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ABSTRACT
The proliferation of tracking sensors in today’s devices has led to
the generation of high-frequency, high-volume streams of mobility
data capturing the movements of various objects. These movement
data can be enriched with semantic contextual information, such
as activities, events, user preferences, and more, generating seman-
tically enriched trajectories. Creating and managing these types
of trajectories presents challenges due to the massive data volume
and the heterogeneous, complex semantic dimensions. To address
these issues, we introduce a novel approach, MAT�S��, which uses
a location-centric enrichment perspective to summarize massive
volumes of mobility data while preserving essential semantic infor-
mation. Our approach enriches geographical areas with semantic
aspects to provide the underlying context for trajectories, enabling
e�ective data reduction through trajectory summarization. In the
experimental evaluation, we show that MAT�S�� e�ectively mini-
mizes trajectory volume while retaining a good level of semantic
quality, thus presenting a viable solution to the relevant issue of
managing massive mobility data.
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1 INTRODUCTION
In today’s world, an abundance of mobility data is generated by
devices equipped with tracking sensors. Moreover, there is an im-
portant line of research [2, 7, 16, 17, 21, 23] that enriches such
data with diverse semantic information (i.e., aspects), thereby re-
sulting in semantic or multiple aspect trajectories. The existing
approaches present several challenges. Firstly, the data generated
can be massive, characterized by high sampling rates, while the
semantic aspects can be heterogeneous and have a large number
of associated attributes. Consequently, the resulting complexity
requires signi�cant storage resources and computational capabili-
ties to ensure e�ective analysis and meaningful interpretation. To
overcome these challenges, researchers have focused on developing
methods to reduce the volume of mobility data through summa-
rization or simpli�cation of trajectories [1, 8].

This paper aims to summarize the vast amount of mobility data
while preserving the semantic information contained within. We
propose a location-centric enrichment perspective, which com-
plements the trajectory-centric approach of the state-of-the-art,
to achieve the summarization objective. This perspective enables
spatio-temporal and semantic information aggregation, resulting
in a more concise representation of mobility data. Moreover, our
approach plays a crucial role in enriching mobility data by empha-
sizing geographical contextual knowledge. Indeed, the combination
of these two perspectives provides a more comprehensive under-
standing of trajectories. For example, by incorporating geographical
context into check-in information, we can determine that an individ-
ual visits a restaurant (trajectory-centric) situated in an area with
numerous tourist attractions and a pedestrian-friendly environment
(location-centric). This integration enhances our understanding of
the mobility patterns and factors in�uencing them.

To address the aforementioned objectives, we aim to answer the
following research questions:

RQ1 How can we devise a trajectory summarization method that
meaningfully leverages the semantic context of the underly-
ing geographical area?

RQ2 To what extent is the summarization method e�ective in
summarizing semantic trajectories?

We begin our investigation from the �rst research question
and address the underlying problem by introducing the MAT�S��
method. MAT�S��’s key idea is to consider the geographical area
where trajectories move and use it both for their semantic enrich-
ment and summarization. To this end, MAT�S�� �rst partitions the
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Figure 1: Overview of theMAT�S��method: froma trajectory
and a geographical area to a set of semantic locations.

geographical area into cells, and then enriches each cell with seman-
tic aspects. Subsequently, MAT�S�� leverages the enriched cells to
obtain the summarized semantic trajectories from the initial ones.
More speci�cally, each trajectory – which might have been already
semantically enriched with a trajectory-centric approach or not –
is discretized into the set of enriched cells it traverses. During the
discretization, the cells serve a dual purpose: they not only enrich
the trajectory with their semantic contexts in a location-centric
way but are also used to condense the information concerning its
movements and any semantic information it might possess. Figure
1 provides a schematic representation of the input and output of
MAT�S��. On the left, a trajectory is depicted as a sequence of
points, ?1 through ?6, traversing some geographical area. Starting
from these points, MAT�S�� derives a set of semantically enriched
geographical areas, each endowed with a weight indicating the
temporal importance of the location for the trajectory. We call the
�nal result a summarized semantic trajectory.

For what concerns the second research question, in the experi-
mental evaluation we assess MAT�S��’s e�ectiveness by consider-
ing two orthogonal and contrasting aspects: minimizing the infor-
mation contained in the summarized semantic trajectories while
simultaneously preserving an adequate level of semantic quality.
Consequently, we evaluate our approach with two distinct datasets
over di�erent scenarios and compare its ability to obtain high-
quality summarized semantic trajectories w.r.t. two baseline meth-
ods, i.e., RLE and Seqscan-D [6]. Overall, we show that MAT�S��
successfully accomplishes its goals.

The rest of the paper is structured as follows. In Section 2, we
present the related works and highlight the novelty behind our
approach. In Section 3, we provide the fundamental concepts used
throughout the paper and the problem de�nition. Section 4 details
the MAT�S�� approach. In Section 5, we provide the experimental
evaluation. Finally, Section 6 draws the conclusions.

2 RELATEDWORK
In this paper, we consider the problem of summarizing seman-
tic trajectories. The related works therefore fall into two distinct
research �elds: semantic enrichment of trajectories and trajectory
summarization. The �rst �eld focuses on the problem of enriching
movement data with additional contextual information. The second
one encompasses approaches that are centred on the simpli�cation
and abstraction of movement data, where the aim is to retain essen-
tial information about the original trajectories, while signi�cantly
reducing data volume.

