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Abstract

Fighting the COVID-19 pandemic, most countries have implemented
non-pharmaceutical interventions like wearing masks, physical distancing,
lockdown, and travel restrictions. Because of their economic and logistical
effects, tracking mobility changes during quarantines is crucial in assessing
their efficacy and predicting the virus spread. Chile, one of the worst-hit
countries in the world, unlike many other countries, implemented quaran-
tines at a more localized level, shutting down small administrative zones,
rather than the whole country or large regions. Given the non-obvious ef-
fects of these localized quarantines, tracking mobility becomes even more
critical in Chile. To assess the impact on human mobility of the localized
quarantines in Chile, we analyze a mobile phone dataset made available by
Telefónica Chile, which comprises 31 billion eXtended Detail Records and
5.4 million users covering the period February 26th to September 20th,
2020. From these records, we derive three epidemiologically relevant met-
rics describing the mobility within and between comunas. The datasets
made available can be used to fight the COVID-19 epidemics, particularly
for localized quarantines’ less understood effect.

1 Background & Summary
As of November 2020, the COVID-19 pandemic is a global threat that resulted
in around 52 million infected people and more than one million deaths globally
[17]. In South America, Chile is among the most severely affected countries,
with more than 500 thousand infected people and a death toll that surpassed
the 15,000 mark as of November 22nd, 2020. Similarly to other severely affected
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countries [35, 31, 25, 11, 26, 32, 47], Chile implemented Non-Pharmaceutical In-
terventions (NPIs) such as regional lockdown, stay-at-home orders, and travel
restrictions, in an attempt to mitigate the COVID-19 epidemics through re-
ducing individual mobility and promoting social distancing. In contrast with
countries such as China, Italy, and the USA, which implemented NPIs at the
national or regional level [8, 12, 35, 26, 47], Chile’s NPIs were implemented at
a very localized level, i.e., cities or urban zones (aka comunas) [28, 20]. Thus,
two comunas in the same region may be regulated by different NPIs: whereas
one is in lockdown, adjacent ones might have no travel restrictions. Given the
peculiarity of NPIs’ spatial scale in Chile, tracking mobility changes is crucial to
assess local quarantines’ efficacy and measure the effect of mobility reductions
on predicting the virus spread [10].

Mobile phone records provide an unprecedented opportunity in tracking hu-
man movements [7, 5], allowing for estimating presences and population density
[24, 16, 40], mobility patterns [27, 37, 46, 1, 5], flows [30, 4, 9], and socio-
economic status [41, 18, 23, 45, 38]. When used correctly and adequately
aggregated to preserve privacy [14, 15, 42, 43, 22], mobile phone data rep-
resent a crucial tool for supporting public health actions across the phases
of the COVID-19 pandemic [39, 10]. Motivated by the potential of mobile
phone data in capturing the geographical spread of epidemics [21, 48, 50, 6],
researchers and governments have started to collaborate with mobile network
operators to estimate the effectiveness of control measures in several countries
[33, 34, 12, 44, 35, 36, 2, 13, 28, 3].

To assess the impact of the NPIs imposed by Chilean authorities in response
to the epidemics, we analyse a mobile phone dataset provided by Telefónica
Chile, which comprises 31 billion eXtended Detail Records (XDRs) and 5.4 mil-
lion users distributed all over the country covering the period February 26th,
2020 to September 20th, 2020. An XDR is created every time a user explic-
itly requests an HTTP address or their device automatically downloads content
from the Internet (e.g., emails, text messages), thus describing individual move-
ments in great detail [40]. From the XDRs, we derive three epidemiologically
relevant metrics: the Index of Internal Mobility (IMint), which quantifies the
amount of mobility within each comuna of the country; the Index of External
Mobility (IMext), quantifying the mobility between comunas; and the Index of
Mobility (IM), which considers any movement, both within and between comu-
nas. We hence analyse how these metrics change as the COVID-19 epidemics
spread out in Chile, highlighting a considerable heterogeneity of response to
local quarantines across the country.

