

Article

Al₂O₃ Layers Grown by Atomic Layer Deposition as Gate Insulator in 3C-SiC MOS Devices

Emanuela Schilirò *, Patrick Fiorenza ⁽¹⁾, Raffaella Lo Nigro, Bruno Galizia ⁽¹⁾, Giuseppe Greco ⁽¹⁾, Salvatore Di Franco, Corrado Bongiorno, Francesco La Via ⁽¹⁾, Filippo Giannazzo ⁽¹⁾ and Fabrizio Roccaforte ⁽¹⁾

Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII 5, Zona Industriale, 95121 Catania, Italy; patrick.fiorenza@imm.cnr.it (P.F.); raffaella.lonigro@imm.cnr.it (R.L.N.); bruno.galizia@imm.cnr.it (B.G.); giuseppe.greco@imm.cnr.it (G.G.); salvatore.difranco@imm.cnr.it (S.D.F.); corrado.bongiorno@imm.cnr.it (C.B.); francesco.lavia@imm.cnr.it (F.L.V.); filippo.giannazzo@imm.cnr.it (F.G.); fabrizio.roccaforte@imm.cnr.it (F.R.)

* Correspondence: emanuela.schiliro@imm.cnr.it

Abstract: Metal-oxide-semiconductor (MOS) capacitors with Al₂O₃ as a gate insulator are fabricated on cubic silicon carbide (3C-SiC). Al₂O₃ is deposited both by thermal and plasma-enhanced Atomic Layer Deposition (ALD) on a thermally grown 5 nm SiO₂ interlayer to improve the ALD nucleation and guarantee a better band offset with the SiC. The deposited Al₂O₃/SiO₂ stacks show lower negative shifts of the flat band voltage V_{FB} (in the range of about -3 V) compared with the conventional single SiO₂ layer (in the range of -9 V). This lower negative shift is due to the combined effect of the Al₂O₃ higher permittivity ($\epsilon = 8$) and to the reduced amount of carbon defects generated during the short thermal oxidation process for the thin SiO₂. Moreover, the comparison between thermal and plasma-enhanced ALD suggests that this latter approach produces Al₂O₃ layers possessing better insulating behavior in terms of distribution of the leakage current breakdown. In fact, despite both possessing a breakdown voltage of 26 V, the T-ALD Al₂O₃ sample is characterised by a higher current density starting from 15 V. This can be attributable to the slightly inferior quality (in terms of density and defects) of Al₂O₃ obtained by the thermal approach and, which also explains its non-uniform dC/dV distribution arising by SCM maps.

Keywords: high-ĸ; dielectrics; ALD; WBG; 3C-SiC

1. Introduction

The cubic polytype of silicon carbide (3C-SiC) has a smaller energy gap ($E_g = 2.36 \text{ eV}$) [1,2] compared to the hexagonal 4H-SiC ($E_g = 3.26 \text{ eV}$) [3], but it possesses a higher electron mobility and saturation velocity [4–8]. Moreover, it exhibits a larger conduction band offset (3.7 eV) [9] with SiO₂ than 4H-SiC (2.7 eV). Hence, differently from the 4H-SiC/SiO₂ system where they are aligned with the conduction band edge of 4H-SiC, the near-interface-oxide-traps (NIOTs) inside the insulator in the 3C-SiC/SiO₂ system lie above the Fermi level and hence they are electrically inactive [10,11]. Furthermore, the lower position of the 3C-SiC conduction band edge with respect to the SiO₂ conduction band edge results immune to the interface states that are peculiar of the SiO₂/4H-SiC interface [6]. This can lead to a higher inversion electron channel mobility (>200 cm² V⁻¹ s⁻¹ [12]) in 3C-SiC Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) compared to those fabricated using the 4H-poly-type.

Silicon dioxide (SiO₂) is the native oxide of SiC that can be obtained by a thermal oxidation process of the material [13,14]. However, its electrical behavior is adversely affected by the large number of defects [9,15] (e.g., carbon clusters and dangling bonds produced during oxidation), which results in a large negative shift of the flat band voltage (V_{FB}) [8,16,17]. Another issue is the response of the MOS system to the application of high voltages. In particular, in blocking configuration, the distribution of the electric field inside the insulator (E_{ins}) and the semiconductor (E_s) can be expressed by the Gauss' law,

Citation: Schilirò, E.; Fiorenza, P.; Lo Nigro, R.; Galizia, B.; Greco, G.; Di Franco, S.; Bongiorno, C.; La Via, F.; Giannazzo, F.; Roccaforte, F. Al₂O₃ Layers Grown by Atomic Layer Deposition as Gate Insulator in 3C-SiC MOS Devices. *Materials* **2023**, *16*, 5638. https://doi.org/10.3390/ ma16165638

