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A B S T R A C T   

Mixed Zr-Si oxide nanoparticles were investigated to disclose the relation between the Brønsted acidity of these 
materials and the atomic composition of the particles. To this aim, we combined experimental structural char-
acterizations via X-ray absorption and Solid State Nuclear Magnetic Resonance spectroscopies with Reactive 
Molecular Dynamics simulations and Quantum Chemistry calculations. Despite the materials’ complexity, we 
identified the surface hydrogens responsible for the Brønsted acidity by estimating the adsorption energy of 
pyridine on several topologically distinct hydroxyl groups. Among the investigated sites, the hydrogens con-
nected to the oxygen atoms bridging surface Zr and Si atoms (i.e., Zr-O(H)-Si) exhibited the most marked 
Brønsted acidity. The agreement of all the employed techniques demonstrates how the proposed concerted 
characterization effectively elucidates these complex amorphous materials’ structure/properties relationships. 
These new insights allowed us to develop a material with exceptionally high Brønsted acid character that out-
performed benchmark silica-alumina and sulfonated zirconia in the dehydrogenation reaction of 1-octanol to 
produce olefins.   

1. Introduction 

Mixed oxides have puzzled researchers for a long time since they 
often display properties that are not a linear combination of those of the 
single components [1–6]. Among many, the formation of Brønsted acid 
sites (BAS) is arguably the most intriguing feature because of their 
importance in heterogeneous catalysis, both for traditional processes 
and, in the last years, in the fast-growing field of the sustainable 
chemistry and biomass upgrading [7,8]. Apart from the most notorious 
cases, such as zeolites, ZrO2-based oxides have attracted much attention 
[1,9–15]. Like zeolites, these materials can display Brønsted acidity 
when appropriately treated at particular Zr/Si ratios [4,5,16–19]. Un-
like zeolites, where the cation exchange mechanism is well-understood, 

little is known about the BAS nature of Zr mixed oxides despite many 
years of investigations, which often have come to contradictory con-
clusions. Several models have been proposed [1,2,3,6,20–23], with the 
most famous being Tanabe’s one [6]. These models attempt to predict 
the formation of BAS for a relatively wide range of Zr/Si ratios, essen-
tially based on the charge imbalance caused by the different valence of 
the elements and their relative abundance. In these models, the coor-
dination numbers are typically considered constant [2,6], and ideal 
electronegativity values are assumed [21]; also, the crystallinity of real 
samples is often neglected. For instance, Tanabe’s model cannot predict 
the Brønsted acidity found in amorphous Zr-Si mixed oxides at Zr/Si 
atomic ratios of 1 [4] [16]. Nevertheless the location of the BAS sites has 
been postulated a few times based on experimental and theoretical 
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approaches, finding silanol groups close to Zr centers (Zr-O-Si(OH)) 
[17], generic hydroxyl groups on electron-poor Zr centers (Zr(OH)x) 
[16] or, like in the case of zeolites, bridging hydroxyl groups (Zr-O 
(H)-Si) [12,18,24,25]. However, there are a few points on which there is 
consensus. First, BAS can be found in both crystalline [5,12,17] and 
amorphous [4,5,18,25,26] materials, which indicates that the crystal-
linity does not influence their formation. Second, a correlation between 
BAS and the number of Zr-O-Si heterolinks has been consistently 
observed [5,16,17,25,26]. 

Identifying such BAS will provide precious insights into the factors 
driving their formation and may be exploited to manufacture catalytic 
materials with highly controlled acid-base profiles. Harsh treatments 
with mineral acids will no longer be required to introduce BAS, thus 
preserving the typical multifunctional nature of ZrO2-based catalysts. 
Undesired superacidity may also be avoided, or at least modulated, so 
that the deposition of carbonaceous materials can be limited during 
catalytic transformations [27]. 

In this work we provide further evidence for identifying Brønsted 
acid sites in Zr-Si mixed-oxides. For this purpose, we adopted a highly 
intertwined experimental and theoretical approach to disclose the 
morphology of the synthesized materials and then to pinpoint the BAS 
through a combination of X-ray Absorption Spectroscopy (XAS) [28], 
high-resolution multinuclear Solid State Nuclear Magnetic Resonance 
(SSNMR) spectroscopy [29], and multiscale classical reactive molecular 
dynamics simulations and quantum chemistry calculations [30]. We also 
show that Zr-Si mixed oxides are promising candidates as dehydroge-
nation catalysts to produce olefins. 

