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Abstract
It has been widely assessed that the quality and quantity of nutrient supply and the growing system can strongly affect the 
growth and development of plants, the nutritional quality, and the levels of minerals, phytochemicals, and vitamins. The 
study was conducted on leaves of wild rockets grown in soil and soilless to examine the effect of growing conditions and 
mineral fertilization doses on the quality, mineral content, enzymatic and non-enzymatic antioxidants, and oxidative stress. 
The experiment was conducted in a plastic greenhouse into two independent sectors, one for soil-bound cultivation and 
another equipped for soilless cultivation. The crop was subjected to a high compared to a low-input fertilization program. 
Ion exchange chromatography, spectrophotometrically, and microbiological techniques were utilized. The soil-bound treat-
ments increased the fresh weight, leaves number, chloride content, and microbial load. Exogenous application of higher 
nitrogen levels significantly boosted the ascorbate and hydrogen peroxide levels. Wild rocket growth in soilless showed a 
higher content of sulphates and polyphenols, and enhanced activity of the antioxidant enzymes dehydroascorbate reductase 
and monodehydroascorbate reductase. The fertilization rate and the cultivation system did not modify the content of nitrates, 
except in the soilless system treated with high fertilization program, where nitrate levels slightly exceeded regulatory limits. 
The yield and overall quality of wild rockets can be improved by combining the proper fertilizer dose with the growth system 
(soilless or soil) and suggested fertilization management is provided.
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1  Introduction 

Fertilization and water availability are key factors in regu-
lating plant growth, yield, and the biosynthesis of second-
ary metabolites involved in the nutritional quality of prod-
ucts intended for human consumption (Duncan et al. 2018; 
Krouk and Kiba 2020). As defined by Evans and Fischer 
(1999), the potential yield of a crop is the maximum yield 
attainable in environments to which the plant is adapted, 
where abiotic and biotic stresses are controlled. Although 
actual yields are usually much lower than the attainable 
maximums, improved crop management practices and 
breeding techniques represent an important strategy to 
alleviate the negative effects of water and nutrient deficit 
(Ewert et al. 2005). Optimization of the fertilizer applica-
tion is one of the crucial management practices to enhance 
the growth and development of plants and improve the 
nutritional quality and levels of minerals, phytochemicals, 
and vitamins.

Nitrogen (N) is one of the most important macronutri-
ents required for plant growth, being involved in the bio-
synthesis of nucleic acids, proteins, chloroplasts, as well 
as secondary metabolites, such as alkaloids, non-protein 
amino acids, glucosinolates (GLS), and cyanogenic gluco-
sides (Aires et al. 2006; Duncan et al. 2018; Wink 2013). It 
has been reported that N fertilization can have wide-rang-
ing effects on productivity and nutritional quality (Bénard 
et al. 2009; Stitt 1999). Several studies showed that chlo-
rophyll content, leaf area, and photosynthetic capacity 
increased with increasing N supply (Hoque et al. 2010; 
Mahlangu et al. 2016; Zhao et al. 2005). Higher N availa-
bility for plant absorption has been also shown to increase 
lycopene, carotenes, and vitamin  B1 contents in plants 
(Flores et al. 2004; Mozafar 1993). On the other hand, 
GLS (Li et al. 2007), total phenols (Fritz et al. 2006; Kel-
ler and Hrazdina 1998; Wilkens et al. 1996), and ascorbic 
acid (ASC) contents (Bénard et al. 2009; Hall et al. 2015; 
Mozafar 1993; Rajasree and Pillai 2012) were found to be 
significantly lower when higher N concentrations had been 
applied. Therefore, adequate N application is essential 
in order to ensure the optimal nutritional and functional 
quality of horticultural crops and to avoid the accumula-
tion of nitrates  (NO3) in edible tissues and soil. Although 
the putative beneficial or harmful effect of nitrate intake 
on human health is still uncertain and highly debatable, 
the European Commission regulations No 1881/2006 and 
1258/2011 established maximum nitrate limits for fresh 
mature vegetables, including Diplotaxis tenuifolia, since 
an excessive dietary intake of nitrate could expose some 
target population groups (vegetarians, infants, and elderly) 
at an increased risk of developing cancer (EFSA- Euro-
pean Food Safety Authority 2008, Santamaria 2006). 

Furthermore, it has recently been reported that modulation 
aimed at increasing or reducing the nitrate content is to be 
considered a new agronomic approach to obtain tailored 
products for specific nutritional purposes (e.g. vegetables 
with low nitrate content for children, vegetables with a 
high content of nitrates for athletes) (Renna et al. 2022).

N has been seen to play a crucial role in the growth and 
development of plants. However, there is evidence that the 
interaction and balance between N and other macronutrients, 
including phosphorus (P), potassium (K), sulphur (S), and 
calcium (Ca), can improve crop performance by enhancing 
resilience to environmental stress, nutrients uptake, and phy-
tochemicals production (Amtmann and Armengaud 2009;  
Aulakh and Malhi 2004;  Duncan et al. 2018). Furthermore, 
several studies highlight the efficacy of macronutrients 
interaction in plant growth and secondary metabolites pro-
duction, and how the concurrent limitation of nutrients can 
affect plant fitness (de Bang et al. 2021; López-Arredondo 
et al. 2017), questioning the validity the Liebig’s law of the 
minimum (Gorban et al. 2011), which states that growth is 
constrained by the scarcest resource (limiting factor).

