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This work proposes a multi-domain modelling methodology to support the design of new battery packs for
automotive applications. The methodology allows electro-thermal evaluation of different spatial arrangements of
the storage cells by exploiting the implementation of numerical and geometrical battery pack models. Con-
cerning the case study on Li-NMC battery technology, the study has completed the electro-thermal character-

ization of the storage cells starting from the collected experimental data, considering both the thermal
interactions among cells and the effects of the state of health. This work also investigates the effects of forced air-
cooling systems focusing on battery pack hot spots and temperature distributions. The results show a good fit
between numerical models and data obtained from single-cell experiments. The virtual linking of geometric and
numerical lumped-parameter models proved to be effective in rapid battery pack prototyping for electric vehi-
cles, helping designers and manufacturers find suitable solutions for specific automotive applications.

1. Introduction

In recent years, vehicle manufacturers have shifted their attention
towards eco-friendly transport systems mainly based on Electric Vehi-
cles (EVs), which appear to be the most promising low-emission tech-
nologies available on the market. Thanks to recent advancements in
Lithium-ion battery technology, electric vehicle storage systems have
greatly improved in terms of energy and power density, which have
reached values of 250 Wh/kg and 400 W/L [1-3], allowing the diffusion
of electric vehicles in the global transportation market. EVs have many
benefits, which are mainly the absence of local exhaust emissions, good
performance (thanks to the torque/speed characteristics of electric
propulsion systems), and low mechanical maintenance requirements
[4-6].

Despite the above advantages of battery technology, researchers and
developers must still address various issues in the coming years. The
performances of Lithium-ion cells are dependent on several parameters
such as State of Charge (SoC), State of Health (SoH), charging/dis-
charging current values, and operative temperature [7,8]. Regarding the
latter parameter, Li-ion batteries work efficiently when operating be-
tween 298 K and 308 K [9-10]. In particular, high-temperature
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operative conditions involve recognized negative effects on battery
performance, mainly in terms of capacity/power fading, self-discharge,
and remaining useful life. At the same time, low temperatures affect
charge acceptance, actual capacity, and charging/discharging efficiency
[11].

For this reason, EVs require proper Battery Thermal Management
Systems (BTMSs), the main objective of which is to extend the battery
life cycle and optimize performance. In particular, BTMSs must be able
to control maximum and minimum temperature values inside the Bat-
tery Pack (BP), prevent sudden temperature variation, and avoid battery
cells” exhaust gas stagnation [12]. Currently, traditional BTMS classifi-
cation is based on the medium used for heating/cooling operations such
as air, liquid, and solid medium. Every BTMS is characterized by
different advantages and limitations to be taken into account on the
basis of the operative context. For example, BTMS based on air medium
is characterized by different advantages in terms of weight, cost, and
size. On the other hand, air has poor thermal properties, and it results
less effective in thermal management than liquid-based BTMS [13].
Therefore, the choice and size of BTMSs are mainly based on an evalu-
ation of the amount of heat to be dissipated during EV operations. The
amount of heat depends on several factors, such as BP technology,
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layout, materials, and design criteria [14]. Concerning battery heating,
the amount of heat generated by a single storage cell is a function of its
electrical and thermal behavior. In this case, modelling plays a key role
in estimating this behavior, providing input for a suitable BP and BTMS
design. However, battery cell behavior is characterized by inter-
connected electro-thermal physical phenomena during operation. In this
regard, the scientific literature proposes different cell models, which
mainly differ in complexity, fitting performance, and the focus on spe-
cific aspects to be investigated. In particular, the following macro-
categories can be identified: Electrochemical Models (EMs), Equivalent
Circuit Models (ECMs), and Machine Learning Models (MLMs) [15,16].

EMs, based on complex physics and chemistry theories, aim to pre-
dict diffusive electrode phenomena and electrochemical reactions be-
tween electrodes and electrolytes. Every single physical phenomenon
that takes place in the battery cell is evaluated through partial differ-
ential equations [17-19]. For this reason, EMs offer a highly accurate
dynamic representation of what happens inside the battery cell. How-
ever, EMs require a great amount of computational resources and time to
obtain the desired simulation results. This model is therefore mainly
used in experimental studies addressing nonlinear battery cell behavior.
A typical application based on this kind of model is reported in [20],
where an EM, called P2D, was combined with a mosaic model in order to
describe the transport mechanism between graphite and LPO cathodes
of 18,650 cylindrical battery cells. In this case, the EM was validated by
performing discharge tests at different C-rates: results fit well with
experimental data in terms of the expected phenomenon inside the
battery cell. In [21], Schmidt et al. presented a Multi Scale Multi Domain
(MSMD) model to evaluate the electro-thermal behavior of a large
prismatic battery of 120 Ah. The model is composed of a three-level
structure to describe the particles, electrodes, and cell electrical phe-
nomena. An extension of P2D Newman’s model approach was used to
make the multilayer structure of the battery cell homogeneous. The
superiority of this modelling strategy was shown by analyzing the effect
of high discharging operations on battery cell temperature distribution
at different battery cell cooling conditions. MLMs represent an opposite
approach that is adopted when the studied phenomenon cannot be
conveniently analyzed using simple mathematical equations. Such
models use data-driven algorithms to estimate specific cell parameters,
such as SoC and SoH, on the basis of indirect experimental measure-
ments. MLMs generally call for initial processing, which is particularly
demanding in terms of both time and computational effort [22-24].
Their development involves three steps: data preprocessing, training
and validation. These models are therefore mainly used for near real-
time nonlinear evaluations, which can be performed rapidly and accu-
rately after initial processing. However, MLMs generally require a lot of
experimental data, since their fitting performance decreases when
dealing with unexpected behaviors that were not previously considered
in the training datasets. In this regard, Sheng et al. [25] have trained an
MLM to estimate the SoC for a LiFePO4 battery cell. In this case, pre-
processing of experimental data was carried out using the Fuzzy Least
Squares Support (LSS) method to reduce noise-sensitive issues. Results
suggest that Fuzzy LSS allows higher estimation accuracy and better
noise immunity with respect to the ANN method. Of the models
described, ECMs represent a good trade-off in terms of fitting perfor-
mance and computational effort. These models are based on electrical
equivalent circuits that simulate the electric behavior of battery cells
under different operating conditions. The most frequently used ECM is
the Rint model, which only describes battery cell voltage drop during
operation, and the Thevenin Model (TM) and Dual Polarization Model
(DPM), which describe the dynamic behavior of electrical battery cells
[26,27]. In this regard, Zhang et al. [28], analyzed TM and DPM accu-
racy by comparing experimental and simulation results from a 1C dis-
charging test on a 18,650 cylindrical battery cell (2350 mAh). Although
the fitting performance of the DPM was better than that of the TM, the
improvement in accuracy was almost negligible and did not justify the
greater computational effort.
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The electrical behavior of a battery cell can also be directly linked to
its thermal behavior. Electrical parameters and chemical reactions in
cathodes are the main factors responsible for heat generation inside
battery cells. Bernardi et al. [29-30] formulated an equation to estimate
the generation of reversible and irreversible heat, related to entropic and
Joule effects respectively. Evaluations are generally used as inputs for
storage cell thermal models, which focus on describing the thermal
behavior of cells.

