
ARCA
Libraries Programme Project LIB-ARCA/2-3039

Title : ARCA Architectural Design Document

Document Reference : ARCA/T12/ADD

Version : Version 2.0

Date : November, 1995

Author(s) : Maria Bruna Baldacci (CNR-IEI)
Donatella Castelli (CNR-IEI)
Alberto Catoni (CNR-CNUCE)
John Favaro (Intecs Sistemi))
Mario Loffredo (CNR-CNUCE)
Giuseppe Romano (CNR-CNUCE)
Oreste Signore (CNR-CNUCE)
Itziar Lopez de Sosoaga (SABINI)

Distribution : CNR-CNUCE/IEI
Fundacion Sancho El Sabio
Intecs Sistemi
Regione Toscana
SABINI
Universit� di Pisa

Abstract : This report presents the work done during the
specification of the ARCA SR Targer system
architecture. It improves the requirements for
this system and describes the architectural
design of the ARCA Target using the Object
Modelling Technique approach to software
development.

Keywords : SR, Z39.50, OMT, OPAC, EXPLAIN, ARCA
Target Sytem

Reviewed by :

Approved by :

Document Status Sheet

Issue Changes Date Reason

0.0 New document 10 August 1995 First draft

0.1 Update 24 August 1995 Rearrangement
of previous
document by
Baldacci, Castelli,
Catoni, Favaro,
Loffredo,
Romano,
Signore.

1.0 Update 19 October 1995 Preliminary Draft
of the final
document

1.1 Update 5 November 1995 After Progress
Meeting in
Madrid

1.2 Editing 25 November
1995

Preliminary
Final version

2.0 Editing 30 November
1995

Final version

Table of Contents

1 Introduction.. 1

2 Enhancing ARCA Target functionalities.. 2

2.1. Openess towards supporting Z39.50 protocol............................... 3
2.1.1 SR protocol extensions and the Z39.50 protocol................ 3
2.1.2 EXPLAIN .. 4

2.2 Enhancement of the OPAC basic services..................................... 5
2.3 Communication with an ARCA Origin.. 6

2.3.1 Extensibilty and negotiation in SR/Z39.50 Version 3....... 7
2.3.2 Identification of the ARCA Origin during initialization 7
2.3.3 Dynamic extensions of the protocol by ARCA Target

using TCL scripts... 8

3 ARCA SR system architecture .. 9

3.1 ARCA SR Target subsystems ... 9
3.2 OPAC subsystem... 10

3.2.1 Parameters.. 10
3.2.2 Operations.. 11

4 Description of the architecture.. 14

4.1 The Object Model.. 14
4.1.1 Class Apdu ... 15
4.1.2 Class NetworkChannel ... 20
4.1.3 Class Dictionary... 20
4.1.4 Class Kernel ... 25
4.1.5 Class Session.. 25
4.1.6 Class OPAC... 26

4.2 The Dynamic Model .. 27
4.2.1 Dynamic model of the Kernel object.................................. 27
4.2.2 Dynamic model of the Session objects............................... 28

4.3 The Functional Model... 30

5 Setting up the system.. 36

6 SR Target ISIS Interface .. 38

6.1 ISIS OPAC... 38
6.2 ARCA-ISIS Interface .. 39

6.2.1 The supporting structures .. 39
6.2.2 The ISIS API Functions... 39

7 SR Target SABINI Interface... 41

7.1 SABINI OPAC ... 41
7.2 ARCA_SABINI Interface.. 42

7.2.1 The supporting structures .. 42
7.2.2 The SABINI API Functions.. 42

8 References.. 44

9 Definitions and acronyms.. 45

Appendix A: OMT design methodology.. 46

A.1 Object Model.. 47
A.2 Dynamic Model .. 50
A.3 Functional Model... 52
A.4 StP/OMT .. 53

Appendix B: YAZ.. 55

ARCA Target Architectural Design Document ARCA/T12/ADD

1 Introduction

Task 1.2 of the ARCA Project consists of specifying the architecture of the
ARCA SR Target system and the architecture of the interfaces for Sabini and
ISIS.

This report presents the work done during the specification of the ARCA
SR Target system. In particular it enriches the description of the
requirements for this system and describes the architectural design of the
ARCA Target using the Object Modelling Technique (OMT) approach to
software development [Rumbaugh et al.].

The report is organized in the following sections:

Section 2 enhances both general and functional requirements previously
stated.

Section 3 describes the general architecture of the ARCA system.

Section 4 specifies the ARCA system according to OMT models.

Section 5 presents the operations to set up the ARCA system.

Section 6 and 7 describes the interfaces between the ARCA system and,
respectively, ISIS and Sabini OPACs.

Appendix A presents the OMT methodology and StP/OMt CASE tool.

Appendix B describes briefly the YAZ toolkit.

ARCA Target Architectural Design Document ARCA/T12/ADD

2 Enhancing ARCA Target functionalities

Requirements of ARCA Target have been stated in [ARCA/T11/SRD] under
two separate headings, i.e. general requirements and functional
requirements. General requirements, regarding ARCA Target when
communicating with SR Protocol APDUs, can be summarized as follows,
with reference to Figure 2.1.

SR Origin SR OriginSR Origin

APDU APDU
APDU

Network

ARCA SR

Target

OPAC

OPAC

ARCA

Interface
End User

Application

Interface
End User

Application

Figure 2.1- An SR Protocol Architecture

The ARCA Target accepts connection from any origin, be the origin
functions implemented in an independent end user workstation, or in an
OPAC, or activated by the ARCA User Interface Application, described in
[ARCA/T22/ADD]. The only constraint is that the incoming request
conforms to the ISO 10162/10163 Standard i.e. it must accept the INIT,
SEARCH, PRESENT, DELETE, SR-RELEASE and SR-ABORT requests as
defined in the SR protocol. To serve these requests the ARCA system must
be able to communicate with the faced OPAC.

The requests coming from the ARCA End User Interface should be
immediately fulfilled by the ARCA Target as a consistency check should
have already been performed at the origin site. This can result in saving of

ARCA Target Architectural Design Document ARCA/T12/ADD

the processing time, even if some checks can be repeated at the target site as
a consequence of some implementation choices.

After discussing the new services defined in the ANSI NISO Z39.50 protocol
document, released as preliminary final text in April 1995, ARCA partners
agreed upon the immediate implementation of EXPLAIN Service, and
possible future implementation of the SCAN Service, being such services
already proposed for standardization by the ISO and strongly requested by
users.

The decision taken about EXPLAIN forces the updating of both general and
functional requirements previously stated. Adjuntive requirements can be
grouped under three headings, as follows:

a) openess towards supporting Z39.50 protocol;

b) enhancement of the OPAC basic services

c) communication with an ARCA Origin

2.1. Openess towards supporting Z39.50 protocol

2.1.1 SR protocol extensions and the Z39.50 protocol

As stated in the ARCA/T21/SRD-User Requirements Document,
expansions of the SR protocol services are desirable in order to allow users
friendly communication. Indeed, the protocol "services to be standardized
in the future", as announced in Appendix A of [ISOa] were judged to satisfy
most of the requirements stated by the users. In the work done for defining
the ARCA system requirements [ARCA T11/SRD] we took into account
only the ISO SR documents, waiting for the announced additional
functional extensions. Recently, however, the ANSI/NISO Z39.50-1995 is
appeared, that is defined as a superset, with bit compatibility, of ISO SR.

Z39.50 -1995 adds several new services and facilities and includes numerous
enhancements. New features include:

¥ The ability to search multiple databases more efficiently by enabling
the combination of attributes from different attribute sets within a
single query. The revised standard also allows greater flexibility in the
definition of attribute sets.

¥ The ability to request specific portions of a document (such as captions,
images, or section headings); to request documents according to
specific variants; and to request only the most relevant pertinent
portions of a document.

¥ New services and facilities such as SCAN (used to scan terms in a list
or index), sort (for sorting a result set), EXPLAIN (a client can search
and retrieve details of the available databases on a server), and

ARCA Target Architectural Design Document ARCA/T12/ADD

extended services (services that relate to or support information
retrieval such as document ordering, request prints of a result set, and
defining a periodic query).

¥ Faster retrieval of a large number of records by allowing a server to
respond to a present request with multiple consecutive response
messages without intervening requests. Also, better support for large
records such as images through new segmentation features.

¥ Enables a client and server to agree to use a particular language (i.e.,
English, French, German) and/or character sets during a session.

The services that users are mostly interested in are surely EXPLAIN and
SCAN, as also stated in [PARAGON]. The ARCA system architecture has
been defined to support the EXPLAIN facility, however it is also open
towards the implementation of the other facilities, in particular SCAN.

2.1.2 EXPLAIN

The EXPLAIN facility in the ARCA Target is invoked via a SEARCH
operation against a database named ÒExplainÓ. This kind of search allows an
origin to obtain information useful in setting up its SR requests to the
target.

The information available in the Explain database can be thought as a
model of an ARCA Target. This model is logically organized in categories
having a well defined structure. In the figure 2.2 a box surrounds a category
and the information items associated with it. These items are a subset of the
database Explain components as defined within the Z39.50 Protocol with an
extra information, ÒRPN_query_syntaxÓ, which specifies the ARCA target
query language. The meaning associated with these items can be found in
[ANSI].

The queries which appear in a search operation on Explain must satisfy
particular restrictions. First, the access points which can be referred in these
queries are those items in the figure marked with a star. Second, only
particular query structures are allowed. For example, a query on Explain
information always must comprise the selection of an appropriate category.
So, for example, in order to search for information about a database "A" the
query must be the conjunction of "category = DatabaseInfo" and
"database_name = A".

The result of a search on Explain is a set of records with the structure
defined for the selected category.

ARCA Target Architectural Design Document ARCA/T12/ADD

DatabaseInfo

* database_name
explain_database

database_status

database_keywords

elements_set_names

def_order

query_operator

proxy_supp

proxy_operation

schema_names

searchable_with

attribute_set_names
record_syntax_names

element_set_names

TargetInfo

* target_name

result_set_naming

multi_database_search

max_result_set

supported_record_syntax

max_set_size

max_num_term

contact_info

target_txt

diagnostic_set

query_type

supported_authentication

supported_databases

AttributeSetInfo

* attribute_set_oid

attribute_set_name

attributes_details

SchemaInfo

* schema_oid

schema_descr

record_structure

AttributeDetails

attribute_value

attribute_type

* database_name

RecordSyntaxInfo

* record_syntax_oid

record_syntax_descr

ASN.1_syntax

record_structure

ElementSetDetails

* element_set_name

element_set_descr

* record_syntax_oid

* database_name

CategoryList

* explain_category

record_syntax_name

attribute_combinations

attribute_description

schema_name

RPN_query_syntax

Figure 2.2 - The Explain categories

2.2 Enhancement of the OPAC basic services

The set of functionalities of the ARCA system consists in the union of those
provided by the underlying OPAC, which will be called ÒnativeÓ, and those
implemented by the ARCA software. In this sense, ARCA aims at
enhancing the OPAC basic services.

