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A B S T R A C T   

Cytosolic cAMP signalling in live cells has been extensively investigated in the past, while only in the last decade 
the existence of an intramitochondrial autonomous cAMP homeostatic system began to emerge. Thanks to the 
development of novel tools to investigate cAMP dynamics and cAMP/PKA-dependent phosphorylation within the 
matrix and in other mitochondrial compartments, it is now possible to address directly and in intact living cells a 
series of questions that until now could be addressed only by indirect approaches, in isolated organelles or 
through subcellular fractionation studies. In this contribution we discuss the mechanisms that regulate cAMP 
dynamics at the surface and inside mitochondria, and its crosstalk with organelle Ca2+ handling. We then address 
a series of still unsolved questions, such as the intramitochondrial localization of key elements of the cAMP 
signaling toolkit, e.g., adenylate cyclases, phosphodiesterases, protein kinase A (PKA) and Epac. Finally, we 
discuss the evidence for and against the existence of an intramitochondrial PKA pool and the functional role of 
cAMP increases within the organelle matrix.   

1. Introduction 

Mitochondria are ubiquitous organelles present in practically all 
eukaryotic cells [1] characterized by a unique structure made by two 
closely apposed membranes, the Inner Mitochondrial Membrane, IMM, 
highly and dynamically folded in structures called cristae [2], and the 
Outer Mitochondrial Membrane, OMM, that encircles the IMM. Mito
chondria were the subject of very intensive studies until the middle of 
the 20th century, that led to the discovery of their central role in the 
production of energy (in the form of ATP) through oxidation of carbo
hydrate metabolites and fatty acids, culminating with the development 
of the chemiosmotic model [3], the theory that eventually explained the 
mechanism of energy transduction, not only in mitochondria but also in 
chloroplasts and bacteria. 

After some decades of diminished interest due to the wrong 
impression that the most important mitochondrial secrets had been 
revealed, at the end of the last century the interest in these organelles 
was strongly rejuvenated. This was due to two fundamental break
through findings, namely the discovery that mitochondria are key 
players in controlled forms of cell death, in particular apoptosis[4][5], 
and the finding that these organelles regulate cellular calcium (Ca2+) 

signalling [6,7]. Nowadays more than ever mitochondria are on stage, 
under different spotlights, in particular as metabolic and signalling 
hubs, and are increasingly recognized as pivotal regulators in almost 
every aspect of cell pathophysiology. Indeed, responsive, efficient and fit 
mitochondria are not only necessary for cellular health, but mitochon
drial dysfunctions appear causally involved in various types of diseases, 
from metabolic to immunological, from oncological to neurodegenera
tive [8,9]. Given their “steering committee” role, it is not surprising that 
mitochondria are required to continuously communicate with their host 
cell. Thanks to a finely tuned and bidirectional information-exchange 
machinery (that is still to be fully identified in molecular detail), mito
chondria adapt to the varying cellular needs, whilst at the same time, 
they communicate to the cell their bioenergetics status. For example, 
among the messages delivered to the cytosol, the release of cytochrome c 
from the mitochondrial inter-membrane space (IMS) is interpreted by 
the cell as a death directive that ultimately results in apoptosis[5], while 
an increase in the production of reactive oxygen species (ROS) can 
activate transcription of specific genes in response to hypoxia [10–12]. 
On the other hand, mitochondria possess molecular “antennas”, moni
toring and sensing messages originating from the cytoplasm or from the 
extracellular space. In addition, mitochondria actively participate in the 
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signalling cascades of the two main cellular second messengers, Ca2+

and cyclic AMP (cAMP), which are both “sensed” and (at least Ca2+) 
forwarded back to the cell to dispatch information. 

The capacity of mitochondria to accumulate Ca2+ at the expense of 
energy consumption was discovered in the 50 s and was extensively 
investigated until the late 70 s. Throughout the 80 s, however, mito
chondrial Ca2+ uptake was considered of modest physiological rele
vance, until it was demonstrated that, in intact live cells, mitochondria 
are able to sense physiological increases in cytosolic Ca2+ and to rapidly 
uptake it into the matrix [13–15]. Only more recently, the multiproteic 
machinery responsible for mitochondrial Ca2+ uptake [16], at the core 
of which is the so called MCU (mitochondrial Ca2+ uniporter) [17,18], 
has been unravelled. Ca2+ accumulated by mitochondria is released 
back into the cytosol via efflux mechanisms, such as the xNa+/Ca2+ and 
the H+/Ca2+ exchangers [15,19,20], suggesting that this messenger acts 
as “communication currency” between mitochondria and the rest of the 
cell, conveying information that influences the function of both sides. 
The effects of Ca2+ on mitochondria can be positive or negative [14,15, 
20]. Elevation of matrix Ca2+ fosters ATP production through the acti
vation of matrix dehydrogenases [20–23], but if this increase is too large 
or too prolonged, mitochondria enter a state of increased IMM perme
ability (called “permeability transition”) that leads to dissipation of their 
membrane potential (Δψ) and to irreversible damage, which eventually 
kills the cell [24]. On the other hand, mitochondria significantly 
impinge upon intracellular Ca2+ dynamics, contributing to the shaping 
of intracellular functionally distinct Ca2+ microdomains. 

The relation of the other major second messenger, cAMP, with 
mitochondria has been unveiled only more recently and remains less 
defined and more debated. This is somehow surprising since cAMP is 
known to control a variety of key functions in prokaryotes, from which 
mitochondria derive [25]. Indeed, cAMP mediates microbial metabolic 
flexibility, i.e., the catabolite repression response, and represents a 
master regulator of microbial virulence, modulating different aspects of 
host–pathogen interaction [26]. However, despite its broad use since 
early evolution of life, a role for cAMP in mitochondrial pathophysi
ology has rarely been considered until recently. This possibly depended 
on the lack of evidence of mitochondrial cAMP transporters, and of 
mitochondria-targeting sequences in components of the cAMP signalling 
machinery. Nevertheless, thanks to the effort of several laboratories, it is 
now clear that the effects of cAMP on mitochondria converge on two 
major organelle compartments, the OMM (the cytosolic surface in 
particular), and the matrix/IMM. Starting with the outermost mito
chondrial compartment, the OMM, the presence of all the components 
necessary to form functional units of cAMP-mediated signalling is firmly 
established. On the contrary, the existence of a cAMP signalling ma
chinery inside mitochondria (matrix and IMM) started being deeply 
investigated only in the last decade, albeit sparse evidence dating back 
to the 80 s exists. Thus, the role of matrix cAMP (mt-cAMP) in mito
chondrial physiology has just started to be clarified, and a number of 
features have still to be defined and, very likely, discovered. 

