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SUMMARY

Matrix equations of the kind A1X
2
+ A0X + A−1 = X, where both the matrix coefficients and the

unknown are semi-infinite matrices belonging to a Banach algebra, are considered. These equations, where
coefficients are quasi-Toeplitz matrices, are encountered in certain Quasi-Birth-Death (QBD) processes as
the tandem Jackson queue or in any other process which can be modelled as a reflecting random walk in
the quarter plane. We provide a numerical framework for approximating the minimal nonnegative solution
of these equations which relies on semi-infinite quasi-Toeplitz matrix arithmetic. In particular, we show that
the algorithm of Cyclic Reduction can be effectively applied and can approximate the infinite dimensional
solutions with quadratic convergence at a cost which is comparable to that of the finite case. This way, we
may compute a finite approximation of the sought solution, as well as of the invariant probability measure
of the associated QBD process, within a given accuracy. Numerical experiments, performed on a collection
of benchmarks, confirm the theoretical analysis. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

In the analysis of certain queueing processes like the tandem Jackson queue [1] or bi-dimensional

random walks in the quarter of plane [2, 3], one has to find the invariant probability vector π
of a stochastic process with a discrete two-dimensional state space. The two coordinates of the

latter, usually called level and phase, are assumed countably infinite. Typically, the transitions from

a state are limited to a subset of adjacent states and are homogeneous in time. This makes the

transition probability matrix P semi-infinite, block-tridiagonal, almost block-Toeplitz with semi-

infinite almost-Toeplitz blocks. More precisely, P is a row-stochastic matrix of the form

P =




B0 B1

A−1 A0 A1

A−1 A0 A1

. . .
. . .

. . .


 , (1)
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where all the blocks B0, B1 and Ai, i = −1, 0, 1, are semi-infinite tridiagonal matrices having a

quasi-Toeplitz structure, that is,

Ai =




b
(i)
0 b

(i)
1

a
(i)
−1 a

(i)
0 a

(i)
1

a
(i)
−1 a

(i)
0 a

(i)
1

. . .
. . .

. . .



, Bj =




b̂
(j)
0 b̂

(j)
1

â
(j)
−1 â

(j)
0 â

(j)
1

â
(j)
−1 â

(j)
0 â

(j)
1

. . .
. . .

. . .



, (2)

for i = −1, 0, 1 and j = 0, 1.

Observe that, except for the two entries in the first row, both the block matrix (1) and each block

Ai, Bj in (2) have the same (block) entries equally repeated along each diagonal. Matrices with

repeated (block) entries along the (block) diagonals are known as (block) Toeplitz matrices.

Stochastic processes with a block-tridiagonal almost block-Toeplitz transition matrix, as the

matrix P of (1), are known as Quasi-Birth-Death processes, in short, QBD. If the blocks Ai,

i = −1, 0, 1, and Bi, i = 0, 1 are semi-infinite matrices, the QBD is said to have an infinite number

of phases.

The steady state vector π, if it exists, is the nonnegative row vector with sum of its entries equal to

1, such that πP = π. By partitioning π in the form π = [π0, π1, . . . ] according to the block structure

of P , one finds that [4] the following matrix geometric relation holds

πn = π0R
n, i ∈ N,

where R is the minimal non negative solution of the matrix equation

X = X2A−1 +XA0 +A1. (3)

Moreover, the vector π0 is such that π0(B0 +B1G) = π0, where G is the minimal nonnegative

solution of the matrix equation

X = A−1 +A0X +A1X
2. (4)

These solutions R and G always exist. Here, we are interested in the important case from the

applications where the process is positive recurrent. In this case, the vector π exists and is unique,

the matrix G is stochastic, i.e., G1 = 1 where 1 is the vector of all ones, and the series
∑∞

i=0 R
i is

convergent [5].

In this paper, we consider matrix equations of the kinds (3) and (4) where the matrix coefficients

are semi-infinite matrices belonging to a Banach algebra. A case of interest is the one in which

matrices are quasi-Toeplitz. A quasi-Toeplitz matrix has the form T (a) + F , where T (a) = (ti,j) is

the Toeplitz matrix associated with the symbol a(z) =
∑

i∈Z
aiz

i, that is, ti,j = aj−i, and F = (fi,j)
is such that

∑
i,j∈Z

|fi,j | < +∞. Observe that the matrices in (2) are quasi-Toeplitz.

In the case where the matrices Ai, i = −1, 0, 1, belong to a Banach algebra B we relate the

solutions of equations (3) and (4) to the factorization of the matrix Laurent polynomial ϕ(z) =
A−1z

−1 + (A0 − I) +A1z and to the coefficients of the Laurent series representing its inverse.

These properties allow one to extend to the infinite dimensional case the convergence results of

the Cyclic Reduction (CR) algorithm, which is an efficient numerical method designed to solve

equations (3) and (4) in the finite dimensional case [6], [7].

If B is the Banach algebra of quasi-Toeplitz matrices, the matrix sequences generated by Cyclic

Reduction are quasi-Toeplitz and can be represented, up to any arbitrary precision, with a finite

number of parameters. This leads to an efficient computation of R and G. Moreover, we provide

a way to compute the components of the infinite vectors πi, i = 0, 1, . . . which are greater than a

given tolerance. We present numerical experiments which validate the algorithmic and theoretical

results obtained in our analysis.