The concept of semantic trajectories has been introduced in the
seminal work by Spaccapietra et al. [23], where trajectories are par-
titioned into stop segments, i.e., sub-trajectories where the moving
objects remain stationary, and move segments, i.e., sub-trajectories
where the objects alter their positions. Several subsequent studies
sought to provide more formalization and more types of enriching
data, thus going beyond the simple stop and move paradigm. For
instance, [2] introduces additional semantic dimensions, [7] and
[17] present domain ontologies for semantically enriched trajecto-
ries, and [21] introduces a method to create enriched trajectories
from Linked Open Data. A more recent paper proposes MASTER
[16], a conceptual model for enriching trajectories with multiple as-
pects – that is, semantic dimensions that can be heterogeneous and
have complex representations. Lastly, a few recent works [12, 20]
proposed a general methodology and a system that lets users in-
corporate the aspects and the data sources they need in their own
semantic enrichment processes. All the above approaches are based
on the concept of trajectory segmentation, wherein segments (sub-
trajectories) are �rst determined based on certain criteria (e.g.,
stops and moves [23]) and then enriched with some aspects. We
call such enrichment perspective trajectory-centric. In this work,
we adopt a di�erent and complementary enrichment perspective,
which places less emphasis on the trajectories themselves and, in-
stead, is centred on the contextual semantic information provided
by the geographical areas through which moving objects navigate.
We call this perspective location-centric. It is crucial to understand
that both perspectives can work together synergistically. In the
location-centric perspective, we are not only enriching trajecto-
ries with the underlying geographical context but we also use the
same context to summarize them. Therefore, we must also consider
related works in the �eld of data summarization.

Generally speaking, data summarization is a mining process that
transforms data into a concise and informative representation, pos-
sibly abstracting content from the original data [3]. As such, data
summarization goes beyond simple compression (see, for instance,
the techniques surveyed in [11]). While summarization might lead
to approximate results when compared to the original data, it of-
fers substantial savings in time and space, making it a practical
approach for handling large datasets while retaining pertinent infor-
mation. When the data in question is trajectory data, we enter the
sub-�eld of trajectory summarization. Trajectory summarization is
the task of �nding a compact representation of the spatio-temporal
movement of objects while preserving the relevant information
[1]. This is an established research �eld with numerous proposed
methods for reducing trajectory points, such as trajectory compres-
sion, simpli�cation, or segmentation [8]. Trajectory simpli�cation
(or trajectory cleaning) refers to the task of reducing the number
of samples when the sampling rate is high while preserving the
trajectory’s spatio-temporal characteristics [8]. Alternatively, for
certain types of movement data, good compression rates can be
achieved by using the underlying road networks with little or no
reduction in quality [26]. Other works simplify trajectories based
on some type of semantics [4, 8, 13, 24]. These methods are related
to our work since they aim at reducing trajectory size by exploiting
the underlying semantic information. However, in contrast to our
approach they do not aim to preserve semantics, but instead use it
to simplify trajectories.
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To the best of our knowledge, the existing literature on the
summarization of semantic trajectories includes works such as
[5, 6, 15]. Damiani et al. [5, 6] propose a trajectory summarization
method that extracts locations of interest from symbolic trajectories
(these can be seen as simple types of semantic trajectories). The
method is tailored to telecommunications data, combining location
attractiveness and frequency to classify the visited places. Further-
more, it takes into account the diversity of the locations of interest.
The authors evaluate it using a large telecommunications dataset,
demonstrating a signi�cant reduction in data complexity while still
delivering high-quality information on mobility behaviors.

In a recent paper, Machado et al. [15] introduce the problem of
computing representatives for groups of multiple aspect trajectories,
which can be seen as a form of summarization. The authors assess
the e�ectiveness of their approach through an evaluation of volume
reduction and accuracy. Similarly to our approach, they propose a
grid-based trajectory summarization.

Overall, while our approach and those from [15] and [6] all
involve trajectory summarization, there are important distinctions
to be made. Unlike [6], MAT�S�� ensures that no traversed location
is discarded, and it also leverages geographical semantic context.
Moreover, MAT�S�� operates at the individual trajectory level,
while [15] focuses on generating a representative trajectory for
prede�ned groups of trajectories (i.e., clusters), thereby creating a
single representative structure for each group.

3 PRELIMINARIES AND PROBLEM
DEFINITION

In this section, we introduce the basic concepts used throughout the
rest of the paper and then de�ne the problem we aim to solve. Let
us �rst introduce the notion of aspect [16], which is needed for for-
malizing any kind of semantically enriched entity (i.e., trajectories
and geographical areas).

De�nition 3.1 (Aspect). An aspect is a set � = {01,02, ...,0; } of ;
characterizing attributes that semantically represent A. We de�ne
the instance of an aspect � a speci�c instantiation of its attributes.

An aspect is essentially any sort of information that can be used
to annotate an entity. For instance, we may de�ne aspects such as
POI, weather, and transportation means, each represented semanti-
cally by distinct attributes (e.g., POIs are described by type, rating,
and price tier attributes). When aspects are used to semantically
enrich trajectory segments (i.e., sub-trajectories), we have the con-
cept of multiple aspect trajectory. Its formal de�nition has been �rst
introduced in [16]. In the context of our work, we use the slightly
simpli�ed version of the de�nition from [19].

De�nition 3.2 (Multiple aspect trajectory). A multiple aspect tra-
jectory is a sequence of points ) = h?1, ?2, . . . , ?=i, with ?8 =
(G8 ,~8 , C8 ,�(%8 ) being the 8-th point of the trajectory at the time-
stamped location (G8 ,~8 , C8 ) enriched with instances of the aspects
in �(%8 = {�1,�2, . . . ,�A }.

Observe that De�nition 3.2 can encompass several types of tra-
jectories, ranging from the raw trajectories – in this case �(%8 is
always an empty set – to various types of semantically enriched
trajectories with di�erent degrees of complexity, e.g., [2, 6, 9, 16, 23].
For simplicity, henceforth we will use the general term trajectories

to indicate all types of trajectories (e.g., raw or semantically en-
riched) and the term semantic trajectory to refer to any trajectory
that has been semantically enriched.

3.1 Problem de�nition
From a dataset of trajectories ⇡ , we intend to derive a dataset of
summarized semantic trajectories ⇡(D<(4< . Central to this prob-
lem is the concept of geographical context, which we de�ne as the
geographical area the trajectories traverse, augmentedwith selected
semantic aspects. This geographical context serves the dual pur-
pose of enriching and summarizing the trajectories. Regardless of
whether the trajectories in dataset ⇡ are already trajectory-centric
enriched or not, it is essential for the summarization process to
preserve both the original and the geographic context-derived se-
mantics while reducing the data volume.