In eukaryotes, cytosolic cAMP is involved in many cellular functions 
such as gene transcription, metabolism, cell migration and death, and in 
systemic processes as diverse as hormone signal transduction, memory 
formation and control of heart beating [27]. Such a variety of 
cAMP-regulated processes and functions, sometimes opposite, suggested 
long ago that cAMP could be compartmentalized inside the cell, acting 
in independent microdomains (Buxton & Brunton, 1983), an idea that is 
now largely accepted [28–30]. When the existence of cAMP signalling 
microdomains close to mitochondria was tested, it was revealed that 
these organelles evolved the tools to detect cytosolic cAMP at their 
OMM. Moreover, while it is expected that cAMP synthetized in the 
cytosol will be permeable through the OMM, data from several labora
tories agree that cAMP cannot permeate the IMM to reach the mito
chondrial matrix [31–35]. Cyclic AMP, however, can be generated 
within the matrix by a mitochondrial form of soluble adenylate cyclase 
(sAC), in response to metabolic stimuli and Ca2+ increases [32,33,36, 

37]. Consequently, depending on the cAMP source, mitochondria are 
subjected to two distinct cAMP cascades, one responding to cytosolic 
and extracellular stimuli and another confined in the matrix, but linked 
to the cytosol by Ca2+ signalling [32]. These segregated, but not sealed, 
pathways impinge on the regulation of distinct functions and differen
tially affect mitochondrial homeostasis. It is, however, worth noting that 
elevation of cAMP levels in response to cell stimulation is only one of the 
prerequisites for the effect of this second messenger on mitochondrial 
functions; cAMP effectors (e.g., cAMP activated kinases) need to be 
present as well in the different mitochondrial compartments; this topic is 
presently still quite debated and it will be briefly discussed below. 

The best characterized mitochondrial functions modulated by the 
cAMP cascade hosted at the OMM are apoptosis and mitochondrial dy
namics [38–42]. On the other hand, cAMP in the matrix (mt-cAMP) was 
initially suggested to regulate oxidative phosphorylation (OXPHOS) [32, 
36,43], although with some discordances, likely depending on different 
experimental procedures and timescale employed [44]. Subsequent 
experimental evidence, however, suggested that the roles of mt-cAMP go 
beyond the control of OXPHOS, and the discovery of an increasing 
number of functions is gradually illuminating and justifying the pres
ence of a complex machinery such as that of cAMP signalling in the core 
of the organelle. The discovery of a secluded cAMP-dependent pathway, 
and the demonstration of its crosstalk with Ca2+, opened the way to a 
re-evaluation of mitochondria as integrators of multiple second 
messenger cascades. Studies over the last decade revealed that mito
chondria can now be regarded as signalling hubs, involving not only 
Ca2+ (as previously well established), but also cAMP [32,33,36,43,45, 
46], cGMP [47] and other small metabolites as signals [48]. 

2. Overview of the mitochondrial cAMP signalling machinery 

Intracellular cAMP concentrations depend on the balance between 
synthesis, degradation, and export from the cell, performed by distinct 
components of the cAMP machinery. In addition, a number of scaf
folding proteins [49], can act as platforms for the establishment of 
“signalosomes”, functional units defining cAMP micro- or even 
nano-domains [50,51]. 

Cyclic AMP is synthesized by Adenylate cyclases (ACs). Mammals 
express ten distinct ACs, nine transmembrane (tmACs) [52] and a sol
uble one (sAC) [53,54]. Phosphodiesterases (PDEs) are the enzymes that 
degrade cAMP, and they are classified in 11 families, eight of which have 
the ability to hydrolyse cAMP [55,56]. Finally, cAMP can be extruded 
from the cell by ATP binding cassette (ABC) proteins, in particular the 
multi-drug resistance proteins MRP4 and MRP5 [57]. Both cAMP 
degradation and export counteract cAMP synthesis and are key to the 
maintenance of low cAMP levels in the cytosol under resting conditions, 
and to the termination of the cAMP signals after stimulation. Despite 
strong efforts to identify novel cAMP-binding proteins, the known cAMP 
effectors belong to a few families. Cyclic nucleotide-gated (CNG) chan
nels have been identified decades ago [58], while the members of the 
Popeye-domain containing family are the last discovered [59]. The most 
studied and best characterized cAMP effectors, however, are the 
serine/threonine-specific Protein Kinase A (PKA) [60–62] and Epac 
(Exchange Proteins directly Activated by cAMP) [63,64]. PKA is 
responsible for the vast majority of the cAMP-dependent functions 
known to date. Signals conveyed by PKA are terminated by phospha
tases, which dephosphorylate PKA targets [65]. 

The cAMP signalling pathway controls many, sometimes contradic
tory, tasks, and this pleiotropy clearly suggests the existence of mech
anisms guaranteeing specificity between the triggering signals and 
activated effectors; indeed, it is underpinned by a compartmentalized 
organization into micro- and nano-domains [50,51]. Such domains may 
depend on local differences in cAMP levels (owing to proximity of cAMP 
production and/or degradation elements) or on proximity or differential 
activity of cAMP effectors, targets and signal terminators (i.e. phos
phatases). The scaffolds that nucleate cAMP signalosomes are called 
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A-kinase anchoring proteins (AKAPs) [49]. Mitochondria host several 
AKAPs [35,66], mostly associated with the OMM and at least one (called 
SKIP, sphingosine kinase interacting protein) suggested to be localized 
within the IMM [67], albeit the majority of SKIP is present soluble in the 
cytosol [68]. To our knowledge, no AKAPs have been identified in the 
matrix, to date. 

3. cAMP signalling at the outer casing 

Mitochondria possess a characteristic dynamic nature, owing to 
three main processes. First of all, fusion and fission, through which 
distinct mitochondria join to form a new organelle, or divide into more 
separate ones. Second, motility, in which mitochondria exploit the 
microtubule network to migrate and reach specific intracellular sites. 
Finally, the quality control process, called mitophagy, which eliminates 
dysfunctional organelles. All these processes are fundamental for mito
chondrial and cellular health, and alterations in any of them are asso
ciated with severe pathological conditions [41,69]. To ensure the proper 
control of such vital events, mitochondria developed complex and 
stringent regulatory mechanisms, that guarantee their function and 
fine-tuning. One of them relies on reversible PKA-dependent phos
phorylation, that participates extensively in the control of several as
pects of mitochondrial dynamics. 

