Supporting Information

Mixed organic cations promote ambient light-induced formation of metallic lead in lead halide perovskite crystals

Aniruddha Ray,^{1,2} Beatriz Martín-García,^{1,3,4} Mirko Prato,¹ Anna Moliterni,⁵ Simone Bordignon,⁶ Davide Spirito,⁷ Sergio Marras,¹ Luca Goldoni,¹ Karunakara Moorthy Boopathi,¹ Fabrizio Moro,⁸ Nicola Pietro Maria Casati,⁹ Carlotta Giacobbe,¹⁰ Makhsud I. Saidaminov,¹¹ Cinzia Giannini,⁵ Michele R. Chierotti,⁶ Roman Krahne,¹ Liberato Manna,^{1,*} Ahmed L. Abdelhady^{1,12, 13*}

¹Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

²RGS Development B.V. Bijlestaal 54a, Broek op Langedijk 1721 PW, Dijk en Waard, Netherlands

³CIC nanoGUNE, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastian, Spain

⁴IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain

⁵Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126 Bari, Italy

⁶Department of Chemistry, University of Torino, 10125 Torino, Italy

⁷IHP—Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, D-15236 Frankfurt (Oder),

Germany

⁸Dipartimento di Scienza dei Materiali, Università degli Studi Milano-Bicocca, Milano 20125, Italy

⁹Laboratory for Synchrotron Radiation—Condensed Matter, Paul Scherrer Institut, 5232 Villigen,

Switzerland

¹⁰European Synchrotron Radiation Facility, 71 Avenue Des Martyrs, Grenoble 38040, France

¹¹Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada

¹²Department of Chemistry Khalifa University P.O. Box 127788, Abu Dhabi, United Arab Emirates

¹³Advanced Materials Chemistry Center (AMCC) Khalifa University P.O. Box 127788, Abu Dhabi, United

Arab Emirates

*Corresponding author: liberato.manna@iit.it and ahmed.abdelhady@ku.ac.ae

S1

Figure S1. LXRPD on ground powders of DMAPbBr₃, MAPbBr₃ and mixed (1.25:1 and 5:1) DMA/MAPbBr₃ crystals that are grown using the SAC process compared to the cubic MAPbBr₃ (ICSD 268785; green lines) and the non-perovskite DMAPbBr₃ phase (ICSD 402591; gray lines).

Figure S2. Liquid-state ¹H NMR of the black crystals, collected after 4 days, by dissolving the crystals in deuterated DMSO.

Figure S3. XPS spectra of Pb 4f of both yellow and black crystals – red boxes highlight Pb(0) peak.

Figure S4. Photographs of (a) cleaved surface and (b) ground powder of a black DMA/MAPbBr₃ crystal.

Figure S5. XPS showing the valence band region of both yellow and black crystals. Data collected on three different samples are shown for both crystals.

Figure S6. (a) LXRPD patterns of as-grown black crystals and their powders and (b) zoomed-in view of the SXRPD patterns collected on powders derived from grinding black and yellow crystals. The SXRPD profiles are plotted in the Cu-K α 2 θ scale to ease the comparison with lab-grade diffraction patterns.

Table S1. Crystal systems, space groups and cell axes at selected temperatures of ground yellow

 and black crystals.