Academic Editor: Alexander A. Lebedev

Received: 1 August 2023 Revised: 10 August 2023 Accepted: 14 August 2023 Published: 15 August 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). $E_{ins} = (\kappa_s / \kappa_{ins})E_s$, where κ_{ins} and κ_s are the insulator and semiconductor permittivity values. Considering the permittivity values of SiO₂ (3.9) and 3C-SiC (9.7), the SiO₂ layer is subjected to an electric field 2.5 higher than 3C-SiC. Hence, the SiO₂ gate insulator reliability is seriously compromised under high electric field. Moreover, using SiO₂ does not enable full exploitation of the high critical field of the underlying 3C-SiC substrate. Consequently, thicker drift layer must be used, which in turn increases the total device on-resistance [18].

Insulators with high permittivity (the so-called "*high-κ*") can be a solution to overcome this limitation due to the better distribution of the electric field in the MOS system, which offers safer operating conditions in high voltage applications. Al₂O₃ is a suitable *high-κ* oxide due to its permittivity value ($\kappa \sim 9$), good thermal stability and relatively large band gap (~7 eV) [19–23]. The Atomic Layer Deposition (ALD) [24,25] is the best technique for the deposition of Al₂O₃ thin layers with optimal thickness control, uniformity on large area, and high-quality interface [26–28]. The ALD growth of Al₂O₃ thin films on SiC can be improved by the insertion of a nanometric SiO₂ interlayer (IL), which provides a larger amount of active nucleation sites than the bare SiC surface. Moreover, the introduction of SiO₂ IL between Al₂O₃ and SiC is also convenient to guarantee a larger conduction band offset and finally to better prevent leakage phenomena [29,30]. To date, the Al₂O₃ deposited by ALD as gate dielectric on 3C-SiC is completely unexplored. Actually, it has been adopted by R. Oka et al. [16] only as a thin interlayer between SiO₂ and 3C-SiC to improve the structural quality of their interface.

In this work, we report on the Al₂O₃ thin film growth by ALD as an alternative insulator layer for 3C-SiC MOS capacitors using a very thin SiO₂ film as IL. In particular, the structural properties of Al₂O₃/SiO₂ stacks, of their interfaces on the underlying 3C-SiC but also their electrical behavior have been investigated by comparing the two different ALD approaches, namely the thermal (T-) and plasma-enhanced (PE-) ALD processes [31,32]. Both approaches allow obtaining good quality high- κ dielectrics. However, some literature works [16,22,23,31,33,34] report on slight differences both in the quality of the grown high- κ and in its interfacial properties, directly related to the different oxidation mechanism between the two methods. In particular, the studies conducted on other semiconductor materials [16,32] suggest that the more reactive action of the O₂-plasma produces Al₂O₃ layers characterised by a higher mass density and lower amounts of the undesired carbon contaminations and unreacted OH- groups, which could act as active centres for electron trapping [35].

Furthermore, the combination of several characterisation techniques, i.e., morphologicalstructural and electrical—either at a macroscopic scale or at a nano-scale—allowed the full comprehension of the insulating properties of the differently ALD deposited Al₂O₃ films.

2. Materials and Methods

A 10.2 µm thick 3C-SiC grown by chemical vapour deposition on Si (100) was employed as substrate [36]. Prior to the oxidation process, the 3C-SiC substrates were cleaned for ten minutes in an H₂SO₄:H₂O₂ = 3:1 solution followed by ten minutes of etching in an HF:H₂O = 1:5 solution. A 5 nm SiO₂ IL was grown by a controlled dry oxidation process at 1150 °C for 5 min. Successively, the Al₂O₃ layers were deposited on SiO₂/3C-SiC by either thermal- or plasma-enhanced ALD using trimethylaluminum (TMA) as an aluminium precursor and H₂O or O₂-plasma as co-reactants. Both processes were carried out at the deposition temperature of 250 °C. Meanwhile, the different growth rates of the T-ALD (~0.9 Å/cycle) and the PE-ALD (~1.2 Å/cycle) involve the use of a different number of deposition cycles (350 and 250 cycles for T- and PE-, respectively) to grow an A₂O₃ layer with the same thickness of 30 nm.

The structural quality of $Al_2O_3/SiO_2/3C$ -SiC stacks and their morphology were investigated by transmission electron microscopy (TEM) using a FEG-TEM JEOL 2010F (Tokyo, Japan) microscope and by atomic force microscopy (AFM) using a DI3100 equipment by Bruker (Billerica, MA, USA) with Nanoscope V controller, respectively. In particular, the TEM analysis was carried out in cross-section in order to visualize the properties of the Al_2O_3/SiO_2 stack layer and their interfaces. For this purpose, cross-sectional specimens were properly prepared both for T- and PE- $Al_2O_3/SiO_2/3C$ -SiC samples by conventional mechanical preparation techniques, i.e., including polishing and dimple grinding, followed by a final thinning with ion milling.