ARCA Target Architectural Design Document ARCA/T12/ADD

In addition, the ARCA system gives the chance to implement a set of
software modules to fit future requirements. For example, one can
implement a module that translates the ÒnativeÓ record format into
USMARC, even if the underlying OPAC does not support it.

Once installed, the ARCA system will be able to assure the following
functionalities :

¥ Naming result set
The system will be able to save a result set returned with the specified
name. This allows the ARCA target to support the back reference to
previously executed queries.

¥ Multiple database search
A same query could be simultaneously applied to more than one
database. If the OPAC does not accept this kind of search, the ARCA
target decomposes it in a series of searches on each single database and
the returned result sets are seen by the origin as a unique result set.

¥ Z39.50 V3 Explain
Even if the SR protocol does not yet foresee this functionality, the
ARCA system provides it. This enables an ARCA origin to configure
itself either to better reflect the target characteristics and to provide a
valid databases description to the end-user. ARCA will make available
only a part of the Explain informations but the OPAC administrator
will be able to easily add further information to fullfil Z39.50 EXPLAIN
service.

¥ RPN query
The OPAC is required to accept at least RPN or infix queries as a string
of characters; the ARCA system assures the transformation of the
queries formulated in RPN structure into the OPAC proper format.

The whole architecture allows the single OPAC to become an ARCA Target
just offering its standard services. Furthermore, it is flexible enough to
permit the addition of new features by implementing the appropriate
software modules.

2.3 Communication with an ARCA Origin

As noted elsewhere in this document, the possibility is envisioned that
there may be a "special relationship" between an ARCA client (origin) and
an ARCA server (target). For example, it may be possible for the client to
discover even more specific information about the server than is available
through the standard EXPLAIN facilities. Or, it may be necessary to
communicate in ways that are not specified in the protocol in order to
implement some facilities that are available in an ARCA target but not yet

ARCA Target Architectural Design Document ARCA/T12/ADD

supported by the SR/Z39.50 protocol. This section discusses the options
available for communication between an ARCA client and target.

2.3.1 Extensibilty and negotiation in SR/Z39.50 Version 3

In general, we apply the principle of staying within the standard SR/Z39.50
protocol whenever possible. We believe that the introduction of proprietary
protocol extensions or other nonstandard means of communication
represents an outmoded approach that is contrary to the modern
movement toward open systems. The SR/Z39.50 protocol now provides
numerous facilities to assist clients and targets that have agreements
outside of the standard, but nevertheless wish to support these agreements
through existing protocol facilities.

Version 3 of the SR/Z39.50 protocol provides powerful mechanisms for
extending the protocol. As stated in the standard:

Each protocol message includes a field for information whose
format is to be defined externally. These externally defined
formats will be registered and maintained by the Z39.50
Maintenance Agency, as provisional extensions to the standard,
for experimental use and possible consolidation into a subsequent
version.

Specifically, there is a field called "Other-information" or "otherInfo" in
each protocol data unit defined in Version 3 of the standard. It is an array of
Externals, which may be freely used by implementors to add whatever
extensions to the protocol are desired. Communicating client and server
partners can browse this list of externals, acting on those extensions it
recognizes, ignoring the rest silently.

This otherInfo field will be the major mechanism for exchanging any
ARCA-specific data. Since it is present in all protocol data units (e.g. Search,
Present, etc.) it will be used in different protocol data units as appropriate to
the particular task.

2.3.2 Identification of the ARCA Origin during initialization

An ARCA origin that wishes to identify itself to an ARCA target must find
a way to communicate its identity during the initialization process.
Although the otherInfo field is also present in the Init procotol data unit,
there is a potential problem with using it during initialization, as stated in
the standard:

Care should be taken by the origin when using this parameter; the
origin cannot ascertain that version 3 is in force before sending
the Init request.

ARCA Target Architectural Design Document ARCA/T12/ADD

Because of this problem, the ARCA client should avoid the use of the
otherInfo field during initialization. Fortunately, several other fields are
available for communicating information that is outside the standard.

¥ Implementation-id. This field, whose exact contents are not specified
by the standard, allows the client to identify a unique implementation.
For example, this could identify an ARCA client in a machine-readable
form.

¥ Implementation-name. This allows the client to provide a name by
which it wants to be known in human readable form. For example, the
name "ARCA" could be specified (although an implementation-id
might provide a better guarantee against accidental name clashes with
other clients).

¥ Implementat ion-vers ion. This field is also not specified in the
standard, and might allow the ARCA client and server to synchronize
on which respective versions of the ARCA software they are using.
This could also include information about the client implementation
platform (e.g. Unix, Windows, Macintosh).

Any of these fields, or some combination of them, can be used by the ARCA
client to identify itself to the ARCA target. During identification, the ARCA
client could also include information on the most recent version of
dictionary data held in the client.

In the Init response APDU, the ARCA target is free to use the otherInfo
field in order to transmit ARCA-specific information (such as updated
dictionary information).

2.3.3 Dynamic extensions of the protocol by ARCA Target using TCL
scripts

The ARCA target is designed to work as a front-end to arbitrary OPACs.
Because of this, it is not feasible to plan for special, as-yet unknown features
of new OPACs. One approach to dealing with this problem is to provide for
dynamic extensions of the protocol to support these features.

Dynamic extensions can be supported by using the otherInfo field of the
Version 3 APDUs to communicate TCL scripts (which are already used in a
similar context for other systems, in order to add functionality in a dynamic
fashion). A scenario is as follows:

If a certain OPAC provides a functionality that cannot possibly be mapped
onto the current version of the protocol, then the OPAC provider, together
with ARCA consortium participants, defines the necessary protocol
extension, which is communicated to the client in the otherInfo field.
Together with this extension, to handle the extended features the target
sends a TCL script to the client . In a Windows environment, it would also
be possible to make use of DLLs in a similar fashion.

ARCA Target Architectural Design Document ARCA/T12/ADD

3 ARCA SR system architecture

3.1 ARCA SR Target subsystems

At the most abstract level the architecture of the ARCA SR Target System
can be seen as decomposed in two modules: Target Core , which is
independent from the interfaced OPAC, and SR Target OPAC Interface,
which is specific to each library system (see figure 3.1). As the main goal of
the ARCA Project is to minimize the effort required to incorporate a new
library automation system, the functionalities of the two modules have
been chosen appropriately in order to reduce as much as possible the
complexity of SR Target OPAC Interface.

ARCA SR Target

Target Core
 subsystem

OPAC subsystem

Database CDatabase BDatabase A

SR Target OPAC Interface

OPAC

Figure 3.1 - ARCA SR Target Subsystems

The Target Core subsystem is a software component which is completely
independent from the underlying OPAC. It accepts SR requests and serves
them by, possibly, calling appropriate primitives of the SR Target OPAC
Interface.

The SR Target OPAC Interface is a software component, specific to each
OPAC, which renders the library service accessible through a set of
primitives.

ARCA Target Architectural Design Document ARCA/T12/ADD

From the point of view of the Target Core subsystem, an OPAC and its SR
Target Interface can be assimilated to a logical system which offers "OPAC-
like" search capabilities. This justifies why this subsystem has been called
OPAC subsystem.

As a consequence of the above architecture, the functionalities of a target
built by interfacing an OPAC with an ARCA SR Target system result from
the union of the "native" functionalities provided by the OPAC subsystem
and those implemented by the Target Core.

This report focuses on the architecture of the Target Core and the interface
among this and the OPAC subsystem. The SR Target OPAC interfaces for
the OPACs Sabini and ISIS are presented in a different report.

3.2 OPAC subsystem

This section presents the assumptions on the OPAC subsystem which have
been made in defining the Target Core architecture. Any OPAC subsystem
which will be interfaced by a Target Core module must satisfy these
assumptions.

The OPAC subsystem is characterized in terms of a set of constant
parameters, which define its static characteristics, and a set of operations,
which define its interface.

3.2.1 Parameters

Services

An OPAC can be considered as being a server application able to support a
subset of the following services: Authentication, RPN-Search, Non-RPN-
Search, Present (Export), Delete-result-set and Termination. If Delete-result-
set is supported then also Present must be supported.

The Delete-result-set service can be supported for a single result-set, a list of
result set, or all result sets held by the OPAC.

Databases

The OPAC provides access to one or more named bibliographic databases,
each one being a collection of one or more files, with a unique name. The
unit of information for retrieval from a database is a record. All the records
within a given database have a common structure. An access point is a key
which can be specified, together with the access mode, in a search for
records. Databases combination can be specifed in a search, too.

Each database can export its records according to different record
compositions. A composition is identified by a name and the set of its data
elements. The default is full database record. The database can export its

ARCA Target Architectural Design Document ARCA/T12/ADD

records in various transfer record syntaxes. OPAC must support
UNIMARC, at least.

An average and a maximum size of records is associated with each
database.

Query language

The OPACs we consider are able to process one of the following query types:
ISO8777, private, textual infix, textual RPN, RPN structure. Except the first
two cases, it is possible to define the set of acceptable queries in terms of
allowed access points and selectors, and Boolean structures supported.

Result sets

The OPAC is able to support result sets which are local data structures
identifying records (i.e. composed by records identifiers, e.g. pointers). The
logical structure of the result set is that of a named (by default) ordered list
of triples consisting of:

a) an ordinal number corresponding to the position of the triple in the
list;

b) a database name;

c) a unique identifier (of local significance only) of a record within the
database named in b).

A result set item is referenced by its position within the result set, that is, by
a).

The number of results sets which can be handled concurrently cannot
exceed a maximum: the OPAC, however, must support at least the result set
whose name is "default".

3.2.2 Operations

Each of the operations listed below assumes to be invoked in the right
order. For example, if an authentication operation occurs, it must be the
first one.

Each operation returns FALSE or TRUE according to whether it has been
executed successfully or not; it also access a storage area, called CommArea,
containing the error messages (MsgArea) and information of general use
for the OPAC.

The CommArea includes:

¥ the MsgArea, which holds:

¥ a bib-1 diagnostic as defined in ISO 10163 (mandatory)

ARCA Target Architectural Design Document ARCA/T12/ADD

¥ a bib-1 diagnostic as defined in ANSI/NISO Z39.50-1995 (optional)

¥ an OPAC error message (optional).

¥ an identifier for the Origin requesting the service that is used by the
OPAC to check the privileges.

¥ a set of information identifying the origin.

OPAC.Authentication

This operation takes as input an authentication information and checks its
validity. The form and content of this information are a matter of prior
agreement between the origin and the target. If the information supplied as
input is valid, then the OPAC stores the pertinent information into a local
object and returns an appropriate code (TRUE) and a list of the available
services. If not all the services are available on all databases, the OPAC can
send an explanatory message, too. If it is invalid returns a code (FALSE) and
a message explaining the kind of information required.

OPAC.RPN_Search

This operation may be applied to an OPAC specifying a list of database
names, a result set name (optional) and a query. This operation assumes
that:

a) all the databases indicated are associated with the OPAC and can be
searched in combination;

b) the specified query is one of those which the OPAC can serve and it is
an RPN query formulated in terms of an RPN structure ;

c) the creation of a new result set does not exceed the OPAC result set
capacity.

The OPAC must verify that the requested service is compatible with the
authentication information.