2. Experimental 

2.1. Materials synthesis 

All the materials were previously synthesized via a sol-gel procedure 
and characterized via N2 physisorption, X-ray Powder Diffraction 
(XRPD), and X-ray Photoemission Spectroscopy (XPS) [31]. The number 
of basic sites was determined by CO2 physisorption (using an ASAP2020 
instrument at 295 K), while pyridine adsorption monitored via Fourier 
Transform Infrared (FTIR) spectroscopy was used to determine the 
number and types of the acid sites [4]. Zirconyl chloride 30 % solution in 
HCl (Merck) and tetraethyl orthosilicate (Merck) were used as Zr and Si 
precursors, respectively. Depending on the intended Zr/Si molar ratio, a 
certain quantity of Zr precursor aqueous solution was added dropwise to 
an ammonia solution at a pH of 12. Then, a solution containing the Si 
precursor, isopropanol (Merck), and water (1:6:2 molar ratio, respec-
tively) was added and stirred for three days at 75 ◦C. After washing with 
water until pH neutrality, the materials were calcined at 110 ◦C in the air 
overnight and at 350 ◦C for 4 hours (10 ◦C/min ramp rate), always in the 
air. The pure ZrO2 material was prepared similarly, but to avoid any Si 
contamination from the glassware, PTFE containers were used instead. 
Three other materials at increasing content of Si were prepared and 
named according to their composition: ZrSi10, ZrSi30, and ZrSi50 
(where the number refers to the weight percentage of SiO2), represen-
tative of the Zr:Si molar ratios of 4:1, 1:1, and 1:2. Previously reported 
EDX analyses confirmed the intended compositional trend [4]. 

The same batch of ZrO2 previously prepared was used for the sul-
fonation procedure [32]. 2 g of ZrO2 were soaked in 30 mL H2SO4 
(Merck) 1 N for two hours at room temperature. After filtration and 
washing with water, the solid was dried at 110 ◦C overnight in air and 
then calcined at 350 ◦C (10 ◦C/min) for four hours. The material was 
labeled ZrSO3H. 

The SiO2-Al2O3 material (herein labeled as SiAl) was provided by 
Merck (specific surface area of 496 m2/g). 

2.2. Nitrogen physisorption isotherms 

Nitrogen physisorption isotherms were collected with a 

Micromeritics ASAP2020 instrument. Prior to the analysis carried out at 
77 K, the sample was first calcined at 350 ◦C in the air for 2 h and then 
treated under high vacuum at 200 ◦C for 2 h. 

2.3. Transmission electron microscopy (TEM) 

High Resolution Transmission Electron Microscopy analyses were 
collected with a ZEISS LIBRA200FE microscope equipped with a 200 kV 
FEG source. The samples were ultrasonically dispersed in isopropanol, 
and a drop of the obtained suspension was deposited on a holey-carbon 
film supported on a copper TEM grid of 300 mesh. 

2.4. X-ray absorption spectroscopy (XAS) 

Ex-situ XAS experiments were performed at the CATACT beamline 
[33] at the KIT Light Source in Karlsruhe, Germany. Powdered samples 
and reference materials were measured at the Zr K edge in transmission 
mode using the ionization chambers (OKEN Ltd, 800 V, Ar filled). The 
energy of the Si(311) double-crystal monochromator was calibrated by 
setting the first maximum of the first derivative of the XAS spectrum 
recorded on a Zr foil to the tabulated value of 17.998 keV. The samples 
were adequately diluted with cellulose and pressed into pellets before 
the measurements. Data processing was performed using the Athena 
package from the Demeter software [34]. The extended X-ray absorption 
fine structure (EXAFS) data were recorded up to k = 16 Å− 1. The EXAFS 
analysis was performed using the Artemis package from the Demeter 
software. The EXAFS data were Fourier transformed (FT) in the k range 
from 3.0 to 12.0 Å− 1 using the Hanning window function with dk=1 Å− 1 

and are not phase corrected. 

2.5. Diffuse reflectance fast Fourier infrared spectroscopy (DRIFTs) 

The spectra were recorded with a BioRad FTS-60A after dehydrating 
the materials at 270 ◦C (20 min in the air + 20 min under vacuum). 

2.6. Acidity measurements via Fourier transform infrared spectroscopy 
(FT-IR) 

The acid features of ZrSO3H and SiAl were evaluated by pyridine 
adsorption using the same BioRad FTS-60A instrument. The experiments 
were performed on a sample disk (15–20 mg) after a dehydration 
treatment at 270 ◦C (20 min in air + 20 min under vacuum). A back-
ground spectrum prior to adsorption was obtained and subtracted from 
the subsequently recorded spectra. The adsorption of the probe molecule 
was carried out at room temperature, while the actual quantification 
was done after desorption at 120 ◦C to avoid pyridine decomposition 
[35] [36]. All the spectra were reported after being normalized by the 
disk weight. 