The electrical behaviour of the insulating stacks was evaluated by capacitance-voltage (C-V) and current-voltage (I-V) measurements carried out on lateral metal-oxide-semicondu ctor (MOS) capacitors using a Microtech Cascade probe station equipped with a Keysight B1505 parameter analyser (Santa Rosa, CA, USA). Finally, the nanoscale electrical behaviour of the systems was monitored my means of scanning capacitance microscopy (SCM).

3. Discussion

The cross-section TEM image reported in Figure 1 illustrates a uniform and amorphous Al_2O_3 layer with a thickness of ~30 nm and a sharp interface with the underlying $SiO_2/3C$ -SiC. The SiO₂-IL is clearly distinguishable and has a thickness of about 4.5 nm. The structural properties of Al_2O_3 and of its interfaces are similar on both T- $Al_2O_3/SiO_2/3C$ -SiC and PE- $Al_2O_3/SiO_2/3C$ -SiC systems; thus, only the first is reported representatively.

Figure 1. Cross-section TEM image relative to T-Al₂O₃/SiO₂/3C-SiC.

Lateral MOS capacitors schematically depicted in Figure 2a were fabricated using photolithography, metal deposition and lift-off processes. The anode of the MOS capacitors was surrounded by a large-area metal cathode so that its capacitance could be neglected (Figure 2b). Ni/Au was used as metal electrode. The MOS structures fabricated on T-Al₂O₃/SiO₂/3C-SiC and PE-Al₂O₃/SiO₂/3C-SiC were probed by C-V measurements, which are shown in Figure 2c. Both samples provide C-V curves negatively shifted compared to the ideal value $V_{FB} = +0.9$ V. In particular, the experimental flat band voltage values were -0.6 V and -3 V for the T-ALD and PE-ALD stacks, respectively. However, as can be observed in Figure 2c, such negative shifts were smaller compared to that of MOS capacitor where the insulator was only a thick (40 nm) thermal SiO₂ [37]. This experimental finding is related to the higher dielectric constant of the Al₂O₃ ($\kappa = 8$) with respect to that of SiO₂ ($\kappa = 3.9$). In fact, even though the SiO₂/3C-SiC interface is similar, in both cases resulting in analogous amount of effective charge (N_{eff}), this can cause a variation of the experimental V_{FB} value, moving it toward the ideal one, as expressed by the following equations:

$$\Delta V_{FB} = \frac{q N_{eff}}{C_{OX}},\tag{1}$$

$$C_{OX} = \frac{\varepsilon_0 \kappa}{t_{OX}},$$
(2)

where N_{eff} is the effective trapped charge density, C_{OX} is the accumulation capacitance, q is the electron charge, ε_0 is the vacuum dielectric constant, and t_{OX} is the oxide thickness.

Figure 2. Schematic cross-section of the $Al_2O_3/SiO_2/3C$ -SiC MOS capacitor (**a**) and top-view microscopy image of a MOS capacitor (**b**). C-V curves of T-Al_2O_3/SiO_2(IL)/3C-SiC and PE-Al_2O_3/SiO_2(IL)/3C-SiC MOS capacitors in comparison with the analogous SiO_2/3C-SiC (**c**).

According to Equations (1) and (2), for a constant N_{eff} and an insulating layer thickness, an increased dielectric constant results in a smaller flat band voltage shift ΔV_{FB} . Furthermore, the lower negative V_{FB} shift of the Al₂O₃/SiO₂/3C-SiC stack can be also explained by the shorter time for the thermally oxidation process needed to grow a 4.5 nm SiO₂ IL than that needed to grow a 30 nm thick SiO₂. In fact, a shorter oxidation time produces a lower amount of carbon clusters responsible of the negative V_{FB} shift [38]. From the accumulation capacitance, the dielectric constant κ of the insulating films was estimated to be ~8 both for T- and PE-Al₂O₃. As can be seen in Figure 2b, the C-V curves of the PEand T-ALD Al₂O₃/SiO₂/3C-SiC are characterised by a different electrical behavior. In fact, besides the negative flat band voltage shift occurring in both cases, it can be noticed that a bump was visible in the depletion region of the C-V curve of the PE-ALD sample. Plausibly, this bump was caused by the occurrence of charge trapping at deep interface states when increasing the bias [12]. On the other hand, the thermal $Al_2O_3/SiO_2/3C$ -SiC sample is characterised by a more pronounced stretch-out of the C-V curve. Evidently, the different nature of the oxidation process (plasma enhanced-PE, and thermal-T) used during the ALD growth of Al₂O₃ was responsible for the different electrical quality of the two interfaces.

