case of an in-
compressible material. Indeed, one could impose the incompressibility constraint by letting
W(F, z) = +∞ if detF �= 1, which is compatible with the assumptions on W . For the model
case (2.5) one might require Wα(F) = +∞ if detF �= 1 for any α = 1, . . . ,m.

Remark 2.5 (Mass constraint) Our analysis would allow additionally imposing the con-
straint ∫

�y

ζi(ξ) dξ =
∫

�

ζi(y(x)) det∇y(x) dx = Mi, i = 1, . . . , h

for given values Mi . By interpreting ζi as volume densities, the latter corresponds to con-
straining the mass of the single phases. In the incompressible case, see Remark 2.4, such
constraints can be equivalently rewritten, for couples (y, ζ ) with finite energy, in the more
standard form ∫

�

zi(x) dx =
∫

�

ζi(y(x)) dx = Mi, i = 1, . . . , h.

3 Properties of Admissible Deformations

In this section we introduce the notion of mappings of finite distortion and the distortion
function which appears in the definition (2.1) of the set Y of admissible deformations. Based
on the properties of such mappings, for which we mostly refer to [25], we shall obtain a
suitable closure property of Y. Let us start by some basic definitions. In this section, � is an
arbitrary open set of Rn.

The set of finite Radon measures μ on � with value in R
n is denoted by M(�;Rn) and

it is normed by the total variation

|μ|(�) := sup

{∫
�

f · dμ | f ∈ C0
c (�;Rn), ‖f ‖∞ ≤ 1

}
.
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The weak convergence in M(�;Rn) of a sequence (μn) ⊂ M(�;Rn) to μ ∈ M(�;Rn) is
defined by ∫

�

f · dμn →
∫

�

f · dμ for any f ∈ C0
c (�;Rn).

For a measurable set E ⊂ �, we denote the n-dimensional Lebesgue measure by |E| and the
m-dimensional Hausdorff measure by Hm(E). By χE we denote the characteristic function
of E. If g ∈ L1

loc(�), we say that g ∈ BV (�) if

|∇g|(�) := sup

{∫
�

g divϕ dx | ϕ ∈ C∞
c (�;Rn), ‖ϕ‖∞ ≤ 1

}
< +∞,

and we say that a measurable set E ⊂ � is a set of finite perimeter in � if χE ∈ BV (�).
We use the notation Per(E,�) := |∇χE |(�). For a set of finite perimeter E in �, there is
a subset ∂∗E of ∂E (called reduced boundary) such that Per(E,�) = Hn−1(∂∗E ∩ �), see
[2]. Given y : � → R

n, we will use the notations �y := y(�) and Ey := y(E), and we recall
that y is said to satisfy the Lusin condition N if |E| = 0 ⇒ |Ey | = 0.

Definition 3.1 (Finite distortion) Let � ⊂ R
n for n ≥ 2 be an open set. A Sobolev map

y ∈ W
1,1
loc (�;Rn) with det∇y ≥ 0 almost everywhere in � is said to be of finite distortion

if det∇y ∈ L1
loc(�) and there is a function K : � → [1,+∞] with K < +∞ almost every-

where in � such that |∇y|n ≤ K det∇y. For a mapping y of finite distortion, the (optimal)
distortion function Ky : � →R is defined as

Ky(x) :=
{ |∇y(x)|n/det∇y(x) if det∇y(x) �= 0,

1 if det∇y(x) = 0.

The polyconvexity of the map F �→ |F |n/detF on the set of matrices with positive de-
terminant is due to the convexity of the map (t, s) �→ |t |n/s on R× (0,+∞). We also notice
that any y ∈Y is a mapping of finite distortion and moreover it has Lq -integrable distortion
(and, as already mentioned, y is in fact a homeomorphism). Then, by [26, Theorem 4.1], for
any y ∈Y we also have y−1 ∈ W 1,n(�y;Rn) and y−1 is itself a mapping of finite distortion.

The following result is a closure property of the set of admissible deformations.

Lemma 3.2 (Closure) Let p ≥ n and let q > n − 1. Let y ∈ W 1,p(�;Rn) and let (yk)k ⊂Y

be a sequence such that

i) y is not constant
ii) yk → y weakly in W 1,p(�;Rn) as k → ∞,

iii) C := supk∈N ‖Kyk
‖Lq(�) < +∞.

Then y ∈Y. In particular, y has a continuous representative which is a homeomorphism.

Proof It is enough to consider the hardest case p = n. We recall from [21, Sect. 3] that any
element of Y has a continuous representative which is a homeomorphisms of � onto �y .

First of all, up to extraction of a not relabeled subsequence, there exists a function K ∈
Lq(�) such that Kyk

→ K weakly in Lq(�) as k → ∞. Then, a result by Gehring and
Iwaniec [19], see also [18], ensures that y is a mapping of finite distortion such that

‖Ky‖Lq(�) ≤ ‖K‖Lq(�) ≤ lim inf
k→+∞

‖Kyk
‖Lq(�) ≤ C.
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In particular, y has a continuous representative by [25, Theorem 2.3]. Moreover, since
yk → y weakly in W 1,n(�;Rn), the higher integrability result by Müller [34] entails
det∇yk → det∇y weakly in L1(E) for any open set E compactly contained in �. There-
fore, we may invoke the result in [20, Theorem 4.4] to infer that |Eyk | → |Ey | as k → +∞,
(in fact, [20, Theorem 4.4] is more general and involves the notion of ‘measure-theoretic
image’, however the measure-theoretic images are in this case reduced to the usual images
of E through the continuous representatives of yk and y). Moreover, by [25, Theorem 4.5],
continuous representatives of W 1,n(�;Rn) mappings of finite distortion satisfy the Lusin
condition N , and thus the area formula holds with equality, see [25, Theorem A.35]. In
particular, since the yk’s are in fact homeomorphisms, the area formula yields

∫
E

det∇y dx = lim
k→+∞

∫
E

det∇yk dx = lim
k→+∞

|Eyk | = |Ey |.