2.7. Solid state nuclear magnetic resonance spectroscopy (SSNMR) 

SSNNMR spectra were recorded on a Bruker Avance Neo spectrom-
eter working at Larmor frequencies of 1H, 29Si, and 13C nuclei of 500.13, 
99.36, and 125.76 MHz, respectively, using a triple-resonance Magic 
Angle Spinning (MAS) probe head accommodating rotors with an 
external diameter of 2.5 mm. The 90-degree pulse duration was 2.1, 7.0, 
and 5.0 μs for 1H, 29Si, and 13C nuclei, respectively. 29Si MAS spectra 
were recorded at a MAS frequency of 7 kHz, under high-power decou-
pling from 1H nuclei, using Cross Polarization (CP), with a contact time 
of 5 ms, a recycle delay of 4 s, and accumulating 5000–15000 transients. 
For ZrSi30, a 29Si Direct Excitation (DE) spectrum was also recorded 
with a recycle delay of 180 s and 1280 transients. 1H MAS spectra were 
recorded at a MAS frequency of 14 kHz, accumulating 16 transients. For 
ZrSi30, a 1H–29Si HETCOR spectrum was recorded, with FLSG decou-
pling during t1 [37]. Thirty-two increments were collected in the second 
dimension, with a dwell time of 37.9 μs, with 2 FSLG cycles per 
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increment. The 1H rf field during FSLG was about 100 kHz. For each 
increment, 500 transients were accumulated. The 1H MAS spectrum of 
ZrSi30 with Py-d5 was recorded at a MAS frequency of 14 kHz, with an 
optimized recycle delay of 5 s and accumulating up to 1800 transients. 
The 13C DE MAS spectrum of the same sample was recorded with a 
recycle delay of 5 seconds and accumulating 44640 transients. All the 
chemical shifts were referred to the 13C peak of adamantane resonating 
at 38.46 ppm. All the spectra were recorded at 298 K. Deuterated pyr-
idine (Py-d5) vapors were adsorbed at room temperature on the ZrSi30 
material using a vacuum line, followed by desorption at 120 ◦C. All 
rotors were packed in a glovebox under argon flux to avoid air exposure. 

2.8. Molecular dynamics simulations 

Reactive molecular dynamics simulations (RMD) of the growth 
process, based on the ReaxFF approach and a recent force field appro-
priately developed for these types of materials [38], were carried out by 
filling cubic simulation boxes with Zr, Si, and O atoms randomly, 
considering the experimental density of the final materials. The simu-
lations were performed in the NVT ensemble at high temperatures to 
speed up the aggregation process. In all the RMD runs, the time step was 
set to 0.5 fs, and the temperature was controlled through the 
Hoover-Nosé thermostat with a relaxation constant of 0.1 ps. RMDs were 
carried out with the ReaxFF code implemented in the Lammps package 
[39]. The systems structures were collected every picosecond. The total 
simulation time was between 2 and 5 ns for the different stoichiometries. 
The trajectories were analyzed to extract the final values of surface areas 
and pore volume using the PoreBlazer software [40]and to extract 
size-reduced systems for the quantum chemistry (QC) calculations. 

2.9. QC calculations 

All the DFT calculations were performed with the Quantum Espresso 
(QE) suite of programs [41], employing PAW (Plane-Augmented-Waves) 
pseudopotentials, the PBE-D2 XC-functional [42] [43], and plane-waves 
as basis sets to build Bloch states. Cut-offs on the wave function and 
electronic density were set to 40/400 Ry (1 Ry = 313.8 Kcal/mol), and 
the first Brillouin cell in the reciprocal space was sampled at the Gamma 
point only (non-periodic system). Calculations were performed 
spin-restricted by applying Gaussian smearing of the one-particle energy 
levels of 0.002 Ry. NMR Chemical Shifts (CS) were simulated by using 
the GIPAW approach [44] implemented in QE. 

2.10. Dehydration reaction of 1-octanol 

The tests were carried out in a flow setup using a stainless-steel 
reactor (4 mm internal diameter). Before each test, the materials were 
treated for 40 mins at 270 ◦C (10 ◦C/min ramp rate) in a 40 mL/min N2 
flow. An HPLC pump delivered the 1-octanol to the reactor. The reaction 
products were identified via a GC-MS instrument (Agilent, 7890 A) and 
then quantified with a GC-FID instrument (Agilent, 6890) using hex-
adecane as standard. In both cases, an HP5 column was used. The cat-
alytic activity was evaluated at 325 ◦C by adjusting the liquid hourly 
space velocity (LHSV), calculated as the ratio of the 1-octanol flow rate 
over the catalytic bed volume, between 9 and 18 h− 1 to start the test at 
about the same conversion level of 80–90 % with all the materials 
examined. The olefins productivity data are reported as Space Time 
Yield, defined as moles of olefins per hour per gram of catalyst. 