The result of a successful search is the association of a result set to the
given result set name. As a consequence of this association the result set can
be referenced in a subsequent search query statement and manipulated to
form a new result set.

OPAC.Non_RPN_Search

The parameters of this search operation are: a list of database names, a
result set name (optional) and a query. This search assumes that:

a) all the databases indicated are associated with the OPAC and can be
searched in combination;

ARCA Target Architectural Design Document ARCA/T12/ADD

b) the type of query is one among {infix, ISO8777, private, RPN string};

c) the specified query is formulated in textual form;

d) the creation of a new result set does not exceed the OPAC result set
capacity.

The OPAC must verify that the requested service is compatible with the
authentication information.

As with the previous search operation, the result of a successful search is
the association of a result set to the given result set name.

OPAC.Present

A present operation exports a subset of the records from a result set. These
records are referenced by their relative position within the result set. This
operation takes as input the result set name , the start point within the
result set, the number of records requested, the record syntax, and the record
composition. The last parameter specifies the desired composition of
retrieval records. The present operation assumes that result set name,
record syntax and record composition are known to the OPAC.

The OPAC must verify that the requested service is compatible with the
authentication information.

The present operation returns a list of references to documents which
satisfy the given specification. If (start point + number of records requested)
is greater than (number of records within the result set + 1) then the
documents selected are those from the start point to the last document in
the result set. Of course, if the start point is greater than the last position in
the result set then the subset returned is empty.

OPAC.Delete

The delete result set operation takes in input a list of result set names. The
opearation cancels the association between a result set name, given as
input, and the corresponding result set. This operation assumes that the
result set name is known to the OPAC.

OPAC.Termination

This operation fires when the origin communicates his intention to
terminate the session, or the ARCA target decides to kill it. This operation
takes as input a list of result set names, which are assumed to be known to
the OPAC, a deletes all the association between them and the corresponding
result sets.

ARCA Target Architectural Design Document ARCA/T12/ADD

4 Description of the architecture

The definition of the architecture of the Target Core subsystem follows the
stage of understanding the ARCA System requirements. In this section
these requirements are made precise by building a model according to the
OMT methodology, which is described in Appendix A. Let us remind that it
covers three aspects: the static structure (object model), the sequencing of
interactions (dynamic model) and data transformations (functional model).
The architecture has been designed using the automated CASE tool
StP/OMT ([StP/OMT]), whose characteristics are briefly described in
Appendix A.

4.1 The Object Model

The OMT methodology requires to specify first the context of the system. In
our case, it consists of three interacting subsystems (Figure 4.1):

¥ Origin Subsystem
It describes how the interaction between the Target Core and the origin
occurs through the network.

¥ Target Core Subsystem
It consists in all the components that are involved in the
implementation of the SR functionalities.

¥ OPAC Subsystem
It represents the API interface level between ARCA and the underlying
OPAC.

As regard to the properties of each class, we must outline that we will
consider only those who are needful to understand the general
functionalities of the ARCA system. In particular, we will provide a
description of the methods showing only the most relevant input
parameters. Among the input parameters of each method, we wonÕt
include the type of the object the method is acting on because it is implicit
in the object-oriented design style.

Each class will present two methods that are for the creation and the
deletion of the instances (objects) of that class. In respect with the C++
notation, these methods will be called constructors and destructors and will
be identified respectively by <class-name> and by ~<class-name>.

ARCA Target Architectural Design Document ARCA/T12/ADD

+ Kernel()
+ ~Kernel()

- Dict_ Init ()

- New_ Session()
- Dispose_Session()

- Init_ Channel()

- New_ Channel()

- active _sessions

- implementatio n_name

- implementatio n_id

- implementatio n_vers ion

Ker nel

Networ kChannel

+ Netwo rkChannel()

+ ~Netwo rkChannel()

+ Send_PDU(Apdu)

+ Read_PDU(Apdu)

- channel_id

used_b y

ho lds

0<active_sessions<MAX_SESSIONS

used_ by

act ivates

Diction ary

+ Dictio nary()

+ ~Dict ionary()

+ Get_ Init_ Data()

+ Get_ Search_Data()

+ Get_ Present_ Data()

+ Get_ Delete_Data()

+ Get_ Explain_Data(Category_ Info _Type)

+ last _mod ify_ date

+ categ ory_ info_ supported

Origin

access

OPAC

- diag_set

+ Authe nt icat ion(CommArea, Aut hString)
+ RPN_Search(CommArea, RPN_Que ry, DbName_Lis t , Result _Set)

+ Non_RPN_Search(CommArea, Non_RPN_Que ry, DbName_List , Result_Se t)
+ Present (CommArea, Result _Set , Doc_Pt r_L ist , From_Rec, Num_Rec, Rec_Syntax,

 Rec_Composition)
+ Delete(CommArea, Result _Set _Name_Lis t)

+ Terminat ion(CommArea, Result _Set _Name_Lis t)

Or i gi n Subsy ste m

OPAC

Subsy stem

Tar get Cor e

Subsystem

Apdu

+ Apdu(PDU_typ e)

+ ~Apdu()

+ Fill_ PDU()

+ Get_ Data()

+ Get_ Opt_ Data()

- reference_ id

used_b y

Session

+ Session(Networ kChannel)

+ ~Session()

+ Hand le_Init_ Req(Ap du)

+ Hand le_Srch_Req(Apdu)

- Hand le_Srch_Expl_Req(RPN_Query)

+ Hand le_Prsnt_ Req(A pdu)

+ Hand le_Dlte_ Req(A pdu)

+ Hand le_SR_Release_Req()

+ Hand le_SR_Abort_ Req()

- origin_ id

- status

- prot ocol_ version

- optio ns

- preferred_message_size

- maximum_message_size

access

Figure. 4.1 - The first decomposition level of the ARCA Object Model

4.1.1 Class Apdu

The instances of this class represent the data structures exchanged between
the origin and the target. This class abstracts the common structure among
the APDUs (Table 4.1) used by each Session object during its existence. The

ARCA Target Architectural Design Document ARCA/T12/ADD

APDUs can be divided according to their type each one representing a
message exchanged between the origin and the target (Figure 4.2).

Attribute Description

reference_id Field common to all the APDU types (Presently, it has
meaning only for the origin).

Method

Apdu(PDU_type) In this case, the constructor needs also the APDU type
to create the right APDU object (i.e. InitPDU,
SearchPDU and so on.)

Fill_PDU Fills the specified APDU with the proper data.

Get_Data Returns data about the APDU.

Get_Opt_Data Returns optional data about the APDU.

Table. 4.1 - The properties of the Apdu class

Init_PDU

+ Init_PDU()

+ ~Init_PDU()

+ Get_Init()

+ Get_Init_Op t()

+ Check_Init()

Record

+ Record()

+ ~Record()1+ 1+

Non_RPN_Query

+ Non_RPN_Q uery()

+ ~Non_RPN_Q uery()

+ Convert_Q uery(RPN_Query)

RPN_Q uery

+ RPN_Query()

+ ~RPN_Query()

+ Tra nslate_Query(Attribu te SetIn fo)

+ Adjust_Qu ery(RPN_Query,

 Attribu te SetIn fo)

+ Check_Synta x(RPN_Query,

 DatabaseInfo)

+ Handle_Query(RPN_Q uery)

- Expand_Query(RPN_Q uery)

- Fragment_Q uery(RPN_Query)

Query

- Non_RPN_Query _Type

+ Query(Query _t ype)

+ ~Query()

Apdu

+ Apdu(PDU_t y pe)

+ ~Apdu()

+ Fill_PDU()

+ Get _Dat a()

+ Get _Opt _Data()

- refere nce_i d

+ Init_Resp_PDU()

+ ~I nit_Resp_PDU()

+ Set_In it_Resp()

+ Fill_Init_Res p

Init_Resp _PDU

+ Srch_PDU()

+ ~Srch_PDU()

+ Get_Src h()

+ Get_Src h_Opt()

+ Check_Srch()

Srch_PDU

+ Srch_Resp_PDU()

+ ~Srch_Resp_PDU()

+ Set_Srch_Resp()

+ Fill_Srch_Resp

Srch_Resp_PDU

Prsnt_PDU

+ Prsnt _PDU()

+ ~Prsn t _PDU()

+ Get_Prs nt()

+ Get_Prs nt_Opt ()

+ Check_Prsn t ()

Dlte _PDU

+ Dlte_PDU()

+ ~D lte_PDU()

+ Get_Dlte()

+ Get_Dlte_Opt()

+ Check_Dlte()

+ Dlte_Resp_PDU()

+ ~Dlte_Resp_PDU()

+ Set_Dlte _Resp()

+ Fill_Dlte_Resp

Dlte_Resp_PDU

+ Prsnt_Resp_PDU()

+ ~Prsnt_Resp_PDU()

+ Set_Prsnt_Res p()

+ Fill_Prsnt_Resp

Prsnt_Resp_PDU

Figure. 4.2 - The first decomposition level of the ARCA Object Model

ARCA Target Architectural Design Document ARCA/T12/ADD

The methods acting upon an APDU are specialized for each subtype (Table
4.2 - 4.5).

Description

Method Init_PDU Init_Resp_PDU

Set_Init_Resp Sets particular data of the
initialize response PDU.

Fill_Init_Resp Fills the initialize response
PDU.

Get_Init Returns the mandatory
fields of the initialize
request PDU.

Get_Init_Opt Returns the optional fields
of the initialize request
PDU.

Check_Init Performs a check of the
incominig request against the
data in the dictionary.

Table 4.2 - The properties of the Init_PDU and Init_Resp_PDU classes

Description

Attribute Srch_PDU Srch_Resp_PDU

query Query.

records Returned records.

Method
Set_Srch_Resp Sets particular data of the

search response PDU.

Fill_Srch_Resp Fills the search response
PDU.

Get_Srch Returns the PDU mandatory
fields.

Get_Srch_Opt Returns the PDU optional
fields.

Check_Srch Checks the current request
against the dictionary.

Table 4.3 - The properties of the Srch_PDU and Srch_Resp_PDU classes

ARCA Target Architectural Design Document ARCA/T12/ADD

Description

Attribute Prsnt_PDU Prsnt_Resp_PDU

records Returned records.

Method

Set_Prsnt_Resp Sets particular data of the
present response PDU.

Fill_Prsnt_Resp Fills the present response
PDU.

Get_Prsnt Returns the PDU mandatory
fields.

Get_Prsnt_Opt Returns the PDU optional
fields.

Ceck_Prsnt Checks the current request
against the dictionary.

Table 4.4 - The properties of the Prsnt_PDU and Prsnt_Resp_PDU classes

Description

Method Dlte_PDU Dlte_Resp_PDU

Set_Dlte_Resp Sets particular data of the
delete response PDU.

Fill_Dlte_Resp Fills the delete response
PDU.

Get_Dlte Returns the PDU mandatory
fields.

Get_Dlte_Opt Returns the PDU optional
fields.

Check_Dlte Checks the current request
against the dictionary.