When generating ⇡(D<(4< , we are therefore faced with two
potentially con�icting objectives that must be balanced: on one
hand, we want to enrich the initial trajectories with semantics
provided by the underlying geographical context. On the other
hand, we aim to reduce the information within the summarized
trajectories, still leveraging the underlying geographical context.

First, let us de�ne the function in charge of enriching a geograph-
ical area of interest with selected aspects.

De�nition 3.3 (Map enrichment). Let G be the space of all geo-
graphical areas, ASP be the space of all aspects that can be used
to enrich geographical areas, and G(4< be the space of all possi-
ble enriched geographical areas, i.e., geographical contexts. Then,
"0?⇢=A82⌘ : G ⇥ASP= ! G(4< is a function that enriches the
areas in G with n semantic aspects, thus yielding a geographical
context.

Next, we provide a generic de�nition of the function enriching
the initial trajectories with the underlying geographical context.

De�nition 3.4 (Trajectory enrichment with geographical context).
Let T be the space of the trajectories to be summarized, and G(4<
be the space of all possible enriched geographical areas. Finally, let
T⌧4>(4< be the space of the trajectories enriched with the underly-
ing geographical context. Then, ⇢=A82⌘ : T ⇥ G(4< ! T⌧4>(4< is
a function that enriches the trajectories in T with instances of the
aspects enriching G(4< , thus equipping the trajectories with the
underlying geographical context.

It is important to note that ⇢=A82⌘ does not destroy any infor-
mation within the initial trajectories. Next, we provide the generic
de�nition of the summarization function.

De�nition 3.5 (Trajectory summarization). Let T⌧4>(4< be the
space of all possible trajectories enriched with the underlying ge-
ographical context and T(D<(4< be the space of summarized se-
mantic trajectories. Then, (D<<0A8I4 : T⌧4>(4< ! T(D<(4< is a
function that summarizes the enriched trajectories.

We can now formalize the two aforementioned contrasting ob-
jectives behind the problem of summarizing semantic trajectories.
First, let us de�ne in generic terms the function in charge of mea-
suring how much a summarized semantic trajectory condenses the
information of the trajectory from which it is derived.
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De�nition 3.6 (Summarization rate). Let T⌧4>(4< be the space of
all possible trajectories enriched with the underlying geographical
context, and T(D<(4< be the space of all possible summarized se-
mantic trajectories. Then, (D<'0C4 : T⌧4>(4< ⇥ T(D<(4< ! [0, 1]
is a function that assesses the extent to which a summarized se-
mantic trajectory reduces the information in the original enriched
trajectory. A value close to 1 indicates a more substantial reduction.

Let us now formalize the other objective, which concerns the
quality of the semantic information retained in the summarized
trajectories.

De�nition 3.7 (Semantic quality). Let T⌧4>(4< be the space of
all possible trajectories enriched with the underlying geographical
context, and T(D<(4< be the space of all possible summarized se-
mantic trajectories. Then, (4<&D0; : T⌧4>(4< ⇥T(D<(4< ! [0, 1]
is a function that evaluates how well the semantic similarity has
been preserved in a summarized trajectory, where values close to 1
indicate better results.

We now formalize the problem we intend to solve.
De�nition 3.8 (Problem De�nition). Let ⇡ be a dataset of trajecto-

ries, and⌧ be the geographical area in which the trajectories move.
Moreover, let⌧(4< = "0?⇢=A82⌘(⌧, {�1, . . . ,�=}) be the enriched
geographical area, and ⇡⌧4>(4< = {⇢=A82⌘() ,⌧(4<) | ) 2 ⇡}
be the dataset of trajectories enriched with the underlying geo-
graphical context. Then, we seek to �nd a (D<<0A8I4 function that
concurrently maximizes the summarization rate and the semantic
similarity over the entire dataset. Assume that )̂ = (D<<0A8I4 () )
for any ) 2 ⇡⌧4>(4< ; then, we want to solve:

argmax
(D<<0A8I4

’
) 2⇡⌧4>(4<

(D<'0C4 () , )̂ ) + (4<(8<() , )̂ ). (1)

In Section 4, we introduce MAT�S��, the method we propose
for implementing the "0?⇢=A82⌘, ⇢=A82⌘, and (D<<0A8I4 func-
tions, while in Section 5, we instantiate the (D<'0C4 and (4<&D0;
measures and use them to assess MAT�S��’s e�ectiveness.

4 THE MAT�SUM APPROACH
This section introduces MAT�S��, our trajectory summarization
proposal. The method consists of two phases, depicted in Figure 2.
The initial phase, map semantic enrichment (Section 4.1), enriches
the geographical area from a location-centric view, creating seman-
tic locations. This process involves tessellating the area, assigning
a semantic context to each tile, and merging those tiles that share
identical contexts. This yields a set of semantic locations. The sub-
sequent phase, semantic trajectory summarization (Section 4.2), uses
the semantic locations to summarize trajectories. Here, each tra-
jectory is transformed into a weighted set of traversed semantic
locations, each enriched with temporal weights and original se-
mantic attributes. Overall, the two phases address the objectives
outlined in the problem de�nition (De�nition 3.8 in Section 3.1).

4.1 Map semantic enrichment
Starting from a geographical area of interest (i.e., the one in which
trajectories move), the goal of this phase is to obtain a set of seman-
tic locations. This is achieved through three steps:map tessella-
tion, tile semantic enrichment, and enriched tiles union, as
illustrated in the upper section of Figure 2.

Map tessellation. The input of this step is the geographic area
covered by the trajectories and, through the use of some tessellation
method, produces a set of tiles covering the area. Formally, let ⌧
be the geographical area de�ned by a rectangle. Then, we recall
that a spatial tessellation superimposed over⌧ is a set of tiles ! =
{;1, . . . , ;=} that are collectively exhaustive and mutually exclusive,
except for the boundaries [18]. In the literature, several types of
tessellations exist, ranging from uniform, hexagonal, Voronoi, and
city-block, as well as adaptive types of tessellations based on some
notion of object density such as adaptive squares and quad-trees
[10, 18, 22]. The set of tiles is the next step’s input.
Tile semantic enrichment. The goal of this step is to add con-
textual, geographical information to the tiles, thereby converting
them into semantically enriched tiles. Accordingly, we address this
problem as follows: given some tessellation (e.g., uniform grid) and
a set of semantic aspects, we obtain a set of semantically enriched
tiles by adding to each tile the semantic information pertinent to
the chosen aspects and the geographical area it encompasses.