The paper is organized as follows. Section 2 contains some preliminary tools needed throughout

the paper. More specifically, in Section 2.1 we recall the main properties of QBD processes, in
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Section 2.2 we recall the class QT of quasi-Toeplitz matrices introduced in [8], while in Section

2.3 we deal with the CR algorithm for solving equations (3), (4) in the finite dimensional case. In

Section 3 we consider the case where Ai ∈ B, i = −1, 0, 1 and we relate the solutions R and G to

a suitable factorization of ϕ(z) = A−1z
−1 + (A0 − I) +A1z and to the coefficients of the Laurent

series representing its inverse. In Section 4 we provide some convergence properties of CR in the

general case Ai ∈ B, i = −1, 0, 1. In Section 5 we deal with the specific case where equations (3)

and (4) come from a QBD where the blocks Ai are quasi-Toeplitz. The computation of the vector π
is treated in Section 6, while numerical experiments are presented in Section 7.

2. PRELIMINARIES

We recall some properties of QBDs, quasi-Toeplitz matrices and the algorithm of cyclic reduction.

2.1. QBD processes

The minimal nonnegative solutions R and G of the equations (3) and (4), respectively, induce a

factorization of the Laurent matrix polynomial

ϕ(z) = z−1A−1 + (A0 − I) + zA1

as stated by the following result, which resumes properties proved in [4, Section 6.2], [9] and [10].

Theorem 1

Assume that the matrix P of (1) is row stochastic. Then there exist minimal nonnegative solutions

R,G of the equations (3) and (4) and the factorization

ϕ(z) = (I − zR)(U − I)(I − z−1G)

holds, where U = A0 +A1G = A0 +RA−1 is a nonnegative matrix such that U1 ≤ 1 and∑∞
i=0 U

i <∞ elementwise.

Assume that the Markov chain having transition matrix P of (1) is irreducible. According to

[5, 11], such Markov chain is positive recurrent if and only if

∞∑

i=0

Ri
1 <∞ (5)

elementwise and the system

π0 = π0(B0 +B1G), π0

∞∑

i=0

Ri
1 = 1 (6)

has a nonnegative solution. Moreover, the row vector π such that πP = π, π1 = 1, partitioned as

π = [π0, π1, π2, . . .] according to the structure of P , can be obtained by the formula πk = πk−1R,

for k ≥ 1. In the positive recurrent case the matrix G is stochastic, i.e., G1 = 1.

Observe that, if the blocks forming P are finite dimensional, so that R is finite dimensional,

equation (5) is equivalent to ρ(R) < 1, where ρ(·) denotes the spectral radius. Moreover, if ρ(R) <
1, the system (6) has always a solution. In the infinite dimensional case it is convenient to define

c(R) = sup

{
z ∈ R, z ≥ 0 :

∞∑

i=0

ziRi <∞

}
(7)

where inequality is intended elementwise. In view of (5), if c(R) > 1 and the system (6) has

a nonnegative solution, then the QBD is positive recurrent. In the case where the blocks Ai,
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i = −1, 0, 1, are infinite-dimensional, tridiagonal and almost Toeplitz, necessary and sufficient

conditions for c(R) > 1 are given in [9], [2].

In the sequel of the paper, since we are dealing with infinite-dimensional matrices, we assume

that c(R) > 1 and that the system (6) has a nonnegative solution.

Under this assumption, there exists a real number 0 < α < 1 such that both the series
∑∞

i=0 α
−iRi

and
∑∞

i=0 α
iGi are bounded elementwise. Indeed, for the first series it is sufficient to choose 0 <

α−1 < c(R), while for the second series, since G1 = 1, it is sufficient to choose 0 < α < 1. Thus

we get the condition c(R)−1 < α < 1. With this choice of α, since ϕ(α−1z) = (I − zα−1R)(U −
I)(I − z−1αG), then the matrix ϕ(α−1z) is invertible for any z belonging to an annulus containing

the unit circle.

2.2. Quasi-Toeplitz matrices

Denote by T the unit circle in the complex plane and consider the sets

W = {a(z) : T → C : a(z) =
∑

i∈Z

aiz
i,
∑

i∈Z

|ai| <∞},

W1 = {a(z) ∈ W : a′(z) ∈ W}, a′(z) =
∑

i∈Z

iaiz
i−1.

It is well known that W and W1 are Banach algebras with the norms ‖a‖
W

:=
∑

i∈Z
|ai| and

‖a‖
W1

:=
∑

i∈Z
|ai|+

∑
i∈Z

|iai|, respectively. That is, they are Banach spaces which are closed

under multiplication and ‖ab‖ ≤ ‖a‖ · ‖b‖ for ‖ · ‖ being either ‖ · ‖
W

or ‖ · ‖
W1

.

We associate with a(z) ∈ W the infinite Toeplitz matrix T (a) = (ti,j) such that ti,j = aj−i,

i, j ∈ Z
+.

It is well known that the set of matrices of the kind T (a) +K where a(z) is a continuous function

and K is a compact operator is a Banach algebra of operators in ℓ2 [12, Example 2.28]. Namely,

it is a Banach space closed under multiplication, i.e., if A = T (a) +Ka and B = T (b) +Kb, then

C = AB is such that C = T (c) +Kc for some continuous function c(z) and compact operator Kc.

For computational reasons, in order to keep under control the norm of the Toeplitz part T (a) and

the norm of the compact part Ka, a slightly different set with a different norm has been introduced

in [8]. Define the class

F = {F = (fi,j) :
∑

i,j∈Z+

|fi,j | <∞},

equipped with the norm ‖F‖
F
=
∑

i,j∈Z+ |fi,j | and consider the set of quasi-Toeplitz matrices

defined as

QT = {A = T (a) + E : a(z) ∈ W1, E ∈ F}.