The datasets we make available will grow as time goes by and, to the best
of our knowledge, are the only ones describing mobility changes and dates of
local quarantines in Chile. They can be used not only for fighting against the
COVID-19 epidemics but will also benefit other research and applications such
as emergency response [29, 52] and crowd flow prediction [54, 51, 53]. The
datasets described here are currently used at all levels of the Chilean govern-
ment.



2 Methods
Mobile phone operators collect several different streams of mobile phones inter-
action with the cellular network for billing and operational purposes. Among
them are the eXtended Detail Records (XDRs), a mixture of human- and device-
triggered, either by explicitly requesting an HTTP address or automatically
downloading content from the Internet (e.g., emails). Formally, an XDR is a
tuple (u, t, A, k), in which there is only one antenna A involved, u is the caller’s
identifier, t is a timestamp of when the record is created, and k is the amount
of downloaded information (Figure 1a). From the XDRs of the individuals, we
define two types of trips. Every time a user moves from an antenna to another
antenna within the same comuna, they generate an intra-comuna trip. Every
time the user moves from an antenna to an antenna in a different comuna, they
generate an inter-comuna trip (Figure 1b). For each day and comuna, we con-
struct three indicators of mobility based on the intra- and inter-comuna trips:

1. IMint (Index of Internal Mobility), the number of intra-comuna trips for
that day;

2. IMext (Index of External Mobility), the number of inter-comuna trips for
that day;

3. IM = IMint + IMext (Index of Mobility).

All the three indices ranges in [0,∞), where a value of 0 indicates no mobility
at all. We normalize the three indices with respect to the number of users
that reside in the comuna, estimated as the total number of unique mobile
devices whose home antenna falls in that comuna. Each device’s home antenna
is computed as the antenna in which it has the highest number of XDRs during
nighttime (between 7pm and 7am, inclusive) [40, 49]. The number of estimated
resident users in the comunas is strongly correlated (R2 = 0.96, slope=4.37,
intercept=298.30) with the official population of the comunas as per the official
2017 Chilean Census.

3 Data Records
The raw datasets were provided by Telefónica/Movistar Chile, a mobile phone
company which possesses between 29-32% of the Chilean mobile phone market.
From the raw datasets we construct the three mobility indices described above.
The datasets are released under the CC BY 4.0 License and are publicly available
at [19].

Table 1 shows the structure of the dataset describing the mobility indices.
Each record refers to a comuna in Chile and describes:

• the official name of the region (region, type:string);

• the identifier of the region as per the official 2017 Chilean Census (rid,
type:string);



• the official name of the comuna (comuna, type:string);

• the identifier of the comuna as per the official 2017 Chilean Census (cid,
type:string)1;

• the area of the comuna in km2 (area, type:float);

• the values of IM, IMint and IMext for that day (type:float);

• the day the IM, IMint and IMext values refer to (date, type:date).

region rid comuna cid area IMint IMext IM date

Los Ríos 14 Valdivia 14101 1018.32 6.21 0.91 7.13 2020-02-26
Los Ríos 14 Valdivia 14101 1018.32 6.42 0.93 7.35 2020-02-27
Los Ríos 14 Valdivia 14101 1018.32 6.75 1.08 7.84 2020-02-28
Los Ríos 14 Valdivia 14101 1018.32 6.88 1.17 8.05 2020-02-29
Los Ríos 14 Valdivia 14101 1018.32 5.58 1.05 6.63 2020-03-01

...
...

...
...

...
...

...
...

...

Table 1: Structure of the released dataset.

Table 2 shows the structure of the quarantines dataset. Each record refers
to a quarantine regulation and describes:

• the identifier of the quarantine regulation (qid, type:integer);

• the official name of the comuna (comuna, type:string);

• the status of the quarantine, that can be either active or not active
(status, type:string);

• the coverage of the quarantine, that can be either partial, rural, or com-
plete (coverage, type:string);

• the date the quarantine started (start, type:date);

• the date the quarantine ended, which is “ - ” if it is still active (end,
type:date);

• the identifier of the comuna as per the official 2017 Chilean Census (cid,
type:string);

• the area of the quarantine in m2 (area, type:float);

• the perimeter of the quarantine (perimeter, type:float).