	Yellow ((CH _:	₃)₂NH₂)(CH₃NH₃)PbBr₃	Black ((CH ₃) ₂ N	H₂)(CH₃NH₃)PbBr₃			
	(Mixed	DMA/MAPbBr₃)	(Mixed D	MA/MAPbBr₃)			
Temperature (K)	Crystal system	Cell axes	Crystal system	Cell axes			
	Space group	(Å)	Space group	(Å)			
300	Cubic Pm-3m	<i>a</i> = <i>b</i> = <i>c</i> = 5.98323(18)	Cubic Pm-3m	<i>a = b =c =</i> 5.98416(5)			
240	Cubic Pm-3m	a = b = c = 5.966158(11)	Cubic Pm-3m	<i>a</i> = <i>b</i> = <i>c</i> = 5.97113(5)			
220	Cubic Pm-3m	<i>a = b = c =</i> 5.96089(12)	Cubic Pm-3m	a = b = c = 5.96573(5)			
205	Cubic Pm-3m	a = b = c = 5.95844(9)	Cubic Pm-3m	<i>a</i> = <i>b</i> = <i>c</i> = 5.96112(5)			
200	Tetragonal	a = b = 8.4191(9)	Tetragonal	a = b = 8.4282(3)			
	P4/mbm	c = 5.9535(19)	P4/mbm	c = 5.9595(7)			
180	Tetragonal	a = b = 8.4092(11)	Tetragonal	a = b = 8.42080(17)			
	P4/mbm	c = 5.9488(17)	P4/mbm	c = 5.9555(4)			
160	Tetragonal	<i>a</i> = <i>b</i> = 8.4008(7)	Tetragonal	a = b = 8.40991(12)			
	P4/mbm	<i>c</i> = 5.9450(11)	P4/mbm	c = 5.9507(2)			
140	Tetragonal	a = b = 8.3893(9)	Tetragonal	a = b = 8.40066(9)			
	P4/mbm	c = 5.9411(13)	P4/mbm	c = 5.95035(15)			
120	Tetragonal	a = b = 8.3811(10)	Tetragonal	a = b = 8.38846(13)			
	P4/mbm	c = 5.9398(14)	P4/mbm	c = 5.9453(2)			
80	Tetragonal	a = b = 8.3657(9)	Tetragonal	a = b = 8.37597(10)			
	P4/mbm	c = 5.9312(13)	P4/mbm	c = 5.93930(16)			

Figure S7. Representative Raman spectra collected in the 100-3200 cm⁻¹ range showing the evolution of the MA and DMA vibrational modes, collected using 633 nm laser excitation at room temperature: MAPbBr₃ crystal, yellow crystal and powder, and black crystal and powder. The asterisks in the middle panel mark the Raman modes corresponding to DMA at 890 cm⁻¹ (C-N-C stretching); 1350 cm⁻¹ (CH₃ rocking); and 1461 cm⁻¹ (CH₃ bending).^{1–3}

Figure S8. Peak positions corresponding to the N–H asymmetric bending mode in MA for the different crystals. Data averages from 5 different points for each sample is reported.

Figure S9. Temperature evolution of the Raman peak position (top panels) and full width at half maximum (bottom panels) of the rocking mode of MA^{4–6} for pure MAPbBr₃ crystal (left), yellow crystal (middle), and black crystal (right). The dotted lines mark the phase transition temperatures. Sketches of the vibration modes drawn with Avogadro software⁷ are shown as insets. The results shown are from 5 different points in each sample.

Figure S10. Temperature evolution of the Raman peak position (top panels) and full width at half maximum (bottom panels) of the symmetric stretching mode of DMA ^{1,2} for yellow crystal (left), and black crystal (right). The dotted lines mark the phase transition temperatures. Sketches of the vibration modes drawn with Avogadro software⁷ are shown as insets. The results shown are from 5 different points for each sample.

Figure S11. Temperature evolution of the Raman peak position (top panels) and full width at half maximum (bottom panels) for black crystal for the N-H stretching in MA⁶, asymmetric stretching C-N-C in DMA and rocking of DMA⁺ modes.^{1–3} The dotted lines mark the phase transition temperatures. Sketches of the vibration modes drawn with Avogadro software are shown as insets. The results shown are from 8 different points in each sample.

Table	S2 .	Position	and	FWHM	of	the	rocking	and	stretching	modes	of	MA	at	T =	93	K ir	the
differe	ent o	crystals u	nder	study.													