De�nition 4.1 (Enriched tiles). Let ! = {;1, . . . , ;=} be the set
of tiles previously computed, and �(% = {�1, . . . ,�<} a set of
semantic aspects, each having their own set of aspect instances
(as per De�nition 3.1). Here, we require that said aspects have an
attribute that provides the geographical location of their instances.
We then carry out a spatial join between the tiles in ! and the
instances belonging to the aspects in �(% . This operation yields
!0 = {(;1, (1), . . . , (;=, (=)}, where each tile ;8 is enriched with (8 ,
i.e., the set of aspect instances geolocated in ;8 and that provide the
tile’s geographical semantic context.

Enriched tiles union. After obtaining !0, the semantically en-
riched tiles can be distinguished by the associated semantic context.
As MAT�S�� prioritizes semantic information, it is important to
note that areas within a city may exhibit the same semantic charac-
teristics. To account for this, we merge semantically enriched tiles
that share the same semantic context, i.e., those that have identical
instances of semantic aspects associated with them, thus leading to
semantic locations. We highlight that during the merging process,
the geographic coordinates associated with the aspect instances
are not taken into account. More formally:

De�nition 4.2 (Semantic location). Given a set of enriched tiles
!0 = {(;1, (1), . . . , (;=, (=)}, we de�ne a semantic location B; as the
geographical union of all enriched tiles in !0 that share the same
set of aspect instances (̄ . Formally:

B; = (
ÿ

(;,( )2!0
; , (̄ ), such that ( = (̄,

Note that a semantic location can be composed of non-adjacent
tiles, thus resulting in a multi-polygon region. We denote the set of
semantic locations by !00 = {B;1, . . . , B;<}, where<  =.

Ultimately, the geographical area of interest is partitioned into
a set of semantic locations, achieved by merging semantically en-
riched cells according to their respective semantic contexts. Overall,
this phase implements the"0?⇢=A82⌘ function introduced in De�-
nition 3.3 and yields a geographical context that can be used for the
enrichment and summarization of trajectories in the next phase.
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Figure 2: The MAT�S�� approach organized into two main phases: the map semantic enrichment depicted in the orange box at
the top and the trajectory summarization illustrated in the blue box at the bottom.

4.2 Semantic trajectory summarization
In this phase, given a trajectory and the set of semantic locations
obtained in the previous phase, the goal is to enrich the trajectory
with the underlying geographical context and use the same context
to summarize it, i.e., reduce the number of semantic locations it
traverses based on their similarities. This phase is illustrated in the
lower section of Figure 2 and consists of two steps.

The �rst step implements the ⇢=A82⌘ function (see De�nition 3.4)
and involves transforming the trajectory into a temporally weighted
sequence of semantic locations it traverses. It is important to note
that the trajectory could either be raw or already enriched from
a trajectory-centric perspective. This conversion ensures that the
trajectory is represented in terms of meaningful semantic locations.
We call this step semantic mapping.

In the second step, which implements the (D<<0A8I4 function
(see De�nition 3.5), the semantic locations traversed by the trajec-
tory are aggregated based on their similarities. This aggregation
process is integral to the summarization: by grouping similar se-
mantic locations together, the trajectory can be represented with
fewer locations while still retaining essential semantic information.
We call this step trajectory summarization.

Collectively, the two steps enable the semantic trajectory sum-
marization phase to output summarized trajectories that maintain
semantic quality while signi�cantly reducing data volume.
Semantic mapping. This �rst step is depicted in the bottom box
of Figure 2 and aims to associate the original trajectory with the
corresponding semantic locations and temporal weights.

De�nition 4.3 (Weighted sequence of semantic locations). Let ) =
h?1, . . . , ?=i be a trajectory (see De�nition 3.2). Recall that in the
case of a raw trajectory, the�(% term in each ? 2 ) is empty. Then,
by means of a spatial join, we associate each point ? 2 ) with
the semantic locations in !00 (see De�nition 4.2). This converts )
into a weighted sequence of semantic locations. We denote
such sequence by )̃ =< (?1, B;1,F1), . . . , (?=, B;=,F=) >, whereF8

is the temporal weight obtained considering the time the moving
object spent to traverse the semantic location B;8 associated with
the original point ?8 . We emphasize that in )̃ the original trajectory-
centric semantics from) are preserved. This implements the ⇢=A82⌘
function in De�nition 3.4 of the problem de�nition.

It is important to note that the temporal weight F8 represents
temporal duration and is measured in units of time (such as seconds
or minutes). This is particularly relevant in the context of dense
trajectories (e.g., GPS trajectories), where it is feasible to calculate
the time interval between two consecutive points, while we set it
equal to 1 in the case of sparse trajectories (i.e., check-ins).
Trajectory summarization. Once the trajectory is transformed
into a weighted sequence of semantic locations, it is possible to
proceed with its summarization (see De�nition 3.5). As highlighted
in the previous section, assigning a set of semantic aspect instances
to each location enables identifying the characteristics of the areas
traversed by the trajectories. Moreover, we aim to facilitate the
summarization by leveraging some characteristics of human mobil-
ity behaviour. For instance, individuals often tend to visit similar
places, and human movement patterns are generally predictable
[14, 25]. With this in mind, we can merge two or more locations into
a single one if they share a signi�cant number of aspect instances.
This number is determined based on a prede�ned threshold. For-
mally, given a trajectory transformed into a weighted sequence of
semantic location, )̃ , and any pair of semantic locations B; 9 , B;8 2 )̃ ,
with B; 9 < B;8 , we state that B; 9 is similar to B;8 , and we denote it by
B; 9 ⇠ B;8 if the following holds:

B; 9 ⇠ B;8 if B8<(( 9 , (8 ) � g, (2)

where ( 9 and (8 are respectively the semantic contexts associated
with B; 9 and B;8 , B8<(·, ·) is a similarity function applicable to pairs
of such sets and that outputs a value in [0, 1] (e.g., cosine similarity,
Jaccard similarity), and g is some similarity threshold value.
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The similarity measure, once computed for each pair of distinct
semantic locations in )̃ , leads to the notion of similarity class. Let
B;8 be a semantic location belonging to )̃ . Then, we denote by [B;8 ]
the similarity class of B;8 , which we de�ne to be the set of semantic
locations similar to B;8 , and is given by: [B;8 ] = {B; 9 2 )̃ | B; 9 ⇠
B;8 }. For each similarity class, we can then de�ne its representative
semantic location B;8 :

B;8 = (
ÿ

B; 9 2 [B;8 ]
; 9 ,

Ÿ
B; 9 2 [B;8 ]

( 9 ). (3)

In other words, a representative semantic location is given by the
geographical union of the semantic locations in the similarity class
and the set intersection of their semantic contexts. Observe that the
de�nition in Equation 3 leads to a more condensed representation
of the semantic contexts of similar locations by capturing only the
shared aspects. Finally, we denote by (! = {B;1, . . . , B;<} the set of
representative semantic locations, where<  =.

We would like to emphasize that an alternative approach could
be to directly integrate a similarity function into the de�nition of
semantic location (see De�nition 4.2), which would merge semantic
locations with similar, albeit not necessarily identical, contexts.
However, in this work, we have opted to carry out this operation
at the trajectory level. This choice is motivated by the desire to
take into account the impact of the similarity threshold g on the
level of summarization. By doing so, we can speci�cally focus on
trajectory summarization while still retaining the original semantic
information from the semantic locations. Finally, we proceed with
the implementation of the (D<<0A8I4 function from De�nition 3.5.

De�nition 4.4 (Summarized semantic trajectory). Given aweighted
sequence of semantic locations )̃ and the set of representative se-
mantic locations (! previously de�ned, we aggregate each point in
)̃ that falls in the same representative semantic location B;8 2 (!.
The resulting summarized semantic trajectory )̂ is given by:

)̂ = {(B;8 ,
ÿ

B; 9 2 [B;8 ]
�(% 9 ,

’
B; 9 2 [B;8 ]

F 9 ) | B;8 2 (! ^ (B; 9 ,�(% 9 ,F 9 ) 2 )̃ },

where B;8 is one of the representative semantic locations making up
)̂ ,

–
B; 9 2 [B;8 ] �(% 9 is the union of the aspect instances associated

with the points of the original trajectory that fall within the rep-
resentative semantic location B;8 , and

Õ
B; 9 2 [B;8 ] F 9 is the sum of

temporal weights representing the total time spent in all semantic
locations belonging to the same similarity class.

Intuitively, a summarized semantic trajectory )̂ is comprised of
a set of semantic locations wherein the context is preserved yet
distilled as previously explained. In )̂ , each semantic location is
enriched with the union of aspect instances (if any) from the en-
riched trajectory )̃ . This process can be seen as a distillation of the
semantic aspects, disregarding individual occurrences of aspect in-
stances while preserving the underlying information. Additionally,
each semantic location is assigned a weight that corresponds to
the cumulative sum of weights representing the time spent in all
analogous areas.
Example. Consider a simple raw trajectory ) , comprising of six
timestamped geographical check-ins (e.g., recorded in New York),
i.e., ) = h?1, ?2, ?3, ?4, ?5, ?6i. We recall that the set of semantic

aspects associated with each ?8 is empty in the case of a raw tra-
jectory. As shown in Figure 2, we identify New York as the area of
interest and, consequently, determine the bounding box. We then
tessellate the box with a uniform grid. Once we obtain the set of
semantic locations (as described in De�nition 4.2), we perform a
spatial join (see the semantic mapping step in Figure 2) between
the points in ) and the semantic locations, yielding the weighted
sequence of semantic locations:

)̃ = h(?1,�, 1), (?2,�, 1) (?3,⌫, 1), (?4,⇠, 1) (?5,⌫, 1) (?6,⌫, 1)i,
where ?1 and ?2 fall within the same semantic location �; ?3, ?5,
and ?6 fall within ⌫; ?4 falls in ⇠ .

Let us now consider the semantic contexts associated with the
semantic locations�,⌫, and⇠ , and de�ned as follows: ( (�) = {shop,
industrial}, ( (⌫) = {food and drink, pedestrian, residential}, ( (⇠ ) =
{education, food and drink, pedestrian, residential}. We can aggre-
gate the semantic locations in )̃ according to De�nition 4.4, weight-
ing them with the number of semantic location occurrences. Since
the semantic contexts associated with the semantic location ⌫ and
⇠ are very similar, and supposing that B8<(⌫,⇠) � g (e.g., g = 0.9),
the new summarized semantic location is )̂ = {(�, 2) (⌫, 4)}, where
⌫ is the representative semantic location of the similarity class of
[⌫], and � of [�], obtained as described in Equation 3.

We highlight that the semantic context associated with ⌫ is {food
and drink, pedestrian, residential}, i.e., the intersection between
( (⌫) and ( (⇠ ) . It is important to note that even if g = 1, resulting
in similarity being de�ned as equality, we obtain the following
summarized semantic trajectory: )̂ = {(�, 2), (⌫, 3), (⇠, 1)}.

To sum up, in this section we have presented the MAT�S��
approach to semantically enrich trajectories with geographical con-
textual information and, at the same time, transform them into a
summarized format that can retain the semantics while reducing
the data volume. Therefore, MAT�S�� answers the research ques-
tion RQ1 from Section 1 with a method that properly combines
geography and semantics to propose a summarized semantic ver-
sion of trajectories. In the next section, we describe the evaluation
process to answer the Research Question RQ2.

5 EXPERIMENTAL EVALUATION
In the experimental evaluation, we address the research question
RQ2 from Section 1 to assess the e�ectiveness of MAT�S�� in
solving the problem introduced in Section 3.1. The details of the
experimental setup are introduced in Section 5.1 where we discuss
the dataset used, the baselines, and the evaluation measures. In Sec-
tion 5.2, we present three experimental studies aimed at assessing
the e�ectiveness of MAT�S�� under various combinations of input
parameters. The �rst study concentrates on the summarization rate
achieved by our method, the second study focuses on the semantic
quality that MAT�S�� attains, while the third study compares our
method against the two baselines.