Thermal models are generally divided into two categories: Physical
models (PMs) and Lumped models (LMs) [31]. PMs describe physical
phenomena occurring inside and outside the storage cell. Thermal
models use general expressions that combine heat rate generation and
temperature distribution terms. PMs assume that battery cells can be
evaluated through thermal parameters distributed over one, two or
three dimensions. In [32], Ynui et al. developed two PMs in order to
compare simulation and experimental temperature distribution results
in different case studies. In particular, a cylindrical and a prismatic
battery cell were respectively modelled through two- and three-
dimensional PMs. As a case study, the transient temperature profile of
a battery cell core was monitored during a discharging current. For both
battery cells, the simulated temperature distribution fit experimental
results very well, suggesting the great accuracy of this model. For this
reason, PMs are mainly used in CFD analysis. However, despite their
accuracy, PMs require great computational effort in modelling and
simulation.

LMs are useful in describing the thermal behavior of storage cells
using the circuit analogy for cell thermal physics. For example, a heat
capacitor inside a thermal circuit can be used to simulate the battery
cell’s ability to store thermal energy. This makes it possible to achieve a
good compromise between model accuracy and computational effort
[33,34]. In [35], Lin et al. developed a LM to describe the thermal
behavior of a cylindrical cell. In particular, the proposed LM adopted
only four parameters to estimate the transient thermal behavior of the
cells. Two thermal capacitors were used to model the core and the
surface of the cell, and two thermal resistances were used to simulate
heat exchange. This model was further simplified in [36], where Forgez
et al. developed a reduced LM based on the assumption that the core and
surface work at the same operating temperature. The LM was validated
through charging/discharging pulses, which highlighted the good ac-
curacy of the proposed model in predicting temperature behavior.
Table 1 provides an overview of the main battery cell model typologies
used in the literature.

Starting from the above considerations, complex systems such as BPs
require a transversal modelling strategy based on multi-domain model-
ling approaches [37]. Multi-domain modelling strategies are based on
interconnections and multidisciplinary relations among all the different
physics domains pertaining to the system being analyzed, as shown in
Fig. 1.

This approach generally yields more accurate results and requires a
lower simulation effort than traditional sequential modelling strategies.
It involves Object-Oriented, Non-causal and Narrative modelling, which
make modelling intuitive and simple for users. The user can model the
system by interfacing different domain classes without using complex
equations [38]. The Simulink toolbox Simscape and Modelica are two
examples of software tools supporting this kind of modelling strategy. As
reported above, a vehicle BP can be considered a complex system in
which electrical, control and mechanical domains operate in synergy: as
the temperature of BP cells varies during electrical operations, the BMS
interfaces with sensors to monitor such variations and controls the
cooling system to dissipate any excess heat. In [39], Bordes et al.
developed a collaborative platform for the integration of different
simulation models. In this work, the open Functional Mock-up Interface
(FMI) was used for interfacing a power train and a battery controller
software models. In particular, the two models were developed in
Modelica and Simulink frameworks and converted into Functional
Mock-up Units (FMUs) to be implemented in the Jupiter Notebook
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Table 1
An overview of the main electrical and thermal battery models.

Macrocategory  Key elements Battery chemistry Ref.

EM Adaptive Partial Differential General considerations [17]
Equation (PDE) model for not dependent on
SoC and SoH estimation. battery chemistry.

Non-Linear Dynamic SPICE Ni-H, [18]
math model for DC nonlinear

battery behavior estimation.

Pseudo 2-Dimensional (P2D) Cylindrical 5 Ah NMC/ [19]
model for temperature Si-Graphite battery.

prediction.

P2D model for terminal Cylindrical 1.05 Ah [20]
voltage estimation. LiFePOy, battery cell.

Extended P2D Newman NCA/LCO blend [21]
model for the estimation of cathode 120 Ah

battery cell temperature prismatic battery cell.
distribution.

MLM ANN model for SoC and SoH Pouch 15 Ah NMC. [22]
estimation of aged battery
cell.

Input time-delayed NN model 20 Ah LiFePOy4 [23]
for SoC and SoH estimation prismatic battery cell
Implementation of Quantum Cylindrical 3.45 Ah [24]
Particle Swarm Optimization Lithium polymer of

ML technique for the

evaluation of remaining

battery cell capacity.

Fuzzy Least Square Support 50 Ah LiFePOy4 [25]
Machine Vector model for prismatic battery cell

SoC estimation.

ECM Rint, Thevenin, and Dual Cylindrical 2.9 Ah [26]
Polarization Model for testing ~ Lithium polymer
a new battery cell battery cell.
parameterization technique
Dual Polarization Model for 2.5 Ah LiFePO4 and [27]
the estimation of SoC vs OCV  Lead-Acid battery cells
behavior.

Thevenin and Dual 18,650 Cylindrical 2.35 [28]
Polarization model for Ah lithium polymer cell.

battery cell terminal voltage

prediction.

PM Time-dependent simulation 1.8 Ah Cylindrical and [32]
code for battery cells 9 Ah prismatic Lithium
temperature distribution polymer battery cells.
estimation.

LM 4 States LM for testing anew  2.35 Ah Cylindrical [33]
parameters’ identification LiFePOy, battery cell.
methodology.