The OMM is the mitochondrial border, and, keeping solutes over ≈
5 kDa outside the IMS [70–72], it represents the first filter between the 
organelles and the cytosol. This outer casing hosts several independent 
cAMP-driven functional units [73,74], known to regulate mitochondrial 
fission and fusion [34,41], motility [42,75] and mitophagy [76,77], but 
also autophagy [78,79], apoptosis [38,80,81] and mitochondrial protein 
import. The latter has been studied mainly in yeast [82], with some 
interesting hints also in mammals. Indeed, it was shown in mice that 
PKA-dependent phosphorylation of mitochondrial precursors, such as 
GSTA4− 4, CYP2B1, CYP2E1 and NDUFS4, increases their association 
with cytosolic chaperones, eventually promoting import [83–85]. A very 
recent study [86] indicated, on the contrary, that phosphorylation 
within or near the mitochondrial targeting sequence of multiple proteins 
could disrupt their import rates and matrix processing. The authors 
speculated that dephosphorylation after import would be required for 
proper processing and maturation of such proteins, a model already 
proposed for phosphorylated chloroplast precursor proteins [87]. They 
suggested also that selected mitochondrial proteins could be subjected 
to the action of cytosolic kinases, including PKA, unveiling a so far un
derappreciated signalling mechanism, conserved from yeast to plants 
and to mammals, serving to direct proteins to mitochondria or to alter 
their import rates [86]. 

The generation on the OMM of cAMP signaling microdomains has 
been carefully investigated by employing selectively targeted FRET- 
based cAMP- and PKA phosphorylation-sensitive sensors. No evidence 
was obtained of significant differences between the cAMP concentration 
on the OMM surface and the cytosol [33,88,89]; notwithstanding, local 
signalosomes on the mitochondrial surface exist and depend on the local 
expression of several AKAPs, and on the differential localization of 
phosphatases between the bulk cytosol and the mitochondrial surface 
[33,88,89]. 

A number of AKAPs have been reported to tether PKA to the OMM: 
Rab32 [90], AKAP121 and its isoforms (AKAP149, D-AKAP1 and 
S-AKAP84) [73], WAVE-1 [91] and AKAP10 (also called D-AKAP2). 
Despite this remarkable presence, a study exploiting isolated mito
chondria attributed to the OMM only 9% of the total mitochondrial PKA 
activity [92]. However, recent evidence suggests that PKA tethered on 
the mitochondrial surface responds better to cAMP elevations than its 
cytosolic counterpart [33,88,89]. 

AKAP10 was found localized, although not exclusively, at mito
chondria, indicating the possible existence of multiple pools and a 
possible dynamic regulatory nature of this AKAP [93]; however its 
mitochondrial localization was not confirmed by subsequent studies 

[94]. 
The AKAP Rab32 was originally characterized as participating in 

both mitochondrial dynamics and anchoring of PKA [90,95]. Subse
quently, it was found localized at MAMs (Mitochondria-Associated 
Membranes), the interfaces between mitochondria and endoplasmic 
reticulum (ER) membranes [96]. There Rab32 is thought to modulate ER 
Ca2+ handling and PKA tethering, impinging on the phosphorylation 
status of two important (see below) PKA targets, BAD and Drp1, and 
ultimately, exerting a delaying effect on apoptosis. 

AKAP121, the most extensively studied among OMM-associated 
AKAPs, has a key role in mitochondrial fitness; indeed, when mutated 
and unable to bind PKA it promotes apoptosis [97], whereas when 
overexpressed it is protective [98]. In neurons, axonal mitochondria 
with normal membrane potential (Δψ) are transported anterogradely 
toward the synapse, whereas those with low Δψ are transported back to 
the cell body [99], where lysosomes are predominantly localized [100]. 
Recent evidence indicates that AKAP121-tethered PKA is stabilized by 
PINK1 (PTEN-induced kinase-1) and governs the mitochondrial traf
ficking in dendrites through the phosphorylation of Miro-2 [101]. 
Indeed, cAMP actions were previously associated to neuronal mito
chondrial retrograde movements, and several proteins involved in 
mitochondrial transport, as kinesins, dynein and syntaphilin, have been 
known for years to be phosphorylated by PKA [102]. Accumulating 
evidence indicates a previously underestimated link between mito
chondrial mobility and mitophagy in neurons [103]. One of the 
AKAP121-tethered PKA targets is Drp1 (dynamin-1-like protein), a 
GTPase with a strong impact on mitochondrial dynamics. Drp1 is sub
jected to complex post-translational modifications involving both cAMP- 
and Ca2+-dependent pathways, with sometimes opposite effects [104]. 
Recently, Drp1 has been implicated also as a partner of ACTR10 
(actin-related protein 10), to promote mitochondrial retrograde trans
port in axons [105]. Drp1 is in dynamic equilibrium between cytosol and 
mitochondria, where, once recruited, it polymerizes and promotes 
fission; however, upon PKA phosphorylation, Drp1 translocation to 
OMM is inhibited, leaving mitochondrial fusion unopposed, hence 
promoting mitochondrial elongation [39,106]; on the opposite side, 
Drp1 dephosphorylation by the Ca2+-activated phosphatase calcineurin 
results in mitochondrial fission [107]. This is a notable example of the 
cell-pervading cross-talk between cAMP and Ca2+, which, in this case, 
exert opposite actions on the mitochondrial shape and, eventually, on 
many shape-linked processes. Mitochondrial fission is indeed linked to 
mitophagy and apoptosis [39,107], whereas fusion positively affects 
mitochondrial bioenergetics [108] and, consequently, several processes, 
such as neuronal morphogenesis, mitochondrial adaptation to hypoxia 
[109], and, in general, cell resistance and survival [110,111]. 

Among the cell survival strategies, a key role is played by autophagy 
[112], a general self-degradation process put in place at critical times, e. 
g. limited nutrients, or to clear damaged proteins and organelles. 
Damaged mitochondria clearing is named mitophagy and represents the 
mechanism ultimately responsible for mitochondria quality and quan
tity control. The general (macro) and the specific autophagy forms are 
linked to mitochondrial shape and dynamics in opposite ways. 
Macro-autophagy is accompanied by elongation, triggered by PKA 
phosphorylation of Drp1, a stereotypical response necessary to sustain 
cellular ATP levels and viability [106]. On the contrary, mitochondrial 
fission precedes and facilitates mitophagy, which is jointly controlled by 
PINK1, which accumulates selectively on the OMM of depolarized 
mitochondria [113] and by Parkin, an E3 ubiquitin ligase recruited by 
PINK1 [114]. PKA impinges on mitophagy both modulating Drp1 ac
tivity [115] and phosphorylating MIC60 and MIC19, components of the 
MICOS complex (MItochondrial COntact Site and Cristae Organizing 
System) [116]. Once phosphorylated by PKA, these two proteins 
destabilize PINK1 from depolarized mitochondria, preventing mitoph
agy [76]. On the opposite side, if PINK1 is overexpressed specifically at 
OMM, it phosphorylates AKAP121 altering its PKA association; as a 
consequence, Drp1 phosphorylation decreases and mitochondria 
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fragment [77]. 
Finally, WAVE-1-thetered PKA affects mitochondrial movements 

[117] and negatively regulates apoptosis, partly through the control of 
Bcl-2 localization and phosphorylation [118] and by promoting auto
phagy through the Beclin1/Bcl-2 and Beclin1/PI3K complex-dependent 
pathways [119]. 

