
Journal of Computer Virology and Hacking Techniques (2023) 19:33–49
https://doi.org/10.1007/s11416-022-00430-5

ORIG INAL PAPER

Reversing Kia Motors Head Unit to discover and exploit software
vulnerabilities

Gianpiero Costantino1 · Ilaria Matteucci1

Received: 22 December 2021 / Accepted: 17 April 2022 / Published online: 25 May 2022
© The Author(s) 2022

Abstract
Modern vehicles resemble four-wheels computers connected to the Internet via their In-Vehicle Infotainment (IVI) systems.
As with PCs in the past, cars, being connected to the Internet can be potentially vulnerable. The IVI system of a car is part
of the intra-vehicle network and can be the entry-point of offensive cybersecurity attacks. The intra-vehicle network, based
on the CAN protocol, is vulnerable by design: messages are exchanged in clear. Thus, the uncontrolled access to the CAN
bus may have serious impact on the vehicle itself and its passengers. In this paper, we present a vulnerability assessment,
through a reverse engineering process, of Kia vehicles IVI system. In particular, we focused on reverse engineer the Kia IVI
system to discover vulnerabilities that may allow an attacker to compromise the IVI functionalities and inject CAN frames
into the CAN bus to alter the behaviour of (part of) the vehicle. By reverse engineering the IVI, we identified four important
vulnerabilities that affect all Kia vehicles that embed the studied IVI. Finally, we show how an attacker can easily control the
IVI and inject CAN bus frames by means of a Metasploit module that we wrote.

Keywords Automotive · Vulnerability Assessment · Reverse Engineering · IVI Exploit

1 Introduction

Nowadays vehicles have so much technologies that cannot
be considered simple mechanical devices. The possibility to
connect a vehicle to the Internet by means of its In-Vehicle
Infotainment (IVI) system or through the Telematic Unit
turns it into a vulnerable device similar to PCs, smartphones
and IoT devices. An IVI system is usually connected to the
intra-vehicle network as well as all the other Electronic Con-
trol Units (ECUs) [1] that, by communicating one another,
manage all the vehicle functionalities.

The most used in-vehicle communication protocol is the
“Controller Area Network”, also known as CAN bus [2],
which dates back to 1983 with Bosch and is standardised
in ISO 11898-1:2015 as a simple protocol based on “CAN-

Gianpiero Costantino and Ilaria Matteucci have contributed equally to
this work.

B Gianpiero Costantino
gianpiero.costantino@iit.cnr.it

Ilaria Matteucci
ilaria.matteucci@iit.cnr.it

1 Istituto di Informatica e Telematica, CNR Pisa, Pisa, Italy

H” and “CAN-L” lines. However the CAN protocol is not
secure-by-design: it lacks security measures entirely [3–5]

As a node of the in-vehicle network, an IVI system com-
municates with other ECUs by using the CAN protocol. It
aims to improve the driver user-experience by providing apps
for navigation and control vehicle functionalities, such as the
HVAC. IVI systems are oftenbasedonwell-knownOperating
Systems, such as Android or Linux-based [6]. Even though
Linux provides several advantages, Android OS is going to
impose its supremacy also in the automotive market [7]. This
is mainly caused by the advantages that such OS provides in
terms of features in the connected-car scenario. Several car
manufacturer (OEM) already mount on their cars IVI with
Android OS and others are going to do it soon, e.g., General
Motors will embed Android Automotive OS starting in 2021
[8].

As any devices controlled by a software component, also
an IVI system can be vulnerable and the vulnerability impact
may increase if the IVI is connected to the Internet. This
is the case of the most popular attack performed back to
2015 by Miller and Valasek to the Jeep Cherokee [9] where
the two researchers were able to find a running process that
was listening for incoming connections on a specific port.
Exploiting the listening process, they were able to remotely

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-022-00430-5&domain=pdf
http://orcid.org/0000-0002-2900-262X


34 G. Costantino, I. Matteucci

interact with the IVI system and inject CAN [10] frames into
the in-vehicle network by modifying the IVI firmware.

1.1 Motivations and contribution

Beside the above considerations and to the best of our
knowledge the interest to propose cybersecurity solutions
within the automotive domain is getting more and more
attention. On August 2021 the ISO/SAE FDIS 21434 [11]
was released to draw the guidelines for the cybersecurity of
onboard communication. Other security solutions are pro-
posed by the AUTOSAR SecOC specification [12] in which
the AUTOSAR consortium has described a possible solution
to introduce integrity and authenticity into on board commu-
nication.

Thus, the existing gap between the necessity of introduc-
ing standardised cybersecurity solutions into the in-vehicle
networks and the lack of existing mechanisms deployed on
the vehicles, bring us to investigate the vulnerabilities and
their impact on the security into our cars. To this aim, the
main goal of this paper is to provide an answer to the follow-
ing Research Questions:RQ1: Which kind of vulnerabilities
may affect a vehicle? RQ2: Which is the attack impact on
the vehicle functionalities? And on the driver’s security/safe-
ty/privacy? RQ3: How strong are the current mechanisms to
prevent cybersecurity attacks?

To contribute answering the research questions listed
above, we targeted our test vehicle, a Kia CEED. In par-
ticular, we reverse engineered its IVI system, hereafter also
referred as Head Unit (HU), that is also installed into all Kia
vehicles that support the 8-inches IVI system version. In our
study, we considered it as the entry point for cyberattacks
especially when the vehicle is connected to the Internet.

The Head Unit available in the Kia CEED is the GEN
5.0, aka iAVN and its OS is based on Android version 4.2.2.
This is one of the main reason that leads us to chose this
target. In fact, we already had experience on security issues
affecting Android devices. Finally, because and the use of
Android as the underlying operating system for IVI system
interfaces is becoming increasingly popular amongmajor car
manufacturers [7].

The reverse engineering activity we carried on allowed us
to discover relevant vulnerabilities on the HU software ver-
sion:
CD.EUR.SOP.003.30.180703.STD_M released to vehicles
at the end of 2018. However, the found vulnerabilities
still exist in further releases of the HU software, such as
CD.EUR.SOP.005.7.181019.STD_MandCD.EUR.SOP.007.
1.190212.STD_M, and they impact all Kia Motors vehicles’
head units that run those software versions. The found vul-
nerabilities are listed in Table 1.

A particular attention will be given to the Arbitrary Code
Execution (ACE), vulnerability id “2” in Table 1, to trigger

unexpectedHU functionalities.We exploit such vulnerability
to inject CANbus frames only into theM-CAN (Multimedia)
bus of the car, the partition of the network on which the HU
is connected. As per vehicle design, the M-CAN partition is
separated by other partitions, like power-train and chassis,
and CAN bus frames are filtered by the gateway ECU, which
acts a physical partitions separator.

Finally, by reverse engineering the HU Operating System
(OS), all system apps running on the HU and libraries, we
were able also to identify the other three vulnerabilities, id
“1”, “3” and “4”. We noticed that IVI system apps are not
obfuscated making the reverse activity feasible. Then, to find
vulnerabilities id “3” and “4”, we developed an app, called
Kia OFFEnsivE (KOFFEE), that runs a brute force attack
on the HU to find “ids” and “payloads” to make our attack
exhaustive.

1.2 Attacker model

We model the attacker as an active one who can exploit vul-
nerabilities of the HU to gain digital access to the car, either
locally or remotely and to compromise the Head Unit. The
attacker does not need to have a total impairment but only a
partial one to compromise the HU. She attempts to carry out
the following activities:

• The collection of information to acquire exchanged data
by:

– sniffing the frames in transit with the aim of learning
the data they carry.

– information gathering of frames in transit to identify
and interpret their payloads.

• The injection of CAN frames from theHU into in-vehicle
CAN bus network to trigger specific functionalities. This
activity includes:

– fuzzing as the manipulation of frames to reverse engi-
neer the behaviour of target ECUs.

– forging, the generation of a valid frame with the aim
of generating a valid signal and activating a specific
ECU functionality.

– replaying, the reuse of valid frames with the aim of
repeating the generation of a valid signal and reacti-
vating a specific ECU functionality.

• The distribution of not genuine apps that may contain
malicious software, through:

– social engineering techniques to gain remotes access.
– untrusted websites that allow the download of apps
with backdoor to gain IVI system remote access.

123



Reversing Kia Motors Head Unit to discover and exploit software vulnerabilities 35

Table 1 List of discovered
Head Unit vulnerabilities

ID Vulnerability Description

1 List of “ids” and type of “payloads” Ease the creation of MICOM messages and CAN
frames by the corresponding IVIMessage file

2 Arbitrary Code Execution Execute MICOM message exploiting the binary file
or Framework library

3 Controlled MICOM message Injection of unexpected messages into HU software

4 Semi-Controlled CAN frames Injection of unexpected CAN frames into the M.bus

1.3 Outline

The remainder of this paper is structured as follows: the next
section reports some cyber-security attacks performed into
the automotive domain in the last decade. Section 3 presents
the target of our reverse engineering activity described in
Section 4. Sections 5 describes the KOFFEE Module we
developed to exploit the discovered vulnerabilities to inject
CAN frames into the M-CAN bus of the vehicle. Section 6
presents an example of how the KOFFEE Module can be
exploit to remotely perform an end-to-end attack. Section 7
discusses the lessons learned providing an answer for each
research question at the basis of our work. Section 8 con-
cludes this paper.

2 Related work

The first experimental studies and analysis of vehicle’s vul-
nerability date back to 2010 [13]. The authors demonstrate
the fragility of the underlying intra-vehicle network. They
proved that, at a certain point in time, an attacker, able to
injectmessages into anECU, can leverage this ability to com-
pletely circumvent a broad array of safety-critical systems
and control a wide range of automotive functions, includ-
ing disabling the brakes, stopping the engine, and so on.
Checkoway et al. [14] analyse the external attack surface of a
connected vehicle by considering the I/O channels of the car,
i.e., indirect physical access (ODBII port, entertainment sys-
tem), short-range wireless access (Bluetooth, remote keyless
entry, tire pressure, RFID car keys, and emerging short-range
channels such as hotspots for WiFi access), and long-range
wireless access (broadcast channels and addressable chan-
nels, i.e., the telematic system).