3 States LM for BP module 3.8 Ah cylindrical [34]
temperature estimation. LiFePOy, battery cell.
2 state LM for battery cell 3.8 Ah cylindrical [35]
temperature estimation. LiFePOy, battery cell.
2 state LM for temperature 2.35 Ah Cylindrical [36]

estimation.

LiFePO,/Graphite
battery cell.

scripting environment. The analysis of the described simulation plat-
form was carried out with a specific focus on battery charging proced-
ures. On the other hand, the approach of Byung et al. [40] was based on
developing the BP model in one simulation environment. In particular,
an electro-thermal multidomain model of a BP equipped with liquid
based BTMS was developed in Simscape Simulink environment. The
cooling efficiency of two different BTMS solutions was investigated
through numerical and experimental activities, comparing the cold
plates’ thermal resistance trends at different C-Rate discharging values.
In [41], Smith et al. used a multidomain model in order to help the BP
design activities. The cylindrical cells which compose the BP were
modelled using a Thevenin ECM and PM for the estimation of its elec-
trical and thermal behavior. In addition, a lumped parameter model was
used to evaluate the BP Module thermal distribution during operations.

However, the most popular multi-domain modelling strategy for BPs
involves the use of Computational Fluid Dynamics (CFD) software [42].
For example, Shung-bo et al. improved the air-cooling BTMS by
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Fig. 1. Multi-domain modelling.

redesigning the array of outlets along the normal flow stream. The Ansys
Fluent CFD method was used to calculate temperatures and the flow
field. In [43], Okaeme et al. presented a systematic multistage modelling
approach for designing and optimizing the BTMS for hybrid trucks.
Despite its accuracy, the application of CFD to the study of BPs requires
long simulation times and great computational effort due to the
complexity of solutions for the Navier-Stokes equations [44]. This
approach can therefore be considered useful for detailed analysis of
single systems with a given configuration. Within this context, this work
presents a multi-domain modelling approach for the design and sizing of
new energy storage system (ESS) configurations for EVs, taking into
account experimental electro-thermal data at a single cell level for a
given BP layout and thermal management system. Compared to tradi-
tional methods proposed in the scientific literature, the novelty of the
proposed approach lies in its flexibility during design activities and the
good fitting performance obtained by linking geometrical and experi-
mentally validated lumped parameter models [45]. This allows reliable,
easy, and fast evaluation of the electro-thermal behavior of EV BP in
terms of temperature distribution and hot spots while operating under
different conditions.

The rest of the paper is organized as follows. The case study and BP
modelling operations are described step-by-step in Section 2. Experi-
mental tests performed for battery cell model parameter identification
and validation are detailed in Section 3. Lastly, the main findings are
presented and discussed in Section 4.

2. The case study and modelling

The evaluations reported in this paper are based on a vehicle BP
composed of EIG ePLB C020 lithium cells (Fig. 2). In particular, the
considered cell cathode is based on Nickel-Manganese-Cobalt com-
pounds, distributed in 4:4:2 proportion. The anode is composed of
graphite type material, improved with vapor grown carbon fibers
(VGCEF) for the optimization of electrical conductivity. The electrolyte is
based on BASF (LP50) containing 1 M LiPF6 in 1:1 volume ratio mix of
ethylene carbonate (EC) and dimethyl carbonate (DMC). The investi-
gated cells have higher storage capacity than the LINMC cells with 1:1:1
composition [46,47] and they are widely used in the automotive sector
thanks to their good performance in terms of energy/power density and
charging/discharging efficiency [48]. A picture of the considered cell
and its main characteristics are reported respectively in Fig. 2 and
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Fig. 2. The Li(NiCoMn)O; cell and its characteristics.

Table 2
Main characteristics of the Li[NiCoMn]O,, cell.

Cathode chemistry
Electrolyte chemistry

NMC (4:4:2)
BASF (LP50) mixed with EC and DMC (1:1)

Nominal voltage 3.6V
Nominal capacity 20.0 Ah
Specific energy 180 Wh/kg
Maximum charge voltage 4.2V
Maximum charge current 1C
Lower voltage limit 25V
Maximum discharge current 5C
Maximum peak discharge current 10C
Table 2.

It is important to develop a suitable electro-thermal model for the
above cell to enable the design and testing of appropriate cooling sys-
tems for BPs based on this technology. NMC battery cells work properly
in a certain temperature range. Outside this range, battery cell perfor-
mance is poor and there is a fire hazard due to reduced chemical
stability.

The proposed methodology for BP modelling is based on a bottom-up
approach, starting from the single cell level up to evaluation of the
whole BP multidomain model. The workflow of this methodology is
summarized in Fig. 3.

At the single-cell level, electro-thermal lumped parameter models
based on the Thevenin Model and the One-State Lumped Model were
chosen to achieve good accuracy with low computational effort. Heat
generation was evaluated based on a few simplifying hypotheses. As for
the Bernardi equation, only irreversible losses due to the Joule effect were
considered. In addition, the battery cell core and surface were consid-
ered to have the same temperature and the flow of current inside the
battery cell was considered to be uniform [49].

Considering the thermal behavior of this kind of battery cell, the
above assumptions are reasonable. The thickness of a pouch cell is such
that the difference between core and surface temperatures is negligible.
Starting from these considerations, a Single-cell model was used to
simulate heat exchange between the battery cell and the environment. A
Two-Cell Interaction model was developed to study thermal interactions
among battery cells. Said models were subsequently integrated into the
BP numerical model and linked to the Geometric BP model in order to
evaluate the effects of BP layout on the thermal behavior of individual
cells. The following is a detailed description of the modelling approach.
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Electro-Thermal
Two-Cell Interaction Model

Fig. 3. Battery pack modelling workflow.

2.1. The electro-thermal single cell model

The developed electro-thermal single cell model comprises the The-
venin Equivalent Circuit Model, representing the electrical behavior of the
battery cell, and the One-State Lumped Thermal Model, representing the
thermal behavior of the battery cell. The electrothermal model scheme is
shown in Fig. 4.