Table 4.5 - The properties of the Dlte_PDU and Dlte_Resp_PDU classes

Among the items composing the search APDUs, an important role is played
by the query (Table 4.6). Such objects represent the type of queries that can be
processed by the ARCA system. If the query is a RPN query (Table 4.7),
ARCA will perform several checks on its admissibility in respect with the
characteristics of the underlying OPAC, and, as much as possible, the query
will be transformed to be successfully submitted to the OPAC.

Method Description

Query(Query_type) In this case, the constructor needs also the query type to
activate the constructor of the corresponding class.

Table 4.6 - The properties of the Query class

ARCA Target Architectural Design Document ARCA/T12/ADD

Method Description

Translate_Query Trasforms the query by translating the attributes of the
BIB-1 set into the related attribute of the OPAC set.

Adjust_Query Adjusts the RPN query to produce a new one which presents
the selectors in the rigth positions.

Check_Syntax Checks whether the RPN query is formulated according to
the allowed syntax.

Handle_Query Transforms the query according to the values of
Òresult_set_namingÓ and Òmax_num_termÓ attributes of
the TargetInfo object.

Expand_Query Expands the query by replacing each reference to a result
set with the corresponding subquery.

Fragment_Query Fragments the query in a set of simple (two operands and
one operator) subqueries.

Table 4.7 - The properties of the RPN_Query class

The selectors will be placed in the right position and, to overcome the
OPAC limitations about backreferencing and number of composing terms,
the query will be opportunely managed. Moreover, the access points of bib-1
will be translated according to the OPAC native value and, if the OPAC
doesnÕt support RPN query processing, the query will be converted to an
infix or a RPN textual notation (Table 4.8). No check will take place if the
incoming query type will be ISO8777 or private textual whilst a partial check
occur on a ARCA Origin query. The Search and Present Response APDUs
shall return a collection of records representing a part of or the whole result
of the submitted queries (Table 4.9).

Attribute Description

Non_RPN_Query_Type A query type among infix string, RPN string, ISO8777,
textual private.

Method

Convert_Query Produces the infix or RPN textual version of a RPN query.

Table 4.8 - The properties of the Non_RPN_Query class

Attribute Description

Record A database or diagnostic record.

Method

Table 4.9 - The properties of the Record class

ARCA Target Architectural Design Document ARCA/T12/ADD

4.1.2 Class NetworkChannel

As it is shown in Figure 4.1, the Origin Subsystem and the ARCA
Subsystem share the NetworkChannel class. This class allows to abstract the
usual functions of sending and receiving data over a network from the
implementation of the OSI transport layer. Therefore, we will be able to
change the implementation of such a layer according to the chosen protocol
(for example TCP/IP or ISODE) without affecting the rest of the system. For
such reasons, we decided to abstract the connection between the target and
an origin (for example a TCP/IP or ISODE address) and generally refer to it
as a network channel. Among the functionalities demanded to
NetworkChannel methods (Table 4.10), there are also the encoding
decoding of the outcoming incoming data as stated in the requirements of
ISO 10163 [ISOb]. This enables us to deal, in the rest of the ARCA system,
only with APDUs without regarding how they are encoded or decoded. At
execution time, N+1 NetworkChannels will be instantiated (N for the
currently active connections with the origins and one for the connection
which the Kernel object waits on).

Attribute Description
channel_id Unique identifier for a network channel.

Method
Send_PDU Takes as input an APDU, encodes it and sends it down the

network channel.

Read_PDU Reads an octet string from a network channel and decodes
it building an APDU to be used in the ARCA system.

Table. 4.10 - The properties of the NetworkChannel class

4.1.3 Class Dictionary

The Dictionary holds data that describe the entire ARCA system. For each
service (Table 4.11), a check against those data takes place, in order to make
the OPAC serve only correct requests. The Dictionary also holds data to
support the EXPLAIN Service.

ARCA Target Architectural Design Document ARCA/T12/ADD

Attribute Description

last_modify_date Date of last update of the Dictionary

category_info_supported Supported Explain category info

Method

Get_Init_Data Returns the information about the Initialize service.

Get_Search_Data Returns the information about the Search service.

Get_Explain_Data It takes as input the Explain category to which data refer.
Returns the information about the EXPLAIN service.

Get_Present_Data Returns the information about the Present service.

Get_Delete_Data Returns the information about the Delete service.

Table 4.11 - The properties of the Dictionary class

As it is shown in Figure 4.3, the unique Dictionary object can be seen as
composed of items belonging to eight subclasses. Each subclass represents an
Explain category as stated in the Z39.50 V3 protocol.

ARCA Target Architectural Design Document ARCA/T12/ADD

Diction ary

+ Dictionar y()

+ ~Dict ionary()

+ Get_ Init_ Data()

+ Get_ Search_Dat a()

+ Get_ Present_ Data()

+ Get_ Delete_ Dat a()

+ Get_ Explain_Data(Categ ory_ Info_ Type)

+ last _mod ify_ date

+ categ ory_ info_support ed

DatabaseInfo

+ Get_ Data()

- dat abase_name

- explain_datab ase

- user_fee

- availab le

- dat abase_st atus

- dat abase_keywords

- de f_order

- query_operato r

- RPN_query_ syntax

- proxy_ supp

- proxy_ operation

is_associated_to

searchable_with

Recor dSyntaxI nfo

+ Get_ Data()

- record_syntax_ name

- record_syntax_ oid

- record_syntax_ descr

- ASN.1_syntax

- record_stru cture

SchemaInfo

+ Get_ Data()

- schema_name
- schema_oid

- schema_descr

- record_str uct ure

ElementSetDetails

+ Get_ Data()

- element_ set _name

- element_ set _descr

database_name
1+

attrib ut e_set _name
1+

schema_name

1+

1+

element_ set_ name
1+

Tar get Info

+ Get_ Data()

- target _name

- result _set_ naming

- multi_ database_search

- max_ result _set

- max_ set_ size

- max_ num_term

- cont act_in fo

- target _t xt

- diagnostic_set

- query _ty pe

- selector_ position

- supporte d_auth entic ation

1+

Att r ib uteSetInfo

+ Get_ Data()

- attr ibu te_ set_ oid

- attr ibu te_ set_ name

- attr ibu te_ combinations

1+

attr ibu te_ typ e

Att r i buteType

+ Get_ Data()

- attrib ut e_name

- attrib ut e_t ype

- attrib ut e_descript ion

- default_ value

1+

attr ibu te_ value

Att r i buteDescr ip ti on

+ Get_ Data()

- name

- value

- descrip tio n

- is_selector

record_syntax_ name

Figure 4.3 - The Dictionary context

The class TargetInfo (Table 4.12) is concerned with information related to
the whole ARCA system. Such information corresponds to facilities

ARCA Target Architectural Design Document ARCA/T12/ADD

provided by the underlying OPAC natively or by means of ARCA
procedures.

Attribute Description

target_name Target name.

result_set_naming Indication about the possibility of result set naming.

multi_database_search Indication of whether or not ARCA supports the
search on more than one database.

max_result_set Maximum number of result sets ARCA handles.

max_set_size Maximum number of records in a result set.

max_num_term Maximum number of terms allowed in a query.

contact_info Information about the person or institution to call.

target_txt Description of the target system.

diagnostic_set Diagnostic sets supported by ARCA.

query_type The types of the queries ARCA can satisfy.

selector_position The allowed selector position in a query.

supported_authentication Indication of whether or not ARCA supports access
control.

Method

Get_Data Returns the data about the target.

Table 4.12 - The properties of the TargetInfo class

The target satisfies the requests directed to one or more databases of the
underlying OPAC. Each database can be searched in combination with
others and has proper indications regarding the way a query should be
formulated to be processable. Information about this is given by the
attributes regarding operators and RPN query syntax (Table 4.13) and
attribute combinations (Table 4.15).

A database can have one or more schemas i.e. common understandings
about the information contained in the database records (Table 4.14).

A database recognizes one or more sets of attributes (bib-1 is mandatory)
each one composed by a specific collection of attributes which may be only a
part of the entire attribute set. The associations between the allowable
attribute combinations in the search query and the OPAC access points is
described (Table 4.15). The information about each single attribute is
maintained (Table 4.16-4.17).

Obviously, database records are stored according to a specific record syntax
(i.e. USMARC, UNIMARC) that can be associated with a collection of
element sets (Table 4.18 - 4.19).

ARCA Target Architectural Design Document ARCA/T12/ADD

Attribute Description

database_name Full database name.

explain_database Whether this is an Explain database.

user_fee Whether there is a fee to pay for searching.

available Whether the database is available.

database_status Whether this database is currently searchable.

database_keywords List of keywords for the database.

def_order Default order in which records are presented.

query_operator Supported query operators.

RPN_query_syntax Allowed RPN query syntax.

proxy_supp Whether proximity operations are supported.

proxy_operator Proximity parameters supported.

Method

Get_Data Returns the data about the requested database.

Table 4.13 - The properties of the DatabaseInfo class

Attribute Description

schema_name Name of the schema.

schema_oid Object identifier of the schema definition.

schema_descr Description of the schema.

record_structure Abstract record structure defined by this schema.

Method

Get_Data Returns the data about the requested schema.

Table 4.14 - The properties of the SchemaInfo class

Attribute Description

attribute_set_oid Object identifier of the attribute set.

attribute_set_name Name of the attribute set.

attribute_combinations Table which associates the allowable
attribute combinations of the search query
with the corresponding OPAC access points.

Method

Get_Data Returns the data about the requested attribute set.

Table 4.15 - The properties of the AttributeSetInfo class

ARCA Target Architectural Design Document ARCA/T12/ADD

Attribute Description

attribute_type Attribute type.

attribute_name Attribute type name.

attribute_description Attribute type description.

default_value Attribute default value.

Method

Get_Data Returns the data about the requested attribute.

Table 4.16 - The properties of the AttributeType class

Attribute Description

name Attribute name.

value Attribute value.

description Attribute description

is_selector Whether this attribute is a selector.

Method

Get_Data Returns the data about the requested attribute.

Table 4.17 - The properties of the AttributeDescription class

Attribute Description

record_syntax_name Name by which this syntax is known.

record_syntax_oid Object identifier of the abstract record syntax.

record_syntax_descr Description of the abstract record syntax.

ASN.1_syntax ASN.1 module describing the syntax.

record_structure Record structure defined by the syntax.

Method

Get_Data Returns the data about the requested record syntax.

Table 4.18 - The properties of the RecordSyntaxInfo class

Attribute Description

element_set_name Element set name.

element_set_description Description of the element set.

Method

Get_Data Returns the data about the requested element set.

Table 4.19 - The properties of the ElementSetDetails class

ARCA Target Architectural Design Document ARCA/T12/ADD

4.1.4 Class Kernel

At the run time, there will be a unique instance of this class (Table 4.20).
Such an instance will accomplish the following main tasks:

¥ At the system start up, it will load and initialize the dictionary and
create a network endpoint which it will wait on for new connection
requests.

¥ When a request is detected, such Kernel object will instantiate a new
network channel that will be used by a new Session object. Such an
object will take care of the requests from the origin allowing the kernel
to keep on waiting for new requests.

¥ When a Session will notify to terminate a connection, the Kernel will
make the resources free.

The Kernel object activates zero or more Session instances without exceed
the MAX_SESSIONS limit. It holds the Dictionary.