The links between PKA-dependent phosphorylation of mitochondrial 
proteins and apoptosis are complex and not completely clarified. For 
example, PKA anchored to the OMM through AKAP121, WAVE-1, and 
possibly also Rab32 [90,95], is thought to antagonize apoptosis by 
phosphorylating and inactivating the pro-apoptotic protein BAD [38,80, 
120]. An interesting case is represented by glucose- and 
GLP-1-stimulated beta-cells, in which the rise in cAMP is mediated in 
part by GPCR-coupled tmACs and in part by Ca2+ induced sAC activation 
[121]. The ensuing cAMP reaches the OMM-tethered PKA, becoming 
involved in the anti-apoptotic game against BAD. 

An opposite, pro-apoptotic effect, of cAMP increase has been pro
posed during ischemia or acidosis. In this case, the cAMP produced by 
sAC appears to activate a PKA pool that facilitates the translocation of 
the pro-apoptotic BAX to mitochondria [122,123,124]. To explain these 
two opposite effects of PKA-dependent phosphorylation on apoptosis, it 
can be envisaged that during ischemia or acidosis the PKA pool engaged 
by sAC is different from that activated by glucose or GLP-1 that inhibit 
BAD action. 

This example highlights the complex role of AKAPs: acting as 
anchoring platforms, they allow to exploit the same few molecular 
players to obtain very different and sometimes opposite effects. One 
could hypothesize that such a setting has been evolutionary favoured as 
an energy saving solution; indeed, for each single molecular component 
added, several essential regulatory elements should also be added, 
exponentially increasing the number of proteins, mRNAs and eventually 
genes needed. The evolution of tethering platforms appears to allow 
sparing elements in return for compartmentalizing capacity. 

Interestingly, sAC, which is the more divergent, and the more 
evolutionary ancient among all mammalian ACs [53], does not appear 
tethered to any AKAP. sAC is unique in being not anchored to plasma 
membrane, in being found in many different subcellular locations 
(including sub-mitochondrial compartments) [125] and in being sub
jected to complex and still poorly known alternative splicing of its 
mRNA [126] and probably also to post-translational processing [127]. 
In its longer form, in addition to the classical cyclase domains, sAC in
cludes about 1200 aminoacids, very likely with regulatory functions, the 

details of which are mostly unknown [127]. This huge regulatory region 
could be envisaged as coding the necessary domain toolkit to regulate 
such a freelance enzyme. 

As mentioned above, an additional mechanism that allows the 
establishment of PKA-dependent phosphorylation microdomains de
pends on the activity of phosphatases. We recently showed [88,89] that, 
upon indistinguishable increases in cytosolic or OMM cAMP levels in rat 
cardiac myocytes and primary fibroblasts (elicited by either β-adren
ergic receptors or direct ACs stimulation), the response of a PKA 
phosphorylation-sensitive sensor located on the OMM surface is much 
higher and sustained than that of the same probe free in the cytosol. We 
demonstrated that this localized microdomain of high PKA-dependent 
phosphorylation depends on a lower dephosphorylation rate on the 
OMM than in the cytosol, due to limited access of phosphatases to OMM 
targets. These data unravel a novel mechanism that can generate a 
functional cAMP-activated microdomain, independent from second 
messenger heterogeneity (Fig. 1). 

4. cAMP signalling in the core 

4.1. cAMP and PKA in the IMS 

The OMM is characterized by high permeability to molecules of 
molecular weight up to about 5 kDa [70–72], due to the presence of a 
non-selective channel named VDAC, while even small proteins such as 
cytochrome c (~12 kDa) are impermeant, except during exceptional 
conditions such as the opening of the so called permeability transition 
pore (PTP), a huge mitochondrial channel whose molecular components 
only recently began to emerge (see e.g. [128,129]). Being smaller than 
5 kDa, cAMP produced in the cytosol should have free access to the IMS. 
On the contrary, both the regulatory (R) and the catalytic (C) subunits of 
PKA should be excluded from the IMS, given the absence of classical 
mitochondrial targeting sequences in these proteins. Evidence for the 
presence of PKA subunits and of AKAPs in the IMS has however been 
reported. In particular, it has been suggested that the AKAP SKIP is 
localized in the IMS, specifically tethering PKA type I and thus facili
tating phosphorylation of ChChd3 [67,130]. This latter protein is 
localized at the IMM surface facing the IMS [131] and participates in the 
MICOS complex [132], which is important for the maintenance of 
cristae integrity. Another IMM/IMS protein that has been suggested to 
function as an AKAP is OPA1, a dynamin-related GTPase essential for 
normal mitochondrial morphology; OPA1 was found also associated 

Fig. 1. Phosphatases are responsible for the existence of different microdomains of PKA phosphorylation between the cytosol and the mitochondrial 
surface: (A) Maximal cAMP levels (likely leading to sensor saturation) were achieved using high levels of forskolin (to activate ACs) in combination to IBMX (to block 
PDEs) (F/I). When these drugs were rinsed away the rate of PDE-dependent cAMP degradation was revealed and was indistinguishable between the cytosol and the 
OMM. Despite that, the rate of dephosphorylation of a PKA-dependent phosphorylation sensitive sensor, which depends on phosphatases, is much slower at the OMM 
(B). This is due to limited access of phosphatases to the PKA targets present at the OMM. Indeed, the overexpression of a phosphatase increases the dephosphorylation 
rate at the OMM (C). Such a mechanism generates a functional cAMP/PKA-dependent microdomain at the mitochondrial surface, although in the absence of different 
cAMP levels from the rest of the cell. For details, see Burdyga et al. (2018). 
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with lipid droplets (LDs), and here functioning as an AKAP [133,134]. 
It should be stressed that the experimental evidence supporting the 

localization of PKA in the IMS is limited and largely based on subcellular 
fractionation experiments. Moreover, SKIP, suggested to function as an 
AKAP in the IMS, is primarily a cytosolic protein [68] and neither the 
mechanism that allows its penetration across the OMM nor the % of the 
total SKIP within mitochondria have been established. In conclusion, the 
mechanism allowing PKA localization in the IMS and its functional role 
remain somehow undefined, and more convincing evidence are neces
sary to support or exclude a PKA role in this compartment. 