1All maps and their official identifiers can be downloaded from the National Statistics Office
of Chile at https://geoine-ine-chile.opendata.arcgis.com/search?tags=Capas%20Base

https://geoine-ine-chile.opendata.arcgis.com/search?tags=Capas%20Base


qid comuna status coverage start end cid area perimeter

4 El Bosque Active whole 2020-04-16 - 13105 2.06e7 1.87e4
26 Quinta Normal Active whole 2020-04-23 - 13126 1.70e7 2.12e4
38 Cerrillos Active whole 2020-05-05 - 13102 2.41e7 2.52e4
42 Conchalí Active whole 2020-05-08 - 13104 1.59e7 1.68e4
...

...
...

...
...

...
...

...
...

Table 2: Structure of the quarantines dataset.

4 Technical Validation
In our analysis, we consider two periods: the pre-quarantine period, from March
9th to March 15th, 2020, and the quarantine period, from June 22nd to June
28th, 2020. Although we have two weeks before March 9th, the transition from
February to March marks the start of the Fall school semester in Chile. In 2020,
March 6th was the start of the semester, so we assume that the “business as
usual” period would be best represented by the week of March 9th until March
15th. March 16th marked the start of NPIs in Chile, with the closure of schools,
universities and large public gatherings. After that, on March 26th, there was
a partial lockdown of seven comunas in the Metropolitan Region. By June 22-
28, more than half of the population of the country was under quarantine, and
mobility was at 40% reduction.

During the pre-quarantine period, comunas with high mobility indices and
comunas with low mobility indices coexist. Geographically, high-mobility co-
munas are concentrated near urban areas such as the capital Santiago and,
in general, in the center of the country (Figures 6a, 7a, 8a, and 9a). The
northern and southern parts of Chile have fewer high-mobility comunas. The
comunas with the highest mobility registered during the pre-quarantine period
are located in the regions of Metropolitana de Santiago, Arica y Parinacota,
Valparaíso, Ñuble, and Magallanes (Table 3).

The top-ten comunas with the highest mobility indices change during the
quarantine period, except for Rinconada in the region of Valparaíso (Table 4),
mirroring the different degree of reduction in human mobility in the Chilean
regions (Figure 3). All regions show a reduction in all three mobility indices
during the quarantine period, albeit with different intensities (Figure 2). At
the comuna level, high-mobility comunas are rare and clustered near the large
urban areas located in central Chile (Figures 6, 7, 8, and 9).

These results are supported by the distributions of the mobility indices of the
two periods (Figure 4). There is a clear shift towards the left of the distribution
of the IM index (Figure 4a): (i) the average IM during the quarantine period
(5.16 ± 2.74) is 27.6% lower than the average IM during the pre-quarantine
period (7.13± 4.15); (ii) the distribution of IM during the quarantine period is
more skewed to the left, showing a decrease of the mobility in Chile during the
selected days. Regarding IMint and IMext, we observe no net shift of the curve,
but rather a flattening, suggesting that intra- and inter-comuna trips decreased



Pre-quarantine period
Comuna Region IM IMext IMint

1 Rinconada Valparaíso 30.37 27.96 2.42
2 Providencia Metropolitana de Santiago 25.29 12.58 12.71
3 Camarones Arica y Parinacota 24.62 23.77 0.85
4 Ranquil Ñuble 23.87 18.33 5.54
5 Laguna Blanca Magallanes 21.92 15.75 6.18
6 Panquehue Valparaíso 20.93 19.02 1.90
7 Vitacura Metropolitana de Santiago 20.40 10.54 9.86
8 Las Condes Metropolitana de Santiago 20.22 7.79 12.42
9 Zapallar Valparaíso 19.26 15.98 3.28
10 Santiago Metropolitana de Santiago 17.44 6.97 10.48

Table 3: The ten comunas with the highest average value of the IM index
computed between March 9th and March 15th, 2020.

during the quarantine (Figures 4b and 4c).