The first successful attack performed back to 2014 and
reported in literature in 2015 by Miller and Valasek [9] is the
one to the Jeep Cherokee. This proved that modern vehicles
can be hacked like traditional PCs or smartphones. In 2015,
also the AUDI TT airbag system has been hijacked [15]:
researchers demonstrated how disable the airbags on a Audi
TT (and others models) and other functions by exploiting a
zero-day flaw in third-party software. Still in 2015, the Tesla
Model S, which is the world’s most connected car, after two

years of in depth hacking, was hacked by M. Rogers and
K, Mahaffey [16]. The same model was remotely hacked
[17] in 2016. Chinese researchers were able to interfere with
the car’s brakes, door locks and other electronic features,
demonstrating an attack that could cause havoc. In 2015, also
General Motors (GM) was target of a carjacking [18]. A 29-
year-old software developer figured out a way to attack GM
cars by using a personally revised version of OnStar, which is
a system built into many GM cars that lets owners do things
like remotely unlock or start their cars from an app or a phone
service. The tampered version, called OwnStar, allowed the
hacker to locate, unlock, and start a GM vehicle by simply
attaching a device somewhere on the targeted car. Whenever
the car owner opens theOnStarmobile appwithinWiFi range
of the vehicle, theOwnStar gadget placed on the car discloses
all kinds of valuable information to the hacker. The official
BMWweb domain and ConnectedDrive portal was attacked
[19]: a research discovered two zero-day vulnerabilities in
both of them.

In 2016, Mitshubishi Outlander hybrid car was hacked
[20]: the alarm can be turned off via security bugs in its on-
boardWi-Fi. In 2016 alsoNissanLeafwas hacked viaMobile
app and Web Browser [21]: once connected, the vehicle’s
engine and brakes could be controlled remotely.

Studies of offensive security on vehicles went ahead also
in 2017. Among the others, we recall the remote attack on
theBoschDrivelogConnectorOBD-IIDongle pointed out by
the Argus Research Team [22]. The vulnerabilities allowed
the attackers to stop the engine of a moving vehicle using
the drivelog platform. In [23], a social engineering attack
was developed in order to grab information circulating on
the CAN bus of a vehicle by using an Android based after
market infotainment system installed on a VW Golf 6. Also
in 2017, Tesla model S was remotely hacked by the Keen
Security Lab [24] that discovered a vulnerability allowing
a full attack chain to implement arbitrary CAN BUS and
ECUs remote controls on Tesla motors with latest firmware
is possible.

Again, the Keen Security Lab, in 2018, presented a set
of vulnerabilities of BMW cars [25] that make them prone
to remote access. In particular, an attacker can exploit such
vulnerability to inject Unified Diagnostic Services (UDS)
frames into the CAN network bypassing the central gateway.

123



36 G. Costantino, I. Matteucci

Fig. 1 Kia CEED In-Vehicle Network

In fact, as reported in [26], fault can been injected on auto-
motive diagnostic protocols. Also, Subaru [27], Volkswagen
[28] and Tesla [29] again were affected by remote attacks.
Note that the attack to Tesla Model S of 2018 is different
from the previous one. In 2018, the attackers pointed out a
vulnerability that may allow a thief to steal a Tesla Model
S in seconds by cloning its key fob. Interestingly enough,
recently, November 2020, Belgian researchers demonstrate
a third attack on the car manufacturer’s keyless entry system
[30]. This time breaking into a Model X in matter of min-
utes. In 2019, the attack CANDY CREAM [31] exploited
first a remote vulnerability discovered into an after-market
infotainment system. In addition, the researcher were able
to inject CAN bus frames when the infotainment system was
connected to the CAN bus. InMarch 2020, the Keen Security
Lab has been performed an experimental security assessment
on Lexus Cars [32] pointed out a new vulnerability on the
infotainment systemof theToyotaLexus car.Recently, spring
2021, Weinmann and Schmotzle [33] remotely exploited the
Tesla Model 3. In this attack, the authors were able to dis-
able the car’s firewall and send messages through the car’s
gateway to open its doors.

3 Our target

The target is the Kia Motors Head Unit with software ver-
sion CD.EUR.SOP.003.30.180703.STD_M. The Head Unit
we reverse engineered is mounted in all Kia vehicle that
support the 8-inches model. In particular, the Head Unit we
considered in this paper is mounted in a Kia CEED 1.6 CRDi
136 CV DCT. The in-vehicle network of the Kia CEED is
shown in Fig. 1.

The Kia CEED has an internal network separation that
aims to divide untrusted zones, such as the multimedia one,
named M-CAN bus, from the trusted ones, such as B-CAN
(Body-CAN) and others. Partitions are connected through a
Central Gateway (CGW) that forwards allowed CAN frames
from a partition to another (Fig. 1).

3.1 Head unit

The HU is connected to the Multimedia CAN-bus partitions
of the vehicle. It is connected to the Internet through a smart-
phone, as hotspot mode, or 3G, 4G dongle that generates a
Wi-Fi network in which the Head Unit is connected.

Physical buttons are present in the HU to quickly activate
other functionalities, such as, maps and settings. The OS is
based onAndroid version 4.2.2. Users cannot access the fully
OSandonly a set of pre-installed apps are available to provide
several built-in functionalities for a good driver experience.
Other apps related toOSsettings,HUmanagements andother
functionalities are not accessible by the users.We distinguish
these two spaces as UI Front-end and UI Back-end.

3.1.1 UI front-end

It is the space in which the user is allowed to move on within
the HU. It contains, for instance, the navigation app and the
radio app. In addition, there are also other apps needed for
the HU configuration or just to have information about the
software version as well as the possibility to upgrade the HU
software.

3.1.2 UI back-end

It is the space in which the user is prevented to access.
However, in the Internet several guides show on how users
can access the full Android OS exploiting a hidden menu
[34,35]. The most interesting hidden menu is the Engineer-
ing Menu and it is referred as “eng menu” throughout this
paper. When exploring the UI Back-end through the “eng
menu”, we observed that other apps are installed in the HU,
such as the Browser app, and are not available in the UI
Front-end.

3.1.3 Third-party applications

The HU by default does not allow users to install third-party
applications. Users are limited to use only those apps that
are in the UI Front-end and UI Back-end in case of access1

through the “eng menu”. However, googling online it is pos-
sible to find several guides that allow users to access the full
Android operating system from a hidden menu are available.
Access to the eng menu may change from vehicle to vehi-
cle model and it also changes from HU software version.
The access to older version is quite simple and become more
difficult up to the last available software version. Thus, by
accessing the “eng menu”, a user is able to install third-party

1 Accessing the UI Back-end is unauthorised action and only dealers
or authorised users should access it. Note that any unauthorised activity
may invalid the vehicle’s warranty.

123



Reversing Kia Motors Head Unit to discover and exploit software vulnerabilities 37

Fig. 2 Flow to extract the Firmware from the HU

applications also from unknown sources. For instance, using
the Browser app, we discovered that apps can be installed via
a http server web inserting a string similar to:

server-ip/foo.apk

Where the “foo.apk” is the installation bundle file.

4 Head unit reverse engineering

The methodology we followed to identify all vulnerabilities
consists of three steps, one for each element of theHU thatwe
studied. First, weworked on theHUfile system to understand
how it is organized and we extrapolated the Android Frame-
work files from the HU. Second, we reverse engineered the
HU apps, both the ones belonging to the UI Front-end and
UI Back-end to understand how the HU software works and
communicates on the CAN bus. Third, we developed a sup-
porting app to run a brute force attack on the HU to find valid
“id” and “payload” to control the HU and send CAN bus
frames into the M-bus of the vehicle.

4.1 Step 1: HU’s file system, framework and system
Apps

To access the HU file system, we need a system shell to nav-
igate among system files and folders. To achieve this step,
we created an Android app2 that embeds a malicious pay-
load formed by a reverse shell that is spawned once the app
is installed, see Fig. 2. After installing this app on the HU
through the “eng menu”, we were able to remotely access
the HU and navigate the file-system using a Meterpreter [36]
reverse-shell.

Figure 3, we show an excerpt of the fine system that we are
able to explore with the remote shell. Exploiting the shell, we
got into the HU file system and we noticed that it resembles
the file system of an Android-based device. The access we
got did not have root privileges so we were able to open only

2 Appendix B illustrates how we created the app.

Fig. 3 File system excerpt

Fig. 4 Excerpt of /system/bin folder

granted folders and read/write files that do not require root
privileges.

Under the root “/” there is the “system” folder in which
Android OS files are present. This folder usually contains
pre-installed apps and the framework files. In addition, the
“bin” folder contains the majority of executable files that can
be run into the system. Some files in this folder are already in
a binary format, i.e., they can be run as system application,
while others are “sh” script files in which we can observe the
source code.

Figure 4 shows part of files contained in the “bin” folder.
Themajority of files available in “/’system/bin” requires priv-
ileged access to be run. For instance, the applets contained
in the busybox [37] executable cannot be run without privi-
leged access. This means that a not root user cannot execute
commands like chmod, chown and other commands avail-
able into busybox. On the other sice, there exist files can be
executed without privileged access, this because they have
“read” and “execute” permission for the others scope users.

The Framework contains the Android software libraries
that allows the HU to properly work. It is located under the
folder /system/framework and we needed it to reserve engi-
neering system apps and develop an app that uses system
libraries to work. So, to download the Framework files and

123



38 G. Costantino, I. Matteucci

the system apps from the HU, we leveraged the Meterpreter
commands:

download -R /system/framework
download -R /system/bin

In particular, each system app is composed by two files,
one with .apk extension and one ending as .odex file [38].
This indicates that installed apps are odex optimized exe-
cutable files to allow the Android OS to quickly load the
apps when the HU boots up. However, apps split into .apk
and .odexfilesmake the reverse engineeringphasemore com-
plicated since each app needs to be first deodexed, i.e., we
need to get a single .apk file with all application files inside.
To perform apps “deodexing”, we exploited the tool [39] that
in combination with the framework files allowed us to get the
full .apk files.