5.1 Experimental setup
In this section, we outline the experimental setup used to evaluate
MAT�S��, namely, the datasets used, the baselines against which
we compare the results of our method, and the measures used to
assess the summarization rate and semantic quality.
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Datasets.We evaluate our method utilizing two distinct datasets
of semantically enriched trajectories, and an additional dataset for
contextual geographical enrichment. The Foursquare NYC dataset
[27] comprises 227,428 check-ins from 1,083 distinct users, collected
between April 2012 and February 2013. Each check-in consists
of a geographically pinpointed timestamp, enriched with venue
information such as category, rating, and price, as well as weather
conditions.We adopt the approach suggested by Petry et al. [19] and
we divide each user’s check-ins into weekly segments. The Geolife
dataset [28] contains 17,621 GPS trajectories of 178 users, recorded
between April 2007 and October 2011. Each entry in the dataset is
a tuple consisting of timestamped geographical coordinates, and
in some cases, it is further enriched with transportation mode
information. The dataset covers trajectories from 30 cities in China,
as well as some locations in the USA and Europe. However, for
this study, we focus solely on trajectories within the geographical
boundaries of Beijing, China.

Lastly, to semantically enrich tiles (as outlined in Section 4.1) we
utilize selected semantic aspects obtained from OpenStreetMap1
(OSM). Speci�cally, we download all points of interest within the
area of interest, as well as land use and public transportation data,
selecting the category attribute. Since data retrieved from OSM
can be incomplete or inconsistent, due to non-standardized tags
and volunteered geographical information, we adopt a �xed list of
o�cially recommended data categories2. Consequently, we map all
the categories within this list, ensuring that semantic information
extracted from OSM remains consistent and unambiguous. For the
implementation details on how we use OSM data to enrich tiles, we
refer the reader to the MAT�S��’s Github repository3.
Baselines. To evaluate the e�ectiveness of MAT�S��, we con-
ducted a comparative analysis with two baseline methods already
used in [6]: Run-Length Encoding (RLE) and Seqscan-D. RLE is
a compression technique for sequences. It operates by encoding
consecutive runs of identical values in a sequence into pairs (;,F),
where ; represents the value andF denotes the frequency of that
value in the sequence. In the case of a sequence of locations, RLE can
be adopted to identify salient locations. For example, given the se-
quence of locations in the context of trajectory data �⌫⌫⌫���⇠⇠ ,
it would be encoded as (�, 1), (⌫, 3), (�, 3), (⇠, 2).

Seqscan-D is a trajectory summarization method that utilizes
a density-based trajectory segmentation approach tailored specif-
ically for telecommunications data. Its primary goal is to iden-
tify dominant locations that become representative locations for
speci�c time periods. Seqscan-D �rst assigns weights to consec-
utive identical locations at time C8 and C8+1 based on their tempo-
ral distance, expressed as |C8+1 � C8 |. Then, it identi�es the dom-
inant locations by leveraging the concept of well-formed subse-
quences. A location is dominant when the starting and ending
locations are the same, the length of this subsequence exceeds a
prede�ned threshold # , and the assigned weight is greater than
or equal to a speci�ed value of X . In the example reported in [6],
we have a trajectory homogeneously spaced in time of 2 time units
) = (0, C1) (0, C2) (2, C3) (0, C4) (2, C5) (1, C6) (1, C7) (0, C8) (1, C9) (1, C10),

1https://www.openstreetmap.org/
2https://wiki.openstreetmap.org/wiki/Map_features
3https://github.com/chiarap2/MAT-Sum

if we set # = 3 and X = 2, the resulting summarized trajectory
will be )̂ = ( [C1, C4],0) ( [C6, C10],1). If, on the other hand, we set
X = 4, the summarized trajectory will be )̂ = ( [C6, C10],1). It is
worth noting that the trajectory summarization approach used by
Seqscan-D di�ers from the approach employed in MAT�S��. Our
method is more general and does not focus on summarizing telco
trajectory data by identifying dominant locations.
Evaluation measures and semantic similarity. To assess the ef-
fectiveness of MAT�S��, we need to determine the extent to which
our method can simultaneously maximize the summarization rate
and the semantic quality measures, as outlined in De�nition 3.8.
The two measures will be used to compare weighted sequences of
semantic locations (De�nition 4.3) with their summarized counter-
parts (De�nition 4.4).

We instantiate the summarization rate measure as follows. Let )̃
be a weighted sequence of semantic locations, and )̂ be the sum-
marized semantic trajectory derived from the former. Moreover, let
'(·) be the number of distinct locations in a trajectory. Then, we
de�ne the summarization rate achieved by a summarized semantic
trajectory )̂ as: (A0C4 ()̂ ) = 1� ('()̂ )/'()̃ )). (A0C4 values close to 0
imply poor summarization, while values close to 1 indicate a high
degree of summarization. It is important to recall that in )̃ each
point ?8 is seen as a distinct location. Conversely, in a summarized
semantic trajectory we treat each representative semantic location
as a distinct location. Finally, the overall summarization rate for the
entire dataset is obtained by computing the average of the values
of the summarization rate for each trajectory.

Example. Consider the toy trajectory )̃ introduced in Section
4.2: )̃ = h(?1,�, 1), (?2,�, 1) (?3,⌫, 1), (?4,⇠, 1) (?5,⌫, 1) (?6,⌫, 1)i,
where '()̃ ) = 6. Assuming the summarized semantic trajectory is
)̂ = {(�, 2) (⌫, 4)}, resulting in '()̂ ) = 2, we �nd that (A0C4 ()̂ ) = 2

3 .
We instantiate the semantic qualitymeasure using the"*�)�( sim-
ilarity metric [19]. This metric can compare trajectories of di�erent
lengths."*�)�( scores close to 1 mean a strong semantic similar-
ity between two trajectories, while scores close to 0 indicate a strong
dissimilarity. Within"*�)�( , each semantic aspect is paired with
a corresponding distance function. Additionally, "*�)�( requires
two more parameters for each aspect: a maximum distance thresh-
old and a weight. Then, for each pair of trajectory points,"*�)�(
applies each distance function to the instances of its aspect found
in the pair of points: if the result falls below the distance threshold,
there is a match. The match is then weighted for each aspect accord-
ing to the associated weight. The average of these matches results
in a maximum score of 1 when the two trajectories are semantically
identical and 0 when they are entirely dissimilar. It is then clear
that"*�)�( can be used as an indicator of the summarized trajec-
tories’ ability to preserve semantic quality e�ectively. Finally, we
determine the score of"*�)�( over an entire dataset of summa-
rized trajectories by averaging the"*�)�( scores between each
weighted sequence of semantic locations and its corresponding
summarized counterpart.