In particular, for the electric part, the voltage generator simulates the
Open Circuit Voltage (OCV), whereas Ohmic resistance (Rint) is used to
estimate voltage drop within the battery cell and Joule Losses. An RC
branch is used to describe the transient behavior of the cell during
operating cycles. In the thermal part, a Thermal Capacitor simulates the
battery cell thermal behavior estimating its Temperature value. The
Thermal Capacitor is linked to a Constant Temperature Source, by means of
a Convective Resistance (Ramp), to simulate the heat exchange between
battery cell and environment. The battery cell SoC is estimated through
the Coulomb Counting Method after setting the initial capacity value at
the beginning of the simulation [50]. The temperature value is obtained
using the Thermal Model. The State of Health is determined in the Elec-
trical Parameter Estimation block through linear interpolation (Eq. (1)):

R.—R
RefRn

SoH = (€]

where Re and Rn are aged and brand-new internal resistance values
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Fig. 4. The Thevenin Equivalent Electric Circuit Model (a), and the One-State Lumped Thermal Model (b).

respectively, and R is the instantaneous resistance. Re and Rn values are
based on experimental results [51,52].

2.2. Two-cell interaction model

In this study, a two-cell interaction model was developed to analyze
how cells inside the BP influence each other from a thermal perspective.
This model helps improve the thermal circuit between the batteries by
simulating the behavior of the environment surrounding the cells. The
air surrounding the battery cells influences cooling and heating during
operation. Battery cells exchange thermal energy with the surrounding
air, modifying its temperature. Increases in air temperature affect heat
exchange with the battery cells, which cannot be cooled effectively. To
simulate this behavior, the air between the cells is modelled as a thermal
mass that can store and release thermal energy. The electrical and
thermal scheme of the Matlab-Simulink model is reported in Fig. 5.

In the figure above, the two cells are electrically connected in series
(a). In thermal terms, convective resistances connect every cell in parallel
with the air between cells and the air on the other side of the battery
cells. The ambient temperature around the free battery cell side is
modelled as a constant temperature generators, assuming that the huge
quantity of air on the outside is not affected by changes in battery cell
temperature. The temperature of the air between the cells is affected by
temperature variations in both battery cells. To estimate the volume of
air between the two battery cells, the distance between them and the air
density must be estimated. The first parameter can easily be set at the

[A]

Controlled Current Source

start of the simulation. Air density depends on several parameters such
as ambient pressure, temperature and altitude. This variability is over-
come by assuming that the initial air density value remains constant
throughout the simulation. This is a reasonable assumption, considering
that the ambient pressure does not vary during battery cell operation
and that variations in air density due to rising battery cell temperatures
during operation is negligible. The air density can therefore be consid-
ered constant throughout the simulation, and the mass between the cells
can be easily calculated using the density formula. Setting the cell po-
sition before simulation, the volume is determined, and the mass can be
calculated as follows:

mass = p*V. 2)

where p is density (kg/m3) and V is volume (m>).

This model is crucial to the development of the BP model. This nu-
merical model for the behavior of air can be used to simulate the
development of temperature hotspots in the BP during operation. The air
surrounding battery cells located in the middle of the BP will be hotter
than that surrounding the batteries at the two ends of the BP. This allows
a more accurate estimation of temperature distribution within the BP.

2.3. The air-cooling system model

The BTMS can improve the temperature distribution of BPs by
keeping temperature differences among battery cells as low as possible.

LifNMC]1 Li[NMC]2
Rconv 1L Rconv 1R Rconv 2L Rconv 2,R
—AM—T— MWW —
Tsurt 1 Tsurf 2
Air
| P Beé‘gﬁ:" p— Tamb

©
+
LINMC]1 =
+
LINMC]2 ===
-~

Fig. 5. Two-cell interaction model: electric (a) and thermal (b) scheme.
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The BP model was improved by implementing a BTMS in order to
compare the effectiveness of the cooling system on the layout created. In
particular, the implemented BTMS is based on an air-cooling strategy.
Starting from a Two-cell interaction model, the model was developed on
the geometric assumption that the space between the two battery cells is
like a smooth pipe, as shown in Fig. 6, having diameter and length
respectively equal battery cell width and length.

From this perspective, heat exchange between the lithium cells and
air can be studied as internal forced-convection heat transfer. Further
assumptions on fluid motion must be made in order to simplify the
system model. In particular, the coolant medium is considered an Ideal
Gas, and the flow stream is studied as a unidirectional flow moving in
the direction of battery cell major axis. In addition, during the simula-
tion the Reynolds number at the transition from laminar to turbulent
motion is set at 10000. The above assumptions are justified by the small
size of the system considered [53]. From a thermodynamic perspective,
the temperature of the cooling medium along the pipe is considered
exponential in order to evaluate heat exchange between air and battery
cells using the following Eq. (3):

hA,
Qoo = liley (T — T, (1 - exp< ——‘) ®)

|ritlc,
where m and ¢, respectively represent the average air mass flow inside
the pipe and the specific heat at the average temperature within the
duct. The parameters A; and Tj, refer to the heat transfer contact area
between the air and the lithium cells and the intake temperature of the

cooling medium respectively. The h value is determined considering the
mean flow direction value and is calculated through Eq. (4):

k
h=Nu— 4
“D @

where Nu is the Nusselt number, k is the average thermal conductivity of

Inlet

Fan

Fig. 6. The air-cooling scheme.
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the cooling medium and Dy is the pipe’s hydraulic diameter. It is
assumed that the air mass flow is provided by the fan to the system
instantly and that the fan is a constant source with no inertia. In addi-
tion, BTMS is based on hysteresis control. The fan turns on when one of
the battery cells reaches an operative temperature five degrees higher
than its initial simulation value and turns off when the hottest BP cell has
an operative temperature one degree below the control limit tempera-
ture value.

2.4. The battery pack numerical model

The BP model was developed on the basis of a Two-cell Interaction
model. In particular, the model simulates the behavior of every single
cell in the BP and the environment that surrounds them. In addition, the
implementation of an Air-Cooling System model enables simulation of the
air-mass flow between the battery cells as well as electro-thermal
interaction between the BP and the air-cooling system. When the cool-
ing system is off, the BP thermal circuit links the battery cells and the air
that surrounds them, as shown in Fig. 9. Depending on its placement,
each battery cell is linked to two air masses that simulate the air between
the previous and the subsequent battery cell in the string. At the same
time, the battery cell is linked to two other air masses that simulate the
air between the different rows. The first and last battery cell in each
string is linked to a Constant Temperature generator in order to simulate
the huge air mass representing the environment surrounding the BP.