4.2 Step 2: Digging into system apps

Working on theHUversion SOP.003.30.18.0703, we decom-
piled3 98 system apps ranging from core apps to command
the HU to apps managing, for instance, the navigation, cli-
mate, and so on. Then, we dug into the source code to
understand its main functionalities and any kind of detail
related to CAN bus access. All decompiled system apps gen-
erated 59093 files, whose 22209 are JAVA files and are 7979
XML files. The total amount of decompiled code lines4 is
2654557.

Seen the huge amount of decompiled files, we started a
fuzzy search by looking for any string reference to canbus,
send, message and so on. By means of the fuzzy search,
we were able to go more in depth and obtain important find-
ings and understand some details of the system apps working
method.

4.2.1 Inter-process communication

The first thing we discovered is that apps were able to
communicate among them using the so-called mechanism
Inter-Process Communication (IPC). When an app is exe-
cuted, it runs in a sort of sandbox and the IPC mechanism is
exploited to exchange data with other apps. Without going
into details on this, Android has its own IPCworkingmethod
[40] that allows apps to exchange data. This is done through
JAVA classes that behave as Interfaces and expose methods
that can be called. These methods, when invoked, provide
information related to the HU. For instance, a non-system
app may be written and developed to invoke an interface by

3 For the decompiling operation we used the http://www.
javadecompilers.com/apk third-party online tool.
4 All these values are calculated using the “cloc” command line tool.
https://github.com/AlDanial/cloc

Fig. 5 Import classes of eIVIMessage

exploiting a system library extracted as explained in Sec-
tion 4.1.

Then, we discovered that the Framework library com.lge.
ivi.jar contains several interesting interfaces that can be
invoked to obtain vehicle’s information. For instance, it is
possible to get vehicle details by invoking methods of the
ConfigurationManager class: we were able to get the car
type by means of the method .getCarType(). In addition, we
can get the car buyer by invoking .getBuyer(). Other details
can be found also in the CarInfoManager class to retrieve
the vehicle speed with the method .getCarSpeed().

4.2.2 IVIMessages

When digging into apps working mechanism, we discovered
the vulnerability id “1” listed in Table 1. The vulnerability
is represented by the JAVA class called eIVIMessage and it
shows the full list of messages that apps can use to control
HU functionalities and send/receives CAN bus frames.

By exploring the source code, we saw that the eIVIMes-
sage class imports other classes categorized under a “mes-
sage” topology. An extract of these classes is illustrated in
Fig. 5.

All these classes represent objects that can be shared
among apps when IPC communications are used. By open-
ing each single message, we noticed a common structure, see
Table 2, that resembles an interface written with the Android
InterfaceDefinition Language (AIDL). Taking as an example
the “AskCanData” message class, we focused on the parse
method showed in Listing 1.

Listing 1 Parse method comparison

1 // Parse method of AskCanData class
2 public boolean parse(byte[] b, int len) {
3 if (len != 2) { Log.e(TAG, "Invalid data size. Expects 2, but " + b.length + " is

given");
4 return false; }
5 this.canId = (((b[0] >>> 0) & 255) << 8) | (((b[1] >>> 0) & 255) << 0);
6 return true;}
7 // Parse method of CanCluHuE00 class
8 public boolean parse(byte[] bArr, int i) {
9 if (i != 8) {Log.e("CanCluHuE00", "Invalid data size. Expects 8, but " +

bArr.length + " is given");
10 return false;}

123

http://www.javadecompilers.com/apk
http://www.javadecompilers.com/apk
https://github.com/AlDanial/cloc


Reversing Kia Motors Head Unit to discover and exploit software vulnerabilities 39

Table 2 Most relevant methods of the IVIMessage class

Methods

Return Type Name Input parameters Description

int id() // It specifies a message “id“

boolean isCan() // If true, the message is a CAN message otherwise not

boolean parse() byte[] b, int len It parses a message from its raw hex format to a high-level format, such as
Integer. If the parsing is correct, then a true values it outputted, otherwise false

byte[] compose() // It takes high-level format values and converts them into hex values.

String toString() // It displays as textual value the hex value of each variable contained in the class

11 this.sysCluVer = (((bArr[0] >>> 0) & 255) << 8) | (((bArr[1] >>> 0) & 255) <<
0);

12 this.cluDateInfoReq = (bArr[2] >>> 2) & 3;
13 this.cluClockInfoReq = (bArr[2] >>> 0) & 3;
14 return true;}

The parsemethod of “AskCanData” message class works
on a byte array of two elements, while that one in “Can-
CluHuE00” class expects a byte array of 8 elements.

We understood that the parse and compose methods recall
the working fashion of two well-known functions run by
Electronic Control Units (ECU) when sending and receiv-
ing CAN frames. These two functions are the encode and
the decode ones. The encode function is in charge of taking
high-level values, such as integer, decimal, and covert them
into hex values. The decode functionmakes the opposite task,
namely it takes hex values, which represent the CAN format,
and turns those values into a high-level format easy to be read
and understood.

Going ahead to analyse the eIVIMessage class, we
achieved the core of the class formed by the definition of
a group of constants by means of an enum JAVA class. This
one recalls the “imports” seen before. Appendix A shows an
extracts of the constants.

For each element of this structure, we associate the fol-
lowing meaning: the first value represents the “id” bound to
that message, in Appendix A, “id” equal to 273 identifies
the AUDIO_SUB_CH_CONTROL message. The second and
third field represent the message name and the correspond-
ing JAVA class filename. Last value identifies the type of
message among the following:

Listing 2 Message Types

1 MICOM = new eMessageType("MICOM", 0);
2 CAN = new eMessageType("CAN", 1);
3 MPDT = new eMessageType("MPDT", 2);
4 TYPE_ERROR = new eMessageType("TYPE_ERROR", 3);

The message type in Listing 2 shows the different pro-
tocols that can be managed inside the Head Unit. From our
study, we saw that only MICOM and CAN messages are
used.

By analysing the eIVIMessage class, we found 566 mes-
sages. Among these ones, 302 are CAN type while the others
are MICOM type. From our reverse engineering process,
we observed that each IVIMessage class defines the mes-
sage semantic: the set of signals composing the payload and
the corresponding variable to store the parsed values, e.g.,
sysCluVer, cluDateInfoReq. cluClockInfoReq variables of the
“CanCluHuE00” class.

Note that from automotive security perspective, vulnera-
bility id “1” represents a relevant leak of sensitive data since
messages semantic are secrets information known only by
the car manufacturers and ECUs providers.

4.2.3 Micomd binary file

By digging into the reversed apps, we came across the file
named AutoTestService.java. This JAVA class contains more
than 3000 lines of code and, in particular, we focused on the
method doCmdMuteToggle(). The method has an interesting
line of code that we found (Listing 3).

Listing 3 doCmdMuteToggle sendMicomMsg.

1 private void doCmdMuteToggle() {
2 ...
3 sendMicomMsg("8351 04"); }

The same AutoTestService.java JAVA file contains the
method sendMicomMsg (Listing 4).

Listing 4 sendMicomMsg method content

1 private boolean sendMicomMsg(String msg) {
2 try {Process process = Runtime.getRuntime().exec("micomd −c inject " + msg);
3 . ... }

This method invokes an executable binary calledmicomd
with option -c and parameter inject. Then, to the command
the string msg is passed. So, if we consider the method
“doCmdMuteToggle()”, the resulting system command is:

micomd -c inject 8351 04

123



40 G. Costantino, I. Matteucci

Fig. 6 Micomd command result

The above command indicates a send operation whose
specific content is “8351 04”. Next to the sendMicomMsg
method, we found also the method in Listing 5.

Listing 5 sendMicomMsgOutgoing method content

1 private boolean sendMicomMsgOutgoing(String msg) {
2 try {Process process = Runtime.getRuntime().exec("micomd −c

inject−outgoing " + msg);
3 ...}

This method is very similar to the sendMicomMsg and
again the binary “micomd” is considered but with the param-
eter “inject-outgoing”. This indicates that the binary invoked
with the option “inject-outgoing” may send a value some-
where outside the unit.

Whatwe observed is that, othermethods invoke the “send-
MicomMsgOutgoing” one and this is the case, for instance,
of the method listed in Listing 6.

Listing 6 doCmdCarAccOn method content

1 private void doCmdCarAccOn() {
2 Log.d(AutoTestService.LOG_AUTO_TOOL, "doCmdCarAccOn");
3 sendMicomMsgOutgoing("0170 01");}

At this phase, we discovered vulnerability id “2” repre-
sented by the “micomd” binary file under the /system/bin
folder. To make this vulnerability concrete is the possibility
to arbitrary exploit the binary even not being root. So, by exe-
cuting the command line “micomd -c inject 8351 04” in the
HU shell, we were able to mute and unmute the HU volume,
see Fig. 6a and b.

4.2.4 MICOMmessages semantic

Our goal is to choose an “id” among the ones listed in the
eIVIMessage JAVA file, such as 8351, and payload, like 04
that is valid: it triggers unexpected functionalities into the
HU. We noticed that the “id” 8351 is represented as hex-
adecimal format and to obtain the proper JAVA object listed
within the eIVIMessage file, we had to convert it into the
decimal format and we get:

(8351)16 = (33617)10 (1)

Fig. 7 RemoteKey class definition

The decimal value of 8351 is 33617 and it corresponds to
the ETC_SW_REMOTE_KEY_EVENT JAVA object
(Appendix A line 27).