It has been shown in [8] that QT is a Banach algebra with the norm ‖A‖ = ‖a‖
W1

+ ‖E‖
F

. The

class QT can be viewed as the computational counterpart of the more general case where A is an

operator in ℓ2, a(z) is continuous and E is compact.

Due to the decay of the moduli of the coefficients ai of any function a(z) ∈ W1 and to the decay

of the moduli of the entries fi,j of any matrix F ∈ F , it is possible to represent, up to any given

precision, the matrix A = T (a) + F ∈ QT with a finite number of parameters. More specifically,

a(z) is approximated by the Laurent polynomial
∑k

i=−h aiz
i, for sufficiently large integers h, k > 0

and the matrix F can be approximated by its leading m× n principal submatrix F̃ for sufficiently

large integers m,n > 0. A further optimization of this representation is obtained by representing

the latter m× n matrix F̃ by means of the product F̃ = UV T where the matrices U and V have a

number k of columns given by the numerical rank of F̃ which generally is much lower than m and

n.

This way, we can introduce an approximate matrix arithmetic in the class QT . For more details,

we refer the reader to [8] where the operations of addition, multiplication and inversion for
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matrices in QT are introduced together with algorithms for their computation and for the efficient

representation of the correction F .

Given positive numbers r1 < r2 and r, we denote by

A(r1, r2) = {z ∈ C : r1 < |z| < r2}, B(r) = {z ∈ C : |z| < r}

the annulus with radii r1 and r2 centered at 0, and the disc of radius r centered in 0. If r1 < 1 < r2
and if the symbol a(z) is analytic over A(r1, r2), then it is well known that the coefficients ai
decay exponentially to zero. This fact makes it easier to approximate a(z) by means of a Laurent

polynomial.

2.3. Cyclic reduction

In this section we assume that Ai, i = −1, 0, 1, are matrices of finite size. One of the most reliable

and fast algorithms for computing the solutions R and G of equations (3) and (4), is Cyclic

Reduction (CR) [7, 6, 13, 14] which is based on generating the following matrix sequences

A
(h+1)
0 = A

(h)
0 +A

(h)
1 S(h)A

(h)
−1 +A

(h)
−1S

(h)A
(h)
1 , S(h) = (I −A

(h)
0 )−1,

A
(h+1)
1 = A

(h)
1 S(h)A

(h)
1 , A

(h+1)
−1 = A

(h)
−1S

(h)A
(h)
−1 ,

Â(h+1) = Â(h) +A
(h)
−1S

(h)A
(h)
1 ,

Ã(h+1) = Ã(h) +A
(h)
1 S(h)A

(h)
−1 , h = 0, 1, . . .

(8)

with A
(0)
0 = Ã(0) = Â(0) = A0, A

(0)
1 = A1, A

(0)
−1 = A−1. Equations (8) can be applied if the matrix

S(h) is invertible at any step of CR. Otherwise a breakdown is encountered.

Let us introduce the Laurent matrix polynomialsϕ(z) = A−1z
−1 +A0 − I +A1z and ϕ(h)(z) =

A
(h)
−1z

−1 +A
(h)
0 − I +A

(h)
1 z, and their formal inverses ψ(z) = ϕ(z)−1, ψ(h)(z) = ϕ(h)(z)−1.

The following properties hold, see [7].

Theorem 2

Assume that the matrix function ϕ(z) = z−1A−1 + (A0 − I) + zA1 is invertible for z ∈ A(r1, r2),

where r1 < 1 < r2. Let ψ(z) = ϕ(z)−1 =
∑+∞

i=−∞ ziHi for z ∈ A(r1, r2). Assume that CR can be

carried out with no breakdown. Then

1. ψ(h)(z) =
∑

j∈Z
zjHj·2h , moreover, ϕ(h)(z) and ψ(h)(z) are analytic for z ∈ A(r2

h

1 , r2
h

2 );

2. if detH0 6= 0 then there exists h0 > 0 such that for any h ≥ h0 the matrix function ψ(h)(z) is

nonsingular in A and the sequence ϕ(h)(z) converges to H−1
0 uniformly over all the compact

sets K ⊂ A(r1, r2); moreover, for any matrix norm || · || and for any ǫ there exist a positive

constant θ such that

||A
(h)
−1 || ≤ θ(r1 + ǫ)2

h

, ||A
(h)
1 || ≤ θ/(r2 − ǫ)2

h

,

||A
(h)
0 −H−1

0 || ≤ θ
(

r1+ǫ
r2−ǫ

)2h
.

If the sequences (I − Â(h))−1 and (I − Ã(h))−1 are uniformly bounded, then the sequence

A1(I − Ã(h))−1 converges to the solution R of the matrix equation (3) of minimal spectral radius,

while the sequence (I − Â(h))−1A−1 converges to solution G of the matrix equation (4) with

minimal spectral radius.

In Theorem 2 the matrix function ϕ(z) is assumed to be invertible in an annulus containing the

unit circle. This condition can be weakened, by assuming that the function ϕ(tz) is invertible in an

annulus containing the unit circle, for a suitable scalar t (see [7]). Indeed, in the case where A−1,

A0 and A1 define the Toeplitz part of the transition matrix of a QBD process, the function ϕ(z) is

not invertible for z = 1. However, if the QBD is not null recurrent, we may find a scalar t such that

ϕ(tz) is invertible in an annulus containing the unit circle, so that the convergence properties of CR

stated by Theorem 2 hold.
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If the matrix A
(h)
0 − I is not invertible, then CR encounters a breakdown at step h. However, for

problems coming from stochastic processes, like QBDs, where the matrix P in (1) is stochastic and

irreducible, the matrix A
(h)
0 − I is invertible for any h, so that breakdown is not encountered.