When the cooling system is switched on, the fan forces the air mass to
move between the battery cells. Each NMC cell builds up two rectan-
gular ducts with the previous and next one of the same strings.
Considering the above, each BP string contains n-1 rectangular ducts.

The ducts of each string are linked in order to cross the BP trans-
versally. Each duct is linked to the next one of the following strings
crossing the BP in a transversal direction, as shown in Fig. 7.

In each duct, the air flow stream is a fraction of the total mass flow
provided by the fan, depending on the position of the pipe in the layout.
In this configuration, all the rectangular pipes start from the same inlet
and are divided during the heat exchange with battery cells. At the end
of the pipe, the outlet is set to ambient parameters. In addition, the first
and last lithium cells of the same string have only one side in contact
with the forced cooling medium: the other side is linked to a thermal
mass that simulates steady air motion between the battery cells and the
walls of the BP.

2.5. The battery pack geometric model

A Battery Electric Vehicle’s energy storage system can be seen as a
complex system in structural terms. It consists of several battery cells
optimally positioned to save space in the EV and to improve heat ex-
change between the battery cells and the cooling system. The design of
this system requires the use of the CAD modelling methodology, which
supports development and review activities in the design of complex
systems. Furthermore, the model must be modified without losing the
main functional relationships among the model’s main features in order to
allow different system configurations without having to redesign the
system itself. In this context, a Top-Down approach was used in geo-
metric modelling. This approach is typically used in modelling the vir-
tual assembly of complex systems. Design activities focus on overall
assembly and the functional parts, whereas secondary parts are
modelled later. This kind of approach places functional design re-
quirements at a higher level. In this way, critical design information is
transferred to all related subsystems. The BP model was developed in the
SolidWorks environment. It is a Computer-Aided Drafting software used in
3D parametric virtual modelling. The creation of a BP geometric model
starts with the study of BP morphology. BP geometric analysis is fol-
lowed by the identification of the key geometric characteristics defining
the model’s skeleton. The skeleton is the reference structure of the model.
The BP skeleton (Fig. 8) is the basic layout that shares critical
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Fig. 8. Battery pack skeleton scheme.

information with the assembled elements, creating a parent-child rela-
tionship with them.

Fig. 8 shows the main geometric features of the BP. The BP skeleton
consists of the 1st row Middle Plane, the 1st NMC Midplane, the Longitu-
dinal and Transversal axes and the Base Plane. These geometrical features
are essential in defining the BP configuration and layout. The first
reference is 1st row Middle Plane. This geometric feature runs along the
middle of every single cell in the 1st row, and defines the transversal
distance between the first string and the center of the BP. The second
reference feature is the 1st NMC Middle plane, which contains the first
cell of every single row. This reference feature fixes the longitudinal
distance of the first NMC in the rows and the position of the first NMC in
the first string. The Longitudinal and Transversal axes divide the BP into

four symmetrical parts. These reference features provide modelling in-
structions for the design of the BP layout. Lastly, the Base Plane de-
scribes the geometric boundaries of the inner part of the BP and limits
the area where battery cells are positioned. All skeleton references are
parameterized, creating global variables that are linked to the main
geometric features of the BP. Global variables are reported in Table 3.

Global variables are integrated into the SolidWorks environment
using Egs. (3) and (4). The equations describe the position of the center
of the first cell in the first string. The equations are as follows:

d o Ns t
§+(d+t) (7—1) +5 3)
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Table 3
Variables used in the geometric model.
Global variables Description
w NMC width
L NMC length
T NMC thickness
S Transversal distance between cells
D Longitudinal distance between cells
Np Rows in parallel
Ns Cells in series
s N, [
S+ (2-1)+5 4
s (1) 45 @

Eq. (3) describes the center of the first battery cell in the first-string
position for the reference transversal axis, whereas Eq. (4) describes the
same center for the reference longitudinal axis. BP modelling starts with
NMC modelling. The NMC design is shown in Fig. 9.

The cell is positioned sideways, with the longest dimension in con-
tact with the base of the BP. The battery cell model is repeated for the
number of cells in the row, and every row is repeated several times to
obtain the BP model. The geometric model is obtained by repeating the
first battery cell model N; times along the longitudinal axis in order to
make up the first string of the BP. The first string is repeated N, times
long the direction of the transversal axis to obtain a BP composed of the
pre-established number of battery cells. By changing global variable
values, the model can be customized.

3. Experimental measurement campaign
3.1. Experimental setup

A specific laboratory setup was used to fully characterize lithium
cells operating under different electric and thermal conditions. The
functional scheme of the laboratory setup is reported in Fig. 10.

All tests were performed at constant ambient temperature values.
These conditions were achieved using an ACS Discovery Climate Cham-
ber with an internal volume of 340 L. The chamber can be controlled in
terms of temperature and humidity within the ranges 238 to 453 K and
10 % to 98 % respectively. The temperature of the tested storage cell/
module was recorded by PT 100 probes connected directly to the cell
surface. Cell/module cycling operations were performed through

Fig. 9. NMC battery cell in the battery pack.
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controlled DC power suppliers and DC electronic loads working together
in order to run charging/discharging current/voltage/power profiles.
These profiles can be set by the user through suitable software interfaces
developed in the National Instruments — Labview Environment. A LEM
HAL-50 S current transducer was used to measure the current, whereas
battery voltage was determined by connecting the cell poles directly to
the voltage acquisition module. A National Instruments Compact Daq
NI9188 equipped with voltage, current and temperature acquisition
modules was used for data acquisition.

3.2. Experimental tests

The experimental characterization and parameterization tests
focused on two NMC cells with different State of Health. Laboratory tests
were performed first on an end-of-life battery cell and then repeated on a
brand-new battery cell. The first test was a Capacity Test, which evalu-
ates the actual capacity of the considered battery cells under different
constant current discharging operations. Prior to this test, each battery
cell was recharged through a CC/CV charging operation with a
maximum charging rate of 0.2 C. The test was performed at a fixed
ambient temperature of 298 K. The results for the aged cell are shown in
Fig. 11.

As shown above, the aged cell reached an actual capacity value of
about 16 Ah at 0.25C. Although the discharging current was very low,
the resulting capacity value corresponds to the 80 % of the cell rated
capacity. The low state of health of the cell was confirmed by the 1C
discharging rate test, where the cell showed an actual capacity of 1.2 Ah,
corresponding to 6 % of the rated cell capacity. This cell was therefore
adopted as the reference aged cell with SoH = 0 %.