By observing the corresponding ETC_SW_REMOTE_
KEY_EVENT JAVA source file, we noticed that the method
isCan() gives as output false, that the method parse() expects
an input of 1 byte length, and that the payload is built by the
method compose as:

this.remoteKey & 255

From the above line of code, we understood that the
payload takes the value of remoteKey and makes an and
logical operation with the value 255. remoteKey is defined
as static class within the ETC_SW_REMOTE_KEY_EVENT
JAVA file.

We noticed that remoteKey may assume different values
among those inFig. 7. For instance, the value “4” corresponds
to mute and, indeed, it is the value that triggers the “mute”
volume action on the HU. So, we were able to rebuild the
following command:

micomd -c inject 8351 04

where both “id” and “payload’ are converted from decimal
to hexadecimal values.

123



Reversing Kia Motors Head Unit to discover and exploit software vulnerabilities 41

Fig. 8 KOFFEE main window

To summarise, it is possible to control the HU by exploit-
ing the “micomd” binary with an hex “id” and a “payload”.
While the “id” is composed by a single parameter, the “pay-
load”may have a different length greater than 1, expressing at
least the presence of one byte. Then, the “id” can be obtained
converting the integer “id” listed in the eIVIMessage JAVA
file. Instead, the “payload” can be obtained observing the
corresponding source code of the MICOM message. From
this file, we also understood the “payload” length and how
to compose and parse a message payload.

In the following, we show how vulnerability “id 2” can
be exploited to find chosen “id” and “payload” to control the
HU functionalities (vuln. “id 3”) and inject crafted CAN bus
frames into the M-bus (vuln. “id 4”).

4.3 Step 3: KOFFEE

Our next goal is to discover the semantic message available
into the eIVIMessage JAVA file, in particular, those “ids” and
“payloads” that regulate the HU functionalities and modify
the behaviour of ECUs in the M-CAN bus.

Brute-forcing the “micomd”binary is anonerous task to be
manually performed. Thus, wewrote an Android app, named
Kia OFFensivE (KOFFEE), that iterates among all MICOM
message “ids”. When executing the KOFFEE app into the
HU, themainwindow appears (Fig. 8) giving the opportunity
to choose between two options: Send Micom and Bomber.
The first option allows us to manually trigger the “micomd”
binary, while the second one performs the brute-force attack
exploiting the “micomd” binary, i.e., vulnerability id “2”.

4.3.1 Send MICOMmessage

In Fig. 9 we illustrate the Send Micom window of the
KOFFEE app. In the following we describe its main func-
tionalities:

Fig. 9 KOFFEE Send Micom window

Fig. 10 KOFFEE Bomber window

• Send RAW button: it arbitrary sends a MICOM message
invoking the sendRawmethod of the iIVIMessageService
class contained in the com.lge.ivi.jar Framework class
file. The sendRaw function takes as input only an “id”
(as integer) and “payload” (as byte array).

• SendMICOM button: it sends aMICOMmessagewritten
in the text box.

• Inject Outgoing check-box: if ticked, the message is
sent as micomd -c inject-outgoing. Otherwise, micomd
-c inject.

• Send as HEX: it takes the input “payload” as hex format
when Send RAW is clicked. Otherwise, the “payload”
inserted in the edit-box must be as byte format. In both
case the “payload” is then converted to byte array.

• Insert Raw edit-box: the raw command to send.
• Insert Micom edit-box: the MICOM command to send.

4.3.2 Bomber MICOMmessages

The Bomber window appears as illustrated in Fig. 10 and
allows us to iterate among all MICOM and CAN message
types available in the eIVIMessage file. This window ismade
by the following main functionalities:

123



42 G. Costantino, I. Matteucci

Table 3 Subset of MICOM
messages discovered using the
KOFFEE app

Micomd command

Parameter Id Payload Description

inject 8350 07 01 It shows the radio app as foreground. This action can
be reproduced also with 07 03 payload

inject 8350 0C 01 It shows the navigation app as foreground. This action
can be reproduced also with 0C 03 payload

inject 8350 0E 01 It shows the settings app as foreground. This action
can be reproduced also with 0E 03 payload

inject 8350 0D 03 It shows the navigation app as foreground. This action
can be reproduced also with 0C 03 payload

inject 8350 20 01 It changes the radio station to the next available

inject 8350 21 01 It changes the radio station to the previous available

inject 8351 04 It mutes/unmutes the Head Unit volume

inject 8351 07 It enables vocals command

inject 8353 03 01 It enables the parking camera on the Head Unit

inject-outgoing 112 F4 It increase the volume of the Head Unit

inject-outgoing 112 F0 It increases the Head Unit volume at maximum

• From edit-box: it indicates the starting “id” to brute-force.
In Fig. 10, it is indicated as 1000.

• To edit-box: it indicates the last “id” to brute-force. In
Fig. 10, it is indicated as 1200.

• #Msg edit-box: it indicates the number of times to send
the same message. For instance, the message 1000 01 01
01 01 is sent twice if the value in this edit-box is 2. We
put this option to set how many times a message can be
sent to be sure that a message is sent and also processed
by the HU.

• (ms) edit-box: how much time passes from one message
to another, e.g., 200ms. If this option is not set or the
value is to low, e.g., < 50, the HU may be overloaded
and may not properly respond.

• Current edit-box: it indicates the sent “id” during the
brute-force action. The value ranges between “From” and
“To”.

• Payload edit-box: it contains the payload that is sent
when the “micomd” binary executable is triggered.

• Send MICOM inject out check-box: if ticked, the mes-
sage is sent as micomd -c inject-outgoing. Otherwise, as
micomd -c inject.

• Send only MICOM id check-box: when the brute-force
is active, the “ids” sent in the “From”-“To” window are
only MICOM type. This is a feature that we developed
to accelerate the brute-force operation by avoiding CAN
“ids” and other not used “ids”.

• Send only CAN id check-box: when the brute-force is
active, the “ids” sent in the “From”-“To” window are
only CAN type. This is a feature that we developed to
accelerate the brute-force operation by avoidingMICOM
“ids” and other not used “ids”.

4.3.3 Injecting Micomd commands

Table 3 shows a subset of “micomd” commands thatwe found
exploiting our KOFFEE app. In particular, we identified the
“id” and the “payload” needed to trigger an action.

Some“ids”werefirst identified using a simple chosen pay-
load, such as01010101. Then, onceweobserved that an “id”
triggers an action we decided to explore that “id” by testing
other “payloads”. However, a more accurate search of pay-
loads can be done by analysing the source code of a specific
“id” message. For instance, if we consider “id” 8350, it con-
verted to integer is equal to 33616. This “id” corresponds to
MICOM_KEY_EVENT message on the eIVIMessage source
file. Then, if we see the related MicomKeyEvent JAVA file,
we know more about this message. In this specific case, this
message has length two bytes (from parse() method), and
two are the values that can be set through this message, and
they are: KEY and INFO.

During the brute-forcing attack, we noticed two relevant
behaviours. In the first case, evenmanually forging a payload,
we were not always able to trigger the expected functional-
ities. This behaviour may be due to the car model that we
tested. In fact, the Head Unit software, and in particular,
its MICOM software version, may differently behave from
vehicle to vehicle: not all observed “payloads” may trigger
an action on our HU. This may represent a limitation but also
opens an important result of our research: the impact of our
findings may be larger and cover other vehicles that we have
not tested yet. To this purpose, we know that the firmware
we analysed is shared with other Kia Motors vehicles and
with other cars of another car manufacturer, which is part
of the same South Korean industrial group, that all together
represent the 8.2%, 8.6% and 10.3% percentage of the best

123



Reversing Kia Motors Head Unit to discover and exploit software vulnerabilities 43

Table 4 CAN ids generated from the HU and identities through CAN
hacker as MITM

CAN Frame

ID DLC (byte) Description

03E 8 Speed limit signals

0FB 8 GPS timestamp

03F 8 Navigation info e.g., Country and Motor

1E7 8 Navigation route

115 8 Navigation info

122 8 FM radio frequency

123 8 Route signals

173 8 Language info, navigation

197 8 As id 173

1E5 8 Speed limit signal

European selling car manufacturers in 2019, 2020 and 2021
years.

The second behaviour that we noticed is related to the
“payload” length. If we use smaller or bigger payload com-
pared towhat the parse()method says, for instance two bytes,
the “micomd” command is processedwithout any check. Our
opinion is that when we execute the “micomd” command,
this is not processed by the corresponding JAVA message
class but “id” and “payload” are directly injected into a sys-
tem socket located at the “/dev/socket/micomd” position as
stated in Listing 7.

Listing 7 Micomd socket connection

1 public synchronized void connect() { ...
2 this.f769D.connect(new LocalSocketAddress("micomd",

Namespace.RESERVED));
3 ... }

This missing check allowed us to discover payloads
although they were not properly forged: if the correct “pay-
load” is 01 01 and we sent the command with a longer
“payload”, e.g., 01 01 01 01, it is not discarded, but is pro-
cessed since the first two bytes are correct.

4.3.4 Head Unit CAN bus frames

As we said in Section 3, the HU is a node that belongs to the
M-CAN bus. The HU is able to send CAN frames into the
M-bus as well as receive frames from other nodes. To know
which are the CAN bus frames sent and received by the HU,
we decided to sniff theHUCANbuswires performing aman-
in-the-middle (MITM) attack as we show in Fig. 11.Wewere
able to connect a sniffer device, we used CAN hacker [41]
together with its Car BUS analyzer software [42] to sniff
all CAN traffic from that bus. We observed that the M-CAN
bus works at 100kbps, and the sniffed frames are reported

in Table 4. In particular, for each CAN frame we report the
“ID’, ’ “DLC”, i.e., the payload length, and its “description”.

4.3.5 Injecting CAN frames

We leveraged our KOFFEE app to discover CAN frames
from those ones available in the eIVIMessage JAVA file that
can be injected exploiting the ACE vulnerability (“id 2”).
The brute-forcing attack only on CAN message type can be
done by flagging the box Send only CAN ID in the Bomber
window (Fig. 10).