3. FACTORIZATIONS AND QUADRATIC MATRIX EQUATIONS

In this section, we assume that the matrices A−1, A0 and A1 belong to a Banach algebra B with

norm ‖ · ‖ and with identity I . We extend some results valid in the finite-dimensional case, which

relate solutions R, G of equations (3) and (4), respectively, to the Wiener-Hopf factorization of the

Laurent matrix polynomial ϕ(z) := z−1A−1 + (A0 − I) + zA1.

In the finite case, this factorization plays a fundamental role for analyzing both the convergence

of the CR and the properties of R and G. We refer the reader to Chapter 3 of the book [7] for more

details on this regard.

This generalization to coefficients belonging to a Banach algebra is motivated by the fact that, for

QBDs with an infinite number of phases, the matrix P has blocks which define operators in L∞,

moreover, also the minimal nonnegative solutions R and G of the matrix equations (3), (4) belong

to L∞. In particular, the existing results valid in the finite dimensional case might not hold.

We recall that the spectrum ΛA of A ∈ B is given by the set ΛA = {z ∈ C : zI −
A is not invertible in B}. It is well known, see [12, pag. 2-3], that ΛA is a closed subset of C. The

real number δ(A) = supλ∈Λ |λ|, called the spectral radius ofA, is such that limk→∞ ‖Ak‖
1
k = δ(A),

moreover, ‖Ak‖
1
k ≤ ‖A‖ so that δ(A) ≤ ‖A‖. We recall also that, if δ(A) < 1 then I −A is

invertible and (I −A)−1 =
∑∞

i=0 A
i.

Remark 1

From the limit property of ‖Ak‖
1
k it follows that for any ǫ > 0 there exists an integer N > 0 such

that for any k ≥ N it holds ‖Ak‖
1
k < δ(A) + ǫ. In particular, if δ(A) < 1 and if ǫ > 0 is such

that δ(A) + ǫ < 1, then ‖Ak‖ < (δ(A) + ǫ)k < 1. Thus, if k ≥ N , k = qN + r, where q and r are

quotient and remainder of the division of k byN , one finds that ‖Ak‖ ≤ ‖Ar‖ · ‖AN‖q. This implies

that if δ(A) < 1 then limk→∞ ‖Ak‖ = 0.

The following result provides bound on the decay of the matrix coefficient of the inverse of a

Laurent matrix polynomial.

Lemma 1

Let Ai ∈ B i = −1, 0, 1 and assume that ϕ(z) = A−1z
−1 + (A0 − I) +A1z is invertible for z ∈

A(t−1, t) for a given t > 1. Then ψ(z) = ϕ(z)−1 =
∑

j∈Z
zjHj with Hj ∈ B. Moreover, for any

t−1 < σ < t we have

‖Hj‖ ≤M(σ) · σ−j , M(σ) := max
z∈T

‖ψ(zσ)‖.

Proof

Let σ be such that t−1 < σ < t. Notice that, since ϕ(z) is invertible for |z| = σ, then ‖ψ(z)‖ depends

continuously on z, so that the valueM(σ) is well-defined and finite. From the integral representation

of the coefficients of a Laurent series [15], we have the relation

Hj =
1

2πi

∫

|z|=σ

z−(j+1)ψ(z)dz,

where the integral is meant componentwise. Applying the norm on both sides yields

‖Hj‖ ≤
1

2π

∫

|z|=σ

‖ψ(z)‖σ−(j+1)dz ≤M(σ) · σ−j .
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The existence of solutions R and G of equations (3) and (4) having disjoint spectra is equivalent

to saying that there exists the factorization

ϕ(z) = (I − zR) ·W · (I − z−1G).

We refer the reader to [16, Section 22] for this property in the case of operator polynomials. The

next result provides a correspondence between the solutionsG, R and the coefficients of the inverse

of ϕ(z). In particular, this result extends Theorem 3.20 of [7] to the infinite dimensional case.

Theorem 3

Let ϕ(z) = z−1A−1 + (A0 − I) + zA1, where Ai ∈ B for i = −1, 0, 1. Assume that there exist

R,G ∈ B which solve (3) and (4), respectively, having disjoint spectra, or equivalently, that

ϕ(z) = (I − zR) ·W · (I − z−1G), (9)

for some invertible W ∈ B. Moreover, assume that ΛG ⊂ B(t−1) and ΛR ⊂ B(t−1) for some

t > 1. Then ϕ(z) is invertible for z ∈ A(t−1, t). Moreover,H0 =
∑∞

j=0G
jW−1Rj ∈ B, and setting

Hi = H0R
i for i > 0 and Hi = G−iH0 for i < 0, it follows that

ψ(z) := ϕ(z)−1 =
∑

i∈Z

ziHi, z ∈ A(t−1, t),

with Hi ∈ B. Finally, if H0 is invertible, then G = H−1H
−1
0 and R = H−1

0 H1.

Proof

Since ΛG ⊂ B(t−1) and ΛR ⊂ B(t−1), then δ(zR), δ(zG) < 1 for z ∈ A(t−1, t) so that I − zR and

I − zG are invertible and (I − zR)−1 =
∑∞

i=0 z
iRi, (I − z−1G)−1 =

∑∞
i=0 z

−iGi. Thus, from (9)

we get

ψ(z) = (I − z−1G)−1W−1(I − zR)−1 =

(
∞∑

j=0

z−jGj

)
W−1

(
∞∑

j=0

zjRj

)
, (10)

for any z ∈ A(t−1, t). This shows that ϕ(z) is invertible. In view of Lemma 1 we may write

ψ(z) =
∑

i∈Z
ziHi. By equating the terms in the same power of z in (10), we find that the

coefficients Hj satisfy the following equations

H0 =

∞∑

j=0

GjW−1Rj , Hi =

{
H0R

i i > 0,

G−iH0 i < 0.