3. Results and discussion 

A series of Zr-Si mixed oxides were prepared using a conventional 
sol-gel procedure to obtain amorphous materials featuring a high 
dispersion of both Zr and Si. These materials were already used for other 
applications and characterized in their main compositional and acid/ 
base characteristics [4,31]. We focused our attention on the ZrSi30 

sample, whose Zr:Si molar ratio is 1:1, because it displayed the highest 
number of Brøsted acid sites (Fig. 1). The XRPD analyses did not show 
any diffraction peak, thus confirming its amorphous nature (Figure S1). 
The other two mixed oxide samples, with Zr:Si molar ratios of 4:1 
(ZrSi10) and 1:2 (ZrSi50), were prepared as representatives of systems 
featuring an excess of Zr and Si, respectively. 

The acid/base characteristics of the materials are summarized in 
Fig. 1, while the FTIR pyridine desorption spectra are shown in 
Figure S2. Starting from the pure ZrO2, which has both acidic (only 
Lewis) and basic sites, increasing the amount of Si, the latter progres-
sively disappear while BAS appear. ZrSi30 has the highest number of 
BAS and retains more Lewis acid sites than ZrSi50. As it will be discussed 
later, the drop in the acidic characteristics of ZrSi50 could be related to 
the decrease in specific surface area and the more silica-like composition 
(Figure S3). 

We started this investigation by developing morphological models. 
Consistently with the experimental density of 0.808 g/cm3, particle- 
growing computational protocol exploiting ReaxFF Molecular Dy-
namics (MD) simulations produced several models with stoichiometric 
ZrSi30 composition by tuning the simulation temperature (in the range 
1000 – 2000 K), the box size (98 Å, corresponding to 2500 Zr, 2500 Si 
and 10,000 O atoms or 123 Å, corresponding to 5000 Zr, 5000 Si, and 
20,000 O atoms), and the hydrogen content (from 0 % to 100 % relative 
to the total number of Zr and Si atoms in the simulation box). The most 
representative morphologies are shown in Fig. 2. 

Fig. 2(a) shows that ZrSi30 corresponds to the maximum surface area 
(around 350 m2/g) with a pore diameter of about 6 nm. But, as seen 
from the HRTEM micrograph in Fig. 2(b), ZrSi30 is made of tightly 
packed particles of 5–7 nm. Comparing the HRTEM, BET data, and 
theoretical models, the porosity revealed by the N2 adsorption isotherms 
can be linked to the interparticle distance originating from the aggre-
gation of the particles. When simulating the growth process at high 
temperature (2000 K), we achieved a periodic array of agglomerated 
nanoparticles with dimensions in the 6–8 nm range, an average distance 
of about 7 nm, and a surface area of 360 m2/g. As shown in Fig. 2(c), the 
average distance between the particles (about 7 nm) was in satisfactory 
agreement with the experimental measurements. 

On the contrary, at lower growth temperatures, the final morphology 
shown in Fig. 2(d) is sparser, displaying a larger surface area (about 
1300 m2/g) and pores of about 2 nm. It is worth mentioning that neither 
the size of the unit cell nor the hydrogen content affected the final 
morphology. Systems with the ZrSi50 and ZrSi10 stoichiometries were 
generated through an analogous procedure. 

XAS analysis provided detailed information on the Zr environment. 

Fig. 1. The acid/base characteristics of the Zr-Si mixed oxides here studied. 
Adapted from Ref. [4]. 
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The general shape of the Zr K X-ray absorption near edge structure 
(XANES) spectra of zirconium oxide (Fig. 3(a)) is relatively well un-
derstood. The local symmetry of 3d states influences the pre-edge at 
around 18,003 eV in the ZrOx coordination complex, while the main 
absorption feature at 18,022 eV reflects the chemical bonding between 
Zr 4 s and O 2p states [45]. The typical single absorption features for the 
m-ZrO2 (baddeleyite phase) with seven-fold Zr coordinated to O in our 
ZrO2 sample split into a double-peaked structure (peaks II at 18,020 eV 
and III at 18,029 eV in Fig. 3). This, together with the formation of a 
more pronounced pre-edge feature (peak I), is proposed to be a sign of 
significant tetragonal distortion in ZrOx characterized by 
eight-coordinated Zr with the Zr-O bonds longer than in baddeleyite, 
like in stabilized zirconia, or might be a hint to the presence of 
six-coordinated Zr with shorter Zr-O bonds [46,47]. The analysis of the 
extended X-ray absorption fine structure (EXAFS) data (Fig. 3(b) and 
Table S1) revealed a decrease in the average coordination number of O 
and Zr (peaks at 1.7 Å and 3.1 Å, respectively) and a shortening of the 