The 1C Capacity test was repeated on the brand-new cell, and results
are shown in Fig. 12.

The tested cell yielded an actual capacity of 24 Ah, corresponding to
120 % of its rated capacity; its SoH was assumed to be equal to 100 %.

Electro-thermal lumped models for both cells were parametrized
from an electrical and thermal perspective using the Hybrid Pulse Power
Characterization and Thermal Relaxation tests respectively. The HPPC test
is typically used to measure the dynamic electrical behavior of energy
storage systems from the standpoint of either module or single cell. The
test is characterized by several high discharging/charging current pulses
at different SoC steps, from 100 % to 15 % [54].

Fig. 13 shows the HPPC results for the brand new NMC cell.

Focusing on a single HPPC step, the current profile shows discharg-
ing and charging pulses at 1C with a duration of 10 s. After each pulse,
the battery cell rested for about 40 s. At the end of each step, the battery
cell SoC was decreased by applying a 0.25C discharging current for
about 24 min. This strategy was adopted to decrease the SoC value by
about 10 %; the electrical load step was repeated after a resting period of
about 7200 s. Every step was repeated until the cell SoC reached the 20
% value. After this, the last HPPC step was repeated, decreasing the SoC
by only 5 % in order to avoid over-discharging the battery cell. The same
test was performed on the aged cell, taking into account different 1C
pulses and compensation phase durations on the basis of capacity test
results. The relationship between electrical parameters and operative
temperature was obtained by performing HPPC at different ambient
temperatures of 298, 303 and 308 K. Fig. 14 shows the Thermal Relax-
ation test for the brand new NMC cell.

The main aim of the latter test is to analyze how battery cells store
and release thermal energy during operation The test is composed of two
main parts. The battery cell is first overheated by several 1C discharg-
ing/charging pulses for 3 h. During this time, the cell temperature in-
creases until it reaches thermodynamic equilibrium with the
environment. When equilibrium is reached, the electrical load is
removed and the battery cell rests for 7200 s in order to reach ambient
temperature. The above tests were used for electrothermal model
parameterization. In particular, parameterization was performed using
the Matlab/Simulink Parameter Estimator Toolbox. The HPPC test yields
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Fig. 10. Functional scheme of the laboratory setup for electro-thermal testing.
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the following electrical parameters: Open Circuit Voltage (OCV), ohmic
and polarization resistances and polarization capacity. These parame-
ters were obtained for both the aged and the brand new battery cell. The
value of electrical parameters was calculated using Eq. (1) in the MatLab
workspace before running the simulation. The Thermal Relaxation test is
used to estimate the average convective heat coefficient (W/m?) and
thermal capacity (J/K).

3.3. Validation tests

The parameterized model was validated to assess its performance
and accuracy. HPPC at 298 K was chosen to evaluate simulated storage
cell behavior. The parameters monitored during the simulation were
terminal Voltage and Temperature, which respectively consist of the
output of the electrical equivalent circuit and lumped parameters ther-
mal models implemented in Matlab/Simulink environment and
described in Section 2.1. The input provided to the single-cell model was
the current profile measured in the experimental test. In this test the
boundary condition is the same as that of the performed experimental
HPPC: initial SoC and SoH values were 100 %, and the initial battery cell
temperature was the same as the ambient temperature. Simulation re-
sults were subsequently compared to experimental ones (Fig. 15).

Fig. 15 compares simulated HPPC voltage (a) and temperature (b)
results with experimental results in order to highlight fitting perfor-
mance. The battery cell’s dynamic electrical behavior was well pre-
dicted, and the simulated temperature profile trend is very near to the
experimental one. The error between simulated and experimental trends
is shown in Fig. 16.

As shown in Fig. 16, the voltage and temperature residuals between
simulated and experimental trends are negligible. In particular, the
simulated voltage error remains in the range of about +0.3 V, whereas
the simulated temperature maximum error is below 0.6 K. These results
suggest that the developed single-cell model can simulate the electro-
thermal behavior of battery cells reliably and accurately.

4. Results and discussion

In this study, two different BP layouts were considered in order to
highlight the benefits of the proposed methodology in analyzing the
thermal behavior of BPs. In determining the best layout from a thermal
perspective, BTMS was considered operative and thermal distribution
during its operation was evaluated.

4.1. Simulation tests

In the present case study, the BP consisted of 15 battery cells. A
greater number of cells can obviously be analyzed by extending the

4.8 T T T T
Experimental
imulated

Voltage [V]

Time [h]
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considerations reported for this particular battery module. From a
geometric standpoint, two different layouts were considered, taking into
account variations in layout configuration. This parameter describes how
lithium cells are arranged inside the BP for a given battery cell position.
The considered layouts are shown in Table 4.

The resulting cell layouts are shown in Fig. 17.

With reference to Fig. 17, the first configuration (A) is composed of 3
rows of 5 cells, whereas the second configuration (B) is composed of 5
rows of 3 cells. The two layout solutions were obtained by setting the
distance between cells along the same row to 3 mm and between rows to
20 mm.

As for numerical simulations, the same initial conditions were set for
all tests (i.e. ambient temperature and air density values were 298 K and
1.16 kg/m? respectively). In the simple hysteresis strategy adopted for
cooling system control, the fan is activated when the hottest cell surface
temperature in the BP is greater than 303 K and is deactivated below
302 K. The 11 g/s total air mass flow moved by the fan is considered to
be equally divided among the rectangular ducts of the BP layout.
Considering this air mass flow, the Reynolds number within the rect-
angular ducts reaches 8570. This value has been obtained through the
following Eq. (5).

_ Wayg ):Dh
v

Re (5)
where wgy, is the air average velocity in the duct, Dy, is the square duct
hydraulic diameter and v is the cinematic viscosity. The average air
velocity is derived by the air mass flow neglecting the air density vari-
ation during the battery cell cooling phase. The hydraulic diameter
value is 0.018 m for the considered system. The cinematic viscosity
related to the initial temperature value is 1,5 * 10~ m?%/s. By consid-
ering the hypothesis described in Section 2.3, the mass flow of the air
stream is considered laminar, fixing the Nusselt number to 7.54 for the
considered duct geometry [53]. From an electrical standpoint, all the
cells start at the same SoC and SoH values set at 10 % and 100 %
respectively in all simulations. In both the considered BP layouts, the
battery cells are electrically connected with three rows in parallel, each
consisting of five cells in series (S5P3 configuration).