Attribute Description

active_sessions The number of the sessions currently active.

implementation_name The implementation name of the ARCA system.

implementation_version The implementation version of the ARCA system.

implementation_id The implementation identifier of the ARCA system.

Method

Dict_Init Loads and initializes the dictionary.

Init_Channel Initializes an instance of NetworkChannel for waiting
new connection requests.

New_Channel Takes as input a channel and returns a new instance where
the origin will continue sending requests.

New_Session Creates a new instance of the Session class.

Dispose_Session Terminates an instance of a Session object and releases all
the resources held from it.

Table 4.20 - The properties of the Kernel class

4.1.5 Class Session

Session objects (Table 4.21) provide functions for each of the services
defined in the SR protocol. They constitute the real interface between the
origins and the OPAC Subsystems. At this level of decomposition, we only
present the methods corresponding to the services. We will consider as
attributes all the parameters that characterize a user working session. These
parameters are those a Session object negotiates with the origin in the
initialization phase and, once fixed, they will not be modified until the end
of the working session.

ARCA Target Architectural Design Document ARCA/T12/ADD

The Sessions access the Dictionary to retrieve the information necessary to
send appropriate request to the underlying OPAC or to respond to searches
on Explain database. It exchanges APDUs with the associated origin through
a network channel.

Attribute Description

origin_id Identifier of the origin system in the target environment.

status Current status of the work session.

protocol_version Protocol version negotiated in the initialization phase.

options The services that the origin could request.

preferred_message_size The size of the large messages.

maximum_message_size The absolute maximum size.

Method

Session(NetworkChannel) In this case, the constructor needs also the network channel
given by the Kernel object to the session object to wait for
the requests from the origin.

Handle_Init_Req Provides the Initialize service.

Handle_Srch_Req Provides the Search service.

Handle_Srch_Expl_Req Provides the Search Explain Service. It is called within
Handle_Srch_Req.

Handle_Prsnt_Req Provides the Present service.

Handle_Dlte_Req Provides the Delete service.

Handle_SR_Release_Req Provides the SR-Release service.

Handle_SR_Abort_Req Provides the SR-Abort service.

Table 4.21 - The properties of the Session class

4.1.6 Class OPAC

Since we decided to process requests only for one OPAC, only a single object
of this class will exist during the ARCA system execution. The Opac object is
assumed to be a permanent object; this is why the Opac class does not
present either the constructor and the destructor. This class abstracts the API
interface level between the OPAC and the ARCA system (Table 4.22). It
provides the basic functions to retrieve and manage collections of records. If
a failure occurs, all functions return diagnostic information in the
following format:

¥ a bib-1 diagnostic as defined in ISO 10163 (mandatory);

¥ a bib-1 diagnostic as defined in ANSI/NISO Z39.50-1995 (optional);

¥ an OPAC error message (optional).

ARCA Target Architectural Design Document ARCA/T12/ADD

Attribute Description

diag_set Diagnostic set used by the OPAC.

Method

Authentication Identifies the user of the origin who makes a request.

RPN_Search Performs a search taking as input a RPN query with the
OPAC native terms and builds the result set.

Non_RPN_Search Performs a search taking as input a query in the (RPN,
infix, ISO8777, private) textual mode and builds the result
set.

Present Formats the retrieved record according to the specified
record syntax and composition and returns the reference to
those records.

Delete Deletes the specified result sets.

Termination Releases the resources allocated into the OPAC for a
particular user (e.g.: temporary result sets).

Table 4.22 - The properties of the Opac class

4.2 The Dynamic Model

The dynamic model describes the dynamic behaviour of the objects that can
exist. In this section, we will give only the dynamic model of the Kernel
and the Session objects. In fact, we want to put more emphasis upon the
sequencing of interactions concerning the Target Core subsystem.

4.2.1 Dynamic model of the Kernel object

The figure 4.4 illustrates the dynamic behaviour of the Kernel object. At the
system start up, it initializes the Dictionary and the NetworkChannel
objects by calling the proper methods. Then, it entries into the
waiting_request state and waits for a new connection and abort requests.
Connection requests arise from the NetworkChannel and require the
Kernel to check the MAX_SESSIONS parameter before instantiating a new
Session object. Such object will take care about the requests of the SR
service. TheÊabort requests come from Session objects who notify the end of
an association, and require the disposal of a Session object.

ARCA Target Architectural Design Document ARCA/T12/ADD

wait _assoc

wait_ process

wait ing_request

Init ialize

Kernel

Ready_to _Ab ort

Connect

Assoc_OK

Process_OK

Network_OK
Networ kChannel

Session

New_ Session

Dispose_Session

Init _Channel

New_Channel

Dict ionar y

Dict_In it

Figure 4.4 - The dynamic model of the Kernel object

4.2.2 Dynamic model of the Session objects

A representation of a Session object behaviour can be seen in figure 4.5. A
Session object waits for a request coming from the network, sends the
related event to the OPAC and waits for the answer. Once the service is
completed, the Session object returns to the ÒWaiting_RequestÓ state.

Pre sent_Request Delet e_Reques tSear ch_Request

Init _ Ind Searc h_Ind

Wait i ng_Result Serv ice_Complet e

OPAC

Init _Request

Present_Ind Delet e_Ind

Session

Wait ing_Request

Figure 4.5 - The dynamic model of the Kernel object

ARCA Target Architectural Design Document ARCA/T12/ADD

The Session objects (Figure 4.6), once instantiated, wait for an Initialize
APDU in the Closed state. When such APDU is received two cases can
occur. If the Init APDU will come from a generic SR origin, the parameters
will be compared with the related ones in the Dictionary in order to
determine if the connection can be accepted. In case of rejection, an APDU
containing the reject indication will be sent and the Session object will wait
on the Reject state for a subsequent release request coming from the origin.
If the connection will be accepted, the Session object will go to the Open
state where it will wait for the requests about the other SR services.

Dispose_Session

Reject

Closed

Init_ rcvd

Prsnt_ rcvd

Wait_ Data

Release_rcvd

New_Session

Sessi on

Kernel

Session_OK

Acti ve

Init_ PDU

Init_ Resp+

SR_Ab_ Ind

Ready_t o_Abor t

Dlt e_RespSrch_Resp

Opac

Prsnt _Ind Srch_Ind

Dictionary

SR_Rel_Ind

Dat a_OKDat a_OK

Srch_rcvd Dlte_ rcvd

Dat a_OK

Get _Init _Dat a

Init _Resp-

Wait_ Data

Wait_ Data

Get _Delete_Dat a

Get _Search_Dat a

Get _Present_Data

Init _Ind

Dat a_OK

Open

Wait_ Data

SR_Ab_Req

Req_PDU[Srch_PDU]

ARCA_Init_ rcvd

Dat a_OK[ARCA_Init]

Req_PDU[Dlt e_PDU]

Srch_Expl_Resp

Get _Explain_Data

Dat a_OK[Srch_Expl]

Srch_Expl_rcvd

SR_Rel_Ind

SR_Rel_Resp

SR_Rel_Ind

Init _Ind Dlt e_Ind

Req_PDU[Prsnt _PDU]

Prsnt_ Resp

Init _Resp+

Figure 4.6 - The dynamic model of the Session objects

ARCA Target Architectural Design Document ARCA/T12/ADD

The arrival of a SR Search, Present and Delete services will cause a
comparision between the APDU parameters and the related ones stored in
the Dictionary in order to verify the request correctness. After this check,
the appropriate OPAC API will be called and the interaction will continue
as described in the Open state. However, we must stress that if the database
to be searched will be the Explain database, the query will be submitted to
the Dictionary rather than the OPAC.

In every active state, a SR_Abort can be accepted. In this case, the OPAC will
be recovered in a consistent status by calling the Termination API and the
environment concerning the current working session will be cleared. At
the termination of each connection, the related Session object will ask the
Kernel object to be killed.

4.3 The Functional Model

As it was previously mentioned, the functional model represents the data
transformations across the various methods of the classes involved in the
project. We will limit the description of the functional model to the
methods concerning the receiving, the processing and the sending of the
various APDUs since they constitute the most relevant part of the ARCA
system.

In Figure 4.7, we show a first level functional model representing the
APDUs transformations. Such transformations involve four methods
belonging to the Session class (Handle_Init_Req, Handle_Srch_Req,
Handle_Prsnt_Req, Handle_Dlte_Req) and two belonging to the
NetworkChannel class (Read_PDU, Send_PDU). After the reception and
the recognition of an incoming APDU from a network channel, the method
associated with its processing will be called. Subsequently, the outcoming
APDU will be passed to the Send_PDU method that will send it through
the network channel. Since the Read_PDU and Send_PDU methods are
implemented using the functionalities offered by the YAZ toolkit, we will
describe, in the following, only the submodels of the Session methods.

If a Init_PDU will be received (Figure 4.8), it will be checked against the
information stored in the Dictionary to verify if the connection parameters
proposed by the origin can be accepted by the target. At this point, the target
will decide to accept or deny the proposed connection. However, if the
connection will be accepted, the target will be able to overwrite some of the
submitted parameters. In any case, an Init_Resp_PDU will be created, filled
and sent.

ARCA Target Architectural Design Document ARCA/T12/ADD

Handle_Init _Req

Read_PDU

Networ kChannel

Handle_Prsnt _Req

Send_PDU

Networ kChannel

Request_ PDU

Init _PDU Srch_ PDU Prsnt_PDU Dlt e_PDU

Init _Resp_PDU Srch_Resp_PDU Prsnt_ Resp_PDU Dlt e_Resp_ PDU

Response_ PDU

Handle_Srch_Req Handle_Dlt e_Req

Figure 4.7 - The functional model about APDU processing

in it _ ok

init _ko

Check_Init Fi ll _ Ini t_ Resp

Apdu

Init _Resp_PDU

Init_Resp_PDU

accept

deny

Init_Resp_Data

Init_ PDU

Diction ary

Init _Opt _Dat a

Init_ Data

Figure 4.8 - The functional submodel about the processing of an Init_PDU

ARCA Target Architectural Design Document ARCA/T12/ADD

In case of reception of a Srch_PDU (Figure 4.9), a first check on the query
type will take place. If the query is an ISO8777 or private query, it will be
submitted to the OPAC without performing any check. Otherwise, if it is a
RPN queryit will be adjusted to put the possible selectors in the right
position and, subsequently, it will be checked against the allowed query
syntax.

In both cases, the query will be transformed according to the value of
Òmax_num_termÓ and Òresult_set_namingÓ attributes of TargetInfo class.
If the OPAC doesnÕt support result set naming, the references to old result
sets will be exploded in the corresponding query. If there is a limitation on
the maximum number of terms, the query will be fragmented in a set of
simpler queries (Fig. 4.10). The various cases and the consequent actions are
summarized in table 4.23.

Unlimited
of terms

Result set
supported

Action

Y Y The query is unchanged.

Y N For each result set referred in the incoming query, the corresponding
query is substituted in the resulting query.

N Y The query is subdivided in several subqueries (one operator and two
operands). The Session process will invoke repeatedly the appropriate
API function, supplying the result set name when needed.