By taking now an increasing sequence of open sets Ej , compactly contained in �, such that
∪∞

j=1Ej = �, and by applying the monotone convergence theorem, we pass to the limit in
the equality

∫
Ej

det∇y dx = |Ey

j | and we obtain the validity of the Ciarlet-Nečas condition
(with equality) for y. We notice that since y is not constant, it is an open map by [25,
Theorem 3.4], therefore �y is open. The Ciarlet-Nečas condition entails that the multiplicity
function N(�,y, ·) of y on � is a.e. equal to 1 in �y : indeed, since y satisfies the Lusin
condition N , the area formula and the Ciarlet-Nečas condition yield

|�y | ≤
∫

�y

N(�,y, ξ) dξ =
∫

�

det∇y ≤ |�y |

so that N(�,y, ξ) = 1 for a.e. ξ ∈ �y . By invoking [25, Lemma 4.13] we conclude that
det∇y > 0 a.e. in �. This proves that y ∈Y. �

4 Interfacial Measures

This section is devoted to introduce the fundamental notions of our theory, in particular we
introduce interfacial measures and provide a generalization of [21, Theorem 2.2]. In this
section, � ⊂ R

n denotes a generic open set.

Definition 4.1 (Interfacial measure) Let p ≥ n. Given a homeomorphism of finite distortion
y ∈ W

1,p

loc (�;Rn) and g ∈ Lr
loc(�) for some r ∈ [ p

p−n
,+∞], we say that py,g ∈ M(�;Rn)

is an interfacial measure for the couple (y, g) if
∫

�

g cof (∇y) : ∇ψ dx =
∫

�

ψ · dpy,g for any ψ ∈ C∞
c (�;Rn). (4.1)

The relevance of this notion comes from its role in the characterization of interface areas
in the deformed configurations, in case g is a distance function from an energy well. It will
be thoroughly discussed in Theorem 4.2 and in the rest of the paper. If y is the identity
map on �, requiring the existence of an interfacial measure is equivalent to saying that
g ∈ BV (�). If (4.1) holds, py,g is the distributional divergence of −g cof∇y in �.

In the following, we give a characterization of those couples (g, y), where g ∈ L∞
loc(�)

and y is a homeomorphism in W
1,n
loc (�), such that g ◦ y−1 ∈ BV (�y). We state the theorem

after having introduced some preliminary notation.
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For a homeomorphism y : � → R
n and a finite Radon measure μ ∈ M(�y;Rn), the

pull-back measure of μ through y, denoted y�μ, is the measure in M(�;Rn) defined by

∫
�

ψ · d(y�μ) =
∫

�y

ψ ◦ y−1 · dμ for any bounded Borel function ψ : � →R
n.

Clearly, y�μ(�) = μ(�y). Moreover, |y�μ|(�) = |μ|(�y), since is y is a homeomorphism.
Indeed, since y is a homeomorphism we have ψ ◦ y−1 ∈ C0

c (�
y;Rn) and ‖ψ ◦ y−1‖∞ =

‖ψ‖∞ whenever ψ ∈ C0
c (�;Rn), therefore by the definition of total variation (see Sect. 3)

|y�μ|(�) = sup
ψ∈C0

c (�;Rn)
‖ψ‖∞≤1

∫
�

ψ · d(y�μ) = sup
ψ∈C0

c (�;Rn)
‖ψ‖∞≤1

∫
�y

ψ ◦ y−1 · dμ ≤ |μ|(�y).

Similarly, given ϕ ∈ C0
c (�

y;Rn) we have ϕ ◦ y ∈ C0
c (�;Rn) with ‖ϕ ◦ y‖∞ = ‖ϕ‖∞, thus

|μ|(�y) = sup
ϕ∈C0

c (�y ;Rn)
‖ϕ‖∞≤1

∫
�y

ϕ ◦ y ◦ y−1 · dμ = sup
ϕ∈C0

c (�y ;Rn)
‖ϕ‖∞≤1

∫
�

ϕ ◦ y · d(y�μ) ≤ |y�μ|(�).

Theorem 4.2 (Characterization) Let p ≥ n and let y ∈ W
1,p

loc (�;Rn) be a homeomorphism
of finite distortion. Let g ∈ L∞

loc(�). Then, g ◦ y−1 ∈ BV (�y) if and only if a finite Radon
measure py,g ∈ M(�;Rn) exists such that (4.1) holds. In such case,

py,g = y�(∇(g ◦ y−1)) = −div(g cof∇y) in M(�;Rn). (4.2)

Proof We preliminarily observe that a homeomorphism in W
1,n
loc (�;Rn) satisfies the Lusin’s

condition N [38, Theorem. 3], i.e., |E| = 0 ⇒ |Ey | = 0 for any measurable set E ∈ �. As
a consequence Ey is measurable for any measurable set E ∈ � (due to the Rademacher-
Ellis theorem, see for instance [11, pp. 330]) and we may apply the area formula, see [25,
Theorem A.35]: if f ∈ Lr

loc(�) for some r ∈ [ p

p−n
,+∞], for the measurable function f ◦y−1

there holds ∫
Ey

|f | ◦ y−1 dξ =
∫

E

|f | det∇y dx,

for any measurable set E ⊂ �. In particular we obtain f ◦ y−1 ∈ L1
loc(�

y), since we have
by assumption det∇y ∈ L

p/n

loc (�) and f ∈ Lr
loc(�). The Lusin condition N also implies that

‖g ◦ y−1‖L∞(Ey ) = ‖g‖L∞(E) for any measurable set E ⊂ � so that we obtain g ◦ y−1 ∈
L∞

loc(�
y), since g ∈ L∞

loc(�).

Direct implication Let us assume g ◦y−1 ∈ BV (�y). We shall verify that, by taking py,g :=
y�(∇(g ◦ y−1)), (4.1) holds along with (4.2).

First, we observe that y�(∇(g ◦ y−1)) ∈ M(�;Rn) by definition of pull-back, since
∇(g ◦ y−1) ∈ M(�y;Rn). Let ψ ∈ C∞

c (�;Rn). Let Gε := (g ◦ y−1) ∗ ρε , where ρε(x) :=
ε−nρ(x/ε), x ∈R

n, and ρ is the standard unit symmetric mollifier in R
n, so that (up to pass-

ing to a vanishing sequence, which we do not include in the notation) Gε → g ◦ y−1 a.e. in
�y and ∇Gε ⇀ ∇(g ◦ y−1) weakly in M(�y;Rn). Therefore,
∫

�

ψ · d(y�(∇(g ◦ y−1))) =
∫

�y

(ψ ◦ y−1) · d(∇(g ◦ y−1)) = lim
ε→0

∫
�y

(ψ ◦ y−1) · ∇Gε dξ.