The considered simulation test aimed to reach demanding high
temperature conditions: it involves a Constant Current/Constant
Voltage (CC/CV) fast-charging operation followed by a resting period,
for an overall test duration of about 3 h. This control mode for charging
operations can be easily obtained in a simulation environment using a PI
controller that compares maximum charging and actual battery voltage,
as reported in [55]. For this test, the constant current charging value is
set at a maximum value of 1C, corresponding to 66 A, whereas the
considered charging operations are related to a BP SoC variation of 0 %
to 100 %. The complete charging operation is reported in Fig. 18 in
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3
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=
2
© 300.25
[
Q
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Fig. 15. Voltage (a) and temperature (b) comparison between experimental and simulation data in HPPC.
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Fig. 16. Voltage and temperature errors in validation tests.
Table 4 1.2 T T 100
Battery pack layout obtained.
Layout Arrangement
5Rows 5 rows of three cells 09l 175
3Rows 3 rows of 5 cells
o —C-Rate =
terms of c-rate and SoC versus time. ® State of Charge =
In this figure, the charging operation is characterized by a maximum 5 06 130 ‘g
current value of 1C obtained at the beginning of the test. The subsequent n
decrease in charging current, due to the start of CV mode, obviously
involves a reduction in the charging rate and power. After only 45 min, 03 {95
battery charging is mostly complete (~75 %), and the current profile
decreases following the typical CC/CV profile until the charging oper-
ation stops at around 120 min [56].
For the evaluation of the temperature behavior of the single cell on a 0 : ; : 0
1C charging procedure, simulations are performed with the proposed 0 45 T 9([) in] 135 180
ime [min

model by using, as input, the same current profile reported in Fig. 18.
The obtained simulation results are compared with the experimental
temperature behavior (Fig. 19) evaluated with the experimental set-up
described in Section 2.1.

As shown in the figure above, 1C charging operations in the proposed
simulation models show good fitting performance in terms of estimated
temperature.

At the end of the simulations, the two proposed battery layouts were
compared by monitoring the highest temperature hotspots and BP
temperature distribution. As clearly shown in Fig. 20, these hotspots are
located in BP cells characterized by lower heat exchange with the
external environment.

In both configurations, NMC cell number 8 is the BP hotspot. In
particular, the hottest cell in the first layout is the 2nd cell in the 3rd
row, whereas it is the 3rd cell in the 2nd row in the second layout.

Fig. 18. EV SoC and current demand during 1C charging.

4.2. Comparison between 5Rows and 3Rows layouts without BTMS

The first simulation results are related to the 5Rows layout. Consid-
ering the BP modelling assumption, the layout temperature has a sym-
metrical distribution along the transversal and longitudinal axes. For
this reason, the 2nd, 5th and 8th cell temperatures were measured and
reported in Fig. 21.

When the electric load is applied during charging operations, the
temperature quickly increases moving from the outer to the inner bat-
tery cell. The 2nd cell presents the lowest temperature slope thanks to its
direct contact with the air-mass at ambient temperature, reaching a
maximum value of almost 310 K at the end of the charge. Heat exchange
in the 5th and 8th battery cells is less efficient due to overheating of the

- J

4 N

-

Fig. 17. 5Rows (A) and 3Rows (B) battery pack layouts.
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Fig. 19. Experimental and Simulated temperature profile during 1C charging.

air masses around them. Poor dissipation of heat leads to higher
maximum temperatures in the inner cells, with both values reaching
about 316 K at the end of charge. These effects are also visible in the
resting phase, during which the 2nd cell shows a higher temperature
decrease gradient. The overall temperature distribution in the layout at
the end of charge is shown in Fig. 22.

As expected, the temperature distribution is symmetrical in the
longitudinal and transversal layout axes. In conclusion, the 5Rows layout
presents a maximum temperature difference of 6 K between the outer
battery cells and the hotspot.

The second simulation results refer to the 3Rows layout operating
with the same electric load. The temperature trends of the 3rd and 8th
cells are shown in Fig. 23.

In this configuration, the difference between the hotspot and the
other battery cells is smaller than in the previous layout, with a
maximum difference of about 2 K. The hottest battery cell in the layout
reaches a temperature of 314 K. After the resting phase the temperature
of both cells drops below 303 K. This layout solution results in a good
thermal distribution within the BP, as shown in Fig. 24.

In this case, the BP’s hotspot is extended to battery cells in the 7th,
8th and 9th positions due to the more uniform temperature distribution
inside the energy storage system.

Comparing the thermal distributions of the two BP layouts, the
3Rows layout appears to be a better solution than the 5Rows layout.
Although the lowest battery cell temperatures are quite similar, tem-
perature differences among battery cells are higher in the 5Rows layout;
this may be due to unbalanced battery cell aging phenomena or unbal-
anced charging/discharging currents inside the BP. In addition, the
3Rows layout minimizes the maximum temperature of the hotspot, as
highlighted in Fig. 25.
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Fig. 21. 2nd, 5th and 8th cell temperature distribution in the 5Rows layout.
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Fig. 22. BP temperature distribution in 5Rows after

charging operations.

layout

4.3. 3Rows layout with forced air BTMS

Starting from the above consideration, a forced air-cooling system
was introduced to evaluate the effects of BTMS on the thermal behavior
of the battery cells. Evaluations refer mainly to the 3Rows layout, since it
showed the best thermal performance in terms of maximum cell tem-
perature and temperature distribution. Concerning the geometrical
distribution of the cells in the 3Rows configuration, the air mass pro-
vided by the fan was divided into two equal parts directed towards the
two rectangular ducts composed of the 1-2 and 2-3 rows. Fig. 26 shows
the resulting temperature trends for the 3rd and 8th cells.