At the end of the process, the temporary result sets created will be
deleted invoking the delete result set API.

N N If the incoming query can be subdiveded into several subqueries where
at least one operand is a simple term, the Session will invoke
repeatedly the API search, using the default result set to store the
temporary results.

The OPAC must accept the last created result set as operand.

Table 4.23 - The possible actions to perform on the incoming query

ARCA Target Architectural Design Document ARCA/T12/ADD

Check_Srch

Srch_Resp_PDU

RPN_Query

Srch_Opt_ Data

Fill_Srch_Resp

Srch_Da ta

Srch_PDU

Opac

Srch_Resp_PDU

Result_ Set

RPN_Query

Tr anslate_Quer y

RPN_Query

Selectors

Bib- 1

RPN_not _allowed

Diag nost ics

Non_RPN_Query

Srch_Resp_DataApdu

Dict io nar y

Handle_Srch_Expl_Req

Diag nost ics Result_ Set

Category_ Info_Type,
Paramet ers

Check_Syntax

RPN_Query

RPN_query _s ynt ax

Adju st_Quer y

Conver t_Quer y

RPN_Query

Dict io nar y

Handl e_Quer y

Query _Dat a

RPN_Query

RPN_Query

Non_RPN_Query

Figure 4.9 - The functional submodel about the processing of an Srch_PDU

Before submitting the query to the OPAC, the bib-1 access points value will
be translated to the corresponding OPAC native value ([ARCA/T12/ABD]).

ARCA Target Architectural Design Document ARCA/T12/ADD

After adjusting the query, we will be aware of the databases the search
considers. In particular, in an EXPLAIN service request, the search acts on
the Dictionary. If the search will not consider the Explain database and the
OPAC is not able to process RPN queries, the query will be converted in a
(infix or RPN) textual form.

RPN_Query

Expand_Quer y

RPN_Query

RPN_Query

Fr agment_Quer y

Dict io nar y

result _set _naming

max_num_t erm

Figure 4.10 - The functional submodel of the Handle_Query process

Whatever the search scenario will be, a Srch_Resp_PDU will be generated
and sent. Records will be included in the Srch_Resp_PDU in respect with
the negotiated result set bounds.If a Prsnt_PDU will be received (Figure
4.11), a process will check it and ask the dictionary for the information
regarding the record composition structure. Afterward, the formatted
records and the further information needed for the response will be used to
create and fill a Prsnt_Resp_PDU.

Prsnt _PDU

Reco rd_Ids Prsnt _Resp_Data

Prsnt _Data

Dict io nar y
Present _Dat a

Opac Fill_ Pr snt_RespRecords

Prsnt _Resp_PDU

Prsnt _Resp_PDU

Present _Opt _Data

Apdu

Check_Pr snt

Figure 4.11 - The functional submodel about the processing of an Prsnt_PDU

ARCA Target Architectural Design Document ARCA/T12/ADD

Finally, when a Dlte_PDU will be received (Figure 4.12), a process will check
the APDU against the information extracted by the Dictionary and pass the
result set to be cancelled to the Delete Opac method. Such process will
translate the logical name of the result set into the physical one and request
the delete operation of the underlying OPAC. The OPAC response will be
used to complete the Dlte_Resp_PDU.

Check_ Dlte

Delete

Apdu

Dlt e_Resp_ PDU

Delete_Dat a

Dlt e_Resp_ Data

Diction ary

Fill_ Dlt e_Resp

Dlte_Opt_ Data

Dlt e_Data

Dlt e_PDU

Opac

Result _Set _List

Sta tus Dlt e_Resp_ PDU

Figure. 4.12 - The functional submodel about the processing of an Dlte_PDU

ARCA Target Architectural Design Document ARCA/T12/ADD

5 Setting up the system

As it has been outlined in the previous sections, the behavior of the Target
Core is parametric with respect to the static characteristics of the interfaced
OPAC (see section 3.2). These characteristics regarding the information
stored in the Dictionary and the OPAC syntax for processable RPN queries
are made known to the Target Core when the system is set up. In addition
to a simple keyword based language, a graphical and interactive interface
will be provided to input these parameters and to change their values when
necessary.

The ARCA Target system will run on UNIX environments thus enabling a
subsequent easy porting on LINUX. It will be implemented under Sun OS
4.0. The code will be written in C++ and compiled and linked using the
GNU public software. To syntactically parse the incoming RPN query in a
search request, i.e. to implement the ÒCheck_SyntaxÓ method of the
ÒRPN_QueryÓ class, ARCA needs the LEX and YACC free libraries. In
particular, GNU FLEX and BISON could be used.

The ARCA system will use the YAZ toolkit library for what concerns
decoding/encoding the APDUs, and handling the communication with a
connection endpoint (see Appendix B) that will be implemented by
adopting TCP/IP sockets.

As regards to the source code language of the interface to set up the
information being loaded in the Dictionary, we are thinking of Tcl/Tk.

The OPAC administrator is required, at least, to provide all information
needed by the Target Core to perform the basic services, i.e. init, search,
present and delete. For example, the administrator has to specify how bib-1
attributesÕ combinations are mapped into OPAC native language, the
limitations on the result sets, the supported record syntaxes, the maximum
record size, and so on. Some of these parameters will be proposed to the
OPAC administrator with a default value. The installation of the ARCA
system involves the creation of a set of work directories, therefore, the
OPAC administrator will have to assign the appropriate permissions to
ARCA.

To assist the implementation of the API functions, the OPAC administrator
will be provided with the skeletons of the methods of the ÒOPACÓ class.
After completing these dummy functions, he/she will have to compile and
link them to the rest of the system.

For some specific needs, like translation from a record syntax to another,
the OPAC administrator will have to provide in the Dictionary the names
of the relevant modules. These modules must be compiled and linked with
the whole system, too.

ARCA Target Architectural Design Document ARCA/T12/ADD

As the OPAC can make use of its workareas, it will be up to the OPAC
administrator to set up the appropriate shell script to clear and/or allocate
all the needed workareas when the ARCA system will start up.

ARCA Target Architectural Design Document ARCA/T12/ADD

6 SR Target ISIS Interface

This section describes the unterface between the ARCA system and the ISIS
OPAC. Firstly, the four main functions to access a CDS/ISIS database are
presented. Secondly, the supporting structures and the APIs of the interface
are specified.

6.1 ISIS OPAC

The CDS/ISIS is an Information Retrieval System developed and
distributed by UNESCO in different versions running on SCO UNIX,
DOS/WINDOWS and VAX/VMS.

The available software is able to access a single CDS/ISIS database at time,
therefore access to multiple databases will be done by multiple calls to the
required API functions. Such software involves four main functions:

¥ ISIS_Open
It performs the database open functions and makes all the workareas
available.

¥ ISIS_Search
It executes the document selection using a linear infix query and stores
the selected documents into a temporary storage disk file as an
occurrence list. It means that all the pointers to the selected keywords,
belonging to the selected documents, are stored into the temporary
storage.

¥ ISIS_Get_Rec
It is able to get from the document file (CDS/ISIS Master File) the
selected document. Any document is identified by an ordinal number
(Master File Record Number) starting from 1. We will name this
number as the CDS/ISIS Document Identification (ISIS_Doc_Id).

¥ ISIS_Format
It performs the printout of the selected document just available via
the ISIS_Get_Rec function. The printout of the document is done via
a print formatting language which is able to define the fields to be
printed and the way they must be printed. The print formatting
language commands are stored in a disk file named
ISIS_Print_Format. In the same installation more than one
ISIS_Print_Format for any database may exist.

Since the CDS/ISIS functions work as a command driven system a private
set, for any database and for the same database for any query, must be
defined and used to store the CDS/ISIS Document List and the related

ARCA Target Architectural Design Document ARCA/T12/ADD

CDS/ISIS Query. The private set is identified by a name assigned by the
ARCA target. The private set is known as ISIS_Result_Set.

The ISIS_Result_Set is composed by two different types of informations:

¥ The Document List: which contains the ISIS_Doc_Id of any document
matching the query.

¥ The Query: which includes the related query, the real CDS/ISIS
database name and the ARCA_ISIS_Database_Name. The real
database name is the name of the database known by CDS/ISIS and is
mapped from the ARCA-ISIS database name via a gateway interface.

6.2 ARCA-ISIS Interface

6.2.1 The supporting structures

The ARCA-ISIS database gateway interface is stored into a file known by the
ARCA-ISIS-APIs. It contains informations like:

a) the real CDS/ISIS database name;

b) the CDS/ISIS database working directory;

c) the CDS/ISIS database working directory minimum disk-space
required;

d) the maximum number of documents to be retrieved;

e) the default print format name to be used;

f) the list of the available formats.

The default format and the list of available formats are used to map the SR
record syntax and the SR record composition into the corresponding
ISIS_Print_Formats.

6.2.2 The ISIS API Functions

¥ OPAC.Authentication/Termination
CDS/ISIS Information Retrieval system does not yet support
authentication, therefore, such APIs receives the user info data and
always returns TRUE.

¥ OPAC.Non_RPN_Search
After loading the database gateway interface, it executes the database
selection (ISIS_Open); then, it parses the query in order to find the
referenced ISIS_Result_Set and replaces them with the corresponding
query. The resulting query is submitted to the ISIS search function
(ISIS_Search) which returns in the CDS/ISIS temporary storage the

ARCA Target Architectural Design Document ARCA/T12/ADD

occurences list needed to compute the relative ISIS_Doc_Ids. The
ISIS_Result_Set is then generated by storing the document ids in the
ISIS_Document_List and the query in the ISIS_Query. The ISIS-Non-
Rpn-search also cleans up the temporary storage disk file required to
perform the search and finally returns the number of document
selected in ad-hoc parameters.

¥ OPAC.Present
It extracts the real database name from the ISIS_Result_Set, and after
loading the database gateway interface, it loads the document identifier
(ISIS_Doc_Ids) stored in the ISIS_Document_List belonging to the
ISIS_Result_Set. Then, it opens the database (ISIS_Open) and for
every requested document identifier loads the corresponding
document (ISIS_Get_Rec) and formats it according to the specified
syntax (ISIS_Format).

¥ OPAC.Delete
For each of the ISIS_Result_Set indicated it locates the set and deletes
it.

ARCA Target Architectural Design Document ARCA/T12/ADD

7 SR Target SABINI Interface

This section describes the interface between ARCA and the SABINI OPAC.
The first part of the section deals with the principal functions of the SABINI
OPAC.

7.1 SABINI OPAC

SABINI is a library automation system developed in Spain. SABINI works
under the UNIX operating system, together with additional applications
development software (UNIVERSE, UNIDATA, etc.) . Standard UNIX files
and facilities are used, allowing full and easy access to all UNIX comands, to
communications products supported by the manufacturers, and to all other
applications based on UNIX. The SABINI system involves the following
main functions:

¥ SABINI_Open
Performs the initialization functions, taking into account the database
selected, inquiry language and working file assigned. It should be
remembered that SABINI may be used to consult one or several
databases, and that it is a multilingual system.

¥ SABINI_Select
Selects the bibliographic references in the database which contains the
term indicated in the query. This set of references, identified by a
number, is stored in the working file; only the referencesÕ identifiers
are kept.