Zr-O bond in both pure ZrO2 and ZrSi30 samples compared to m-ZrO2. 
No long-term order was found (see the low intensity of the peaks at 
distances above 3.5 Å in Fig. 3(b)), in agreement with the morphological 
observations [4,31] (Fig. 2). The proposal that the ZrO6 units are ho-
mogeneously distributed in the solid matrix without building large zir-
conia particles is thus further supported. For pure Zr oxides, the reduced 
Zr-O coordination number, the shorter Zr-O bonds, and the change of 
shape of the XANES spectra hint at the formation of octahedrally coor-
dinated Zr4+ stabilized by linkages with SiO4 in ZrSi30 [45,48]. 

The formation of direct Zr-Si bonds can be excluded as no Zr-Si peak 
at about 2.25 Å (like in ZrSi2, not shown here) is present in the FT EXAFS 
data (Fig. 3(b)). Zr-Si bonds had been assigned to the peak at about 3 Å 
[48], but this is unlikely since the same peak can be found in the spec-
trum of pure ZrO2. The formation of Zr-O-Si bonds is, hence, more 
realistic and will be verified experimentally via FT-IR and SSNMR 
spectroscopies. 

Indeed, analyzing the skeletal vibrational region in the FTIR spectra 

Fig. 2. (a) Experimental specific surface area and pore width of the synthesized ZrO2, ZrSi10, ZrSi30, and ZrSi50 [4]. (b) Representative HRTEM micrograph of 
ZrSi30. The final morphology of simulations adopted cubic boxes with a side of 98 Å and containing 2500 Zr, 2500 Si, 10,000 O, and 2500 H atoms. Simulation 
temperatures were 2000 K in (c) and 1000 K in (d). O atoms are depicted as red balls, Si as yellow balls, Zr as grey balls, and H as white balls. The simulation box 
(blue lines) is displayed in panels (c) and (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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shown in Fig. 4, the presence of Zr-O-Si bonds can be confirmed in all the 
Zr-Si mixed oxides by the bands located at around 1115–1166 cm− 1 

[49]. The bands around 760 cm− 1 and 1060 cm− 1 are typical of Si-O 
bonds; the band at about 1200 cm-1 is visible only in the spectrum of 
ZrSi50, which reflect the higher Si content of this material and a more 
silica-like structure[17,50]. 

Another proof of the presence of the Zr-O-Si bond is provided by 29Si 
SSNMR spectra, shown in Fig. 5(a). The spectra show a broad peak, 
whose maximum progressively shifts towards lower chemical shifts 
(from − 88 ppm of ZrSi10 to − 100 ppm of ZrSi50) with increasing the 
content of Si. This effect has been already ascribed to the formation of 
Zr-O-Si linkages in mixed oxides [48,51] [52,53]. The broad peak 
observed agrees with the amorphous nature of these materials and arises 

from a distribution of different species and bond lengths and angles. On 
the other hand, the regular trend of the chemical shift of the maximum 
of the peak suggests a progressive increase of Zr to Si substitution with 
increasing the Zr/Si ratio, associated with an intimate and homogeneous 
mixing of Si and Zr atoms. In particular, considering that the substitu-
tion of Si with Zr is reported to induce a shift of about +5 ppm, the 
values of the 29Si chemical shift measured at the maximum of the peak 
suggest the formation of the following main species: Si(OSi)3(OH) and Si 
(OSi)2(OZr)(OH) in ZrSi50, Si(OSi)2(OZr)(OH) and Si(OSi)(OZr)2(OH) 
in ZrSi30 and Si(OSi)(OZr)2(OH) and Si(OZr)3(OH) in ZrSi10, in excel-
lent agreement with samples stoichiometry. It must be mentioned that 
these spectra were recorded by Cross Polarization (CP) from 1H to 29Si 
nuclei, thus favoring silicon atoms bearing OH groups, presumably more 

Fig. 3. (a) Normalized Zr K XANES spectra and (b) magnitude of Fourier transformed k3-weighted EXAFS spectra, not phase corrected, of the ZrO2 and ZrSi30 
samples along with the reference material (m-ZrO2, baddeleyite phase). 