From the C-V curves, by applying the Terman's method [39], the interface states (D_{it}) distributions were calculated for both T-Al₂O₃/SiO₂/3C-SiC and PE-Al₂O₃/SiO₂/3C-SiC stacks, which are also reported in Figure 3 in comparison to that of the SiO₂/3C-SiC system. The SiO₂/3C-SiC and Al₂O₃/SiO₂/3C-SiC samples exhibited a comparable D_{it} distribution in the order of 2×10^{12} cm⁻² eV⁻¹ [8]. On the other hand, the PE-Al₂O₃/SiO₂/3C-SiC sample showed a lower D_{it} distribution close to the 3C-SiC conduction band edge in the order of 5×10^{11} cm⁻² eV⁻¹, which can be due to the beneficial effect of the O₂-plasma on the defects amount at SiO₂/SiC interface [40]. In fact, Kim et al. [30] demonstrated that for the SiO₂/SiC-based devices, the use of a SiO₂ growth process assisted by the highly reactive O₂ plasma guarantees the formation of an interface characterised by a lower amount of defects and more stable SiO bonds. Analogously, in our case, the PE-approach

used to deposit the Al_2O_3 could play a similar beneficial effect on the underlying SiO₂/SiC interface.

Figure 3. D_{it} distribution of T-Al₂O₃/SiO₂(IL)/3C-SiC and PE-Al₂O₃/SiO₂(IL)/3C-SiC MOS capacitors in comparison with the analogous SiO₂/3C-SiC.

The current-voltage (I-V) curves acquired on the T-Al₂O₃/SiO₂/3C-SiC and PE- $Al_2O_3/SiO_2/3C$ -SiC MOS capacitors are shown in Figure 4. As can be seen, in both systems, the electrical breakdown occurred at a gate bias of over 26 V. However, while the PE-Al₂O₃/SiO₂/3C-SiC sample maintained a constant current value of 10^{-12} A up to the breakdown, the T-Al₂O₃/SiO₂/3C-SiC sample exhibited a fast raise of the current starting from 15 V. The leakage current trend occurring across the Al₂O₃ layer deposited by thermal mode could be explained by a slightly lower mass density and a higher amount of -OH and/or -CH₃ groups than that deposited by the plasma-enhanced mode due to the less efficacious oxidation process by the H₂O-precursor [41–43]. Moreover, in comparison to the I-V curve typical of the 3C-SiC capacitor with a 40 nm thick SiO₂ as a dielectric layer (also reported in Figure 4), which exhibited a breakdown voltage of about 20 V, both $T-Al_2O_3/SiO_2$ and PE-Al_2O_3/SiO_2 stacks were able to shift the breakdown phenomena toward higher voltages, over 26 V. The early breakdown of a thick thermal grown SiO₂ on 3C-SiC has already been explained by F. Li et al. [44] as a consequence of the large amount of carbon left during the thermal oxidation process. However, in our case, the use of a short oxidation process to obtain only a thin IL probably resulted in a smaller amount of carbon defects to cause the early breakdown.

The electrical behavior of both T- and PE-Al₂O₃/SiO₂/3C-SiC stacks was studied at the nanoscale by SCM measurement. A schematic representation of the SCM experimental setup is illustrated in Figure 5a. During the surface scan with a diamond tip, an AC modulating bias at 100 kHz frequency and with amplitude $\Delta V = 2 V$ (below the conduction regime through the insulator) was applied to the sample, and the capacitance variation ΔC in response to this modulation was recorded with the SCM sensor. Figure 5b,c show the AFM morphology of the T- and PE-Al₂O₃/SiO₂/3C-SiC stacks on the portion of the samples where the SCM maps were acquired. The highly irregular morphology is peculiar of the 3C-SiC material [18], which is characterised by terraces separated by anti-phase boundaries. The SCM maps of T- and PE-samples are reported in Figure 5d,e. The SCM signal is a result of the capacitance change (dC/dV) in the local metal-insulator-semiconductor capacitor, where the metal is the conductive AFM tip. Hence, the SCM response depends on the semiconductor characteristics (i.e., doping type and concentration) but also on the insulator properties (including thickness, interface state density, oxide traps, and permittivity) [45,46]. Considering that both the T- and PE-Al₂O₃ layers were deposited on the same 3C-SiC substrate and that they are characterised by an equivalent interface with SiO_2 as IL, the different SCM maps (Figure 5d,e) obtained for the two cases can be correlated to the different insulator quality. In particular, the SCM map of the T-Al₂O₃/SiO₂/3C-SiC stack, reported in Figure 5d, shows a non-uniform dC/dV signal distribution visible as the change in the color gradient from one spot to another. In contrast, the PE- Al₂O₃/SiO₂/3C-SiC stack reported in Figure 5e exhibits a well-uniform SCM map, with only a small deviating region. The different SCM responses between T- and PE-systems could be due to the different structural quality of the Al₂O₃ layers deposited by the two approaches. In fact, the different Al₂O₃ quality, in terms of mass density and/or -OH/-CH₃ contaminations, which can arise by using the different oxidation processes (T- or PE-), determines its charge trapping behavior and permittivity and, ultimately, the SCM signal. Similar results have been previously reported for the growth of Al₂O₃ thin layers on AlGaN/GaN heterostructures by the two different T-ALD and PE-ALD approaches, where the evolution of the insulating behavior investigated at the nanoscale upon increasing film thickness clearly indicated a different nucleation mechanism [16]. Hence, the present investigation at the nano-scale also confirms the better electrical performance of the $PE-Al_2O_3$ layer already observed by the electrical measurements acquired on the macroscopic capacitors.