¥ SABINI_Combine
Executes the Boolean operation indicated in the query between the
selected sets, generating a new set of references which is also stored in
the working file, as in the previous function.

¥ SABINI_Limit
Limits the set selected, keeping only those bibliographic references
which fulfil the conditions for edition dates, country and language
indicated in the query. It also generates a set of references which is
stored in the working file.

ARCA Target Architectural Design Document ARCA/T12/ADD

¥ SABINI_Format
Locates the documents selected in the database, and converts them to
the edition format requested. Two types of format may be requested in
the SABINI system: ISBD and MARC. Full or partial information may
be included in both cases.

¥ SABINI_Browse
Displays a list of the terms in the database in alphabetical order,
starting from a given term. It is possible to select one of these terms.

¥ SABINI_Consult
Displays the terms related to a given term, according to the structure of
the Thesaurus in the database. It is possible to select one of these
terms, thus facilitating navigation among the Thesaurus trees.

In short, a query in SABINI consists of various fundamental queries (Select,
Combine, Limit) which are called "commands", and whose result is a set of
references whose identifiers are stored in a working file. This file is
designated SABINI_Result_Set, and also includes the query itself.

The Browse and Consult functions are used as an aid to locate the query
term in the function SABINI_Select.

7.2 ARCA_SABINI Interface

7.2.1 The supporting structures

a) List of available databases

b) Default database name to be used

c) List of available languages

d) Default language to be used

e) Maximun number of Result_set names

f) Maximun number of documents to be retrieved

g) List of available print format

7.2.2 The SABINI API Functions

¥ OPAC.Authentication
The SABINI system does not yet support authentication, therefore,
such APIs receives the user info data and always returns TRUE.

¥ OPAC.RPN_Search
After loading the database gateway interface, it executes the
initialization function (SABINI_Open), then analyses the query and

ARCA Target Architectural Design Document ARCA/T12/ADD

breaks it down into commands which are executed with the SABINI
functions (SABINI_Select, SABINI_Combine, SABINI_Limit). The
result is kept in the specified SABINI_Result_Set.

¥ OPAC.Present
Locates the records belonging to the SABINI_Result_Set in the
database, taking into account the starting point and number of records
requested, and executes the SABINI function (SABINI_Format). The
records are formatted in accordance with the specified syntax.

¥ OPAC.Delete
Given a Result_set_name SABINI deletes the corresponding
SABINI_Result_Set

¥ OPAC.Termination
For each of the Result_set_names indicated in a list, SABINI deletes
all the associated SABINI_Result_Set.

ARCA Target Architectural Design Document ARCA/T12/ADD

8 References

[ANSI] Information Retrieval: Application Service Definition
and Protocol Specification, ANSI/NISO Z39.50-1995,
April 1995

[ARCA/T11/SRD] ARCA Target System Requirements , Report
ARCA/T11/SRD, July 1995

[ARCA/T12/ABD] Analysis of BIB-1 Mapping, Report ARCA/T12/ABD,
September 1995

[ARCA/T22/ADD] User Interface Application Design Document, Report
ARCA/T22/ADD (in progress).

[CDS/ISIS] CDS-ISIS Versione 3.0 per Mini e Micro Computer.
Manuale d'uso. Firenze: Titivillus Edizioni, 1992

[ISOa] International Organization for Standardization (ISO):
Information and Documentation Ñ Open Systems
Interconnection ÑSearch and Retrieve Application
Service Definition, International Standard ISO 10162
(1993)

[ISOb] International Organization for Standardization (ISO):
Information and Documentation Ñ Open Systems
Interconnection Ñ Search and Retrieve Application
Protocol Specification, International Standard ISO
10163-1 (1993)

[PARAGON] PARAGON, Project LIB-SR-TARGET/2-3034. WP 200-
Task 230: Target Requirements \Analysis. 20 May 1995

[Rumbaugh et al.] Rumbaugh J., Blaha M., Premerlani W., Eddy F. and
Lorensen W.: Object-Oriented Modelling and Design,
Prentice-Hall International, 1991

[SABINI] Automatizacion de Bibliotecas. Version 3.0. Manual de
Uso. Madrid, Sabini, 1994

[StP/OMT] Object Modelling Technique. Creating OMT Models,
Software through Pictures Release 2, IDE (Interactive
Development Environment)

[YAZ] YAZ UserÕs Guide and Reference, Index Data

ARCA Target Architectural Design Document ARCA/T12/ADD

9 Definitions and acronyms

ANSI American National Standards Institute

APDU Application Protocol Data Unit

API Application Program Interface

ARCA Access to Remore Catalogues

ASN.1 Abstract Syntax Notation One

CASE Computer Aided Software Engineering

DLL Data Link Library

GUI Graphical User Interface

ISO International Organization for Standardization

ISODE ISO Development Environment

MARC Machine Readable Cataloguing

OMT Object Modelling Technique

OPAC Online Public Access Catalogue

OSI Open Systems Interconnection

RPN Reverse Polish Notation

S R Search and Retrieve

StP/OMT Software through Pictures/OMT

TCL Tool Command Language

TCP/IP Transport Control Protocol/Internet Protocol

UNIMARC Universal MARC

USMARC United States MARC

YAZ Yet Another Z39.50 Toolkit

ARCA Target Architectural Design Document ARCA/T12/ADD

Appendix A: OMT design methodology

Object Modelling Technique (OMT) [Rumbaugh et al.] is an object-oriented
methodology which supports the entire software life cycle. It requires to
build a starting model of the application domain and, subsequently, refine it
during the design phase. This methodology comprises the following stages:

¥ Analysis. This stage is concerned with understanding and modelling
the application domain. The output from analysis is a formal model
that captures the essential aspects of the system: the objects and their
relationships, the dynamic behaviour of each object and the functional
transformations of the data.

¥ System Design. The overall architecture of the system is established
during this stage. Using the object model as a guide, the system is
organized into subsystems.

¥ Object Design. During this stage, there is a shift in emphasis from
application concepts towards computer concepts. The analysis models
are elaborated, refined, and then optimized to produce a practical
design. First the basic algorithms are chosen to implement each major
function (method) of the system. Based on these algorithms, the
structure of the object model is then optimized for efficient
implementation.

¥ Implementation. The object classes and relationships developed
during object design are finally translated into a particular
programming language.

During all these stages modelling is the main activity. To support
appropriately this task three models are provided; each model represents
related but different viewpoints, each capturing important system aspects.

¥ Object model. It captures the static structure of a system by showing
the system objects, the relationships between these objects, and the
attributes and operations that characterize each class of objects.

¥ Dynamic model: It describes those aspects of a system which deal with
flow of control, interactions and sequences of operations.

¥ Functional model. It describes the computations within a system by
specifying how output values in a computation are derived from
input values, without regard for the order in which the values are
computed.

Each model is equipped with an intuitive representation which facilitate
greatly its understanding and the communication with the customer.

ARCA Target Architectural Design Document ARCA/T12/ADD

The three above models are not completely independent but each model
can be examined and understood by itself to a large extent since the
interconnections between the three models are limited and explicit.

The following sections describe the above models in more detail.

A.1 Object Model

The Object-Oriented approach to the development of system focuses first on
identifying objects from the application domain, then fitting procedures
around them. As a consequence of this approach the object model is
considered the most important of the three OMT models.

The object is the main modelling mechanism of the object model. An object
is characterized by an identity which distinguishes it from the others.

A class describes a group of objects with similar attributes, common
operations, and common relationships to other objects.

An attribute is characterized by a name which is unique within a class. Each
attribute has a value for each object instance, this value may vary on time.
The values admitted are pure data value, i.e. they cannot be objects.

An operation is a function or transformation that may be applied to or by
objects in a class. The same operation may have different implementations
(methods) in different classes. An object "knows" its class and hence the
right implementation of the operation. When an operation has methods
on several classes it is important that the methods all have the same
signature, i.e. the number and types of arguments and the type of the result
value must be the same.

A set of constraints restricts the possible values of attributes and operations.
Each constraint is expressed under the form of a conditions to be satisfied.

A graphical notation is provided to express object models. Figure A.1 shows
an object diagram composed of a class diagram (left) and an instance
diagram (right). A class diagram is drawn as a box which may have as many
as three regions. The regions contain, from top to bottom: class name, list of
attributes, and list of operations. Attributes and operations may or may not
be shown; it depends on the level of detail desired. If they are shown, a Ò+Ó
or Ò-Ó symbol indicates, respectively, whether they are public or private. A
public property can be referred by the other classes, whilst the private one
can be referred only by the owner class. Constraints on the class components
are written under the class box. An instance diagram is a round box which
contains a value for each attribute.

ARCA Target Architectural Design Document ARCA/T12/ADD

class name

+ at t ribut e_1 name
- at t ribut e_2 name

opera t ion_1 name
opera t ion_2 name

(class name)
at t ribut e_1 v alue

at t ribut e_2 v alue

(at t ribut e_1 name < 0)

inst ant iat ion sy mbol

const ra int s on at t ribut e

Figure A.1- An Object Diagram

Multiplicity constraints, which specify how many instances of a class may
relate to a single instance of an associated class, can be expressed graphically
by using appropriate line terminators. The possible line terminators are
shown in figure A.2.

1+

Many

Zero or more

One or not known

One or more

Class

Class

Class

Class

Figure A.2 - Multiplicity constraints

Association is a modelling mechanism which describes a group of links
between objects. All the links in an association connect objects from the
same classes. Associations may be binary, ternary, or higher order;
independently from the arity they are inherently bi-directional; this means
that, for example, even if the name of a binary association reads in a
particular direction, the binary association can be traversed in either
directions. Figure A.3 shows how binary association are represented in a
class diagram. Each association in a class diagram corresponds to a set of
links in the instance diagram.

associat ion name
class- 1 class- 2

ro le- 1 ro le- 2
qualif ier

Figure A.3 - Binary association

Several modelling mechanisms are provided to enrich the semantics of an
association. Roles and qualifiers are two of these mechanisms.

Role can be attached to a binary association. Each role identifies uniquely
an object, or a set of objects, associated with an object to the other end.

ARCA Target Architectural Design Document ARCA/T12/ADD

A qualifier is a special attribute that distinguishes among a set of objects at
the many end of an multiple association.

Aggregat i on is a particular case of association relationship. This
relationship, often called part-of, links an aggregate object to its component
objects. The component objects may or may not exist apart from the
aggregate, in addition they can appear in multiple aggregates.

Figure A.4 shows the graphical representation of an aggregation
relationship.

assembly class

part-1 class part-2 class

Figure A.4 - Aggregation

Another particular kind of association relationship is generalization. This
relationship links a class to more refined versions of it. The class being
refined is called superclass and each refined version is called subclass.
Attributes and operations common to a group of subclasses are attached to
the superclass and shared by each subclass. Each subclass is said to inherit
the features of its superclass. Each subclass can add to the features inherited
its own specific attributes and operations.

An instance of a subclass is simultaneously an instance of all its ancestor
classes. As a consequence, any operation of any ancestor class can be applied
to an instance of the subclass.