We found 9 messages that can be injected as CAN frames
from the HU using the “micomd” binary file (Table 5). In
addition, we noticed that CAN frame were generated only if
the “micomd” is executed with the “inject-outgoing” param-
eter.

Through the injection of these 9 CAN “ids”, we are able
to control some functionalities of the ECUs that reside on the
M-CAN bus. For instance, some CAN “ids” allow us to alter
the GPS and Navigation information collected by the GPS
component and provided to the driver by the User Interface
of the Instrument Cluster.

Note that, we do not directly compromise theGPS compo-
nent of the HU, but we act on the GPS information integrity.

Semi-controlled CAN frames Table 5 shows the CAN “ids”
that we were able to reverse and inject into the M-CAN bus.
Since the CAN bus protocol foresees that for a single “id”
it is possible to carry out more signals by working on its
“payload”, our next step is to forge a valid payload for each
chosen “id”. In an ideal situation if we send a 8 bytes payload
in a command like micomd -c inject-outgoing 4D1 11 22
33 44 55 66 77 88, we expect the same 11 22 33 44 55 66
77 88 payload is transmitted on the M-CAN bus. However,
this matching does not always occur. We believe that this
behaviour is controlled by the MICOM firmware that is in
charge of converting MICOM message to CAN frames. So,
not having access to the firmware, we decided to discover
through the KOFFEE app which are the payload that we
were able to create.

For each MICOM message, Table 6 reports the bytes that
we are able to control through the “micomd” binary: last
column shows the “✓” symbol to the payload byte position
that we are able to control, the “✗” symbol otherwise. For
instance, this means that if we send the MICOM message
4D1 11 22 33 44 55 66 77 88 from the HU, the CAN frame
115 11 22 33 44 55 66 77 88 is injected into M-CAN bus as.
On the other side, if we send theMICOMmessage 4D3 11 22
33 44 55 66 77 88 from the HU, an example of the resulting
CAN frame is 197 11 AA BB CC 55 DD EE FF meaning that
we can control only the first and the fifth byte. Moreover, we
noticed that the “ids” that we are able to arbitrary inject in
the M-CAN bus are only received by ECUs that belong to

123



44 G. Costantino, I. Matteucci

Fig. 11 CAN hacker connected
as node into the M-CAN bus

Table 5 eIVIMessages related to CAN ids discovered through brute-force

CAN Frame

eIVIMessage Name MICOM (int) MICOM (HEX) CAN ID (HEX) Description

HU_TMU_E_02 1026 402 0FB GPS timestamp

CAN_HU_NAVI_E_01_EVT 1053 41D 03F Navigation info, e.g. country, town and others

CAN_CLU_P_00_EVT 1232 4D0 1EF Navigation trajectory.

CAN_CLU_PE_02_EVT 1233 4D1 115 Navigation data displayed into the Instrument Cluster

CAN_CLU_PE_05_EVT 1235 4D3 197 Instrument Cluster language

CAN_CLU_PE_11_EVT 1236 4D4 1E5 Navigation speed limit

CAN_CLU_PE_06_EVT 1238 4D6 122 Radio frequency

CAN_CLU_PE_07_EVT 1242 4DA 123 Route signals displayed into the Instrument Cluster

CAN_CLU_NAVI_E_00_EVT 1243 4DB 03E Speed limits displayed into the Instrument Cluster and HU

Table 6 Byte payload that we
can control with the “micomd”
binary when CAN frames are
sent

CAN frames

MICOM (int) MICOM (hex) CAN ID (hex) Payload Position (8 byte)

1026 402 0FB ✓✓ ✓✓ ✓✓ ✗✗ ✗✗ ✗✗ ✗✗ ✗✗

1053 41D 03F ✓✓ ✓✓ ✓✓ ✗✗ ✗✗ ✗✗ ✗✗ ✗✗

1232 4D0 1E7 ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

1233 4D1 115 ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✗✓

1235 4D3 173 ✓✓ ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ ✗✗ ✗✗

197 ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✗✗ ✗✗ ✗✗

1236 4D4 122 ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

1242 4DA 123 ✗✗ ✗✗ ✗✗ ✓✓ ✗✗ ✗✗ ✗✗ ✓✓

1243 4DB 03E ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✗✗ ✗✗

this partition. In fact, we noticed that the Central Gateway
(CGW) properly isolates this partition from the others, such
as P-CAN, C-CAN and so on.

5 Weaponizing KOFFEE

In this section, we introduce the KOFFEE Module [43,44]
as the exploit implementation of the local Arbitrary Code
Execution vulnerability on the “micomd” binary. To ease the
attack, we developed the KOFFEE Module for Metasploit
[36] that with a set of actions that allow us to select the
commands to execute into the HU.

Over an active Metasploit session with the HU, we
can load our Module with the command use post/an-
droid/local/Koffee, then set the session with set session
“session_number” and, finally, execute one of the available
actions on the KOFFEE Module, i.e., camera_reverse_on.

Hereafter, we illustrate a subset of actions available in the
Module that affect the Head Unit and the vehicle instrument
cluster:

• CAMERA_REVERSE_OFF: It hides the parking cam-
era video stream.

• CAMERA_REVERSE_ON: It shows theparking camera
video stream.

123



Reversing Kia Motors Head Unit to discover and exploit software vulnerabilities 45

• CLUSTER_CHANGE_LANGUAGE: It changes the clus-
ter language.

• CLUSTER_RADIO_INFO: It shows radio info in the
instrument cluster.

• CLUSTER_RANDOM_NAVIGATION: It shows navi-
gation signals in the instrument cluster.

• CLUSTER_ROUNDABOUT_FARAWAY: It shows a
round about signal with variable distance in the instru-
ment cluster.

• CLUSTER_SPEED_LIMIT: It changes the speed limit
shown in the instrument cluster.

• INJECT_CUSTOM: It injects custom micom payloads.
• LOW_FUEL_WARNING: It pops up a low fuel message
on the head .

• MAX_RADIO_VOLUME: It sets the radio volume to
the max.

In particular, with the action “INJECT_CUSTOM”, we
can input a custom MICOM message to send with an “id”
and “payload”.

6 Showcasing an end-to-end attack:
vehicle’s remote exploitation

This section illustrates how an attacker can take i) control of
the HU and ii) use the KOFFEE Module to control the HU
and inject CAN frames into the M-CAN bus, see Fig. 12.

To take control of the HU, we designed and developed
an Android app that acts as a Trojan-horse in the HU. To
use an appealing Trojan-horse app for the victim, we down-
loaded from the Market Place a genuine app that shows the
gas stations close to vehicles. Then, we generated a mali-
cious payload using the “msfvenom” (Appendix B) utility of
Meterpreter and backdoored the genuine app with the mali-
cious payload. Thus, when the victim executes the app, the
backdoor is opened and a reverse-shell starts runs a connec-
tion from the vehicle to the attacker Meterpreter session.

In Appendix B we show how to create an app with a
malicious payload using msfvenom. Then, we extracted the
payload form the smali-code of the app and we injected it
in the genuine Android app. In particular, to backdoor the
genuine app with executed the following steps:

1. We decompiled the genuine app using the reverse engi-
neering Android apps tool called “Apktool” [45]. It is
used for back-smaling, i.e., to pass from the apk-code to
the smali-code and, reversely, smaling, i.e., from smali-
code to apk-code, Android applications.

2. We injected the malicious payload into the smali and
modified the apk-manifest to addpermissions (if needed).

3. We built the modified app using apktool.
4. We signed the modified built app.

5. We make it available for download, for instance in a
third-party market or exploiting a social engineering
campaign.

When the victim downloads and executes the app on the
HU, the malicious payload is run and a reverse Meterpreter5

shell is spawned. From now on, the attacker establishes a
remote connection with the HU of the vehicle and the HU
starts a connection towards the attacker’s computer.

To achieve the second part of the attack, the attacker
leverages the KOFFEE Module presented in Section 5. In
particular, over the existing connection the attacker can run
the KOFFEE Module and exploit the ACE vulnerability on
the “micomd” binary file and remotely attack the vehicle
using the available actions.

7 Lessons learned

As consequence of our analysis we now provide the answers
to the three research questions we listed in Section 1.1.

RQ1: Which kind of vulnerabilities may affect a vehicle?
The automotive literature and the attacks performed on vehi-
cles already give an overview on which are the most relevant
vulnerabilities in this domain. Trend Micro Research [46]
studied four relevant automotive attacks, such as the Jeep-
hack of 2015, the TESLA hacks of 2016 and 2017, and the
BMW hack of 2018. They observed that the generic attack
chain is that these attacks initially start from the vehicle’s
Head Unit via WiFi or the mobile network, then exploit a
weak point there.

On our side, we started our activity knowing that the CAN
bus network is not secure by design: messages are exchanged
in clear. However, to exploit this intra-vehicle network vul-
nerability we need to break other vehicle’s components, e.g.,
the Head Unit, that allowed us to access to the CAN bus net-
work. Following the attack chain depicted on theTrendMicro
Research, we decided to use the HU as entry point of our
attack. So, we reverse engineered it to identify the presented
vulnerabilities that allowed us to control HU functionalities
and inject frames into the M-CAN bus. In particular, refer-
ring to Table 1, we identified four vulnerable points. The
list of “id” and “payloads” (Vulnerability “id 1”) and Arbi-
trary Code Execution (Vulnerability “id 2”) allow attackers
to compromise the HU and lead to discover the other two
vulnerabilities (“id 3” and “id 4”).