(4.3)
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There holds (∇y)−T ∇(Gε ◦ y) = (∇Gε) ◦ y a.e. in D := {x ∈ � : det∇y(x) > 0}. The
cofactor matrix is divergence-free, implying div((cof∇y)T ψ) = cof∇y : ∇ψ . Moreover,
cof∇y = 0 holds a.e. on � \ D since y is a mapping of finite distortion. Hence,

∫
�y

(ψ ◦ y−1) · ∇Gε dξ =
∫

D

(det∇y)ψ · (∇Gε) ◦ y dx

=
∫

D

(det∇y)ψ · (∇y)−T ∇(Gε ◦ y)dx =
∫

D

(det∇y) (∇y)−1ψ · ∇(Gε ◦ y)dx

= −
∫

�

(Gε ◦ y)div((cof∇y)T ψ)dx = −
∫

�

(Gε ◦ y) cof∇y : ∇ψ dx.

(4.4)
Since Gε → g ◦ y−1 pointwise a.e. in �y , we obtain Gε ◦ y → g a.e. in D. Indeed, the

area formula again implies that for a measurable set E ⊂ D there holds |Ey | = ∫
E

det∇y

so that |Ey | = 0 implies |E| = 0. In particular, if E = D ∩ supp(ψ), then ‖Gε ◦ y‖L∞(E) =
‖Gε‖L∞(Ey) ≤ ‖g ◦ y−1‖L∞(Ey) = ‖g‖L∞(E) < ∞. As cof∇y ∈ L1

loc(�) and cof∇y = 0 a.e.
on � \ D, by dominated convergence we obtain

lim
ε→0

∫
�

(Gε ◦ y)∇ψ : cof∇y dx =
∫

�

g ∇ψ : cof∇y dx. (4.5)

By combining (4.3), (4.4) and (4.5) we get
∫

�

ψ · d(y−1
� (∇(g ◦ y−1))) = −

∫
�

g ∇ψ : cof∇y dx

for any ψ ∈ C∞
c (�;Rn). Hence, py,g satisfies (4.1) and (4.2) holds.

Reverse implication Let us now assume that py,g ∈ M(�;Rn) exists such that (4.1) holds
and let us verify that g ◦ y−1 ∈ BV (�y).

The area formula gives

|∇(g ◦ y−1)|(�y) = sup

{∫
�y

g(y−1(ξ))divϕ(ξ)dξ | ϕ ∈ C∞
c (�y;Rn), ‖ϕ‖∞ ≤ 1

}

= sup

{∫
�

g(x)divϕ(y(x))det∇y(x)dx | ϕ ∈ C∞
c (�y;Rn), ‖ϕ‖∞ ≤ 1

}

= sup

{∫
�

g cof (∇y) : ∇(ϕ ◦ y)dx | ϕ ∈ C∞
c (�y;R3), ‖ϕ‖∞ ≤ 1

}
,

(4.6)

where the second equality is due to the identity (divϕ) ◦ y det∇y = cof∇y : ∇(ϕ ◦ y) which
holds a.e. in �, as a consequence of the chain rule and of the matrix identity (cofA)AT =
I detA. As y ∈ W

1,p

loc (�;Rn), we have cof∇y ∈ L
q

loc(�) with q = p/(n − 1). Since g ∈
L∞

loc(�) we get g cof∇y ∈ L
q

loc(�) and we notice that p ≥ n implies that p ≥ q ′, where q ′ is
the Hölder conjugate of q . As a consequence, the relation (4.1) can be extended by continuity
to all test functions in the class W 1,p(�;Rn) ∩ C0

c (�;Rn), since py,g ∈ M(�;Rn). The
function ϕ ◦ y ∈ W 1,p(�;Rn) is compactly supported in �, as y is a homeomorphism and ϕ

is compactly supported in �y , and therefore ϕ ◦ y is an admissible test function for equality
(4.1). From (4.6), from the validity (4.1) and from the fact that (4.1) holds with test functions
in W 1,p(�;Rn) ∩ C0

c (�;Rn) we obtain

|∇(g ◦ y−1)|(�y) = sup

{∫
�

(ϕ ◦ y) · dpy,g | ϕ ∈ C∞
c (�y;Rn), ‖ϕ‖∞ ≤ 1

}
. (4.7)
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The definition of total variation (see Sect. 3) and (4.7) directly imply |∇(g ◦ y−1)|(�y) ≤
|py,g|(�). �

5 Convergence of the Phases

From here and through the rest of the paper, � is a bounded open Lipschitz set. In this
section, we prepare some tools which will later be used in the limit passages in Sects. 6
and 7.

Lemma 5.1 Let p ≥ n. Let (yk)k ⊂ W 1,p(�;Rn), y ∈ W 1,p(�;Rn) be homeomorphisms of
finite distortion such that yk → y weakly in W 1,p(�;Rn).

i) If A ⊂⊂ �y , then there exists k0 ∈N such that A ⊂ �yk for any k > k0.
ii) Assuming in addition that the sequence (det∇yk)k is equiintegrable on �, there holds

limk→∞ |�y��yk | = 0.

Proof i) First we prove that the sequence yk is uniformly converging on any compact subset
K ⊂⊂ �. From [24, Theorem 1.3] we deduce that there exists a constant C(K,n) such that,
for any k,

∀x1, x2 ∈ K |yk(x1)−yk(x2)| ≤ C(K,n)‖∇yk‖Ln(�) θ(|x1 −x2|), θ(t) := | ln(2/t)|−1/n.

Since ‖∇yk‖Ln(�) is bounded, we obtain the equicontinuity of the sequence (yk) over K .
Moreover, by combining equicontinuity on compact domains with the bound ‖yk‖L1(�) < C,
the uniform boundedness of yk on K follows:

sup{|yk(x)| : k ∈ N, x ∈ K} < ∞.