It remains to prove that H
(n)
0 =

∑n

j=0G
jW−1Rj forms a Cauchy sequence so that there

exists limnH
(n)
0 = H0 ∈ B. In order to prove this, for n > m we consider H

(n)
0 −H

(m)
0 =∑n

j=m+1G
jW−1Rj = Gm+1(

∑n−m−1
j=0 GjW−1Rj)Rm+1. So that

‖H
(n)
0 −H

(m)
0 ‖ ≤ ‖Gm+1‖ · ‖S‖ · ‖Rm+1‖, S =

n−m−1∑

j=0

GjW−1Rj .

From Remark 1, for any ǫ > 0 such that λG = δ(G) + ǫ < 1 and λR = δ(R) + ǫ < 1, there exists

N > 0 such that for k ≥ N , ‖Gk‖ ≤ ‖Gr‖ · ‖GN‖q ≤ λqG, ‖Rk‖ ≤ ‖Rr‖ · ‖RN‖q ≤ λqR, where q
and r are quotient and remainder, respectively, of the division of k by N , i.e., k = Nq + r. Thus,

‖H
(n)
0 −H

(m)
0 ‖ ≤ ‖S‖ · ‖Gr‖ · ‖Rr‖λqGλ

q
R,

and, since λG, λR < 1, if ‖S‖ is bounded from above by a constant independent of n and m, it

follows that the sequence H
(n)
0 is Cauchy. In order to prove the boundedness of ‖S‖, it is sufficient

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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to decompose n−m+ 1 as n−m+ 1 = q̂N + r̂, where q̂ and r̂ are quotient and remainder of the

division of n−m+ 1 by N , so that we have

S =

q̂−1∑

k=0

GkNTRkN +GqNTrR
qN , T =

N−1∑

j=0

GjW−1Rj , Tr =

r∑

j=0

GjW−1Rj

whence the bound ‖S‖ ≤ γ
∑q̂

k=0 λ
k
Gλ

k
R, where γ =

∑N−1
j=0 ‖Gj‖ · ‖W−1‖ · ‖Rj‖ is a constant

independent of n and m. This completes the proof.

Remark 2

The hypotheses ΛG,ΛR ⊂ B(t−1) with t > 1 can be relaxed to ΛG ⊂ B(rG) and ΛR ⊂ B(rR)
with r−1

R > rG. In fact, under these assumptions ϕ(z) is invertible in the annulus A(rG, r
−1
R ) and

Theorem 3 applies to the rescaled Laurent polynomial ϕ(αz) with α =
√
rGr

−1
R and matrices

α−1G, αR. Observing that, ϕ(αz)−1 =
∑

j∈Z
αjzjHj , if H0 is invertible then one finds

α−1G = α−1H−1H
−1
0 , αR = H−1

0 αH1,

which gives us again G = H−1H
−1
0 and R = H−1

0 H1.

4. CYCLIC REDUCTION IN A BANACH ALGEBRA

In this section we study properties of CR when applied to matrices Ai, i = −1, 0, 1, that belong to a

Banach algebra B.

As in the finite dimensional case [6], CR can be expressed in functional form by means of the

recursion

ϕ(h+1)(z2) = ϕ(h)(z)(I −A
(h)
0 )−1ϕ(h)(−z), h ≥ 0,

where ϕ(h)(z) = z−1A
(h)
−1 + (A

(h)
0 − I) + zA

(h)
1 . Moreover, if ϕ(z) is analytic and invertible in an

annulus A(t−1, t), for a suitable t > 1, and if CR can be carried out without breakdown, then, by

using an induction argument, as in the finite dimensional case (see [6]), it turns out that the function

ϕ(h)(z) is invertible in the annulus A(t−2h , t2
h

) and

ψ(h)(z) := ϕ(h)(z)−1 =
∑

j∈Z

zjH2hj .

The next result provides conditions for convergence of cyclic reduction which extends Theorem

2.

Theorem 4

Let Ai ∈ B, i = −1, 0, 1. Assume that ϕ(z) = z−1A−1 + (A0 − I) + zA1 is invertible in A(t−1, t)
for a suitable t > 1, denote ψ(z) = ϕ(z)−1 =

∑
i∈Z

ziHi and assume that H0 is invertible. If

CR can be carried out without breakdown, then the sequences (8) are Cauchy sequences and

limh→∞A
(h)
−1 = limh→∞A

(h)
1 = 0, limh→∞A

(h)
0 = I +H−1

0 . Moreover, for any 1 < σ < t there

exists γ > 0 such that ‖A
(h)
−1‖ ≤ γσ−2h , ‖A

(h)
1 ‖ ≤ γσ−2h , ‖A

(h)
0 − I −H−1

0 ‖ ≤ γσ−2h+1

.