RQ2: Which is the attack impact on the vehicle function-
alities? And on the driver’s security/safety/privacy?
The discovered vulnerabilities can impact on both vehicle
functionalities, by allowing the attacker to alter the behaviour

5 This is the shell that is created when a new Metasploit session is
established towards the victim

123



46 G. Costantino, I. Matteucci

Fig. 12 KOFFEE workflow

of the vehicle sending crafted messages, and on the security,
safety and privacy of the driver, since the HU is able to store
data belonging to the driver and, much more risky, can send
erroneous information. It is important to note that the actions
we trigger with the injection of our crafted messages are not
sent directly to safety critical parts of the vehicle. However,
altering the HU behaviour, for instance, by suddenly turning
the radio up to maximum volume, or altering the user inter-
face within the instruction cluster, may lead to a possible
unsafe reaction of the driver.

Hence, we consider vulnerability “id 1” and “id 2” as
high impact because knowing the id and payload of mes-
sages and being able to run a code that sends craftedmessage,
the attacker may alter the functionalities of the vehicle and
interact with the driver. Vulnerability “id 3” and “id 4” are
derived from the first two ones. In fact, by exploiting the vul-
nerability “id 1”, new messages can be crafted that can be
send into the in-vehicle network by exploiting vulnerability
“id 2”. Hence, as we describe in Section 6, these vulnerabil-
ities can be exploited by developing a module that allows an
attacker to remotely control the HU and inject CAN frame.

RQ3: How strong are the current mechanisms to prevent
cybersecurity attacks?
The cybersecurity standard for automotive came out in
August 2021 and it is the ISO/SAE FDIS 21434 [11] to draw
the guidelines for the cybersecurity of onboard communica-
tion. The United Nations Economic Commission for Europe
[47] this year has given the directive for over 55 countries
regarding the cybersecurity management of vehicle to make
vehicles more secure starting from 2022. However, the cur-
rent state of the art of security solution within vehicles is
represented by the internal network separation that aims to
divide untrusted zones, such as the multimedia one, from
the trusted ones. Partitions are connected through a Central
Gateway (CGW) that forwards allowed CAN frames from a
partition to another. As we show with our exploit, this solu-
tion prevents an attacker to directly interacts with potentially
safety-relevant functionalities via theHU.However, the vehi-
cle cannot be considered as a secure system, since, as we
discussed in the answer to RQ2, the attack we showed here
may impact on the Instrument Cluster (IC) of the vehicle and
show erroneous pieces of information to the driver and may
lead to driver disorientation since she has not experience on
the expected behaviour of the IC.

8 Conclusion

In this paper, we presented a vulnerabilities assessment,
through reverse-engineering analysis, of theKia CEEDHead
Unit with software version CD.EUR.SOP.003.30.180703.
STD_M. We showed how to access the intra-vehicle net-
work exploiting other vulnerabilities that affect the vehicle’s
head unit. Moreover, we demonstrated how an attacker may
remotely exploit the vehicle when it is connected to the Inter-
net. In particular, the attacker model that we have considered
does not require to have fully privileges in the HU operating
system making the attack impact higher.

In the last year the HU has got other software upgrade that
we had the opportunity to study: CD.EUR.SOP.005.7.181019.
STD_M and CD.EUR.SOP.007.1.190212.STD_M. In both soft-
ware, it is still possible to exploit the presented vulner-
abilities. We noticed only minor changes in the work-
ing manner of the KOFFEE Module where the major-
ity of the actions work and have the same impact of
CD.EUR.SOP.003.30.180703.STD_M version. Thus, all Kia
vehicles that have installed one of the three software ver-
sions that we tested can be exploited as we have shown in
this paper. Moreover, during this study we noticed that Kia
shares with another world-wide car manufacturer6 the same
HU software having minimal changes related to the user-
interface. Nevertheless, we can guess that the same arbitrary
code executionmay be present also in these other HUs. How-
ever, by not having a car with this HU we were not able to
check it, so we leave this other relevant aspect as future work.

Disclaimer

Note that this research activity has followed the responsi-
ble disclosure approach in which the vulnerabilities pre-
sented in this paper have been reported to Kia Motors.
Once we discovered the vulnerabilities, we informed Kia
Motors with a technical paper [49]. They internally eval-
uated our document and after several interactions, we
received a new software version to be tested. On this ver-
sion: CD.EUR.SOP.008.4.200619.STD_M,Kia removed the

6 As reported by the European Automobile Manufacturers’ Associa-
tion (ACEA) [48] Kia and the other car manufacturer sharing the same
firmware represent the 8.2%, 8.6% and 10.3% percentage of the best
European selling car manufacturers in 2019, 2020 and 2021 years.

123



Reversing Kia Motors Head Unit to discover and exploit software vulnerabilities 47

opportunity to access the engineering menu to install third-
party applications that exploit the found vulnerabilities.

As result of the responsible disclosure phase, we pub-
lished theCVE-2020-8539 that is available online at theCVE
MITREwebsite: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2020-8539.

We declare that all research findings posted in this paper
are merely for educational and informational purpose. The
replication of the presented results may damage or tamper
with vehicle functionalities, they are the user risk and must
not be used for malicious purposes.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A eIVIMessage enum struct

Listing 8 eIVIMessage struct code snippet

1 AUDIO_MAIN_CH_CHANGE(IpcSubGroup.ASK_RADIO_AUDIO_MAIN,
"AUDIO_MAIN_CH_CHANGE", AudioMainChChange.class,
eMessageType.MICOM),

2 AUDIO_SUB_CH_CONTROL(273, "AUDIO_SUB_CH_CONTROL",
AudioSubChControl.class, eMessageType.MICOM),

3 AUDIO_CH_VOLUME_CTRL(274, "AUDIO_CH_VOLUME_CTRL",
AudioChVolumeCtrl.class, eMessageType.MICOM),

4 AUDIO_SETUP_CTRL(275, "AUDIO_SETUP_CTRL", AudioSetupCtrl.class,
eMessageType.MICOM),

5 AUDIO_BEEP_PLAY(276, "AUDIO_BEEP_PLAY", AudioBeepPlay.class,
eMessageType.MICOM),

6 DSP_MUTE(277, "DSP_MUTE", DspMute.class, eMessageType.MICOM),
7 AUDIO_AMP_MUTE(278, "AUDIO_AMP_MUTE", AudioAmpMute.class,

eMessageType.MICOM),
8 AUDIO_REMOTE_KEY_MUTE(279, "AUDIO_REMOTE_KEY_MUTE",

AudioRemoteKeyMute.class, eMessageType.MICOM),
9 AUDIO_SOUND_SETUP_RESET(288, "AUDIO_SOUND_SETUP_RESET",

AudioSoundSetupReset.class, eMessageType.MICOM),
10 MAIN_IMAGE_UPGRADE(296, "MAIN_IMAGE_UPGRADE",

MainImageUpgrade.class, eMessageType.MICOM),
11 RADIO_FREQ_CHANGE(304, "RADIO_FREQ_CHANGE",

RadioFreqChange.class, eMessageType.MICOM),
12 RADIO_PRESET_RECALL(IpcSubGroup.ASK_RADIO_PRESET_RECALL,

"RADIO_PRESET_RECALL", RadioPresetRecall.class,
eMessageType.MICOM),

13 RADIO_PRESET_STORE(IpcSubGroup.ASK_RADIO_PRESET_STORE,
"RADIO_PRESET_STORE", RadioPresetStore.class,
eMessageType.MICOM),

14 RADIO_STATION_SEARCH(IpcSubGroup.ASK_RADIO_STATION_SEARCH,
"RADIO_STATION_SEARCH", RadioStationSearch.class,
eMessageType.MICOM),

15 RADIO_PRESET_DELETE(308, "RADIO_PRESET_DELETE",
RadioPresetDelete.class, eMessageType.MICOM),

16 FM_LINKING(325, "FM_LINKING", FmLinking.class,
eMessageType.MICOM),

17 DAB_FM_LINKING_STATUS(326, "DAB_FM_LINKING_STATUS",
DabFmLinkingStatus.class, eMessageType.MICOM),

18 TMC_AUTO_SEEK_MODE(336, "TMC_AUTO_SEEK_MODE",
TmcAutoSeekMode.class, eMessageType.MICOM),

19 TMC_MANUAL_FREQ_CHANGE(340,
"TMC_MANUAL_FREQ_CHANGE", TmcManualFreqChange.class,
eMessageType.MICOM),

20 TMC_PAY_SET(342, "TMC_PAY_SET", TmcPaySet.class,
eMessageType.MICOM),

21 TMC_OTHER_COUNTRY_SET(343, "TMC_OTHER_COUNTRY_SET",
TmcOtherCountrySet.class, eMessageType.MICOM),

22 ETC_POWER_CONTROL(368, "ETC_POWER_CONTROL",
EtcPowerControl.class, eMessageType.MICOM),

23 ETC_BACK_LIGHT_CONTROL(369, "ETC_BACK_LIGHT_CONTROL",
EtcBackLightControl.class, eMessageType.MICOM),

24 ETC_LCD_SET_CHANGE(370, "ETC_LCD_SET_CHANGE",
EtcLcdSetChange.class, eMessageType.MICOM),

25 ...
26 MICOM_KEY_EVENT(33616, "MICOM_KEY_EVENT",

MicomKeyEvent.class, eMessageType.MICOM),
27 ETC_SW_REMOTE_KEY_EVENT(33617,

"ETC_SW_REMOTE_KEY_EVENT", EtcSwRemoteKeyEvent.class,
eMessageType.MICOM),

28 ETC_ACC_SIGNAL_EVENT(33618, "ETC_ACC_SIGNAL_EVENT",
EtcAccSignalEvent.class, eMessageType.MICOM),

29 ETC_STATUS_CHANGE_EVENT(33619,
"ETC_STATUS_CHANGE_EVENT", EtcStatusChangeEvent.class,
eMessageType.MICOM),

30 ...