Fig. 4. DRIFTs spectra with peaks deconvolution of (a) ZrO2, (b) ZrSi10, (c) ZrSi30, and (d) ZrSi50.  
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abundant at the materials surface. The quantitative Direct Excitation 
(DE-MAS) spectrum of ZrSi30 (Figure S4) better highlights also the 
presence of Si(OSi)2(OZr)2 species, resonating at a chemical shift of 
about − 100 ppm. 

To obtain more detailed information on the structure of the 

investigated samples, by applying the computational growth parameters 
derived for the morphological models of the aggregated nanoparticles 
shown in Fig. 2(c), we derived the structures of three isolated nano-
particles, with the desired ZrSi10, ZrSi30, and ZrSi50 stoichiometries, 
shown in Fig. 5(c-e). From a detailed structural analysis, neither ordered 

Fig. 5. (a) Experimental 1H–29Si CP MAS SSNMR spectra of the indicated samples (b) GIPAW-simulated 29Si MAS SSNMR spectra of the three nanoparticles with 
composition (c) ZrSi50, (d) ZrSi30 and (e) ZrSi10 achieved with modeling. On the right, the relative RDF (Radial Distribution Function) and CN (Coordination 
Number) of Si-O (black data) and Zr-O (red data) are shown. The polyhedral representations of the nanoparticles include Si (yellow) and Zr (grey) areas, whereas O 
atoms are rendered as red balls. The three nanoparticles have an average diameter of about 6 nm. 

Fig. 6. (a) Experimental 1H MAS SSNMR spectra of all the indicated samples. (b) Four different categories of surface -OH groups: from left to right, -OH on top of Zr 
atoms (Zr-OH), -OH on top of Si atoms (Si-OH), bridge -OH between one Zr and one Si atom (Zr-O(H)-Si), and bridge -OH between two Zr atoms (Zr-O(H)-Zr). O, Si, 
Zr, and H are rendered with red, yellow, grey, and white balls, respectively. (c) GIPAW-simulated chemical shifts of a selection of protons from the surface of the 
ZrSi30 nanoparticle: the total signal (black line) is decomposed according to the topology of the different -OH groups reported in (b). 
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crystal regions nor Zr-Si bonds in such nanoparticles were found. Most Si 
atoms are tetracoordinate (black curves corresponding to the integrated 
RDF of the Si-O bonds in Fig. 5). In contrast, the coordination of most of 
the Zr atoms is close to six (red curves corresponding to the integrated 
RDF of the Zr-O bonds in Fig. 5), in agreement with EXAFS data. These 
results also agree with those reported by Sheikholeslam et al. [54], who 
investigated mixed Zr-Si bulk oxides at low Zr content via a similar 
computational growth protocol employing ReaxFF. 

Furthermore, by using reduced surface models of the larger aggre-
gates, according to a procedure detailed in the Supplementary Material 
and analog to that outlined by Caricato [52], we were able to simulate, 
at the DFT level, the 29Si SSNMR chemical shift of a random ensemble of 
surface silicon atoms (see Fig. 5(b)): the agreement with the experi-
mental spectra in Fig. 5(a) is excellent. Further details on the procedure 
used to derive the reduced models and simulated spectra are reported in 
the Supplementary Material. 

As BAS are hydroxide groups, we then recorded 1H SSNMR spectra 
(Fig. 6(a)). The spectrum of pure ZrO2 allowed the identification of the 
signal arising from Zr-OH groups, which has a maximum at 6 ppm and a 
shoulder at about 8 ppm [55]. The spectra of the mixed Zr-Si samples are 
characterized by a relatively broad and barely resolved distribution of 
signals, spanning the region 1–12 ppm, with some local intensity max-
ima at 1.5, 2.0, 4.7, 7.2, and 10.5 ppm. The low resolution can be mainly 
ascribed to a distribution of isotropic chemical shifts, as confirmed by 
the failure of CRAMPS experiments. These spectra are quite peculiar 
compared to the few reported in the literature for Zr-Si mixed oxides 
[53,56], and an analysis of variable compositions has not been reported 
yet. A tentative assignment of the observed signals can be proposed, but, 
as it will be evident in the following, the structural complexity and 
disorder of these materials and the sensitivity of the 1H chemical shifts to 
minor variations of the local environment of H atoms, make crucial and 
beneficial the combination of the experimental data with modeling 
predictions. The signals at 1.5 and 2 ppm were repeatedly observed in 
zeolites and ascribed to isolated Si-OH groups, both not involved in H 
bonds but having a non-acidic and acidic character, respectively [29,56, 
57]. All the other H nuclei are expected to contribute to the broad signal 
at chemical shifts higher than 2 ppm. We also recorded a 1H–29Si 2D 

HETCOR spectrum of ZrSi30 (Figure S6), which showed cross-peaks 
between the 29Si signal and all 1H signals below 10 ppm. 