Proof

Equating the coefficients of the same degree in z in equation

ψ(h)(z)(z−1A
(h)
−1 + (A

(h)
0 − I) + zA

(h)
1 ) = I

yields 



H0A
(h)
−1 +H−2h(A

(h)
0 − I) +H−2h+1A

(h)
1 = 0

H2hA
(h)
−1 +H0(A

(h)
0 − I) +H−2hA

(h)
1 = I

H2h+1A
(h)
−1 +H2h(A

(h)
0 − I) +H0A

(h)
1 = 0.
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By proceeding as in the proof of Theorem 3 of [6], we get

‖A
(h)
−1‖ ≤ ‖H−1

0 ‖2‖H−2h‖+O(‖H−2h‖
2)

‖A
(h)
0 − I −H−1

0 ‖ ≤ 2‖H−1
0 ‖3‖H−2h‖‖H2h‖+O(‖H−2h‖

2‖H2h‖
2)

‖A
(h)
1 ‖ ≤ ‖H−1

0 ‖2‖H2h‖+O(‖H2h‖
2).

This completes the proof in view of Lemma 1.

Concerning convergence to the matrices R and G we have the following result.

Theorem 5

Assume that the hypotheses of Theorem 4 hold and that there existR,G ∈ B with ΛG ⊂ B(t−1) and

ΛR ⊂ B(t−1), with t > 1, such that (9) holds. If the sequences ‖(I − Â(h))−1‖ and ‖(I − Ã(h))−1‖

are uniformly bounded then G = limh→∞(I − Â(h))−1A−1 and R = limh→∞ A1(I − Ã(h))−1.

Moreover, for any 1 < σ < t there exists γ > 0 such that ‖G− (I − Â(h))−1A−1‖ ≤ γσ−2h+1

and

‖R−A1(I − Ã(h))−1‖ ≤ γσ−2h+1

.

Proof

As in the finite dimensional case [6], we have −A−1 + (I − Â(h))G = A
(h)
1 G2h+1. Therefore,

since ‖(I − Â(h))−1‖ is uniformly bounded, we have ‖G− (I − Â(h))−1A−1‖ ≤ ‖(I −

Â(h))−1‖‖A
(h)
1 ‖‖G2h+1‖. Since δ(G) < 1 and limh→∞A

(h)
1 = 0, then limh→∞ ‖A

(h)
1 G2h+1‖ = 0.

The bound on the speed of convergence follows from Theorem 4 and Remark 1. A similar argument

applies for R.

5. THE CASE OF QBDS

In this section we assume that Ai, i = −1, 0, 1 are nonnegative matrices such that (A−1 +A0 +
A1)1 = 1, which belong to the Banach algebra QT , with the norm ‖A‖ = ‖a‖

W1
+ ‖E‖

F
. We also

assume that the minimal nonnegative solutions R and G to (3) and (4), respectively, belong to QT
as well.

We restrict our analysis to the case where the associated QBD is positive recurrent. Moreover,

we assume c(R) > 1, where c(R) is defined in (7). Therefore, according to the properties on QBDs

reported in Section 2.1, there exists 0 < α < 1 such that the series
∑∞

i=0 α
−iRi and

∑∞
i=0 α

iGi

are convergent elementwise. Here, we also make a slightly stronger assumption on the spectrum

of αG and α−1R. More specifically, we assume that there exists α, with 0 < α < 1, such that

ΛαG ⊂ B(t−1) and Λα−1R ⊂ B(t−1), for a suitable t > 1.

5.1. Properties of the solutions of the quadratic equations

Under our assumptions, in view of Remark 2, the minimal nonnegative solutions of (4) and (3) are

of the form G = T (g) + Eg and R = T (r) + Er, with g(z), r(z) ∈ W1 and Eg, Er ∈ F . Now, we

try to retrieve some further information on the symbols g(z) and r(z) of such matrices. As pointed

out in [8] when we use the CR in the case Ai ∈ QT , i = −1, 0, 1 all the matrices generated by

CR belong to QT . Moreover, the Toeplitz part of these matrices A
(h)
i , i = −1, 0, 1, Â(h) and Ã(h)

have associated symbols a
(h)
i (z), i = −1, 0, 1, â(h)(z), ã(h)(z), respectively, which satisfy the same

recurrence equations as (8). More precisely we have the scalar functional relations

a
(h+1)
0 (z) = a

(h)
0 (z) + 2a

(h)
1 (z)a

(h)
−1 (z)/(1− a

(h)
0 (z)),

a
(h+1)
1 (z) = a

(h)
1 (z)2/(1− a

(h)
0 (z)), a

(h+1)
−1 (z) = a

(h)
−1 (z)

2/(1− a
(h)
0 (z)),

ã(h+1)(z) = ã(h)(z) + a
(h)
1 (z)a

(h)
−1(z)/(1− a

(h)
0 (z)),
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with h = 0, 1, . . ., where a
(0)
i (z) = ai(z), i = −1, 0, 1 and ã(0)(z) = a0(z). Observe that since all

the quantities in the above recurrence are scalar functions, they commute so that â(h)(z) coincides

with ã(h)(z). Moreover, we may easily verify that ã(h)(z) = 1
2 (a

(h)
0 (z) + a

(0)
0 (z)) for any h ≥ 0.

In the scalar case CR reduces to the Graeffe iteration —see [17] and [6]— whose properties have

been investigated in [18]. In particular, we know that if, for a given z ∈ T the polynomial

pz(x) := a1(z)x
2 + (a0(z)− 1)x+ a−1(z) (11)

associated with the triple (a−1(z), a0(z)− 1, a1(z)), has one root g(z) inside the unit disk and

one root r(z)−1 outside, then the sequence a−1(z)(1− ã(h)(z))−1 tends to g(z) while a1(z)(1−
ã(h)(z))−1 tends to r(z). Thus, under our assumptions, for Theorems 4 and 5 the functions g(z)
and r(z) correspond to the symbols of the matrices G and R which are the minimal nonnegative

solutions to (4) and (3), respectively.