Quarantine period
Comuna Region IM IMext IMint

1 Rinconada Valparaíso 22.44 21.09 1.35
2 Zapallar Valparaíso 15.84 13.16 2.68
3 Panquehue Valparaíso 13.30 11.13 2.17
4 Coinco Libertador Gen. B. O’Higgins 13.20 12.36 0.84
5 Andacollo Coquimbo 11.85 6.25 5.60
6 Vitacura Metropolitana de Santiago 11.33 4.29 7.04
7 Limache Valparaíso 11.25 5.41 5.84
8 La Reina Metropolitana de Santiago 10.78 6.16 4.62
9 Concón Valparaíso 10.75 4.69 6.06
10 Villa Alegre Maule 10.67 8.67 1.99

Table 4: The ten comunas with the highest average value of the IM index
computed over the period from June 22nd and June 28th, 2020.

We further analyze the reduction of the mobility defining IMred as the rel-
ative reduction of the IM index in the quarantine period with respect to the
pre-quarantine period. The distribution of IMred shows that a large number
of comunas have a reduced mobility, following Chilean government interven-
tions, by an average of 25.37%± 43.2 (Figure 4d). However, comunas that were
not in quarantine during the quarantine period do not reduce their mobility
significantly (Figure 5a).

The percentage of population that live in comunas where the authorities
applied NPIs increases with time (Figure 5a) reaches its peak (≈ 57%) in late
July 2020. With the increase of the number of people under quarantine, IMred



initially increases, but it slightly decreases over time even if both the number
of individuals and the number of comunas under quarantine increase. This
phenomenon suggests that mobility restrictions are more effective in the short-
medium term and become less effective as time goes by, and it can be observed
both at regional (Figure 2) and comuna level (Figures 5a and 5b).

Code Availability
The code used for analysis are available at [19]. The data is also available from
the general repository of the Ministry of Science of Chile at https://github.
com/MinCiencia/Datos-COVID19/tree/master/output/producto33.
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Figure 1: (a) Illustrative example of eXtended Detail Records (XDRs) of a
mobile phone user. The hexagons represent mobile phone towers and green
dots the positions where the user starts a download/upload operation. The
dotted line indicates the real movement of the user, from the left to the right.
(b) Intra-comuna trips (black arrows) and inter-comuna trips (orange arrows).
Hexagons of the same color indicate antennas that fall in the same comuna.
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Figure 2: Evolution of IM (a), IMext (b) and IMint (c) from March to September
2020 for the 16 regions in Chile. The curves are sorted in descending order
respect to the relative index of mobility of the corresponding comuna. The
vertical lines denote important dates regarding NPIs in Chile; the number in
parentheses indicates the number of comunas subject to that restriction.
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Figure 3: Values of IM, IMint, and IMext of the comunas in the top 10 rank-
ing computed for the pre-quarantine and quarantine period. The coupled bars
represent comunas corresponding to the same position in the rank.
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Figure 4: Distributions of IM (a), IMext (b) and IMint (c) for the pre-quarantine
(blue) and quarantine (orange) periods, with the average values of three comu-
nas: Santiago, Camarones and Torres Del Paine. (d) Distribution of IMred for
all the Chileans comunas.
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Figure 5: (a) Percentage of population under quarantine and the percentage
of mobility reduction IMred from February 26th to September 20th, 2020. (b)
Evlution of IM index in Santiago; the blue area denotes the quarantine period.
The vertical lines denote important dates regarding NPIs in Chile; the number
in parentheses indicates the number of comunas subject to that restriction.
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Figure 6: Choropleth maps of IM, IMint and IMext for the comunas in northern
Chile for the pre-quarantine (first row) and the quarantine (second row) periods.
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Figure 7: Choropleth maps of IM, IMint and IMext for the comunas in central
Chile for the pre-quarantine (first row) and the quarantine (second row) periods.
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Figure 8: Choropleth maps of IM, IMint, and IMext for the comunas in southern
Chile for the pre-quarantine (first row) and the quarantine (second row) periods.
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Figure 9: Choropleth maps of IM, IMint and IMext for the comunas in the
metropolitan area of Santiago de Chile for the pre-quarantine (first row) and
the quarantine (second row) periods.
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