Figure A.5 shows a graphical representation of the generalization
relationship. A triangle connects a superclass to its subclasses. The
superclass is connected by a line to the apex of the triangle. The subclasses
are connected by lines to horizontal bar attached to the base of the triangle.

superc lass

subclass- 1 subclass- 2

Figure A.5 - Generalization relationship

ARCA Target Architectural Design Document ARCA/T12/ADD

A.2 Dynamic Model

The dynamic model describes the sequencing of operations that occur in
response to external stimuli, without consideration of what the operations
do, what they operate on, or how they are implemented.

This model is built taking into account the scenarios of typical interaction
sequences between user and system. These scenarios show the sequences of
events that occur during one particular execution of a system. A diagram,
called event trace, represents these ordered list of events and the objects
exchanging events.

Figure A.6 shows how an event trace diagram is drawn. This diagram
shows each object as a vertical line and each event as an horizontal arrow
from the sender object to the receiver object with time increasing from top
to bottom.

Class-1 Class-2 Class-3 Class-4

Event-1

Event-2

Event-3

Event-4

Event-5

Event-6

Figure A.6 - An event trace

The dynamic model consists of multiple state diagrams. A state diagram is a
graph, whose nodes are states of an object and whose directed arcs are state
transitions of the same object labelled by event names. These diagrams
specify the valid patterns of state transitions for an object, i.e. the events for
each state together with the transition triggered by that event. The state
diagrams for the various classes combine into a single dynamic model via
shared events.

Figure A.7 shows how state diagrams are depicted. A state is drawn as a
rounded box containing an optional name. A transition is drawn as an
arrow from the receiving state to the target state; the label on the arrow is
the name of the event causing the transition.

ARCA Target Architectural Design Document ARCA/T12/ADD

state1

state2

event1

event2 event4

event4

event3

event3

Figure A.7 - A state diagram

The meaning of a state diagram is the following. If an object is in a state and
an event labelling one of its transitions occurs, the object enters the state on
the target end of the transition. If more than one transition leaves a state,
then the first event to occur causes the corresponding transition to fire. If an
event occurs that has no transition leaving the current state, then the event
is ignored. A sequence of events corresponds to a path through the graph.

Transitions can be enriched by conditions which works as guards. A
guarded transition fires when its event occurs, but only if the guard
condition is true.

Operations can be attached to states or transitions to specify what the object
does in response to events. Operations are represented as either actions or
activities.

An action models an instantaneous operation which can be attached to
transitions or to entering or exit a state. One kind of action is sending an
event to another object.

An activity is associated with a state and represents a sequence of actions
that takes time to complete. The sequence of actions begins on entry to the
state and stops when completed.

Figure A.8 shows the graphical notation for conditions, actions and
activities. A condition may be listed within square brackets after an event
name. An activity is indicated within a state box by the keyword "do:"
followed by the name or description of the activity. An action is indicated
on a transition following the event name by a "/" character followed by the
action name. All these constructs are optional.

st at e- 1 st at e- 2ev ent [guard]/ act ion

do: activity name

Figure A.8 - Condition, Action and Guard

States may have substates that inherit the transitions of their superstates,
just as classes have suclasses that inherit the attributes and operations of

ARCA Target Architectural Design Document ARCA/T12/ADD

their superclasses. Any transition or action that applies to a state applies to
all its substates, unless overridden by an equivalent transition on the
substate. Substates in turn may enclose other substates. Figure A.9 shows a
superstate. It is drawn as a large rounded box enclosing all of its substates
and the transition among them.

Supers t at e

Subst at e- 1 Subst at e- 2

ev ent - 1

ev ent - 2ev ent - 3

Figure A.9 - State generalization

A.3 Functional Model

This model describes the computation within a system. It shows the
functional relationships of the values computed by a system including
input values, output values and internal data stores, without regard for
how and when they are computed.

The main modelling mechanism of the functional model is the data flow
diagram. A functional model is actually a set of data flow diagrams which
describe the meaning of the operations in the object model and the actions
in the dynamic model, as well as any constraints in the object model.

The data flow diagram is constructed in terms of other modelling
mechanisms: processes that transform data, data flows that move data,
actors objects that produce and consume data, and data store objects that
store data passively. Figure A.10 shows the graphical notation for data flow
diagrams. A processes and data stores are drawn as an ellipse containing a
description of the transformation, usually its name; data flow are drawn as
arrows between the producer and the consumer of the data value labelled
with the description of the data, usually its name or type; finally, actors are
drawn as a rectangle to show that they are objects.

ARCA Target Architectural Design Document ARCA/T12/ADD

data2descr

data1descr

data3descr data4descr

process1

actor2 process2

actor1 data store1

Figure A.10 - A data flow diagram

Each process in a data flow diagram has a fixed number of input and output
data arrows, each of which carries a value of a given type. The inputs and
outputs can be labelled to show their role in the computation, but often the
type of value on the data flow is sufficient. An high level process can be
expanded into an entire data flow diagram. Each input and output of the
process is an input or output of the new diagram. The new diagram may
have data stores that are not shown in the higher level diagram. Diagrams
can be nested to an arbitrary depth, and the entire set of nested diagrams
form a tree. Eventually the nesting of diagrams terminates with simple
functions. These functions can be specified in various ways, including
mathematical functions, table of input and output values for small finite
sets, pre e post conditions. pseudo-code and natural language.

An actor is an active object that drives the data flow graph by producing or
consuming values. Actors are attached to the inputs and outputs of a data
flow graph: it lies on the boundary of the data flow graph but terminates the
flow of data as sources and sinks of data. A data store is a passive object
within a data flow diagram that stores data for later access. It merely
responds to requests to store and access data.

A data flow diagram is particularly useful for showing the high-level
functionality of a system and its breakdown into smaller functional units. A
process can be expanded into another data-flow diagram.

A.4 StP/OMT

StP/OMT is a set of tools that provides an UNIX based environment for
defining object-oriented models according to the Object Modeling
Technique (OMT), and generating code in several languages (C, C++, Ada,
Smalltalk). StP/OMT is a product from Interactive Development
Environments (IDE). Main features of StP/OMT are:

¥ Object Model Diagram Editor

It provides a symbol palette, menu and display marks, for drawing object

model diagrams using OMT notation.

ARCA Target Architectural Design Document ARCA/T12/ADD

¥ Class Table Editor
It allows the designers to capture the full definitions of methods and
attributes for each class in the model.

¥ Use Case Editor
It is used to develop representations based on user-centered analysis,
and integrate them with the rest of the model. In particular itÕs
possible to draw use case scenarios, event trace diagrams, event flow
diagrams, and context diagrams.

¥ Dynamic Model Diagram Editor
It permits to create state diagrams for those classes in the object model,
who have a relevant dynamic behavior. The dynamic model is
described according to Harel State Transition notation.

¥ State Table Editor
It completes the definitions of states, actions and activities required by
the dynamic model.

¥ Functional Model Editor
It sketches the behavior of a single class operation without regard for
time or sequencing between events. It allows to generate data flow
diagrams showing objects as data that flow into and out from
processes. Such a editor uses symbols and display marks provided by
De Marco/Yourdon and Rumbaugh notations.

¥ Object Annotation Editor
It is claimed at adding comments and information on diagrams and
objects defined with the previous mentioned tools. It is also used for
adding code or pseudo code to implement functionalities of the system
being modeled.

¥ Script Manager
The script manager is used for checking consistency and generating
code from the definitions given by the editors.

StP/OMT assures several cross-checks among the various models of the
entire project to validate the consistency and completeness. As far as code
generation is concerned (C++ code in our case), we will obtain for each class
in the model:

¥ the interface files including all the class declarations, definitions and,
optionally, inline member functions;

¥ the implementation files containing include statements, member
functions headers, bodies, and, if supplied during the previous
development phases, the C++ code annotations.

ARCA Target Architectural Design Document ARCA/T12/ADD

Appendix B: YAZ

At the outset of the ARCA project, it was intended to make use of the ISO
Development Environment (ISODE) toolset as the implementation basis of
the ARCA target software. The ISODE environment provides the possibility
to host OSI upper layer applications over the TCP/IP suite.

However, problems surfaced with the ISODE suite during the initial phase
of the project. ISODE is distributed in two versions, one of which is public
domain and free of cost. The public domain version is also entirely
unsupported. This was considered to be a major disadvantage by the ARCA
participants. The other version of ISODE is supported by the ISODE
Consortium, for which membership at several levels is possible. It was
discovered that commercial/industrial membership costs several tens of
thousands of dollars per year. (One reason for the high cost of membership
is that ISODE is a comprehensive set of tools for an entire range of OSI
applications, with special emphasis on those used by large corporationsÑ
message handling, file serves, directory services, and terminal services, as
well as network management services.) For the relatively restricted aims of
the ARCA project, this was considered to be a prohibitively high price to
pay. Therefore a search was begun for alternative support software.

The CANSEARCH software from the Canadian National Library Service
was also examined. However, it also is not supported officially, and only
handles Z39.50 running over TCP/IP (rather than OSI), and therefore did
not entirely fulfill the requirements of the ARCA project.

Finally, in the Spring of 1995, the decision was made to adopt a toolkit that
had recently made its appearance in Europe. YAZ (Yet Another Z39.50/SR
Toolkit) is a toolkit, developed by Index Data in Copenhagen, Denmark,
that provides basic functionalities to implement Z39.50 and SR target
systems.

The basic level consists of three primary modules:

¥ A S N
This is a set of C representations for all of the APDUs defined in the
Z39.50 and SR protocols according to the ASN.1. Moreover, for each
APDU type, a function is provided that allocates and initializes an
instance of that type.

¥ ODR (Open Data Representation)
This is a mechanism for representing a new ASN.1 type and
implementing the encoders/decoders Basic Encoding Rules (BER) for
that type.

ARCA Target Architectural Design Document ARCA/T12/ADD

¥ COMSTACK
This provides an interface for establishing a connection endpoint and
exchanging BER encoded data over the TCP/IP or OSI transport layers.

The three modules are independent and can be arranged by the user
according to his/her own requirements and future enhancements of the
protocol services.

The following considerations motivated our choice of the YAZ system over
the other candidates:

¥ The toolkit is in the public domain, with no royalties or similar
restrictions on its use.

¥ It is reliable and documented (This is less so for several other
packages.).

¥ It is fully supported by its supplier, with a listserver for users as well as
direct support for any questions, installation problems, or bug fixes.

¥ It has encoder-level support for most, if not all, of Z39.50-1995,
allowing ARCA to depart immediately from the latest protocol
version.

¥ It is the only package that includes a transparent interface to both the
OSI upper-layers and TCP/IP, as well as Z39.50 and SR (the latter point
will be void when the two are merged, although the backwards-
compatibility will still be useful.)

¥ There is a counterpart toolkit (called IrTcl) for the client side available
from the same suppliers, and which entirely fulfills the requirements
for the ARCA client implementation. Although it is not strictly
necessary to use base toolkits from the same supplier for both target
and client implementations, it undoubtedly makes cooperation and
coordination of the work easier.

Detailed information about YAZ are available at the following address:

ftp.algonet.se/pub/index/yaz/