Figure 4. I-V measurements of $T-Al_2O_3/SiO_2/3C-SiC$ and PE-Al_2O_3/SiO_2/3C-SiC MOS capacitors in comparison with the analogous SiO_2/3C-SiC.

Figure 5. Schematic of the SCM experimental setup (**a**). AFM morphology of T-Al₂O₃/SiO₂/3C-SiC (**b**) and PE-Al₂O₃/SiO₂/3C-SiC (**c**). SCM maps of T-Al₂O₃/SiO₂/3C-SiC (**d**) and PE-Al₂O₃/SiO₂/3C-SiC (**e**).

4. Conclusions

The insulating properties of the Al₂O₃ layers deposited on 3C-SiC both by the thermaland plasma-enhanced ALD approaches were investigated. Our results demonstrated that:

- A thin (5 nm) SiO₂ IL between the Al₂O₃ and the 3C-SiC is useful to ensure the quality of ALD growth and to maximize the insulator/semiconductor band offset;
- The Al₂O₃ is a valid alternative to the conventional thermally grown single SiO₂ as gate insulator for 3C-SiC MOS-based devices. In fact, the Al₂O₃ layers showed a high permittivity (~8), which produced a significant reduction in the negative flat band voltage shift that is usually observed with SiO₂;
- A different electrical behavior was found between thermal- and plasma-enhanced Al₂O₃ both by investigations on macroscopic MOS capacitors and at the nanoscale using SCM analysis. In fact, although both systems ensure an electrical breakdown over 26 V, the T-Al₂O₃/SiO₂/3C-SiC stack exhibits early leakage phenomena already from 15 V. Moreover, the T-Al₂O₃/SiO₂/3C-SiC is characterised by a non-uniform SCM map compared to the PE-Al₂O₃/SiO₂/3C-SiC. This difference can be correlated to a different Al₂O₃ quality obtained through the two different oxidation processes (T- or PE-), resulting in an inhomogeneous charge trapping behavior and permittivity.

These results can be important for the fabrication of 3C-SiC MOSFETs with a positive turn-on voltage with improved channel conduction properties.

Author Contributions: Conceptualisation, E.S., P.F., R.L.N. and F.R.; methodology, E.S., P.F., R.L.N., S.D.F., G.G., F.L.V., F.G. and F.R.; validation, P.F., R.L.N. and F.R.; formal analysis, E.S. and P.F.; investigation, E.S., P.F., B.G. and C.B.; data curation, E.S. and P.F.; writing—original draft preparation, E.S.; writing—review and editing, P.F., R.L.N. and F.R.; supervision, F.R.; project administration, F.R.; funding acquisition, F.R. and F.L.V. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by the European project CHALLENGE (Grant Agreement 720827). Moreover, the research received funding from the European Union (NextGeneration EU), through the MUR-PNRR projects SAMOTHRACE (ECS0000022) and iEntrance@ENL (IR0000027). Part of the experiments reported in this paper have been carried out in the Italian Infrastructure Beyond-Nano.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The authors would like to acknowledge M. Vivona and S. Panasci for fruitful discussions on the results.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ALD	Atomic Layer Deposition
T-ALD	Thermal-ALD
PE-ALD	Plasma Enanched-ALD
NIOTs	Near Interface Oxide Traps
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
MOS	Metal Oxide Semiconductor
IL	Interlayer
High-к	High permittivity (κ) dielectrics
TEM	Transmission Electron Microscopy
AFM	Atomic Force Microscopy
SCM	Scanning Capacitance Microscopy