B Generating an app withmsfvenom

We leverage the “msfvenom” utility of Meterpreter to cre-
ate an app with a malicious payload inside. The app can be
obtained with the command in listing 9:

Listing 9 How to create an Android app with a malicious payload using
msfvenom

msfvenom −p android/meterpreter/reverse_tcp LHOST=<attacjer−IP>
LPORT=<attacker−port> > ./app.apk

The above command generates an apk bundle file needed
to install the app in the target device. In particular, with “-p”
parameter the Meterpreter reverse shell is chosen as payload
and “LHOST” and “LPORT” represent the IP and PORT of
the attacker’s computer inwhich there is a runningMetasploit
module.When, the app is installed thepayload connects to the
Metasploitmodule and theMeterpreter shell can be spawned.

References

1. Technology, S.: Automotive ECUs, the Core for Connected
Cars. https://www.syrmatech.com/automotive-ecu/. Accessed
22/12/2021 (2022)

2. International Organization for Standardization: Road vehicles—
Controller area network (CAN)—Part 1: Data link layer
and physical signalling. https://www.iso.org/standard/63648.html.
Accessed 22/12/2021 (2015)

3. Dariz, L., Costantino,G., Ruggeri,M.,Martinelli, F.: A Joint Safety
and SecurityAnalysis ofmessage protection for CANbus protocol.
Adv. Sci. Technol. Eng. Syst. J. 3(1), 384–393 (2018). https://doi.
org/10.25046/aj030147

123

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8539
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8539
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.syrmatech.com/ automotive-ecu/
https://www.iso.org/standard/63648.html
https://doi.org/10.25046/aj030147
https://doi.org/10.25046/aj030147


48 G. Costantino, I. Matteucci

4. Dariz, L., Ruggeri,M., Costantino, G.,Martinelli, F.: A survey over
low-level security issues in heavy duty vehicles. In: Automotive
Cyber Security Conference. ESCAR (2016)

5. Dariz, L., Selvatici, M., Ruggeri, M., Costantino, G., Martinelli,
F.: Trade-off analysis of safety and security in can bus commu-
nication. In: The 5th IEEE International Conference on Models
and Technologies for Intelligent Transportation Systems (MT-ITS
2017), pp. 226–231. IEEE, Piscataway, New Jersey, USA (2017)

6. Strategy Analytics Press Releases: Linux, Android poised to dom-
inate automotive infotainment systems. https://www.telecomtv.
com/content/device-software-apps/linux-android-poised-to-
dominate-automotive-infotainment-systems-34987/. Accessed
22/12/2021 (2019)

7. Christoph Hammerschmidt: Study: Android challenges automo-
tive OS market. https://www.eenewsautomotive.com/news/study-
android-challenges-automotive-os-market. Accessed 22/12/2021
(2019)

8. Sean O’Kane: GM will use Google’s embedded Android Automo-
tiveOS in cars starting in 2021. https://www.theverge.com/2019/9/
5/20851021/general-motors-android-auto-google-infotainment.
Accessed 22/12/2021 (2019)

9. Valasek, C., Miller, C.: Remote Exploitation of an Unaltered Pas-
senger Vehicle. http://illmatics.com/Remote%20Car%20Hacking.
pdf. Accessed 22/12/2021 (2015)

10. Valasek, C., Miller, C.: Adventures in Automotive Networks and
Control Units. https://ioactive.com/pdfs/IOActive_Adventures_
in_Automotive_Networks_and_Control_Units.pdf

11. International Organization for Standardization: ISO/SAE FDIS
21434 Road vehicles—Cybersecurity engineering (2021). https://
www.iso.org/standard/70918.html

12. AUTOSAR: Specification of Secure Onboard Communi-
cation AUTOSAR CP R19-11. https://www.autosar.org/
fileadmin/user_upload/standards/classic/19-11/AUTOSAR_
SWS_SecureOnboardCommunication.pdf

13. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Check-
oway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Sav-
age, S.: Experimental security analysis of a modern automobile. In:
2010 IEEE Symposium on Security and Privacy (SP), pp. 447–462.
IEEE Computer Society, Los Alamitos, CA, USA (2010). https://
doi.org/10.1109/SP.2010.34. https://doi.ieeecomputersociety.org/
10.1109/SP.2010.34

14. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham,
H., Savage, S., Koscher, K., Czeskis, A., Roesner, F., Kohno, T.,
et al.: Comprehensive experimental analyses of automotive attack
surfaces. In: USENIX Security Symposium, San Francisco (2011)

15. Paganini, P.: How to hack airbag in Audi TT on other
models. https://securityaffairs.co/wordpress/41416/hacking/hack-
airbag-audi-tt.html. Accessed 22/12/2021 (2015)

16. Zetter, K.: Researchers Hacked a Model S, But Tesla’s Already
Released a Patch. https://www.wired.com/2015/08/researchers-
hacked-model-s-teslas-already. Accessed 22/12/2021 (2015)

17. Solomon, O.: Team of hackers take remote control of Tesla Model
S from 12 miles away. https://www.theguardian.com/technology/
2016/sep/20/tesla-model-s-chinese-hack-remote-control-brakes.
Accessed 22/12/2021 (2016)

18. Greenmberg, A.: GM Took 5 Years to Fix a Full-Takeover Hack
in Millions of OnStar Cars. https://www.wired.com/2015/09/
gm-took-5-years-fix-full-takeover-hack-millions-onstar-cars.
Accessed 22/12/2021 (2015)

19. Paganini, P.: Flaws in BMW ConnectedDrive Infotainment
System allow remote hack. https://securityaffairs.co/wordpress/
49149/hacking/bmw-connecteddrive-hacking.html. Accessed
22/12/2021 (2016)

20. Mitsubishi Outlander hybrid car alarm ’hacked’. https://www.bbc.
com/news/technology-36444586. Accessed 22/12/2021 (2016)

21. Nissan Leaf Can be Hacked via Mobile App and Web Browser.
https://www.trendmicro.com/vinfo/it/security/news/internet-
of-things/nissan-leaf-can-be-hacked-via-mobile-app-and-web-
browser. Accessed 22/12/2021 (2016)

22. A Remote Attack on the Bosch Drivelog Connector Dongle.
https://argus-sec.com/remote-attack-bosch-drivelog-connector-
dongle/. Accessed 22/12/2021 (2017)

23. Costantino, G., Marra, A.L., Martinelli, F., Matteucci, I.: CANDY:
A social engineering attack to leak information from infotainment
system. In: 87th IEEE Vehicular Technology Conference, VTC
Spring 2018, Porto, Portugal, June 3-6, 2018, pp. 1–5. IEEE (2018).
https://doi.org/10.1109/VTCSpring.2018.8417879

24. Keenlab Security Lab: New Car Hacking Research: 2017, Remote
Attack Tesla Motors Again. https://keenlab.tencent.com/en/2017/
07/27/New-Car-Hacking-Research-2017-Remote-Attack-Tesla-
Motors-Again. Accessed 22/12/2021 (2017)

25. Tencent Keen Security Lab: New Vehicle Security Research by
KeenLab: Experimental Security Assessment of BMW Cars.
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-
Research-by-KeenLab-Experimental-Security-Assessment-of-
BMW-Cars/. Accessed 22/12/2021 (2018)

26. Pareja, R.: Fault injection on automotive diagnostic protocols
(2018)

27. Subaruoutback: Hacking the Starlink Infotainment System.
https://www.subaruoutback.org/threads/hacking-the-starlink-
infotainment-system.494535/. Accessed 22/12/2021

28. Volkswagen and Audi car infotainment systems hacked remotely.
https://nakedsecurity.sophos.com/2018/05/02/volkswagen-and-
audi-car-infotainment-systems-hacked-remotely/. Accessed
22/12/2021

29. Hackers Can Steal a Tesla Model S in Seconds by Cloning
Its Key Fob. https://www.wired.com/story/hackers-steal-tesla-
model-s-seconds-key-fob/. Accessed 22/12/2021 (2018)

30. Tesla Hacked and Stolen Again Using Key Fob. https://threatpost.
com/tesla-hacked-stolen-key-fob/161530/. Accessed 22/12/2021
(2020)

31. Costantino, G., Matteucci, I.: CANDY CREAM - hacking info-
tainment android systems to command instrument cluster via can
data frame. In: Qiu, M. (ed.) 2019 IEEE International Conference
on Computational Science and Engineering, CSE 2019, and IEEE
International Conference on Embedded and Ubiquitous Comput-
ing, EUC 2019, New York, NY, USA, August 1-3, 2019, pp.
476–481. IEEE (2019). https://doi.org/10.1109/CSE/EUC.2019.
00094

32. Tencent Keen Security Lab: Experimental Security Assessment on
Lexus Cars. https://keenlab.tencent.com/en/2020/03/30/Tencent-
Keen-Security-Lab-Experimental-Security-Assessment-on-
Lexus-Cars. Accessed 22/12/2021 (2021)

33. Weinmann, R.P., Schmotzle, B.: TBONE—Azero-click exploit for
Tesla MCUs. https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf
(2021)

34. Zavpasha: HACK Navigation/Multimedia Systems
KIA/HYUNDAI and Install Third-party Applications. https://
forum.xda-developers.com/t/hack-navigation-multimedia-
systems-kia-hyundai-and-install-third-party-applications.
3892333/

35. Oviradio: Hyundai and Kia Hidden Android Menu Engineering
Mode and Secret Features of Radio and Navigation. https://www.
oviradio.cz/hyundai-kia-radio-engineering-mode-en/

36. RAPID4 Metasploit: Metasploit. https://www.metasploit.com.
Accessed 22/12/2021 (2021)

37. Denys Vlasenko: Busybox. https://busybox.net (2022)
38. XDA Developers: The differences between Odex and Deodex

Files. https://forum.xda-developers.com/t/guide-the-differences-
between-odex-and-deodex-files.2336411/. Accessed 22/12/2021
(2013)