In the case where ai(z) = ai,−1z
−1 + ai,0 + ai,1z, for i = −1, 0, 1, it has been shown in [8] that,

if a−1,0 6= 0 or a1,0 6= 0, and if ai,j 6= 0 for at least a pair (i, j) with j 6= 0, then for any z ∈ T, z 6= 1,

the polynomial pz(x) of (11) has a root of modulus less than 1 and a root of modulus greater than 1.

5.2. Necessary conditions for G ∈ QT

There are cases where the minimal nonnegative solutions R and G to equations (3) and (4) do not

belong to QT . An example is reported below.

Let Z be the down-shift matrix having ones in the lower diagonal and zeros elsewhere, let

e1 = (1, 0, 0, . . .)T and define A−1 = e1e
T
1 , A0 = 1

2Z, A1 = 1
2 (I − e1e

T
1 ). Observe that the matrix

A−1 +A0 +A1 is stochastic, A−1, A0, A1 ∈ QT , and that equations (3) and (4), have minimal

nonnegative solutions

R =
1

2

[
0 0
1 (I − 1

2Z)
−1

]
, G = 1eT1 ,

respectively, in particular, as expected, G1 = 1. On the other hand G and R do not belong to QT
since their corrections to the Toeplitz part are neither in F nor have a bounded 2-norm.

We present a necessary condition that has to be satisfied in order to guarantee that the solution G
of the matrix equation (4) belongs to QT .

Lemma 2

Under the assumptions of Theorem 1, let ϕ(z) = z−1A−1 + (A0 − I) + zA1 with Ai ∈ QT . Let

ai(z) be the symbols associated with the blocks Ai, let g(z) be the minimal non-negative Laurent

series† such that

a−1(z) + a0(z)g(z) + a1(z)g(z)
2 = g(z), g(z) =

∑

i∈Z

giz
i,

and assume that the QBD is positive recurrent. If the minimal non-negative solutionG of (4) belongs

to QT then g(1) = 1.

Proof

Assume that G = T (g) + Eg ∈ QT , where T (g) is the Toeplitz part and Eg ∈ F . Since G verifies

(4) then the symbol of T (g) needs to be g(z). Since the QBD is positive recurrent, then G1 = 1

and we have Eg1 ≥ 1− T (g)1 ≥ ǫ1, with ǫ = 1− g(1). If ǫ > 0 then every row of Eg has sum of

moduli at least ǫ, and therefore Eg 6∈ F , which leads to a contradiction.

In the example at the beginning of this section, the matrix G is such that g(1) = 0, therefore, for

Lemma 2, G cannot belong to QT .

†we say that a(z) ≤ b(z) if the inequality holds coefficient-wise, and by g(z) non-negative we mean that its coefficients
are all non-negative.
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Remark 3

Note that the symbol g(z) can be computed easily by applying the iterative scheme of cyclic

reduction on the power series ai(z) [8]. This provides an effective necessary criterion in order that

G ∈ QT , indeed, if g(1) < 1 then G cannot belong to QT .

5.3. Handling problematic cases

In Lemma 2 we highlighted a necessary condition in order that G ∈ QT . In some of the instances

of the problems shown in the paper by Motyer and Taylor [9] this condition is not satisfied, and

the sequences generated by cyclic reduction do not converge inside QT . However, it is possible to

express the problem in a different equivalent form where this necessary condition is satisfied.

More precisely, the idea relies on the well-known permutation matrix Σ that swaps the two factors

of a Kronecker product, i.e., such that Σ(A⊗B)ΣT = B ⊗A. Since we are looking for a left

eigenvector π of P , we can instead compute the left eigenvector π̃ of ΣPΣT . It is immediate to

note that π = π̃Σ.

Let us make the additional assumption that the blocks Ai are tridiagonal, and have corrections

with support in the first row. This is equivalent to asking that the matrix P is of the following form

P =

3∑

j=1

T
(1)
j ⊗ T

(2)
j +

2∑

j=1

e1u
T
j ⊗ T

(3)
j +

2∑

j=1

T
(4)
j ⊗ e1v

T
j ,

where the matrices T
(i)
j are Toeplitz tridiagonal, and uj, vj are either e1 or e2. The above structure is

clearly invariant under the action of Σ, so that ΣPΣT has the same structure of P . However, it can

happen that the matrix equation associated with ΣPΣT satisfies the criterion of Lemma 2, whilst P
does not. This is what happens in the cases 2, 6, and 10 from the paper [9].

In the numerical experiments, whenever the criterion of Lemma 2 was not satisfied, we applied

this trick and we managed to compute G, R and the invariant probability vector π.

6. COMPUTING THE STEADY STATE VECTOR

We now discuss the computation of the invariant vector π, that represents the steady state vector of

the QBD process. As recalled in Section 2.1, we have

π0 = π0(B0 +B1G), π0(I −R)−1
1 = 1, πn = πn−1R = π0R

n.

where π = [π0 π1 . . .]. This reduces the problem of computing π to the computation of R and π0.

Notice that both π and π0 are infinite vectors. In particular, π0 ∈ ℓ1(N), so that, for any ǫ > 0, there

exists an index after which all its entries are smaller than ǫ in magnitude. It would be unfeasible to

compute an infinite number of entries on a computer, so we assume that a certain threshold ǫ > 0
has been fixed once and for all, and we are only interested in computing the components of π of

magnitude larger than ǫ. In our experiments we always choose ǫ equal to the machine precision

ǫ ≈ 2.22 · 10−16.