References

- Levinshein, M.; Sergey, L.; Shur, M. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, 1st ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001.
- 2. Bimberg, D.; Altarelli, M.; Lipari, N. A calculation of valence band masses, exciton and acceptor energies and the ground state properties of the electron-hole liquid in cubic SiC. *Solid State Commun.* **1981**, *40*, 437–440. [CrossRef]
- Itoh, A.; Akita, H.; Kimoto, T.; Matsunami, H. High quality 4H-SiC homoepitaxial layers grown by step controlled epitaxy. *Appl. Phys. Lett.* 1994, 65, 1400–1402. [CrossRef]
- Arvanitopoulos, A.E.; Antoniou, M.; Perkins, S.; Jennings, M.; Guadas, M.B.; Gyftakis, K.N.; Lophitis, N. On the Suitability of 3C-Silicon Carbide as an Alternative to 4H-Silicon Carbide for Power Diodes. *IEEE Trans. Ind. Appl.* 2019, 55, 4080–4090. [CrossRef]
- La Via, F.; Severino, A.; Anzalone, R.; Bongiorno, C.; Litrico, G.; Mauceri, M.; Schoeler, M.; Schuh, P.; Wellmann, P. From thin film to bulk 3C-SiC growth: Understanding the mechanism of defects reduction. *Mater. Sci. Semicond. Process.* 2018, 78, 57–68. [CrossRef]
- 6. Roccaforte, F.; Greco, G.; Fiorenza, P.; Di Franco, S.; Giannazzo, F.; La Via, F.; Zielinski, M.; Mank, H.; Jokubavicius, V.; Yakimova, R. Towards vertical Schottky diodes on bulk cubic silicon carbide (3C-SiC). *Appl. Surf. Sci.* **2022**, *606*, 154896. [CrossRef]
- Giannazzo, F.; Greco, G.; Di Franco, S.; Fiorenza, P.; Deretzis, I.; La Magna, A.; Bongiorno, C.; Zimbone, M.; La Via, F.; Zielinski, M.; et al. Impact of Stacking Faults and Domain Boundaries on the Electronic Transport in Cubic Silicon Carbide Probed by Conductive Atomic Force Microscopy. *Adv. Electron. Mater.* 2020, *6*, 1901171. [CrossRef]
- Renz, A.B.; Li, F.; Vavasour, O.J.; Gammon, P.M.; Dai, T.; Baker, G.W.C.; La Via, F.; Zielinski, M.; Zhang, L.; Grant, N.E.; et al. Initial investigations into the MOS interface of freestanding 3C-SiC layers for device applications. *Semicond. Sci. Technol.* 2021, 36, 055006. [CrossRef]
- Afanasev, V.V.; Bassler, M.; Pensl, G.; Schulz, M. Intrinsic SiC/SiO₂ Interface States. *Phys. Status Solidi* (A) 1997, 162, 321–337. [CrossRef]
- 10. Li, F.; Roccaforte, F.; Greco, G.; Fiorenza, P.; La Via, F.; Pérez-Tomas, A.; Evans, J.E.; Fisher, C.A.; Monaghan, F.A.; Mawby, P.A.; et al. Status and Prospects of Cubic Silicon Carbide Power Electronics Device Technology. *Materials* **2021**, *14*, 5831. [CrossRef]
- 11. Esteve, R. Fabrication and Characterization of 3C- and 4H-SiC MOSFETs. Ph.D. Thesis, KTH Royal Institute of Technology, School of Information and Communication Technology (ICT), Integrated Devices and Circuits, Stockholm, Sweden, 2011.
- 12. Lee, K.K.; Ishida, Y.; Ohshima, T.; Kojima, K.; Tanaka, Y.; Takahashi, T.; Okumura, H.; Arai, K.; Kamiya, T. N-Channel MOSFETs Fabricated on Homoepitaxy-Grown 3C-SiC Films. *IEEE Electron Device Lett.* **2003**, *24*, 466–468.
- 13. Roccaforte, F.; Fiorenza, P.; Greco, G.; Vivona, M.; Nigro, R.L.; Giannazzo, F.; Patti, A.; Saggio, M. Recent advances on dielectrics technology for SiC and GaN power devices. *Appl. Surf. Sci.* 2014, 301, 9–18. [CrossRef]
- Lophitis, N.; Arvanitopoulos, A.; Jennings, M.R.; Mawby, P.A.; Antoniou, M. On the 3C-SiC/SiO₂ n-MOS interface and the creation of a calibrated model for the Electrons' Inversion Layer Mobility covering a wide range of operating temperatures and applied gate voltage. In Proceedings of the IEEE Workshop on Wide Bandgap Power Devices and Applications in Europe (WiPDA Europe), Coventry, UK, 18–20 September 2022.
- Ciobanu, F.; Pensl, G.; Nagasawa, H.; Schöner, A.; Dimitrijev, S.; Cheong, K.Y.; Afanas'ev, V.V.; Wagner, G. Traps at the Interface of 3C-SiC/SiO₂-MOS-Structures. In *Materials Science Forum*; Trans Tech Publications Ltd.: Zurich, Switzerland, 2003; Volume 433, pp. 551–554.