In fact, suppose by contradiction that there exist sequences (k�)� and (x�)� ⊂ K such that
|yk�

(x�)| ≥ � for any � ∈ N. Fix a δ > 0 such that K + Bδ(0) ⊂ K ′ ⊂⊂ � for a compact set
K ′. By the equicontinuity on K ′, there exist r ∈ (0, δ) such that

∀k ∈N ∀x ∈ K ∀x ′ ∈ Br(x), x ′ ∈ K ′ and |yk(x
′) − yk(x)| < 1.

Therefore, ‖yk�
‖L1 ≥ ∫

Br (x�)
|yk�

(x ′)|dx ′ ≥ |Br(0)| (�−1) → ∞ for � → ∞, a contradiction.
By Ascoli-Arzelà theorem, yk → y uniformly on any compact subset of �.

Since y, yk are homeomorphisms and there is uniform convergence of yk to y on compact
subsets of �, it is easy to conclude. Indeed, let S be such that A ⊂⊂ S ⊂⊂ �y and let
ε := dist(A, ∂S) so that ε > 0. Let U = y−1(S) so that U ⊂⊂ � as y is a homeomorphism.
Let Sk = yk(U). Since y, yk ∈ Y are homeomorphisms on U , we have ∂S = y(∂U) and
∂Sk = yk(∂U). By the above result we have yk → y uniformly on U , thus fixing δ < ε/2
we get supx∈U |y(x) − yk(x)| < δ for k large enough. Hence, for any boundary point ξ ∈
∂Sk , we have that d(ξ, ∂S) < δ for k large enough. Since d(A, ∂S) = ε > 2δ, we obtain
d(A, ∂Sk) > δ, hence A ⊂ Sk ⊂ �yk for any large enough k.

ii) We have det∇yk → det∇y weakly in L1(�) as k → +∞. This follows from the
boundedness in Lp(�;Rn) of the sequence (∇yk)k if p > n and from the additional equiin-
tegrability assumption if p = n. Then, the property limk→∞ |�y��yk | = 0 is a consequence
of [20, Theorem 4.4]. Indeed, the measure-theoretic images appearing in [20] are the usual
images for homeomorphisms, as remarked in the proof of Theorem 3.2. �
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Lemma 5.2 Let p ≥ n and q > n − 1. Let (yk)k ⊂ W 1,p(�;Rn), y ∈ W 1,p(�;Rn)

be homeomorphisms of finite distortion such that yk → y weakly in W 1,p(�;Rn) and
supk∈N ‖Kyk

‖Lq(�) < +∞. Suppose that the sequence (det∇yk)k is equiintegrable on �.
Then |y−1(Ok)| → |�| and |y−1

k (Ok)| → |�| as k → ∞, where Ok := �y ∩ �yk .

Proof We preliminarily observe that ∇y−1 ∈ Ln(�y;Rn) and ∇y−1
k ∈ Ln(�yk ;Rn) for any

k ∈ N. This follows from the Lq -integrability of the distortion, see [26]. In particular,
det∇y−1 ∈ L1(�y) and det∇y−1

k ∈ L1(�yk ). Moreover, since y, yk are homeomorphisms,
we have det∇y > 0 a.e. in �, det∇yk > 0 a.e. in � for any k ∈N and y, yk satisfy the Lusin
condition N−1, see [25, Theorem 4.13]. In particular, y−1 satisfies the Lusin condition N so
that the area formula holds (with equality) and entails

|�| = |y−1(�y)| =
∫

�y

det∇y−1 dξ, |y−1(Ok)| =
∫

Ok

det∇y−1 dξ, k ∈ N. (5.1)

Since |�y \ Ok| → 0 by Lemma 5.1, we get from (5.1) as k → ∞

|y−1(Ok)| =
∫

Ok

det∇y−1 dξ →
∫

�y

det∇y−1 dξ = |�|.

With the same change of variables for y−1
k that satisfies the Lusin condition N we get

|y−1
k (Ok)| =

∫
Ok

det∇y−1
k dξ =

∫
�yk

det∇y−1
k dξ −

∫
�yk \Ok

det∇y−1
k dξ

= |�| −
∫

�yk \�y

det∇y−1
k dξ.

The uniform bound on ‖Kyk
‖Lq(�) yields the equi-integrability of the family (det∇y−1

k )k , as
proven in [21, Lemma 5.1] (making use of results in [36]). Since |�yk \ �y | → 0 as k → ∞
by Lemma 5.1, the statement follows. �

Lemma 5.3 (Convergence of the reference phases) Let p ≥ n, q > n − 1. Suppose that

i) (yk)k ⊂ W 1,p(�;Rn), y ∈ W 1,p(�;Rn) are homeomorphisms of finite distortion such
that yk → y weakly in W 1,p(�;Rn) as k → ∞,

ii) supk∈N ‖Kyk
‖Lq(�) < +∞ and the sequence (det∇yk)k is equiintegrable on �,

iii) (ζk)k ⊂ L∞(�yk ;Rh), ζ ∈ L∞(�y) and ‖ζk − ζ‖L1(�y∩�yk ) → 0 as k → ∞,
iv) |ζk(ξ)| ≤ M holds a.e. in �yk , for any k ∈N.

Then Ky ∈ Lq(�), |ζ(ξ)| ≤ M a.e. in �y and ‖ζk ◦ yk − ζ ◦ y‖L1(�) → 0 as k → ∞.

Proof We use the notations Ok := �y ∩ �yk and Ek := y−1(Ok) ∩ y−1
k (Ok). As a pre-

liminary step, we check that |� \ Ek| → 0 as k → ∞. Indeed, since y−1(Ok) ⊂ � and
y−1

k (Ok) ⊂ �, in order to prove that |� \ Ek| → 0 as k → ∞ it is sufficient to show
|y−1(Ok)| → |�| and |y−1

k (Ok)| → |�|, which are in turn proven in Lemma 5.2.
As seen in the proof of Lemma 5.2, we have det∇y > 0 a.e. in � and det∇yk > 0 a.e.

in � for any k ∈ N. Then, the property Ky ∈ Lq(�) follows by the polyconvexity of the
optimal distortion function on the set of matrices of positive determinant, as polyconvexity
implies the lower semicontinuity property

‖Ky‖Lq(�) ≤ lim inf
k→∞

‖Kyk
‖Lq(�).
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Let us prove that |ζ | ≤ M a.e. in �y . Indeed, suppose not and let B := {ξ ∈ �y : |ζ(ξ)| >
M} so that |B| > 0. Then there exists ε > 0 and B ′ ⊂ B such that |B ′| > |B|/2 and |ζ | >

M + ε a.e. in B ′. By assumption iv), this implies |ζk(ξ)− ζ(ξ)| > ε a.e. on B ′ for any k. Let
A ⊂⊂ �y be an open set such that |�y \ A| < |B|/4, so that |A ∩ B ′| > |B|/4. Therefore,
‖ζk − ζ‖L1(A) ≥ ‖ζk − ζ‖L1(A∩B ′) ≥ ε|B|/4 for any k. On the other hand, for k large enough
we have A ⊂⊂ �yk by Lemma 5.1, hence assumption iii) implies that ‖ζk − ζ‖L1(A) goes to
zero as k → ∞, a contradiction.