4.2. cAMP in the matrix 

The existence of a cAMP axis located within the matrix and modu
lating mitochondrial functions is an appealing possibility, supported by 
a number of recent experimental data. At the same time, contradictory 
results argue for or against the existence of a matrix-located PKA and the 
controversy is still unsolved. We will discuss first the major recent 
findings related to the mechanism of cAMP homeostasis within the 
matrix and the main functional effects modulated by changes in its 
concentration. We will finally address the possible molecular targets of 
matrix cAMP and the evidence in favour and against the localization of 
PKA within mitochondria. 

For many years, the general consensus was that cAMP did not have 
any role in the mitochondrial matrix; this belief was largely due to both 
the plasma membrane exclusive localization of classical tmACs and the 
supposed impermeability of the IMM towards the negatively-charged 
cytosolic cAMP. In the last decade, however, a number of reports sug
gested the existence of an autonomous cAMP signalling cascade inside 
mitochondria. The first study which attempted to directly test the dy
namics of cAMP in the mitochondrial matrix of living cells using a 
fluorescent biosensor concluded that cAMP produced in the cytoplasm 
rapidly diffuses into the organelle matrix [135]. Unfortunately, in our 
hands this biosensor largely mis-localized in the cytosol, raising serious 
doubts about this conclusion [32]. A few years later, Acin-Perez et al., 
based on data obtained in isolated mitochondria, suggested that, while 
the IMM is impermeable to cytosolic cAMP, the organelles are endowed 
with an AC-cAMP-PKA-PDE signalling cascade, wholly contained in 
their matrix [31]. They also suggested that phosphorylation by matrix 
PKA of a cytochrome c oxidase (COX) subunit modulates the activity of 
COX. They proposed that cAMP is produced in the matrix by a mito
chondrial form of sAC, sensitive to bicarbonate, either added exoge
nously or derived from the carbon dioxide produced by the tricarboxylic 
acid (TCA) cycle [31]. In a series of subsequent studies, the same group 
identified PDE2A2 as the resident cAMP-degrading enzyme [136], and 
Ser 58 of COX subunit IV-1 as the residue involved in the PKA-mediated 
tuning of O2 consumption and ATP production [43]. A similar 
CO2-sAC-cAMP-PKA axis regulating normoxic COX activity has been 
subsequently reported also in yeast mitochondria [137]. Using a newly 
generated FRET-based cAMP biosensor, that specifically and efficiently 
localizes in the mitochondrial matrix, we directly demonstrated in living 
cells that cytosolic cAMP does not diffuse from cytosol into the organ
elles, but it can be generated in the matrix by sAC [32,33], and degraded 
by a phosphodiesterase sensitive to IBMX and to a PDE2 specific in
hibitor [32]. In addition, we uncovered that mitochondrial matrix cAMP 
(mt-cAMP) increases not only in response to bicarbonate, but also, and 
synergistically, upon mitochondrial Ca2+ elevations [32], accordingly 
with the known in vitro properties of sAC [138]. Then, using a 
mitochondria-targeted luciferase and a set of genetic and pharmaco
logical tools, we directly showed in live cells that mt-cAMP contributes 
positively to the regulation of mitochondrial ATP production, in line 
with Acin-Perez et al. [32]. 

A distinctive and key feature of cytosolic signal transduction is the 
convergence of a very large variety of extracellular (via membrane re
ceptors) and intracellular (via metabolic intermediates) stimuli onto a 
limited number of intracellular second messengers, i.e. Ca2+, cAMP, 

cGMP, IP3, NO and a few others. This complexity requires an elaborate 
signalling code, relying not only on concentration, but also on complex 
spatio-temporal dynamics of the second messenger, eliciting different 
outcomes depending on its oscillation frequency and subcellular 
compartmentalization. A similar temporal signalling code might work 
also in the mitochondrial compartments. For instance, a single Ca2+

transient, as elicited by ATP stimulation of HeLa cells, induces a tran
sient mt-cAMP increase, whereas a more prolonged Ca2+ increase, as 
that induced by the same stimulus but in conditions of blunted matrix 
Ca2+ efflux, induces a more persistent mt-cAMP response. In car
diomyocytes, increased frequency and amplitude of the spontaneous 
Ca2+ oscillations in the cytosol and mitochondria elicit mt-cAMP rises 
that, contrary to the oscillatory Ca2+ changes, do not oscillate, but in
crease slowly and eventually reach a plateau level [32] (Fig. 2). This 
evidence unveils that the intra-mitochondrial cAMP machinery is 
capable of integrating an oscillatory Ca2+ signal into a prolonged cAMP 
increase [32,37], indicating mitochondria as integrators of signals 
differentially encoded by different second messengers. 

Altogether, these results raised more questions than they answered. 
For example, endogenous CO2 produced by increased TCA cycle flux has 
been suggested to be insufficient to increase mt-cAMP levels [139]; the 
localization of PDE2A2 in the matrix has been questioned, and it was 
rather proposed that it is exclusively localized in the IMS [140]. Other 
PDEs were suggested to localize in mitochondria such as PDE8A [141, 
142] and Prune, discovered in Drosophila [143]. In the latter case, its 
matrix localization was unveiled exploiting an elegant Bimolecular 
Fluorescence Complementation approach (BiFC). However, the matrix 
targeted FRET-based cAMP sensor used in this study responded well to 
cytosolic cAMP increases, suggesting a possible partial mistargeting of 
the sensor in these experiments. 

4.3. PKA and Epac1 in the matrix 

While in the last years data from a number of groups confirmed and 
extended the conclusion of the impermeability of IMM to cAMP and of 
the existence of an endogenous cAMP signalling toolkit within the 
mitochondrial matrix, the localization (and consequently the role) of 
PKA within this compartment remain highly controversial. Here we 
briefly mention the major evidence against and in favour of PKA local
ization and on its role within the mitochondrial matrix. 