It is important to highlight that we de�ne what is called in [19]
the feature set, i.e., the set of semantic aspects, by considering both
the original trajectory’s semantic aspects (if any) and the aspects
of the semantic locations. This approach enables evaluating the
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potential loss of semantics resulting from the trajectory summa-
rization step. In the Foursquare dataset the original trajectories
are already enriched with several aspects, i.e., POI category, rating,
price, weather, and weekday, while in the Geolife dataset, the tra-
jectories are already enriched with the means of transportation. We
also recall that the tiles are geographically enriched with aspects
such as POIs, land use, and public transportation. Following the
suggestion in [19], we use the Euclidean distance function to com-
pare continuous values (e.g., price and rating), binary distance for
discrete values (e.g., means of transportation or weather), and check
whether one set is a subset of the other when comparing two sets
corresponding to the semantic context of cells and locations. We
assign each semantic aspect the same weight since, for the purposes
of our experiments, each aspect has the same importance. Finally,
the similarity between semantic locations (see Section 4.2, Equation
2) is implemented with the cosine similarity.

5.2 Experimental Results
We conduct an experimental evaluation of MAT�S�� by addressing
the research question RQ2. To this end, we rephrase RQ2 into three
distinct experimental questions:
EQ1 To what extent does the MAT�S�� approach prove e�ective

in summarizing trajectories?
EQ2 What is the level of semantic quality achieved by MAT�S��?
EQ3 How do the results of the MAT�S�� approach compare with

the baselines?
To deliver an exhaustive evaluation of our method, we vary sev-
eral parameters involved in its execution. Speci�cally, we examine
multiple scenarios that include: (1) variations in the tessellation
method, from uniform squares with resolution (i.e., zoom level that
indicates how zoomed-in the tile is) 16, 17, or 18, to hexagons with
resolution 6, 7, or 8; (2) changes in the number of semantic aspects
associated with the tiles like POIs, land use, and public transporta-
tion; (3) variations of the semantic locations similarity threshold g
between 0.6 and 0.9. The experimental results, conducted on both
datasets, are reported in Tables 1 and 2. In Table 1, we consider
all the semantic aspects used to semantically enrich the cells (i.e.,
POIs, land use, and public transport), a value of g = 0.9, and the
e�ect of di�erent tessellation methods as well as the relative res-
olution on the summarization rate and semantic quality. In Table
2, we study the variation of the summarization rate and semantic
quality when considering di�erent sets of semantic aspects and g
thresholds, adopting the square tessellation with resolution 17.

EQ1: Towhat extent does theMAT�S�� approach prove e�ec-
tive in summarizing trajectories? Table 1 reveals that MAT�S��
achieves lower values of (A0C4 when applying the uniform grid tes-
sellation; this is particularly noticeable with the Foursquare dataset.
Conversely, (A0C4 values increase with hexagonal tessellation. How-
ever, for the Geolife dataset, performance remains consistently high
irrespective of the chosen tessellation. This can be due to the signif-
icant discrepancy between the length of GPS trajectories (in terms
of samples) and the size of semantically summarized trajectories.

Inspection of Table 2 shows the highest (A0C4 occurring when
solely considering the land use aspect. This suggests that trajecto-
ries enriched with this aspect can be more e�ectively summarized
than those with other semantic aspects. In contrast, when taking the

Foursquare NYC Geolife

Tessellation Resolution (A0C4 MUITAS (A0C4 MUITAS

Squares
16 0.5536 0.8662 0.9531 0.5135

17 0.4680 0.8770 0.9383 0.5999

18 0.4413 0.8987 0.9418 0.7411

Hexagons
6 0.8752 0.8571 0.9894 0.4915

7 0.7866 0.8571 0.9765 0.4984

8 0.6532 0.8600 0.9637 0.4981

Table 1: Results of (A0C4 and "*�)�( metrics, varying tes-
sellation methods and resolutions, with �xed all semantic
aspects and g = 0.9.

Foursquare NYC Geolife

Semantic
aspects g (A0C4 MUITAS (A0C4 MUITAS

Land use
0.7 0.8813 0.9991 0.9827 0.9630

0.8 0.8174 0.9980 0.9800 0.9643

0.9 0.7211 0.9976 0.9726 0.9611

Public
transport

0.7 0.8096 0.8739 0.9857 0.6257

0.8 0.7641 0.8724 0.9832 0.6125

0.9 0.7156 0.8721 0.9782 0.6125

POIs
0.7 0.7491 0.8773 0.9739 0.6661

0.8 0.6577 0.8727 0.9609 0.5488

0.9 0.5509 0.8713 0.9545 0.5442

Table 2: Results of (A0C4 and "*�)�( metrics, varying the
semantic aspects used to enrich tiles and g , with �xed tessel-
lation method (uniform grid) and resolution (17).
POI aspect into account, we record the lowest (A0C4 . This suggests
that tiles enriched with this aspect contain more diverse and distinct
information, complicating trajectory summarization. When con-
sidering the public transport semantic aspect, MAT�S�� achieves
average results in terms of summarization rate. The di�erences
between the three aspects are particularly evident when analyzing
the Foursquare dataset.

Overall, the results align with our initial expectations: the num-
ber and variety of semantic aspects used for geographical enrich-
ment signi�cantly impact the summarization process. As we in-
crease the number of instances and aspects, the resulting semantic
locations become more unique and consequently harder to summa-
rize e�ectively. This observation aligns with the intuition that an
increased level of semantic richness and diversity in the data entails
greater complexity in the trajectory summarization task. Conse-
quently, striking a balance between e�ective summarization and
preservation of semantic details becomes increasingly challenging
in such scenarios.