The reduced cluster models from the ZrSi30 NP of Fig. 5(d) used to 
simulate 29Si chemical shifts were also used to simulate 1H CS at the 
same level of theory, refine the data collected from the SSNMR experi-
ments and speculate on the nature of surface -OH groups. The following 
classification, displayed in Fig. 6(b), was obtained: -OH on top of Zr 
atoms (Zr-OH), -OH on top of Si atoms (Si-OH), bridge -OH between one 
Zr and one Si atom (Zr-O(H)-Si), and bridge -OH between two Zr atoms 
(Zr-O(H)-Zr). No bridged -OH between two Si atoms was singled out, in 
agreement with the results of FT-IR analyses, which evidenced Si-O-Si 
bands only in the spectrum of the ZrSi50 system (Fig. 4). The decom-
position in terms of the four groups of -OH atoms of the spectra simu-
lated via DFT allowed the definition of the contribution of each -OH 
group to the overall spectrum, as depicted in Fig. 6(c). The comparison 
between the experimental and the cumulative simulated 1H spectrum is 
excellent, confirming the reliability of the derived structural models. 

As per tradition, while probing the acidity of materials [35,36], 
pyridine adsorption was carried out experimentally in its perdeuterated 
form (Py-d5) and examined via SSNMR. The 1H MAS spectrum of ZrSi30 
exposed to Py-d5 (Fig. 7(b)), compared with that of ZrSi30 (Fig. 7(a)), 
shows an intensity decrease for the signals at 2 and 4.7 ppm and a 
corresponding increase at 7 ppm. The peak at very high chemical shift 
(12–16 ppm) often observed for the pyridinium ion in zeolites is not 
observed [58–61], suggesting that there is a fast hydrogen exchange 
between surface acidic sites and Py-d5, resulting in an average 1H NMR 
spectrum. This was confirmed by the 13C spectrum of Py-d5 (Fig. 7(c)). 
The 13C chemical shifts observed here correspond to those reported for 
Cα, Cγ (peak at 145 ppm), and Cβ (peak at 125 ppm) for pyridinium and 
pyridine in 0.6 molar ratio, rapidly exchanging with a characteristic 
time less than 10− 3 s [62]. This number fits very well with the molar 
ratio between the number of BAS and the total amount of acid sites, 
0.59, in our ZrSi30 material (Fig. 1). It is worth noticing the decrease in 
the intensity at about 2 and 4.7 ppm in the 1H MAS spectrum of ZrSi30 
after Py-d5 adsorption, which suggests that the sites mainly affected by 
the pyridine adsorption are those where the -OH groups are on top of Si 
and/or bridged between Si and Zr. To precisely untangle the many 

Fig. 7. 1H MAS SSNMR spectrum of ZrSi30 before (a) and after (b) adsorption of Py-d5; (c) 13C DE MAS SSNMR spectrum of Py-d5 adsorbed on ZrSi30. (d) Adsorption 
energy of the pyridine molecule interacting with four -OH of the surface of the ZrSi30 nanoparticle. (e) Projected Density of States corresponding to the 1 s function of 
two different H atoms on the ZrSi30 nanoparticle surface: an oxidized H atom (purple) corresponding to a bridge Zr-O(H)-Si and a top Zr-OH (green). (f) Proto-typical 
example of proton extraction from a bridge Zr-O(H)-Si site corresponding to the formation of a pyridinium ion. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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contributions to this part of the spectrum, we estimated the adsorption 
energy of pyridine on the most exposed surface H atoms by performing a 
constrained local optimization of the atoms of pyridine along with the O 
and H atoms of the surface in direct contact with it (Fig. 7(d)) [60]. 
Regardless of the relatively wide error bars due to the inherent hetero-
geneity of the system, the trend is clear and indicates that pyridine in-
teracts more strongly with an -OH group bridged between Zr and Si 
atoms (Zr-O(H)-Si). Interestingly, in more than 90 % of the sampled 
sites, the adsorption of pyridine was accompanied by the direct extrac-
tion of the sampled proton and the formation of a pyridinium ion, as 
explicitly shown in Fig. 7(f). The Projected Density of States (Fig. 7(e)), 
derived from the DFT simulation on a typical cluster model, showed that 
the H atom of the bridged Zr-O(H)-Si group is more oxidized, and hence 
characterized by a larger percentage of its wave function above the 
Fermi level, than that, for instance, in the on-top configuration Zr-OH. 
This is coherent with the pronounced tendency of the bridged Zr-O 
(H)-Si to exhibit Brønsted character via the direct protonation of the 
pyridine in contact with it. It can be noted that the change of the 1H MAS 
spectrum of ZrSi30 exposed to Py-d5 (Fig. 7(a) vs Fig. 7(b)) is consistent 
with this picture, as the contribution deriving from Zr-O(H)-Si, although 
quite broadened in the region from 1 to 10 ppm, has a significant weight 
in the region below 5 ppm, where it is dominant together with the 
contribution deriving from Si-OH. Reasonably, in the region between 5 
and 10 ppm, a decrease of the contribution from Zr-O(H)-Si is less 
evident in the overall spectrum, due to the strong weight played by H 
species in Zr environment. 