Traditionally, the main arguments against intramitochondrial PKA 
leaned on the fact that neither the C nor the R subunits of PKA contain a 
classical mitochondrial targeting sequence; moreover, the classical 
paradigm establishes that, for PKA to work properly, the C and R sub
units must be present in identical concentrations, and this has never 
been proven in the matrix. Finally, a strong argument has been recently 
provided by Lefkimmiatis et al., who demonstrated that an increase in 
mt-cAMP does not induce any detectable phosphorylation of an artificial 
PKA substrate localized in the matrix [33]; the same artificial substrate, 
however, is rapidly phosphorylated if a Cα subunit targeted to the matrix 
is expressed. 

In support of a possible matrix localization of PKA, despite the 
absence of classical targeting sequences in either C or R subunits, mili
tates the fact that proteins can be targeted to the different mitochondrial 
compartments by mechanisms other than the classical one [144]; thus, 
one could envisage that both C and R subunits of PKA (and perhaps also 
AKAPs), have co-evolved one of these mechanisms to be targeted to the 
IMS/matrix; this possibility, however, has not been demonstrated and it 
remains at the moment just a speculation. Electron microscope evidence 
for the matrix localization of the C subunit has been repetitively pre
sented [145–147]. On the other hand, in vitro experiments in which 
isolated COX was incubated with PKA, cAMP and radiolabeled ATP, 
resulted in the phosphorylation of several COX subunits, demonstrating 
that potentially PKA can phosphorylate COX peptides both on the IMS 
and matrix side [148,149,158,150–157]; moreover several groups have 
provided evidence supporting PKA-dependent phosphorylation of 
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matrix or IMM proteins in isolated mitochondria of yeast, mammalian 
cell lines and tissues [145,146,161–168,148–151,155,156,159,160]. 
Most of these data, however, were based on the wrong assumption that 
cAMP could penetrate across the IMM. For example, in Sardanelli et al. 
[151] intact freshly isolated mitochondria incubated with cAMP (not 
permeable to the matrix), its analogue db-cAMP (membrane permeable) 
or PKA catalytic subunits gave similar phosphorylation patterns, sug
gesting that the PKA moiety involved (and/or the targets) were not 
localized in the organelle matrix. Finally, Prabu et al. [157] reported 
that, in in vitro perfused rabbit hearts after ischemia, there is a massive 
phosphorylation of COX subunits. Using the same approach they also 
identified by mass spectrometry the phosphorylated residues [158]. 
However, these sites not only lack a classical PKA consensus sequence 
but most of the conclusions were based on the use of the effective (but 
not selective [169]) PKA inhibitor H89. 

A few more recent papers support the existence of PKA in the 
mitochondrial matrix, in particular: i) phosphorylation of COX IV-1 in
volves a classical PKA consensus sequence [43]; ii) human (and yeast) 
TFAM, essential for mitochondrial DNA synthesis, expression and 
packaging, has been demonstrated to be phosphorylated by PKA in vitro 

[170] [171] or in intact cells by a transfected PKA C-subunit targeted to 
the mitochondrial matrix [170]. Notably, however, no direct evidence 
demonstrating that in intact (non transfected) cells TFAM phosphory
lation depends on a PKA localized within mitochondria was provided. A 
recent study attempted to identify the interactome of PKA in the mito
chondrial matrix. The authors overexpressed a matrix-targeted C-sub
unit and used a combination of proximity-dependent biotinylation, 
LC–MS/MS analysis and in silico phospho-site prediction, to identify 21 
mitochondrial proteins potentially interacting with mt-PKA [172]. 
Noteworthy is that a number of previously suggested targets of matrix 
PKA (e.g. COX IV-1 [31,43], IF1 [173], NDUFS4 [149,174]) are missing. 

It must be stressed that, with few exceptions (PDH and BCKDK ki
nases and phosphatases [175,176]), the kinases and phosphatases acting 
in the matrix are poorly characterized, and it is still unclear to what 
extent phosphorylation of mitochondrial matrix proteins occurs in the 
matrix itself or outside of mitochondria before or during import [86], 
although at least TFAM has been shown to be phosphorylated inside 
mitochondria [170]. 

In summary, although there are some evidence supporting the 
presence of PKA in the mitochondrial matrix (and IMS), the few data 

Fig. 2. Mitochondria can integrate an oscil
latory Ca2þ signal into a prolonged cAMP 
increase: In the presence of extracellular Ca2+, 
cardiomyocyte mitochondria uptake and release 
Ca2+ on a beat-to-beat basis. (A) Representative 
measures of Ca2+ kinetics in the mitochondria 
of a neonatal cardiomyocyte, first in the absence 
and then in the presence of external Ca2+. In the 
latter condition, mitochondria display their 
typical oscillatory Ca2+ pattern, which is re
flected in a sustained increase in mt-cAMP 
levels (B). These data suggest that Ca2+ oscil
lations are integrated by a mechanism that 
regulates mt-cAMP production. Of note, in the 
absence of Ca2+ neither adrenergic stimulation 
with norepinephrine (NE), nor direct activation 
of ACs with forskolin, both increasing cytosolic 
cAMP, resulted in mt-cAMP increases, illus
trating that cytosolic cAMP does not enter 
mitochondria. For details, see Di Benedetto 
et al. (2013).   
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obtained in intact living cells are unclear or even contradictory [32,33, 
170]. Altogether these findings indicate that PKA potentially can 
phosphorylate proteins located in the matrix or IMS, but at the same 
time do not exclude that in intact cells an enzyme distinct from PKA 
could be the cAMP-sensitive kinase of the mitochondrial matrix/IMS. 
This “non-canonical” PKA, if it exists, may share with cytosolic PKA 
some, but not all, features. We advanced this hypothesis when faced 
with the result that the mt-cAMP-dependent increase on mitochondrial 
ATP production was inhibited by a competitive inhibitor of cAMP 
binding to PKA and, importantly, by an overexpressed matrix-targeted 
PKI (the most specific PKA inhibitor). However, ATP production was 
not activated by membrane permeable cAMP analogs that are potent 
activators of the cytosolic enzyme [32]. The fact that 
PKA-phosphorylated residues on COX subunits I, IV, and Vb, identified 
by mass spectrometry, do not display the classical PKA consensus site 
[157], in conjunction with the failure of phosphorylation of a matrix 
localized PKA activity sensor upon mt-cAMP rise [33], and with the lack 
of evidence for interaction between a matrix-targeted PKA and any of 
the matrix proteins which have been previously found phosphorylated 
upon cAMP increase [172], might be interpreted along the same line. 