Raman mode	MAPbBr ₃ crystals ³	Yellow crystals ³	Black crystals		
MA Rocking mode	914 \pm 0.1 cm ⁻¹ (FWHM 5	916 ± 0.1 cm ⁻¹ (FWHM	916 ± 0.1 cm ⁻¹		
	± 1 cm ⁻¹)	18 ± 1 cm ⁻¹)	(FWHM 19 \pm 1 cm ⁻¹)		
C-N stretching	970 \pm 0.1 cm ⁻¹ (FWHM 2.9 \pm 0.1 cm ⁻¹)	972 \pm 0.2 cm ⁻¹ (FWHM 7.5 \pm 0.1 cm ⁻¹)	971 ± 0.1 cm ⁻¹ (FWHM 7.2 ± 0.1 cm ⁻¹)		
C-H stretching mode (CH ₃)	$2820 \pm 0.1 \text{ cm}^{-1}$ (FWHM 3.1 ± 0.1 cm ⁻¹)	2823 ± 0.2 cm ⁻¹ (FWHM 7.7 ± 0.5 cm ⁻¹)	2824 ± 2 cm ⁻¹ (FWHM 8 ± 5 cm ⁻¹)		
N-H stretching	2965 ± 0.1 cm ⁻¹ (FWHM 2.2 ± 0.1 cm ⁻¹)	2965 ± 0.1 cm ⁻¹ (FWHM 7.5 ± 0.1 cm ⁻¹)	$2965 \pm 0.1 \text{ cm}^{-1}$ (FWHM 7.4 ± 0.1 cm ⁻¹)		

Figure S12. ¹³C (100.64 MHz) CPMAS (left) and ¹H (400.23 MHz) MAS (right) SSNMR spectra of black and yellow crystals and their corresponding powders, acquired at 12 kHz at room temperature.

References

- Simenas, M.; Balciunas, S.; Wilson, J. N.; Svirskas, S.; Kinka, M.; Garbaras, A.; Kalendra, V.; Gagor, A.; Szewczyk, D.; Sieradzki, A.; Maczka, M.; Samulionis, V.; Walsh, A.; Grigalaitis, R.; Banys, J. Suppression of Phase Transitions and Glass Phase Signatures in Mixed Cation Halide Perovskites. *Nat. Commun.* 2020, 11, 1–9.
- (2) Mączka, M.; Ptak, M. Simple, Fast and Non-Destructive Method for Detection of Dimethylammonium Impurity in Photovoltaic Methylammonium Lead Halides. *Appl. solid state Chem.* **2018**, *1*, 45–48.
- Ray, A.; Martín-García, B.; Moliterni, A.; Casati, N.; Boopathi, K. M.; Spirito, D.; Goldoni, L.; Prato, M.; Giacobbe, C.; Giannini, C.; Stasio, F. Di; Krahne, R.; Manna, L.; Abdelhady, A. L. Mixed
 Dimethylammonium/Methylammonium Lead Halide Perovskite Single Crystals for Improved
 Structural Stability and Enhanced Photodetection. *Adv. Mater.* 2021, 34, 2106160.
- (4) Wang, K.-H.; Li, L.-C.; Shellaiah, M.; Wen Sun, K. Structural and Photophysical Properties of Methylammonium Lead Tribromide (MAPbBr₃) Single Crystals. *Sci. Rep.* **2017**, *7*, 13643.
- Leguy, A. M. A.; Goñi, A. R.; Frost, J. M.; Skelton, J.; Brivio, F.; Rodríguez-Martínez, X.; Weber, O. J.; Pallipurath, A.; Alonso, M. I.; Campoy-Quiles, M.; Weller, M. T.; Nelson, J.; Walsh, A.; Barnes, P. R. F. Dynamic Disorder, Phonon Lifetimes, and the Assignment of Modes to the Vibrational Spectra of Methylammonium Lead Halide Perovskites. *Phys. Chem. Chem. Phys.* 2016, *18*, 27051–27066.
- (6) Yin, T.; Fang, Y.; Fan, X.; Zhang, B.; Kuo, J. L.; White, T. J.; Chow, G. M.; Yan, J.; Shen, Z. X.

Hydrogen-Bonding Evolution during the Polymorphic Transformations in CH₃NH₃PbBr₃: Experiment and Theory. *Chem. Mater.* **2017**, *29*, 5974–5981.

Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G. R.
 Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J.
 Cheminform. 2012, 4, 17.