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Abstract

We present a study of the electric field and of the statistical distributions of the
electrons and ions of asymmetric solitary structures in a collisionless plasma.
We devise a “structure function”, related to the electric potential, which obeys
a generalised Korteweg de Vries equation: waveforms associated with unsym-
metrical electron and ion holes, monotonic and non monotonic double layers
and tripolar spikes are found in this way. The electric potential thus found is
then introduced into Poisson’s equation. We show that the electron and ion
distributions which solve this equation, subject to appropriate boundary con-
ditions, are elliptic functions of energy and we analyse in detail their singular
structure.

1. Introduction

SKEWED coherent electrostatic waves have been reported in a wide variety
of space plasmas. Phenomena falling under this rubric include non mono-
tonic double layers, isolated electrostatic structures, asymmetrical electron and
ion holes and, lately, tripolar spikes [1]. At variance with the properties of the
well known electrostatic solitary waves, these structures display a distinctive
lack of symmetry (or skew) in the spatial distribution of their electric potential.
Since skewed electrostatic waves (SKEWs for short) are intermingled with sym-
metrical solitary waves (sometimes both appear in the same time series) it is
natural to analyse them by the collisionless kinetic approach, so successfully
used for the latter structures. However, this approach presents a number of
challenges, which precisely originate from the mentioned skew of the potential
waveform.

One such challenge is the construction and solution of a differential equation
governing the potential amplitude: indeed, the solutions of all of the known
model equations have, in a way or another, some built-in symmetry. A second
difficulty is the fact that the distributions of the particles sustaining the SKEW
are in general different on each side of the particles’ potential barrier: this im-
plies that Poisson’s equation must be solved separately on each side of the
barrier.

We tackle the former task in Section 3. Using a new rectification procedure,
we work out a generalised Korteweg de Vries equation for the potential related
“structure function” as a direct consequence of the potential’'s morphological
and functional properties. We do so without making any reference to the ve-
locity distributions of the electrons and of the ions which sustain the SKEW, nor
do we use any reductive, regular perturbation technique.

The second task is tackled in Section 4. Using the properties of the structure
function, we reduce Poisson’s equation to an integral equation of the Abel type,
which has an unique structure over the whole extent of the SKEW. We solve
this equation, subject to appropriate boundary conditions, in favour of the elec-
tron and ion distributions, which turn out to be elliptic functions of the particle
energy and are affected by a number of integrable singularities.

2. Assumptions, notation and boundary
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for z — 400 Fy(Wo) = 2¢7™, E(W) = y2e Wonlyif Wi >0. (1)
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Here, k and Z.. are the decay rate of
¢ and the values of +s as z — +o0.
Varying the constant a, gives a wide class of SKEWs (Figs. 1 and 2).

4. Singular, elliptic particle distributions
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are known in terms of 1st and 2nd kind elliptic integrals. Here T'(W,s) =
+[st — \/hs'z + h + W] (+ for ions and — for electrons), Q(s) is a polynomial
and A.;, B.; are algebraic functions of W. Notice that AF,; = 0 for symmetric
solitary waves (7, = Z_). The resulting distributions F;; are shown in Fig. 3.

5. Conclusions

An elementary electron and ion plasma configuration in a steady, collision-less
state, distributed along one space coordinate, sustains an electric potential
which displays a skewed coherent electrostatic waveform (SKEW). Our anal-
ysis of this plasma configuration reveals that: (a) the differential equation for
the SKEW may be mapped into a generalised Korteweg de Vries equation; (b)
the distributions of the particles in the SKEW are not Maxwellian, rather elliptic
functions of energy, which are affected by a number of integrable singularities.
According to our interpretation, the observation of SKEWs in collisionless plas-
mas provides direct evidence for a new class of nonlinear singular solutions of
the Vlasov-Poisson equations.
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