The situation with matrix Epac1 is simpler than that of PKA. Epac1 in 
fact was discovered in 1998 [63,177] and the possibility of its presence 
in the matrix was first proposed by Qiao et al. [178], who also identified 
its mitochondrial targeting sequence. Surprisingly, this finding was not 
further explored for several years; however, once the existence of an 
intramitochondrial cAMP pool was unveiled, not only the interest in 
matrix Epac1 (mt-Epac1) pool increased, but it has been clearly shown 
that this protein mediates, at least in part, the effects of mt-cAMP [45, 
179,180]. In the heart, the presence in mitochondria of Epac1, as well as 
of that of the most active, truncated form of sAC (tsAC), has been 
directly demonstrated. Here a major role of this mitochondrial pathway 
would be protective, limiting mitochondrial Ca2+ entry through the 
MCU, and preventing the deleterious consequences of mitochondrial 
Ca2+ overload, such as the dissipation of ΔΨ and the induction of PTP 
opening [179]. 

In the setting of ischemia/reperfusion (I/R) injury, instead, mt-Epac1 
has been reported to have a deleterious action through two different 
mechanisms, favouring mitochondrial Ca2+ overload and increasing 
ROS effects [180]. The authors proposed that: i) I/R elicits cAMP pro
duction by sAC, that activates mt-Epac1, that in turn, via CaMKII, fa
vours ER/mitochondria Ca2+ transfer, mitochondrial Ca2+ overload and 
finally PTP opening [180]; ii) CaMKII, by phosphorylating and inhibit
ing IDH2 activity, reduces NADPH production, and, accordingly, the 
antioxidant capability of cardiomyocytes [180]. 

Other groups have provided evidence for CaMKII association with 
mitochondria (or even intramitochondrial localization of the enzyme) 
[181–183] and, at variance with the work of Wang et al. [179], sug
gested that CaMKII-dependent phosphorylation increases mitochondrial 
Ca2+ influx via activation of the MCU complex [182–184]. The role of 
CaMKII in regulating mitochondrial Ca2+ uptake, however, has been 
recently very seriously criticized [185] and it has been demonstrated 
that knocking-out CaMKII in the heart has no effect on MCU-dependent 
Ca2+ uptake, either in isolated cardiac mitochondria, or in intact car
diomyocytes [186]. 

4.4. Mitochondrial cAMP levels and organelle functions 

Finally, the most general question is the functional role of such a 
complex autonomous mt-cAMP signalling machinery, that appears to 
include all the molecular components necessary to convey different 
cAMP driven signals, albeit not an AKAP. 

Although the effectors are still uncertain (Epac1, PKA?, another ki
nase?), a general consensus exists on the regulatory effect that mt-cAMP 
exerts in metabolic regulation, in particular mitochondrial respiratory 
chain activity and ATP production (see above). 

Additional evidence supporting this metabolic role of mt-cAMP has 

been obtained recently. For example, sAC-KO MEFs are characterized by 
a major defect in OXPHOS activity; to partially compensate this deficit, 
the level of OXPHOS proteins is strongly increased [187]. The knock-out 
of the first ATP-binding site in the sAC gene, which should completely 
inactivate sAC (but this is a debated point; see [188–190]), was found to 
impair mitochondrial energy metabolism as well as growth in galactose 
medium, and to induce a shift towards glycolysis by causing a decline in 
the ETC complex I (CI) activity, COX activity, ΔΨ and ATP production. 
On the whole, these sAC-KO MEFs display an energy deprivation 
response, as demonstrated also by increased AMP dependent Kinase 
(AMPK) phosphorylation and upregulation of PCG1α and NRF1, that 
increase mitochondrial biogenesis. Restoring sAC expression exclusively 
in the mitochondrial matrix rescued OXPHOS activity, normalized en
ergy production and hampered mitochondrial biogenesis, suggesting 
that these phenotypes are specifically regulated by intramitochondrial 
sAC [187]. In line with this, the silencing of sAC resulted in decreased 
ΔΨ [179], and sAC inhibition caused CI activity defects [191]. Notably, 
however, silencing and inhibition affect all forms of cellular sACs; their 
influence on mitochondrial function does not necessarily imply the ac
tion of mt-cAMP. In addition, as a cautionary note, it should be stressed 
that the sAC inhibitor KH7 employed in many of these experiments, and 
largely utilized in the past as well as currently (see, for example [31,191, 
192]), has been demonstrated to dramatically decrease the ΔΨ and to 
acidify matrix pH [32,193,194], effects that per se impinge on normal 
mitochondrial functionality. Therefore, the conclusions drawn from 
papers exploiting KH7 as evidence for a role of mt-cAMP should be 
assessed prudently. 

It has been proposed that, in cardiomyocytes, abnormal mt-cAMP/ 
PKA signalling may participate in sepsis-induced mitochondrial 
dysfunction [195]. These authors claim that sepsisinduced OXPHOS 
defects can be attributed to abnormal mt-cAMP/PKA signalling through 
reduced Ser-58 phosphorylation of COXIV-1, and that inhibition of PDE2 
improved both respiratory control ratio of cardiac fibers and myocardial 
efficiency in septic hearts [195]. However, their results were obtained 
exploiting exclusively pharmacological tools to inhibit PKA, PDE2 and 
sAC (including the above cited KH7), which necessary implies, once 
again, that the cAMP handled is not exclusively the intramitochondrial 
one. 

Another recent work proposed that PKA phosphorylates ATPase 
Inhibitory Factor 1 (IF1) and inactivates its capacity to bind and inhibit 
mitochondrial ATP synthase in situations that compromise OXPHOS 
[173]. Dephosphorylated IF1 is present in hypoxia and in human car
cinomas; upon its interaction with ATP synthase, both the synthetic and 
hydrolytic activities of this enzyme are inhibited. Thus, the phosphor
ylation status of IF1 regulates the flux of aerobic glycolysis and ATP 
production through OXPHOS in hypoxia and during the cell cycle [173]. 
Also in this work, however, the tools employed to manipulate the cAMP 
signalling cascade were exclusively pharmacological, and, given the 
undisputed matrix localization of IF1, it was assumed (although not 
directly tested) that phosphorylation of IF1 was due to a PKA localized in 
the mitochondrial matrix. 