Next we prove the convergence of reference phases ‖ζk ◦yk −ζ ◦y‖L1(�) → 0 as k → ∞.
We clearly bound such norm by 2M|� \ Ek| + ‖ζk ◦ yk − ζ ◦ y‖L1(Ek), therefore we are
reduced to prove that ‖ζk ◦yk − ζ ◦y‖L1(Ek) goes to zero as k → ∞. The argument is similar
to the one of [21, Lemma 5.3]. Indeed, there holds ‖ζk ◦ yk − ζ ◦ y‖L1(Ek) ≤ Ik + Jk , where

Ik := ‖ζk ◦ yk − ζ ◦ yk‖L1(Ek), Jk := ‖ζ ◦ yk − ζ ◦ y‖L1(Ek).

About Ik , since y−1
k satisfies the Lusin condition N we may change variables as done in

the proof of Lemma 5.2 and obtain

Ik =
∫

E
yk
k

|ζk(ξ) − ζ(ξ)|det∇y−1
k (ξ) dξ. (5.2)

We fix a small value δ > 0, and since E
yk

k ⊂ Ok , by (5.2) we have

Ik ≤
∫

Ok

det∇y−1
k |ζk − ζ |dξ ≤ δ

∫
Ok\Ak(δ)

det∇y−1
k dξ + 2M

∫
Ak(δ)

det∇y−1
k dξ, (5.3)

where Ak(δ) := {ξ ∈ Ok : |ζk(ξ) − ζ(ξ) > δ|}. Notice that

δ|Ak(δ)| ≤
∫

Ak(δ)

|ζk − ζ |dξ ≤
∫

Ok

|ζk − ζ |dξ,

so that assumption iii) yields |Ak(δ)| → 0 as k → ∞. We deduce that

lim
k→∞

∫
Ak(δ)

det∇y−1
k dξ = 0,

thanks to the equi-integrability property of ∇y−1
k from [21, Lemma 5.1]. Inserting this in

(5.3) we get

lim sup
k→0

Ik ≤ lim sup
k→0

δ

∫
Ok\Ak(δ)

det∇y−1
k dξ ≤ δ|�|,

where we changed back variables and used y−1
k (Ok \ Ak(δ)) ⊂ �.

Concerning Jk , Let ζ̄δ be a continuous compactly supported function in �y such that
|ζ̄δ| ≤ M and such that |Āδ| < δ, where Āδ := {ξ ∈ �y : |ζ̄δ(ξ) − ζ(ξ)| > δ}. For instance,
we may take a mollification of the restriction of ζ to a large enough open set compactly
contained in �y . We write Jk = J

(1)
k + J

(2)
k + J

(3)
k , where

J
(1)
k = ‖ζ ◦ yk − ζ δ ◦ yk‖L1(Ek), J

(2)
k = ‖ζ δ ◦ yk − ζ δ ◦ y‖L1(Ek), J

(3)
k

= ‖ζ δ ◦ y − ζ ◦ y‖L1(Ek).
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Here, J
(1)
k and J

(3)
k can be treated exactly as Ik by change of variables, and with the help of

assumption iv) we have for any k ∈N

J
(1)
k ≤ δ|�| + 2M

∫
Āδ

det∇y−1
k dξ, J

(3)
k ≤ δ|�| + 2M

∫
Āδ

det∇y−1 dξ. (5.4)

On the other hand, if A ⊂⊂ � is an open set such that |� \ A| < δ, we have

J
(2)
k ≤ 2Mδ +

∫
A

|ζ̄δ ◦ yk − ζ̄δ ◦ y|dx ≤ 2Mδ + |�| sup
x∈A

ωδ(|yk(x) − y(x)|), (5.5)

where ωδ is the modulus of continuity of ζ̄δ . Taking the limit as k → ∞ in (5.5), since by
Lemma 5.1 we have uniform convergence of yk to y in A, we get

lim sup
k→∞

J
(2)
k ≤ 2Mδ. (5.6)

By (5.4), (5.6), the equi-integrability of det∇y−1
k , the integrability of det∇y−1, by |Āδ| < δ

and the arbitrariness of δ, we conclude that Jk → 0 as k → ∞. �

6 Lower Bound

This section collects some lower semicontinuity arguments, leading to the proof of the �-
lim inf inequality, namely Proposition 6.4. We start by a lower semicontinuity property of
interfacial measures (see Definition 4.1).

Proposition 6.1 (Double lower semicontinuity of py,g) Let (yk)k ⊂ W 1,p(�;Rn), y ∈
W 1,p(�;Rn) be homeomorphisms of finite distortion such that yk → y weakly in
W 1,p(�;Rn), for p ≥ n. Let (gk)k ⊂ Lr

loc(�), g ∈ Lr
loc(�), r ∈ [ p

p−n
,+∞), be such that

gk → g strongly in Lr
loc(�). If lim infk→+∞ |pyk,gk

|(�) < ∞, then there exists py,g ∈
M(�;Rn) satisfying (4.1) and

|py,g|(�) ≤ lim inf
k→+∞

|pyk,gk
|(�). (6.1)

Proof Since ∇yk → ∇y weakly in Lp(�), the convergence cof∇yk → cof∇y holds weakly
in Lp/(n−1)(�). Therefore, for any test function ψ ∈ C∞

c (�;R3), as k → ∞ we have,

∫
�

ψ · dpyk,gk
=

∫
�

gkcof∇yk : ∇ψ dx →
∫

�

g cof∇y : ∇ψ dx =: py,g(ψ),

by weak-times-strong convergence; the last equality is a definition of the distribution on the
right side. By the lower semicontinuity of the total variation, we have that py,g ∈ M(�;Rn)

and (6.1) holds. �

Lemma 6.2 (Lower semicontinuity of bulk energy) Let assumptions (2.3) and (2.4) hold.
Let R > 0, let (y, ζ ) ∈ Q̃

R and let the sequence (yk, ζk)k ⊂ Q̃
R be such that

i) yk → y weakly in W 1,p(�;Rn),
ii) limk→+∞ ‖ζk − ζ‖L1(Ok) = 0, with Ok := �yk ∩ �y .