In particular, the fan turned on after only 15 min and remained
active for about 60 min. During this period, the cooling system managed
to keep the maximum hotspot temperature below 307 K. When the
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Fig. 20. Hotspots in 5Rows (a) and 3Rows (b) layouts.
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Fig. 23. Longitudinal temperature distribution in the 3Rows layout.
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Fig. 24. BP temperature distribution in the 3Rows layout after
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Fig. 25. Comparison between layout hotspots.
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Fig. 26. Longitudinal thermal distribution in the 3Rows layout with
air cooling.
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Fig. 27. Transversal temperature distribution in the 3Rows layout with air
cooling BTMS.

electrical charging load decreased, the battery cells cooled quickly. The
temperature dropped to below the reference temperature of the BTMS a
few minutes before the load was removed. Note that with the activation
of the cooling system, the layout hotspot changed position inside the BP,
as shown in Fig. 27.

The air mass flow increases in temperature as it passes through the
battery cells. For this reason, the 10th battery cell reached a temperature
of almost 308 K, the highest in the BP. The first battery cells that ex-
change heat with the fresh cooling medium achieve temperatures of just
over 299 K. This condition creates a temperature gradient along the BP
transversal axis, with a maximum temperature difference of about 5
degrees between the first and the last battery cell in the string. Fig. 28
shows the temperature distribution of the 3Rows layout configuration, as
well as the direction of the air-mass flow.

In conclusion, the implementation of the cooling system in the 3Rows
layout effectively reduced the maximum battery cell temperature inside
the BP, even though it produced a different asymmetrical temperature
distribution. Note that for the considered test, the temperature increase
during battery charging operations was contained and acceptable even
without a cooling system. However, these conditions refer to brand new
cells at 100 % State of Health. The situation changes rapidly when older
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303K
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Fig. 28. Temperature distribution of the 3Rows layout with an air cool-
ing BTMS.

cells are considered.

Starting from the above considerations, a last case study focused on
the effects of older battery cells on the considered layout. With reference
to the 3Rows layout configuration reported in Fig. 17, the 9th battery cell
was considered in an advanced aging state with a State of Health equal to
75 %. In this case, the higher inner resistance values of the above cells,
calculated using Eq. (1), determined a greater heat generation rate
during charging operations compared to the other cells. The presence of
an aged cell also influenced the layout temperature distribution due to
the development of a new hotspot and a current imbalance between the
different BP rows. Starting from this configuration, the 2C charging test
was repeated under non-cooled operating conditions. Fig. 29 shows the
transversal temperature distribution of the 2nd row, where the hottest
temperature was recorded.

As shown in the figure above, the hotspot corresponds to the aged
battery cell temperature which reaches the highest temperature of about
324 K, whereas new battery cells reach a temperature of around 314 K.
In this case, new cells remain at lower temperatures with respect to the
values reached when all the battery cells are at the same SoH. This is
mainly due to the lower thermal load to be dissipated because of lower
current values.

As expected, the BP temperature distribution improves significantly
by activating the air-cooling system. The transversal temperature dis-
tribution is shown in Fig. 30.

The maximum temperature hotspot value drops below 310 K thanks
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Fig. 29. Transversal thermal distribution in the 3Rows layout with an aged
battery cell when the BTMS is deactivated.
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Fig. 30. The transversal temperature distribution in the 3Rows layout with an
aged battery cell when the BTMS is activated.

to the higher heat rate caused by the intervention of the BTMS. In this
case, the aged battery cell also influences the temperature behavior of
the nearest cells, as clearly highlighted by the higher temperatures of the
10th cell with respect to the previous case. In addition, the latter tem-
perature value is limited by the lower current value through the second
string due to the difference in internal resistance values. In order to
highlight the effectiveness of the cooling system on the aged lithium cell,
Fig. 31 shows the temperature trends of the 9th battery cell under all the
tested operating conditions.

The figure above highlights temperature trends in the 9th cell during
simulations for different SoHs and different cooling conditions. In
particular, during the 1C charging test, the maximum temperature of the
battery cell increased by 5.37 % under standard conditions when the
SoH was 100 % and the cooling system was turned off. Aging affects the
rise in temperature during operation. The aged battery cell without a
cooling system reached a temperature of 324 K with an 8.72 % rise in
temperature. This rapid increase in temperature is of concern because it
poses a fire hazard and may lead to a reduction in the remaining useful
life of the BP. The situation can be improved by adding an air cooling
BTMS that reduces the temperature rise to 5.37 %: this reduces the cell
explosion hazard drastically.
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Fig. 31. Comparison between temperature trend of 9th battery cell for all the
considered operations.
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The reliability of the above results can be considered very high since
they were obtained through experimentally validated simulation
models. The required computational time, comprehensive of a tic-toc
timing analysis on the Simulink numerical model, results in about 2
min. This time is lower in comparison with the requirements of tradi-
tional FEM/CFD analysis of about 3 orders of magnitude [44].

The use of models requiring low computational effort and their direct
connection with geometric layouts can be very useful to vehicle manu-
facturers in evaluating the design and sizing of BPs.

5. Conclusions

This study developed a model-based methodology for use in the
design of battery packs for automotive applications. This methodology is
based on a multi-domain simulation approach to allow electric, thermal
and geometric evaluations of different battery pack configurations, with
particular reference to Li-NMC technology. The results of this study can
be summarized as follows:

e Electro-thermal single-cell models were parametrized and validated
on two Li-NMC cells at different States of Health through experi-
mental laboratory activities, also considering heat interactions be-
tween cells. The models show good fitting performance with
experimental data during both standard and real operating cycles,
providing useful information on the expected electric, thermal and
aging behavior of the analyzed battery cells.

e A model of an air-cooling system was implemented on the basis of
reasonable simplifying assumptions related to air flow and the cross-
sectional areas of ducts.

e Based on the above theoretical and experimental evaluations, a

complete battery pack numerical model was developed and inte-

grated with a 3D CAD model developed in SolidWorks, allowing easy
evaluation of cell layout within the battery pack.

Simulation results on different battery pack configurations high-

lighted the effectiveness of the proposed methodology in evaluating

the effects of cooling system, aging and cell positioning/arrangement
within the battery pack in terms of maximum cell temperature and
temperature distribution.

The proposed methodology can be used to analyze different battery
pack configurations in a very simple way. Various layouts can be ob-
tained quickly by changing a few parameters and analytical electro-
thermal comparison is fast because the battery pack model is created
on the basis of lumped parameter multidomain models. The required
computational is very low compared to traditional FEM analysis and the
accuracy of results is satisfactory for preliminary layout thermal anal-
ysis. Battery pack manufacturers can use the proposed methodology to
reduce design costs, effort, and time.
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