The first evidence for a cell-specific functional role of mt-cAMP was 
found in aldosterone-producing adrenal glomerulosa cells, where the 
involvement of mt-cAMP helped to explain an apparent paradox. In 
these cells, both angiotensin II (AngII) and corticotrophin (ACTH) in
crease aldosterone secretion, whilst acting in opposite directions on the 
average intracellular cAMP level. It was shown that, albeit AngII de
creases cytosolic cAMP, it induces a cytosolic and mitochondrial Ca2+

increase that, through stimulation of mitochondrial sAC, results in a mt- 
cAMP rise [196]. Subsequently, the same group reported that, in addi
tion to mitochondrial Ca2+ impinging on mt-cAMP, the reverse is also 
true: inducing a reduction of mt-cAMP formation resulted in a partial 
inhibition of mitochondrial Ca2+ accumulation; on the contrary, the 
treatment with a membrane-permeable cAMP analogue, the addition of 
a PDE2 inhibitor or the overexpression of sAC specifically in the mito
chondrial matrix, increased Ca2+ uptake into the organelle. This 
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enhancing effect of mt-cAMP on Ca2+ uptake was independent from 
both the mitochondrial ΔΨ and Ca2+ efflux, but was sensitive to Epac1 
activators/inhibitors [45]. The authors suggested the existence within 
mitochondria of a positive-feedback loop controlling mitochondrial 
Ca2+ handling; according to their model, Ca2+ triggers the formation of 
mt-cAMP that, in turn, recruits Epac1 and further enhances Ca2+ uptake. 
Although excessive function of this system may lead to cell death, it may 
have a role in emergency situations, when a rapid cellular response is 
required. 

A unique mechanism was recently unveiled in hippocampal mito
chondria through which mt-cAMP would regulate not only ATP syn
thesis and respiration, but also memory formation [192]. These authors 
proposed that the stimulation of cannabinoid-type 1 receptors (CB1R), 
found by them and by other groups localized on the OMM facing the IMS 
[192,197–200], inhibits the intra-mitochondrial sAC through the release 
of a Gαi protein associated with such receptors, thus inducing a decrease 
of mt-cAMP. This, in turn, would dampen the PKA-dependent phos
phorylation of specific subunits of the ETC, eventually leading to 
decreased cellular respiration and an amnesic effect [192]. A further 
development of such mitochondrial CB1R signalling was recently re
ported by the same group, and it suggests that activation of mt-CB1R in 
astrocytes reduces PKA-dependent phosphorylation of mitochondrial 
complex I subunit NDUFS4, disrupting its assembly and activity [174]. 
This interesting signalling mechanism, however, has been heavily crit
icized (see for example [201]) and contains unexplored as well as con
tradictory points. For example: how could a Gαi bound to the inner 
surface of OMM reach and inhibit mt-sAC that is located in the matrix? 
How could Gαi inhibit mt-sAC which is the “not-G-protein-sensitive” 
adenylate cyclase par excellence? In which sub-mitochondrial compart
ment is PKA responsible for the ETC subunits phosphorylation? What is 
the mechanism of CB1R targeting and insertion in the OMM? At this 
stage, we believe it is fair to say that this mechanism remains fascinating 
but highly controversial. 

CB1R is not the only GPCR found in mitochondria, and reports of 
mitochondrial localization of several other receptors (with associated G 
proteins) of this family have been recently published (purinergic [202], 
for serotonin [203], angiotensin II [204] and melatonin [205]). As for 
CB1R, additional data appear necessary to confirm these findings and 
their functional relevance. 

Unlike for other mitochondrial functions, our understanding of the 
organelle cAMP signalling is still largely incomplete and sometimes even 
contradictory. For example, the localization of PKA within the matrix or 
the IMS is still debated and, if PKA is present within mitochondria, the 
mechanism that allows the post-translational import of the protein has 
not been identified; the nature of the intramitochondrial phosphatases 
that terminate the kinase-dependent phosphorylation is still largely 
unsolved and contradictory data are available as to the PDE(s) present 
within the matrix and IMS; the localization and targeting mechanism of 
receptors linked to cAMP production/degradation is a fascinating, but 
still debated finding. In summary, the study of the mitochondrial cAMP 
signalling toolkit is still in its infancy and novel approaches and exper
imental tools are necessary to solve the puzzle. 

Funding 

This work did not receive any specific grant from funding agencies in 
the public, commercial, or not-for-profit sectors. The original work by 
GDB, KL and TP was supported by CNR Eurobioimaging project, CNR 
Research Project “Aging: molecular and technological innovations for 
improving the health of the elderly population” (Prot. MIUR 2867 
25.11.2011), European Strategy Forum on Research Infrastructures 
Project Roadmap, Italian Ministry of University and Education (PRIN- 
2015W2N883), Telethon Foundation Grant (GGP16029), CARIPARO 
Foundation excellence grant award (2018/113) to TP and by British 
Heart Foundation Centre of Research Excellence, Oxford (Fellowship 
RE/13/1/30181), CARIPARO Foundation excellence grant award 

(SIGMI), Italian Ministry of University and Education (PRIN- 
2017BF3PXZ) to KL. 

CRediT authorship contribution statement 

Giulietta Di Benedetto: Writing - original draft, Writing - review & 
editing. Konstantinos Lefkimmiatis: Writing - review & editing. Tullio 
Pozzan: Writing - review & editing. 

Declaration of Competing Interest 

None. 

Aknowledgments 
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M.F. Oliveira, G. Las, M. Liesa, et al., NCLX prevents cell death during adrenergic 
activation of the brown adipose tissue, Nat. Commun. (2020) 11, https://doi.org/ 
10.1038/s41467-020-16572-3. 

[169] A. Lochner, J.A. Moolman, The many faces of H89: a review, Cardiovasc. Drug 
Rev. 24 (2006) 261–274. 

[170] B. Lu, J. Lee, X. Nie, M. Li, Y.I. Morozov, S. Venkatesh, D.F. Bogenhagen, 
D. Temiakov, C.K. Suzuki, Phosphorylation of human TFAM in mitochondria 
impairs DNA binding and promotes degradation by the AAA+ lon protease, Mol. 
Cell 49 (2013) 121–132, https://doi.org/10.1016/j.molcel.2012.10.023. 

[171] J.H. Cho, Y.K. Lee, C.B. Chae, The modulation of the biological activities of 
mitochondrial histone Abf2p by yeast PKA and its possible role in the regulation 
of mitochondrial DNA content during glucose repression, Biochim. Biophys. Acta 
- Gene Struct. Expr. 1522 (2001) 175–186, https://doi.org/10.1016/S0167-4781 
(01)00333-5. 

[172] Y. Ould Amer, E. Hebert-Chatelain, Insight into the interactome of 
intramitochondrial PKA using biotinylation-proximity labeling, Int. J. Mol. Sci. 21 
(2020) 8283, https://doi.org/10.3390/ijms21218283. 

[173] J. García-Bermúdez, M. Sánchez-Aragó, B. Soldevilla, A. del Arco, C. Nuevo- 
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