Then, F bulk(y, ζ ) ≤ lim infk→∞ F bulk(yk, ζk).



Equilibrium for Multiphase Solids with Eulerian Interfaces

Proof We may assume that along a not relabeled subsequence supk∈NF bulk(yk, ζk) < +∞.
Thanks to the coercivity assumption (2.4), the hypotheses of Lemma 5.3 are satisfied. Let-
ting zk := ζk ◦ yk , Lemma 5.3 entails zk → z = ζ ◦ y in L1(�;Rh). Now, write the bulk
energy functional as a function of z:

F̃ bulk(y, z) := F bulk(y, z ◦ y−1) =
∫

�

W(∇y(x), z(x))dx.

Since W(·, ·) is lower semicontinuous in R
n×n ×R

h and is poly-convex in the first argument,
we can apply the result [16, Corollary 7.9], getting lim infk→∞ F̃ bulk(yk, zk) ≥ F̃ bulk(y, z),
which proves the claim. �

In the following, we recall that � :Rh →R
+ is a continuous potential that vanishes only

at the points of P , and that (1.3) holds. We take advantage of the following inequality, for a
proof see [3, Proposition 2.1].

Proposition 6.3 For any α ∈ {1, . . . ,m}, let ϕα :Rh →R be defined by ϕα(z) := d�(pα, z),
where the pα’s are the zeros of �. Let u ∈ W 1,2(�;Rh)∩L∞(�;Rh). Then ϕα ◦u ∈ W 1,2(�)

and for any open set A ⊆ � there holds

∫
A

|∇(ϕα ◦ u)| ≤
∫

A

√
� ◦ u |∇u| for any α ∈ {1, . . . ,m}.

Before stating the liminf inequality, we recall that for a collection {μα}α=1,...,m of positive
Borel measures on �, the supremum measure is defined on open sets A ⊆ � as

(
m∨

α=1

μα

)
(A) := sup

{
k∑

α=1

μα(Aα) : (Aα) pairw. disjoint open sets,
m⋃

α=1

Aα = A

}
. (6.2)

Equivalently, the supremum measure is the smallest positive Borel measure ν such that
ν(A) ≥ μα(A) for any α ∈ {1, . . . ,m} and any open set A ⊆ �.

The theory that we developed in Sect. 4 shall play a crucial role in the liminf inequality.
Indeed, as we will see through the next proof, as soon as (y, ζ ) ∈ Q̃

R is a state with finite
energy, i.e., Fε(y, ζ ) < +∞, an interfacial measure exists for the couple (ϕα ◦ ζ ◦ y, y),
for any α = 1, . . . ,m. This is reminiscent of the notion of admissible states from [40, 41],
which are indeed defined as those couples of deformations and phase indicators that admit
a suitable interfacial measure.

Proposition 6.4 (�-lim inf inequality) Let p ≥ n, q > n − 1. Let R > maxα∈{1,...,m} |pα|,
where p1, . . . , pm are the zeroes of �. Let (y, ζ ) ∈ Q̃

R and let (yk, ζk)k,⊂ Q̃
R be a sequence

such that

i) lim infk→+∞ F int
εk

(yk, ζk) < ∞ for some vanishing sequence (εk)k ⊂ (0,+∞),
ii) yk → y weakly in W 1,p(�;Rn),

iii) limk→+∞ ‖ζk − ζ‖L1(Ok) = 0, with Ok := �yk ∩ �y .

Then, there exist sets of finite perimeter Ey
α ⊂ �y , α = 1, . . . ,m such that

ζ =
m∑

α=1

pαχE
y
α

(6.3)
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and

1

2

m∑
α,β=1

dα,βHn−1(E
y

α,β) ≤ lim inf
k→+∞

F int
εk

(yk, ζk), (6.4)

where E
y

α,β := �y ∩ ∂∗Ey
α ∩ ∂∗Ey

β . In particular, one has that (y, ζ ) ∈Q.

Proof Let F ⊂⊂ �y be open. By Lemma 5.1 we have F ⊂ �yk for any large enough k.
Therefore, up to considering a suitable subsequence Fatou lemma and assumption i) imply

∫
F

�(ζ ) dξ ≤ lim inf
k→∞

∫
F

�(ζk) dξ ≤ lim inf
k→∞

εk

∫
�yk

1

εk

�(ζk) dξ ≤ lim inf
k→∞

εk F int
εk

(yk, ζk) = 0.

The arbitrariness of F and � ≥ 0 show that �(ζ) = 0 a.e. in �y .
For any α ∈ {1, . . . ,m} and any open set A ⊆ � (so that Ayk is open as well, since yk is

a homeomorphism) we have by Young inequality and Proposition 6.3

∫
Ayk

(εk

2
|∇ζk|2 + 1

εk

�(ζk)
)

dξ ≥
∫

Ayk

√
2�(ζk) |∇ζk|dξ ≥

∫
Ayk

|∇(ϕα ◦ ζk)|dξ.

Therefore,

∫
�yk

(εk

2
|∇ζk|2 + 1

εk

�(ζk)
)

dξ ≥
∫

�yk

max
α=1,...,m

|∇(ϕα ◦ ζk)|dξ =
(

m∨
α=1

|∇(ϕα ◦ ζk)|
)

(�yk ).