If the solutions G and R of the matrix equations in (3) are in QT , the infinite vectors πn can be

easily computed. Let us consider the first block π0. Since G ∈ QT , then M := B0 +B1G ∈ QT ,

so that it is numerically banded, and has a correction in the top-left corner. Using a suitable

reblocking, one can interpret the matrix M as numerically block tridiagonal and Toeplitz, with the

only exception of the first block row. More precisely, by choosing sufficiently large blocks M̂i,Mi,

we can rephrase the problem as follows:

[
π
(0)
0 π

(1)
0 . . .

]



M̂0 M̂1

M−1 M0 M1

M−1 M0 M1

. . .
. . .

. . .




︸ ︷︷ ︸
M

=
[
π
(0)
0 π

(1)
0 . . .

]
. (12)
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The matrix M̂0 is chosen so that it contains the correction part ofM , and the other blocksMi contain

the banded Toeplitz part. More precisely, the size m of the blocksMi is chosen asm = max{bℓ, bu}
where bℓ, bu are the lower and upper bandwidth of M after the truncation with the relative threshold

ǫ. In particular, the matrix M represents the transition matrix of a QBD with finite dimensional

blocks. Since the original process is positive recurrent, then the QBD associated with the matrix M
can be seen as a “censored” version of the original one, that is still positive recurrent. Therefore,

solving (12) consists in computing the steady state vector of a QBD, thus π
(0)
0 (M̂0 + M̂1GM ) = π

(0)
0

and π
(k)
0 = π

(k−1)
0 RM , k ≥ 1, where RM and GM are the minimal nonnegative solutions of the

matrix equations:

R2
MM−1 +RMM0 +M1 = RM , M−1 +M0GM +M1G

2
M = GM ,

respectively. Since the spectral radius ofRM is smaller than 1, one can give explicit estimates of the

number of non negligible components π
(k)
0 with respect to ǫ. In our numerical experiments we stop

when ‖π
(k)
0 ‖∞ < ǫ · ‖π

(0)
0 ‖∞. For more details on this analysis we refer to [7].

Matrices RM and GM can be computed by applying cyclic reduction and the finite dimensional

vector π
(0)
0 can be computed by applying a standard method for approximating the Perron vector of

a nonnegative matrix.

Once π0 is computed, the other entries can be recovered by right multiplication by R. These

techniques will be used in the next section to solve some problems from a paper by Motyer and

Taylor [9], which are representative examples of QBDs found in the applications.

7. NUMERICAL RESULTS

We tested some QBD processes, taken from [9], which describe two node Jackson tandem networks.

We have computed the invariant probability vector π using the strategy described in the previous

section. The implementation of our tests and algorithms is available online at https://github.

com/numpi/cqt-toolbox.

Recall that π = [π0 π1 . . .], where each of the vectors πi has infinite entries which decay to 0.

Moreover, also the norms ‖πi‖ decay to 0 as i→ ∞. For the bidimensional nature of the problem it

is convenient to represent π as an infinite matrix by rearranging its entries as follows:

Mπ =




π0
π1
...


 .

This has the advantage that the matrix has summable entries, and therefore we haveMπ ∈ QT , with

a null symbol. Moreover, this ordering is also meaningful from the point of view of the applications,

since the states of the QBDs in [9] are naturally indexed as items of N2, and there is a one to one

correspondence to this indexing and the entries of Mπ.

We notice that the matrix P with the blocks Âi, Ai can be written as

P = I ⊗A0 + J ⊗A1 + JT ⊗A−1 + e1e
T
1 ⊗ (Â0 −A0) + e1e

T
2 (Â1 −A1),

where ej is the vector with a 1 in position j, and J is the matrix with 1 on the superdiagonal and

zero elsewhere.

In particular, denoting vec(A) the vector obtained by stacking the columns of the matrix A, it is

well known that vec(X)TA⊗B = vec(AXTBT )T . This way, we can rephrase the condition that π
is a left eigenvector of the block tridiagonal matrix as Mπ being the solution of the following matrix

equation:

e1e
T
1Mπ(Â0 − A0) + JMπA−1 + JTMπA1 +MπA0 = 0, (13)

where the term e1e
T
2MπÂ1 = A1 has been removed since for the Jackson tandem queues we have

Â1 = A1. Notice that all the matrices in the above equation are semi-infinite and belong to QT , so

that we can easily verify the numerical validity of (13).
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Problem Residue ‖·‖QT Residue ‖·‖∞ Time (s)

1 4.40e-13 2.02e-13 15.13

2∗ 1.94e-12 9.09e-13 1.14

3 4.29e-13 2.02e-13 1.62

4 4.08e-13 1.77e-13 10.29

5 4.11e-13 1.93e-13 6.07

6∗ 2.48e-12 1.16e-12 4.23

7 5.64e-13 2.64e-13 118.14

8 8.80e-14 4.30e-14 2.68

9 4.43e-13 2.13e-13 1.15

10∗ 1.38e-11 6.65e-12 1.05
Table I. Residue of the matrix equation (13) evaluated at the matrix Mπ computed numerically. The results
are reported both in the QT and in the ∞ norms, along with the time required to compute π. The problems

marked with the symbol ∗ have been solved using the trick described in the section 5.3.

In Table I we have reported the residues of the evaluation of the matrix equation (13) at the

solutions Mπ that we have computed numerically. We have tested all the problems that satisfy

our hypotheses, so that cyclic reduction applied to the blocks Ai converges in QT . In particular,

problems 2, 6, and 10 do not have the required properties. In that cases, we have applied the strategy

described in Section 5.3.

The residues are reported both in the QT and in the ∞-norm, and we have reported the timings

required to compute π in Matlab on a laptop, with an Intel i5-6300U CPU.
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