- Oka, R.; Yamamoto, K.; Akamine, H.; Wang, D.; Nakashima, H.; Hishiki, S.; Kawamura, K. High interfacial quality metal-oxidesemiconductor capacitor on (111) oriented 3C-SiC with Al₂O₃ interlayer and its internal charge analysis. *Jpn. J. Appl. Phys.* 2020, 59, SGGD17. [CrossRef]
- 17. Cherkaoui, K.; Blake, A.; Gomeniuk, Y.Y.; Lin, J.; Sheehan, B.; White, M.; Hurley, P.K.; Ward, P.J. Investigating positive oxide charge in the SiO₂/3C-SiC MOS system. *AIP Adv.* **2018**, *8*, 085323. [CrossRef]
- 18. Baliga, B.J. Silicon Carbide Power Devices; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2005.
- 19. Lo Nigro, R.; Fiorenza, P.; Greco, G.; Schilirò, E.; Roccaforte, F. Structural and Insulating Behaviour of High-Permittivity Binary Oxide Thin Films for Silicon Carbide and Gallium Nitride Electronic Devices. *Materials* **2022**, *15*, 830. [CrossRef]
- Gao, K.Y.; Seyller, T.; Ley, L.; Ciobanu, F.; Pensl, G.; Tadich, A.; Riley, J.D.; Leckey, R.G.C. Al₂O₃ prepared by atomic layer deposition as gate dielectric on 6H-SiC(0001). *Appl. Phys. Lett.* 2003, *83*, 1830. [CrossRef]
- Yu, Y.; Jun, H.; Yun, D.Y.; An, K.; Zhan, C.; Yu, X. Influences of high-temperature annealing on atomic layer deposited Al2O3/4H-SiC. Chin. Phys. B 2013, 22, 07810.
- Lin, H.C.; Ye, P.D.; Wilk, G.D. Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al₂O₃ on GaAs. *Appl. Phys. Lett.* 2005, 87, 182904. [CrossRef]
- Avice, M.; Grossner, U.; Pintilie, I.; Svesson, G.; Servidori, M.; Nipoti, R.; Nilsen, O.; Fjellvag, H. Low Density of Near-Interface Traps at the Al₂O₃/4H-SiC Interface with Al₂O₃ Made by Low Temperature Oxidation of Al. *Mater. Sci. Forum* 2007, 897, 135–138.
- 24. Kääriäinen, T.; Cameron, D.; Kääriäinen, M.-L.; Sherman, A. *Atomic Layer Deposition, Principles Characteristics and Nanotechnolody Applications*; Scrivener, M., Carmical, P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013.
- 25. Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. *Mater. Today* **2014**, *17*, 236–246. [CrossRef]
- 26. George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2009, 110, 111–131. [CrossRef]
- Niinistö, L.; Päiväsaari, J.; Niinistö, J.; Putkonen, M.; Nieminen, M. Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. *Phys. Status Solidi (A)* 2004, 201, 1443–1452. [CrossRef]
- 28. Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.-C. New development of atomic layer deposition: Processes, methods and applications. *Sci. Technol. Adv. Mater.* **2019**, *20*, 465–496. [CrossRef] [PubMed]
- 29. Cheong, K.Y.; Moon, J.H.; Eom, D.; Kim, H.J.; Bahng, W.; Kim, N.-K. Electronic Properties of Atomic-Layer-Deposited Al₂O₃/Thermal-Nitrided SiO₂ Stacking Dielectric on 4H SiC. *Electrochem. Solid-State Lett.* **2007**, *10*, H69–H71. [CrossRef]
- Schilirò, E.; Lo Nigro, R.; Fiorenza, P.; Roccaforte, F. Negative charge trapping effects in Al₂O₃ films grown by atomic layer deposition onto thermally oxidized 4H-SiC. *AIP Adv.* 2016, *6*, 075021. [CrossRef]
- 31. van Hemmen, J.L.; Heil, S.B.S.; Klootwijk, J.H.; Roozeboom, F.; Hodson, C.J.; Van de Sanden, M.C.M.; Kessels, W.M.M. Plasma and thermal ALD of Al₂O₃ in a commercial 200 mm ALD reactor. *J. Electrochem. Soc.* **2007**, *154*, G165–G169. [CrossRef]