(6.5)
We have |ζk| ≤ R and we let zk := ζk ◦ yk , thus zk ∈ L∞(�;Rh). We clearly have gα

k :=
ϕα ◦ zk ∈ L∞(�), and since ϕα ◦ ζk = gα

k ◦ y−1
k , by invoking Theorem 4.2 we see that

|∇(ϕα ◦ ζk)|(Ayk ) = |(yk)�(∇(ϕα ◦ ζk))|(A) = |pyk,gα
k
|(A), (6.6)

for any open set A ⊆ �, where pyk,gα
k

is an interfacial measure. By Lemma 5.3 we have
zk → z strongly in L1(�;Rh), hence gα

k → gα strongly L1(�). As in the proof of Propo-
sition 6.1, we get the weak convergence of measures pyk,gα

k
⇀ py,gα , which yields lower

semicontinuity for any open set A ⊆ �, i.e.,

|py,gα |(A) ≤ lim inf
k→∞

|pyk,gα
k
|(A). (6.7)

By defining gα := ϕα ◦ z, still by Theorem 4.2 we have

|py,gα |(A) = |∇(gα ◦ y−1)|(Ay) = |∇(ϕα ◦ ζ )|(Ay). (6.8)

From (6.6), (6.7) and (6.8) we get

|∇(ϕα ◦ ζ )|(Ay) ≤ lim inf
k→∞

|∇(ϕα ◦ ζk)|(Ayk )

for any open set A ⊆ � and any α ∈ {1, . . . ,m}. By the latter semicontinuity property and
the definition (6.2) of supremum measure, we obtain

(
m∨

α=1

|∇(ϕα ◦ ζ )|
)

(�y) ≤ lim inf
k→∞

(
m∨

α=1

|∇(ϕα ◦ ζk)|
)

(�yk ). (6.9)
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In conclusion we obtain from (6.5) and (6.9)

lim inf
k→∞

F int
εk

(yk, ζk) = lim inf
k→∞

∫
�yk

(εk

2
|∇ζk|2 + 1

εk

�(ζk)
)

dξ ≥
(

m∨
α=1

|∇(ϕα ◦ ζ )|
)

(�y).

(6.10)
In particular, ϕα ◦ ζ ∈ BV (�y) for any α ∈ {1, . . . ,m}. Since �(ζ) = 0 a.e. in �y , by

invoking [3, Proposition 2.2] we get (6.3) and
(

m∨
α=1

|∇(ϕα ◦ ζ )|
)

(�y) = 1

2

m∑
α,β=1

dα,βHn−1(E
y

α,β).

Together with (6.10), this proves (6.4). �

7 Proof of the Main Results

We are now in the position of providing a proof of our main results. We start with the
existence proof for the diffuse-interface model, i.e., Theorem 2.2.

Proof of Theorem 2.2 Let (yk, ζk)k ⊂ Q̃
R
(y0,�0) be a minimizing sequence for functional Fε ,

which is bounded from below due to (2.4). The coercivity of the potential W from (2.4) and
the generalized Friedrichs inequality imply that one can extract a not relabeled subsequence
such that yk → y weakly in W 1,p(�;Rn). The boundary condition is preserved in the limit.
We conclude by Lemma 3.2 that y ∈ Y and y = y0 on �0, recalling that the assumption on
y0 (not constant on �0) prevents y from being a constant map.

Denote by ηk and Hk the zero extensions on R
n of ζk and ∇ζk respectively. The coerciv-

ity of F int
ε and the uniform bound |ζk| ≤ R imply that one can extract not relabeled subse-

quences such that ηk → η weakly* in L∞(Rn;Rh) and Hk → H weakly in L2(Rn;Rh×h).
Set now ζ := η|�y . For every δ > 0, let Oδ := {ξ ∈ �y |dist(ξ, ∂�y) > δ} ⊂⊂ �y . We
have that �y = ∪δOδ and, by Lemma 5.1, Oδ ⊂ �yk for k large. For every ξ0 ∈ Oδ

and B(ξ0, r) ⊂ Oδ we have that ηk → η weakly in W 1,2(B(ξ0, r);Rh). This implies that
H = ∇η = ∇ζ almost everywhere in B(ξ0, r). Moreover, by possibly extracting again, one
has that ηk → η strongly in L2(B(ξ0, r);Rh). As every ξ ∈ �y belongs to some Oδ for
δ small enough, we get that H = ∇ζ almost everywhere in �y . Now, by the weak lower
semicontinuity of the L2-norm

lim inf
k→∞

∫
�yk

|∇ζk|2 dξ = lim inf
k→∞

∫
Rn

|Hk|2 dξ ≥
∫
Rn

|H |2 dξ ≥
∫

�y

|∇ζ |2 dξ. (7.1)

The local strong convergence ηk → η in L2(B(ξ0, r);Rh) for any B(ξ0, r) ⊂⊂ �y and
|η − ηk| ≤ C imply the strong L2-convergence on �y , hence, up to extracting again, the
pointwise convergence to ζ on �y , and thus |ζ | ≤ R. By the Fatou Lemma, we find

lim inf
k→∞

∫
�yk

�(ηk)dξ = lim inf
k→∞

∫
Rn

�(ηk)dξ ≥ lim inf
k→∞

∫
�y

�(ηk)dξ ≥
∫

�y

�(ζ )dξ.

Thus we have proven the weak lower semicontinuity of the interfacial energy F int
ε (yk, ζk).

As for the bulk contribution, because of the convergence ‖ζ − ζk‖L1(�yk ∩�y) → 0, we
can apply Lemma 6.2 and obtain the lower semicontinuity of F bulk(y, ζ ). Together with
(7.1), this proves that (y, ζ ) is a minimizer of Fε on Q̃

R
(y0,�0) by means of the direct method

[13]. �
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Proof of Theorem 2.1 Let (yk, ζk) ∈ Q(y0,�0) be a minimizing sequence for F0. As in the
proof of Theorem 2.2, we can assume, up to extraction of a not relabeled subsequence, that
yk → y weakly in W 1,p for some y ∈ Y, and the coercivity assumption (2.4) also implies
that det∇yk are equiintegrable functions on �.