Finally, the ZrSi30 material was tested in the dehydration reaction of 
1-octanol in flow conditions against two other reference materials 
featuring BAS, namely a sulfonated zirconia (ZrSO3H) prepared by us 
starting from the same ZrO2 batch and a commercial acidic silica- 
alumina (SiAl). The total acidity profiles of all these materials are re-
ported in Figure S7. These tests allowed us to showcase the potential of 
ZrSi30 as a catalyst to produce olefins, particularly from long-chain al-
cohols, which are of interest for the elastomer industry [63] and, more 
recently, for the production of sustainable jet fuels [64]. The results are 
displayed in Fig. 8. It can be observed that not only ZrSi30 is far more 
stable than the other two materials as far as the overall olefin produc-
tivity, but it also showed the highest selectivity toward 1-octene, which 
is the most valuable among the isomers and the lowest toward the ether. 

Such high and constant selectivity of ZrSi30 is consistent with the 
well-balanced BAS and LAS of this material (Figure S7), as already re-
ported for other solid acid catalysts in alcohol dehydration reactions 
[65,66]. The overall stability of ZrSi30 can be ascribed to two factors. 
Firstly, the low quantity and easy-to-burn-off carbonaceous deposits 
found after the reaction by thermogravimetric analyses (Figure S8). 
Secondly, ZrSi30 retained its morphological characteristics practically 
unaltered, i.e., surface area and porosity along with the N2 isotherm 
shape, as evidenced by the comparison between the fresh and used 
material in Figure S9 and Table S3. These data confirm that it is possible 
to obtain in a simple manner a highly acidic and robust Zr-based catalyst 
that outperforms even Si-Al mixed oxides by simply playing with their 
composition while avoiding harsh treatments with mineral acids. 

4. Conclusions 

In summary, the results presented here allowed us to collect strong 
indications pointing towards -OH groups bridging Zr and Si atoms (Zr-O 
(H)-Si) (see Fig. 6(b)) as the Brønsted acid sites characterizing amor-
phous Zr-Si mixed oxides at 1:1 composition. Such a conclusion was 
achieved via an intertwined approach exploiting a combination of 
experimental and theoretical techniques. Working on a series of mate-
rials covering a wide range of compositions, the proposed multi- 
technique approach allowed the identification of agglomerated nano-
particles with amorphous morphology and a Brønsted acidity charac-
terized by a typical volcano profile in favor of ZrSi30 composition. 
Atomistic multiscale modeling was used to provide possible structural 
models of the nanoparticles that were coherent with the experimental 
data, namely qualitative coherence with the EXAFS and SSNMR spectra. 
Pyridine adsorption analyses identified the surface BAS. We could esti-
mate the pyridine adsorption energy by screening surface OH groups 
with different topologies, and the OH group bridging Zr and Si atoms 
was the most acidic one. Finally, ZrSi30 was tested against some refer-
ence materials featuring BAS in the dehydration reaction of 1-octanol in 
flow conditions. The results showed that the ZrSi30 material out-
performs the others in terms of stability and selectivity to 1-octene, 
which is the most valuable isomer for critical industrial processes like 
elastomer production. We can conclude this paper by stressing two as-
pects: the first is related to the ZrSi30 material, which proved to be an 

Fig. 8. Catalytic dehydration reactions of 1-octanol at 325 ◦C. Olefins space time yield (left) and selectivity (right) toward 1-octene (solid) and octyl ether (empty). 
The space velocity was adjusted between 9 and 18 h− 1 to start the tests at a comparable initial conversion level of 80–90 %. 
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excellent catalyst material potentially able to attract industrial interest; 
secondly, we showed how only an approach based on an intertwined 
multi-technique characterization can shed light on the complex 
morphology and structure/property relationships of highly amorphous 
materials, such as the mixed Zr-Si oxide nanoparticles presented here. In 
perspective, this multi-characterization-technique approach could help 
accelerate the knowledge-based development of high-performance in-
dustrial relevant materials. 
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