123

https://www.telecomtv.com/content/device-software-apps/linux-android-poised-to-dominate-automotive-infotainment-systems-34987/
https://www.telecomtv.com/content/device-software-apps/linux-android-poised-to-dominate-automotive-infotainment-systems-34987/
https://www.telecomtv.com/content/device-software-apps/linux-android-poised-to-dominate-automotive-infotainment-systems-34987/
https://www.eenewsautomotive.com/news/study-android-challenges-automotive-os-market
https://www.eenewsautomotive.com/news/study-android-challenges-automotive-os-market
https://www.theverge.com/2019/9/5/20851021/general-motors-android-auto-google-infotainment
https://www.theverge.com/2019/9/5/20851021/general-motors-android-auto-google-infotainment
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
https://ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
https://ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
https://www.iso.org/standard/70918.html
https://www.iso.org/standard/70918.html
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://doi.org/10.1109/SP.2010.34
https://doi.org/10.1109/SP.2010.34
https://doi.ieeecomputersociety.org/10.1109/SP.2010.34
https://doi.ieeecomputersociety.org/10.1109/SP.2010.34
https://securityaffairs.co/wordpress/41416/hacking/hack-airbag-audi-tt.html
https://securityaffairs.co/wordpress/41416/hacking/hack-airbag-audi-tt.html
https://www.wired.com/2015/08/researchers-hacked-model-s-teslas-already
https://www.wired.com/2015/08/researchers-hacked-model-s-teslas-already
https://www.theguardian.com/technology/2016/sep/20/tesla-model-s-chinese-hack-remote-control-brakes
https://www.theguardian.com/technology/2016/sep/20/tesla-model-s-chinese-hack-remote-control-brakes
https://www.wired.com/2015/09/gm-took-5-years-fix-full-takeover-hack-millions-onstar-cars
https://www.wired.com/2015/09/gm-took-5-years-fix-full-takeover-hack-millions-onstar-cars
https://securityaffairs.co/wordpress/49149/hacking/bmw-connecteddrive-hacking.html
https://securityaffairs.co/wordpress/49149/hacking/bmw-connecteddrive-hacking.html
https://www.bbc.com/news/technology-36444586
https://www.bbc.com/news/technology-36444586
https://www.trendmicro.com/vinfo/it /security/news/internet-of-things/nissan-leaf-can-be-hacked-via-mobile-app-and-web-browser
https://www.trendmicro.com/vinfo/it /security/news/internet-of-things/nissan-leaf-can-be-hacked-via-mobile-app-and-web-browser
https://www.trendmicro.com/vinfo/it /security/news/internet-of-things/nissan-leaf-can-be-hacked-via-mobile-app-and-web-browser
https://argus-sec.com/remote-attack-bosch-drivelog-connector-dongle/
https://argus-sec.com/remote-attack-bosch-drivelog-connector-dongle/
https://doi.org/10.1109/VTCSpring.2018.8417879
https://keenlab.tencent.com/en/2017/07/27/New-Car-Hacking-Research-2017-Remote-Attack-Tesla-Motors-Again
https://keenlab.tencent.com/en/2017/07/27/New-Car-Hacking-Research-2017-Remote-Attack-Tesla-Motors-Again
https://keenlab.tencent.com/en/2017/07/27/New-Car-Hacking-Research-2017-Remote-Attack-Tesla-Motors-Again
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
https://keenlab.tencent.com/en/2018/05/22/New-CarHacking-Research-by-KeenLab-Experimental-Security-Assessment-of-BMW-Cars/
https://www.subaruoutback.org/threads/hacking-the-starlink-infotainment-system.494535/
https://www.subaruoutback.org/threads/hacking-the-starlink-infotainment-system.494535/
https://nakedsecurity.sophos.com/2018/05/02/volkswagen-and-audi-car-infotainment-systems-hacked-remotely/
https://nakedsecurity.sophos.com/2018/05/02/volkswagen-and-audi-car-infotainment-systems-hacked-remotely/
https://www.wired.com/story/hackers-steal-tesla-model-s-seconds-key-fob/
https://www.wired.com/story/hackers-steal-tesla-model-s-seconds-key-fob/
https://threatpost.com/tesla-hacked-stolen-key-fob/161530/
https://threatpost.com/tesla-hacked-stolen-key-fob/161530/
https://doi.org/10.1109/CSE/EUC.2019.00094
https://doi.org/10.1109/CSE/EUC.2019.00094
https://keenlab.tencent.com/en/2020/03/30/Tencent-Keen-Security-Lab-Experimental-Security-Assessment-on-Lexus-Cars
https://keenlab.tencent.com/en/2020/03/30/Tencent-Keen-Security-Lab-Experimental-Security-Assessment-on-Lexus-Cars
https://keenlab.tencent.com/en/2020/03/30/Tencent-Keen-Security-Lab-Experimental-Security-Assessment-on-Lexus-Cars
https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf
https://forum.xda-developers.com/t/hack-navigation-multimedia-systems-kia-hyundai-and-install-third-party-applications.3892333/
https://forum.xda-developers.com/t/hack-navigation-multimedia-systems-kia-hyundai-and-install-third-party-applications.3892333/
https://forum.xda-developers.com/t/hack-navigation-multimedia-systems-kia-hyundai-and-install-third-party-applications.3892333/
https://forum.xda-developers.com/t/hack-navigation-multimedia-systems-kia-hyundai-and-install-third-party-applications.3892333/
https://www.oviradio.cz/hyundai-kia-radio-engineering-mode-en/
https://www.oviradio.cz/hyundai-kia-radio-engineering-mode-en/
https://www.metasploit.com
https://busybox.net
https://forum.xda-developers.com/t/guide-the-differences-between-odex-and-deodex-files.2336411/
https://forum.xda-developers.com/t/guide-the-differences-between-odex-and-deodex-files.2336411/


Reversing Kia Motors Head Unit to discover and exploit software vulnerabilities 49

39. Universal Deodexer: Universal Deodexer V5. https://forum.
xda-developers.com/showthread.php?t=2213235. Accessed
22/12/2021 (2013)

40. Android IPC: Android Interface Definition Language (AIDL).
https://developer.android.com/guide/components/aidl. Accessed
22/12/2021 (2021)

41. CAN Hacker Website: CAN Hacker. https://canhacker.com/
projects/can-hacker-3-0/. Accessed 22/12/2021 (2021)

42. CARBUS Analyzer: CARBUS Analyzer. https://canhacker.com/
projects/carbus-analyzer/. Accessed 22/12/2021 (2022)

43. Costantino, G., Matteucci, I.: KOFFEE Module. https://github.
com/rapid7/metasploit-framework/blob/master/modules/post/
android/local/koffee.rb

44. Costantino, G., Matteucci, I.: KOFFEE Module Documentation.
https://github.com/rapid7/metasploit-framework/blob/master/
documentation/modules/post/android/local/koffee.md

45. apktool: Apktool: A Tool for Reverse Engineering Android Apk
Files. https://github.com/iBotPeaches/Apktool

46. Huq, N., Gibson, C., Vosseler, R.: Driving security into connected
cars:threat model and recommendations. Technical report, Trend
Micro Research (2020). https://documents.trendmicro.com/assets/
white_papers/wp-driving-security-into-connected-cars.pdf

47. for Europe, U.N.E.C.: Un regulation no. 155 - uniform pro-
visions concerning the approval of vehicles with regards to
cyber security and cyber security management system. Technical
report (2021). https://documents.trendmicro.com/assets/white_
papers/wp-driving-security-into-connected-cars.pdf

48. ACEA:EuropeanAutomobileManufacturers’Association. https://
www.acea.auto/about-acea/ (2022)

49. Costantino, G., Matteucci, I.: KOFFEE—Kia OFFensivE Exploit.
Technical report, Consiglio Nazionale delle Ricerche, Istituto di
Informatica e Telematica (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://forum.xda-developers.com/showthread.php?t=2213235
https://forum.xda-developers.com/showthread.php?t=2213235
https://developer.android.com/guide/components/aidl
https://canhacker.com/projects/can-hacker-3-0/
https://canhacker.com/projects/can-hacker-3-0/
https://canhacker.com/projects/carbus-analyzer/
https://canhacker.com/projects/carbus-analyzer/
https://github.com/rapid7/metasploit-framework/blob/master/modules/post/android/local/koffee.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/post/android/local/koffee.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/post/android/local/koffee.rb
https://github.com/rapid7/metasploit-framework/blob/master/documentation/modules/post/android/local/koffee.md
https://github.com/rapid7/metasploit-framework/blob/master/documentation/modules/post/android/local/koffee.md
https://github.com/iBotPeaches/Apktool
https://documents.trendmicro.com/assets/white_papers/wp-driving-security-into-connected-cars.pdf
https://documents.trendmicro.com/assets/white_papers/wp-driving-security-into-connected-cars.pdf
https://documents.trendmicro.com/assets/white_papers/wp-driving-security-into-connected-cars.pdf
https://documents.trendmicro.com/assets/white_papers/wp-driving-security-into-connected-cars.pdf
https://www.acea.auto/about-acea/
https://www.acea.auto/about-acea/

	Reversing Kia Motors Head Unit to discover and exploit software vulnerabilities
	Abstract
	1 Introduction
	1.1 Motivations and contribution
	1.2 Attacker model
	1.3 Outline

	2 Related work
	3 Our target
	3.1 Head unit
	3.1.1 UI front-end
	3.1.2 UI back-end
	3.1.3 Third-party applications


	4 Head unit reverse engineering 
	4.1 Step 1: HU's file system, framework and system Apps
	4.2 Step 2: Digging into system apps
	4.2.1 Inter-process communication
	4.2.2 IVIMessages
	4.2.3 Micomd binary file
	4.2.4 MICOM messages semantic

	4.3 Step 3: KOFFEE
	4.3.1 Send MICOM message
	4.3.2 Bomber MICOM messages
	4.3.3 Injecting Micomd commands
	4.3.4 Head Unit CAN bus frames
	4.3.5 Injecting CAN frames


	5 Weaponizing KOFFEE
	6 Showcasing an end-to-end attack: vehicle's remote exploitation
	7 Lessons learned
	8 Conclusion
	Disclaimer
	A eIVIMessage enum struct
	B Generating an app with msfvenom
	References