- Dingemans, G.; Seguin, R.; Engelhart, P.; van de Sanden, M.C.M.; Kessels, W.M.M. Silicon surface passivation by ultrathin Al₂O₃films synthesized by thermal and plasma atomic layer deposition. *Phys. Status Solidi (RRL) Rapid Res. Lett.* 2010, *4*, 10–12. [CrossRef]
- Profijt, H.B.; Potts, S.E.; Van De Sanden, M.C.M.; Kessels, W.M.M. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. J. Vac. Sci. Technol. A 2011, 29, 050801. [CrossRef]
- 34. Hoex, B.; Schmidt, J.; Pohl, P.; van de Sanden, M.C.M.; Kessels, W.M.M. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al₂O₃. *J. Appl. Phys.* **2008**, *104*, 044903. [CrossRef]
- Kotomin, E.; Popov, A. Radiation-induced point defects in simple oxides. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1998, 141, 1–15. [CrossRef]
- Anzalone, R.; Privitera, S.; Camarda, M.; Alberti, A.; Mannino, G.; Fiorenza, P.; Di Franco, S.; La Via, F. Interface state density evaluation of high quality hetero-epitaxial 3C–SiC(001) for high-power MOSFET applications. *Mater. Sci. Eng. B* 2015, 198, 14–19. [CrossRef]
- Fiorenza, P.; Schilirò, E.; Giannazzo, F.; Bongiorno, C.; Zielinski, M.; La Via, F.; Roccaforte, F. On the origin of the premature breakdown of thermal oxide on 3C-SiC probed by electrical scanning probe microscopy. *Appl. Surf. Sci.* 2020, 526, 146656. [CrossRef]
- Newsome, D.A.; Sengupta, D.; Foroutan, H.; Russo, M.F.; van Duin, A.C.T. Oxidation of Silicon Carbide by O₂ and H₂O: A ReaxFF Reactive Molecular Dynamics Study, Part I. J. Phys. Chem. C 2012, 116, 16111–16121. [CrossRef]
- 39. Sze, S.M. Physics of Semiconductor Devices; Wiley-Interscience: Hoboken, NJ, USA, 1981; pp. 849–850.
- Kim, D.K.; Jeong, K.S.; Kang, Y.S.; Kang, H.-K.; Cho, S.W.; Kim, S.-O.; Suh, D.; Kim, S.; Cho, M.-H. Controlling the defects and transition layer in SiO₂ films grown on 4H-SiC via direct plasma-assisted oxidation. *Sci. Rep.* 2016, *6*, 34945. [CrossRef] [PubMed]
- Jinesh, K.B.; van Hemmen, J.L.; van de Sanden, M.C.M.; Roozeboom, F.; Klootwijk, J.H.; Besling, W.F.A.; Kessels, W.M.M. Dielectric Properties of Thermal and Plasma-Assisted Atomic Layer Deposited Al₂O₃ Thin Films. *J. Electrochem. Soc.* 2011, 158, G21–G26. [CrossRef]
- Haeberle, J.; Henkel, K.; Gargouri, H.; Naumann, F.; Gruska, B.; Arens, M.; Tallarida, M.; Schmeißer, D. Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al₂O₃-films. *Beilstein J. Nanotechnol.* 2013, *4*, 732–742. [CrossRef]

- Schilirò, E.; Fiorenza, P.; Greco, G.; Monforte, F.; Condorelli, G.G.; Roccaforte, F.; Giannazzo, F.; Nigro, R.L. Early Growth Stages of Aluminum Oxide (Al₂O₃) Insulating Layers by Thermal- and Plasma-Enhanced Atomic Layer Deposition on AlGaN/GaN Heterostructures. ACS Appl. Electron. Mater. 2021, 4, 406–415. [CrossRef]
- Li, F.; Qiu, S.; Jennings, M.R.; Mawby, P.A. Fabrication and Dielectric Breakdown of 3C-SiC/SiO₂ MOS Capacitors. In Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August 2019; pp. 344–350.
- 45. Yanev, V.; Rommel, M.; Bauer, A.J.; Frey, L. Characterization of thickness variations of thin dielectric layers at the nanoscale using scanning capacitance microscopy. J. Vac. Sci. Technol. B 2011, 29, 01A401. [CrossRef]
- Goghero, D.; Raineri, V.; Giannazzo, F. Study of interface states and oxide quality to avoid contrast reversal in scanning capacitance microscopy. *Appl. Phys. Lett.* 2002, *81*, 1824–1826. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.