Let Fk = (F 1
k , . . . ,Fm

k ), with Fα
k = {ζk = pα}, α = 1, . . . ,m, be the partition of �yk

corresponding to a phase configuration ζk ; we can identify the sequence of states with the
sequence (yk,Fk)k . Since the interface energy

m∑
α,β=1

dα,βHn−1((Fk)α,β),

where (Fk)α,β := ∂∗Fα
k ∩ ∂∗Fβ

k ∩ �yk , is bounded along the sequence (yk,Fk)k , the sets Fk

have uniformly bounded perimeters, namely, Per(F α
k ,�yk ) ≤ c.

For � ∈ N, let O� := {x ∈ �y |dist(x, ∂�y) > 2−�} ⊂⊂ �y . As O� ⊂ �yk for k large
enough due to Lemma 5.1, for any given � ∈ N we have that lim supk Per(F α

k ,O�) ≤ c for
any α. We can hence find a measurable set (Gα)� ⊂ O� and a not relabeled subsequence Fh

such that

|(F α
h �(Gα)�) ∩ O�| → 0 for h → ∞.

For all �′ > � we can further extract a subsequence Fh′ from Fh above in such a way that
|(F α

h′�(Gα)�′
) ∩ O�′ | → 0 and (Gα)�′ ∩ O� = (Gα)�. From the nested family of subse-

quences corresponding to � = 1,2, . . . we extract by a diagonal argument a further subse-
quence Fk′ . By setting Fα := ∪�(G

α)� and, owing to O� ↗ �y , we get that

|(F α
k′�Fα) ∩ �y | → 0.

Now, the sets Fα has finite perimeter in �y as a consequence of Proposition 6.1. By letting
ζ = χF |�y we then have that (y, ζ ) ∈ Q(y0,�0).

One is left to check that F0(y, ζ ) ≤ lim infF0(yk, ζk), which follows from the lower
semicontinuity of F0. Indeed, the lower semicontinuity of bulk part of F0 follows by the
argument of Lemma 6.2. As concerns the interface term, the lower semicontinuity with
respect to local convergence in measure is proven in [1, Example 2.5]. �

In Proposition 6.4 a lim inf inequality for the interface functional has been established.
Combined with the lower semicontinuity of the bulk energy (Lemma 6.2), we conclude that
the whole energy functional satisfies a � − lim inf inequality w.r.t. the convergence notion
of Lemma 6.2. Under the full Dirichlet conditions on the boundary of the domain, we shall
prove Theorem 2.3 by using a Modica-Mortola [33] recovery sequence deeply generalized
by Baldo in [3]. The �-convergence allows to prove the convergence of the phase field
solutions to the sharp interface solution.

Proof of Theorem 2.3 We first claim that, if (y, ζ ) ∈ Qy0 , �y0 ⊂ R
n being a Lipschitz do-

main, and if we let F = (F1, . . . ,Fm) with Fα = {ξ ∈ �y0 : ζ(ξ) = pα}, there exists a se-
quence (ζk)k ⊂ W 1,2(�y;Rh) such that |ζk| ≤ R for suitable R > maxα∈{1,...m} |pα| and such
that

lim
k→∞

‖ζk − ζ‖L1(�y) = 0 and
1

2

m∑
α,β=1

dα,βHn−1(Fα,β) +F bulk(y, ζ ) = lim
k→∞

Fεk
(y, ζk).
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Indeed, since the y-component is a constant sequence, the claim completely rests on the
construction of the recovery sequence (ζk)k provided by Baldo [3] (such a sequence is also
satisfying

∫
�y ζk(ξ) dξ = ∫

�y ζ(ξ) dξ for any k ∈ N, thus justifying our observations in Re-
mark 2.5). In order to use this result, we need to assume the Lipschitz regularity of the
deformed domain through the imposition of Dirichlet boundary conditions on the whole
boundary of �. Moreover, by inspecting the construction of the recovery sequence from [3,
Sect. 3], we see that we can obtain a sequence (ζk)k that is uniformly bounded, i.e., such
that |ζk| ≤ R0 for large enough R0 (only depending on the multi-well potential �). Then,
since ζk ◦ y → ζ ◦ y in L1(�;Rh) follows by Lemma 5.3, the convergence of the bulk part
is obtained by dominated convergence by means of assumptions (2.8) and (2.9). Indeed, the
continuity assumption (2.8) ensures a.e. convergence of the integrands, while (2.9) provides
a dominating function. The claim is proved.

The rest of the proof follows the one in [21]. Here we give a summary of it. Let k ∈ N,
let (yk, ζk) be a minimizer (provided by Theorem 2.2) for Fεk

over Q̃R
y0

, R > R0, and let
(y∗, ζ ∗) ∈ Qy0 be a state of finite energy for F0 whose recovery sequence is (y∗, ζ ∗

k ) ⊂
Q̃

R
y0

. Using Fεk
(yk, ζk) ≤ Fεk

(y∗, ζ ∗
k ) and the fact that Fεk

(y∗, ζ ∗
k ) → F0(y

∗, ζ ∗) as k →
∞, we conclude that Fεk

(yk, ζk) ≤ C. The coercivity (2.4) along with Friedrichs inequality
ensures that yk → y weakly in W 1,p(�;Rn) for some not relabeled subsequence. Moreover,
y ∈ Y and y = y0 on ∂� (hence, �yk = �y = �y0 ). The uniform bound on F int

εk
(yk, ζk) =

F int
εk

(y, ζk) also yields strong L1(�y;Rh) compactness for the sequence ζk . This implies
the existence of ζ ∈ L∞(�y;Rh), such that |ζ | ≤ R and ‖ζk − ζ‖L1(�y) → 0 for some not
relabeled subsequence. By Proposition 6.4, ζ takes values in P and

F int
0 (y, ζ ) ≤ lim inf

k→∞
F int

εk
(yk, ζk).

Now, we show that (y, ζ ) is a minimizer F0 on Qy0 . In fact, for any (ỹ, ζ̃ ) ∈Qy0 , let (ỹ, ζ̃k)

be its recovery sequence: Fεk
(ỹ, ζ̃k) → F0(ỹ, ζ̃ ) as k → ∞. By the lower semicontinuity of

the bulk term Fbulk,

F0(y, ζ ) ≤ lim inf
k→∞

Fεk
(yk, ζk) ≤ lim inf

k→∞
Fεk

(ỹ, ζ̃k) = F0(ỹ, ζ̃ ),

which proves the assertion. �
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