EQ2: What is the level of semantic quality achieved by MAT�
S��? Table 1 shows that, particularly in the case of Geolife, the
"*�)�( score is higher when employing a square tessellation
instead of a hexagonal one, which indicates better preservation of
semantics. An analysis of the results presented in Table 2 reveals
that as we consider an increasing number of semantic aspects for
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tile enrichment, the "*�)�( score decreases for both datasets.
However, a notable distinction exists between the two datasets.
Although the"*�)�( score for Foursquare remains relatively high,
even when increasing the number of considered aspects, the same
trend does not hold for Geolife. This discrepancy can be ascribed to
two factors: (1) the substantial disparity in length between semantic
and summarized trajectories, and (2) the original Geolife dataset
contains signi�cantly fewer semantic aspects than Foursquare.

To sum up, MAT�S�� achieves good semantic quality when
applied to the Foursquare dataset, even considering all semantic
aspects and a high g value. Conversely, when applied to the Geolife
dataset, MAT�S�� retains a certain level of semantics, although it
encounters some di�culties when comparing trajectories of di�er-
ent lengths.

EQ3: How do the results of the MAT�S�� approach compare
with the baselines? Finally, we compare our results against the
two baselines introduced in Section 5.1, namely, RLE and Seqscan-
D. In particular, we compare MAT�S�� with RLE on both datasets
and with Seqscan-D only on Geolife. Indeed, Seqscan-D cannot be
applied to the Foursquare dataset for two reasons: it is not designed
to manage sparse trajectories such as those found in Foursquare,
and it chooses which locations to eliminate based on the time spent
in each of them, a piece of information not available in Foursquare.

In Figure 3, we adopt the same parameter con�gurations used in
Tables 1 and 2. The comparison between MAT�S�� and RLE on the
Foursquare dataset is shown in Figures 3a and 3b. Additionally, the
Figures 3c and 3d illustrate the comparison between MAT�S�� and
both baselines on the Geolife dataset. Note that when only one color
is visible per bar in the plots, this indicates equivalent values across
all bars. From Figure 3, we observe that our method always outper-
forms RLE in terms of (A0C4 . If we �x 0B?42CB = 0;; and g = 0.9, the
results obtained with RLE with the uniform square tessellation are
very close to those obtained with MAT�S��. However, our method
widens the gap with RLE when the hexagonal tessellation is used,
as shown in the dashed part of Figure 3a. This di�erence becomes
even more apparent when considering the results on the Geolife
dataset, as illustrated in Figure 3c. Additionally, Figure 3c reveals
that Seqscan-D performs slightly better than MAT�S��.

When we vary the number of semantic aspects and g while keep-
ing the tessellation method and resolution �xed, we consistently
observe similar behaviors as delineated in the preceding experi-
ments. Speci�cally, MAT�S�� consistently achieves higher (A0C4
values compared to RLE on the Foursquare dataset (see Figure 3b).
This di�erence becomes even more evident when analyzing the Ge-
olife dataset (see Figure 3d). Similarly, when comparing MAT�S��
to Seqscan-D under the same parameter con�guration, we observe
that Seqscan-D slightly outperforms MAT�S�� in terms of (A0C4 .

These results are in line with our expectations. RLE aggregates
consecutive equal labels, resulting in lower (A0C4 values – this
is particularly evident in the Geolife case. In contrast, Seqscan-
D selectively discards irrelevant locations, leading to a stronger
summarization than our method (which maintains all locations).
To address this disparity, we evaluated the summarized trajectories
of both approaches using"*�)�( to demonstrate that MAT�S��
preserves more semantic information from the original trajectory
than Seqscan-D. The results, shown in Table 3, highlight that MAT�

Tessellation Resolution MUITAS
(MAT�S��)

MUITAS
(Seqscan-D)

Squares
16 0.5135 0.0129
17 0.5999 0.0056
18 0.7411 0.002

Hexagons
6 0.4915 0.2299
7 0.4984 0.0753
8 0.4981 0.0417

Table 3: Comparison between Seqscan-D and MAT�S�� in
terms of MUITAS metric.

S�� presents a higher "*�)�( score than Seqscan-D for all the
con�gurations. Thus, considering that the goals of the two baseline
methods slightly di�er from our approach, it is worth noting that
MAT�S�� outperforms RLE in terms of (A0C4 , particularly with the
Geolife dataset and hexagonal tessellation. Compared to Seqscan-D,
although MAT�S�� achieves slightly lower (A0C4 , it compensates
for this by preserving higher semantic quality.

6 CONCLUSIONS AND FUTUREWORKS
In this paper, we present a novel method, named MAT�S��, which
summarizes trajectories using semantically enriched geographi-
cal contexts. This overcomes issues associated with existing ap-
proaches in handling the complexity of heterogeneous semantic
dimensions and the massive size of movement data. MAT�S�� lever-
ages a location-centric enrichment of the trajectories, maximizing
the summarization rate while preserving a good level of semantic
quality. We assessed the e�ectiveness of MAT�S�� across various
scenarios, including (1) di�erent tessellation methods and tile sizes,
(2) variations in the number of associated semantic aspects for each
tile, and (3) adjustments to the semantic location similarity thresh-
old, g . Additionally, we compared our method with two baseline
approaches that address trajectory summarization. In general, MAT�
S�� exhibits good performance in both summarization rate and
preservation of semantic quality, as corroborated by our compar-
ative experiments. It either surpasses the competing approaches
in terms of summarization rate or preserves more semantic infor-
mation. Looking forward, we plan to expand our work in several
directions. First, we aim to enhance the quality of semantics con-
sidered in each trajectory by incorporating the temporal evolution
of the geographical context. Then, we intend to extend MAT�S��
to retain the sequential information of the trajectories and study its
impact on the e�ectiveness of the method. In conclusion, we aim to
investigate other semantic aspects to enrich tiles and analyze the
resultant summarized trajectories.
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