Considerable effort has been made for understanding the 
physiological role of each nutrient within the various plant 
tissues and organelles. However, the impact of combinations 
of more macronutrients both on crop productivity, nutri-
tional quality (Aulakh and Malhi 2005; Bénard et al. 2009; 
Duncan et al. 2018), and redox status of plant cells (Mahl-
angu et al. 2016) has been poorly investigated. In this con-
text, the use of soilless growth systems has been increasing 
in the greenhouse horticultural sector, and, at present, the 
hydroponic cultivation of several leafy vegetables used for 
the fresh-cut industry is the preferred solution as compared 
to the traditional soil-based cultivation methods, because it 
may overcome problems related to soil-borne diseases and 
soil fertility and enhance crop productivity and quality (Di 
Gioia et al. 2018; Kolega et al. 2020; Mahlangu et al. 2016). 
The microbiological quality of fresh-cut products is a crucial 
parameter determining their overall quality because micro-
bial growth may change the nutritive profile of leaves, as 
well as their physical appearance (Saini et al. 2017).

Wild rocket salad, with particular reference to Diplo-
taxis tenuifolia (L.) DC species, is gaining popularity, and 
the cultivation of this plant is in further expansion, both 
in greenhouse and open field conditions (Schiattone et al. 
2017). Different growing techniques are related to the vari-
ability of growing cycle duration and specific characteris-
tics of rocket species of agricultural interest (D. tenuifolia, 
Eruca sativa Mill., and D. erucoides (L.) DC). However, a 
few aspects relate to the impact of the cultivation system 
and nutrient solution composition on the nutritional qual-
ity and content of phytochemicals with antioxidant activ-
ity in those species have been investigated. Recently, Gioia 
et al. (2018) compared the GLS profile and content in three 
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rocket salad species belonging to the Brassicaceae (D. ten-
uifolia, E. sativa, and D. erucoides) in relation to different 
growth systems, soil and soilless, and crop management. 
Another study, conducted by Yang et al. (2021), showed that 
total GLS, chlorophyll, carotenoids, and nitrate concentra-
tions increased with higher electrical conductivity values 
in hydroponically grown E. sativa. Besides glucosinolates, 
rocket salad contains a wide range of health-promoting phy-
tonutrients, including ascorbic acid, flavonoids, and poly-
phenols (Martínez-Sánchez et al. 2006). In the last decade, 
D. tenuifolia, well-known as wild rocket, has become very 
popular and appreciated by the fresh-cut industry, for its 
long shelf-life and fast-growing cycle (Hall et al. 2012).

Despite its current importance as a ready-to-eat salad, a 
proper nutrient management in soilless wild rocket crops 
is still required, as well as a deeper investigation of physi-
ological and likely oxidative stress responses as affected by 
the composition of the nutrient solution and culture system. 
Our working hypotheses were the following: (i) that soil-
less cultivation could maintain crop productivity and quality 
compared to soil-bound cultivation (ii) that a low-input fer-
tilization rate could be enough for improving the nutritional 
quality of D. tenuifolia cv Dallas without eliciting nitrate 
accumulation, to ensure the compliance with the maximum 
imposed limits (EC Regulation No. 1258/2011).

In this study the effects of different growing techniques 
(soil-bound and soilless cultivation) and different levels 
of nutrients supply (low- and high-input fertilization) on 
growth parameters, anions content, oxidative stress, and 
microbiological load in leaves of D. tenuifolia cv Dallas, 
which is currently the most widely grown cultivar in the 
Southern Italian regions, were investigated. In addition, non-
enzymatic antioxidants, such as ascorbic acid and polyphe-
nols, and the activity of antioxidant enzymes, such as cata-
lase (CAT), peroxidase (POD), dehydroascorbate reductase 
(DHAR), and monodehydroascorbate reductase (MDHAR) 
were assessed.

2  Materials and Methods

2.1  Plant Material and General Growing Conditions

The experiment was carried out at the “La Noria” experi-
mental farm of the Institute of Sciences of Food Production 
– National Research Council (Mola di Bari, Italy, 41°03' 
N; 17°04' E; 24 m above sea level). Wild rocket (cv Dal-
las, Isi Sementi, Fidenza, PR. Italy) plants were cultivated 
in a plastic greenhouse into two independent sectors, one 
for soil-bound cultivation and another equipped for soilless 
cultivation. Crop management practices (e.g., disease and 
pest control) were the same for both treatments and were 
based on local practices. In both growing condition cases 

(soil-bound, SB; soilless, SL), the crop was subjected to a 
high– compared to a low–input fertilization program (HF 
and LF, respectively; see Sects. 2.1.1. and 2.1.2 for details). 
According to the common practice for wild rocket salad, the 
crop cycle consists of subsequent harvests and re-shootings. 
For the purposes of this study, plants were harvested dur-
ing the period occurring between April 28th and May 10th, 
2021, when plants of different treatments reached the com-
mercial harvest stage. In particular, the length of the growing 
period was 17 days for the soilless treatments and 21 days 
for the soil-bound treatments. During the plant re-shooting 
period prior to harvest, the average temperature was 18.3 °C, 
with a minimum temperature of 2.8 °C and a maximum tem-
perature of 41.5 °C, while the air relative humidity ranged 
from 15.8 to 94.9%, with an average value of 59.5%.

2.2  Soil–Bound Growing Conditions

In soil–bound sector, soil was a typical Mediterranean 
“Terra Rossa” clay soil, classified as Alfisols according to 
the USDA soil taxonomy: 1.08% organic matter; pH 7.8; EC 
2.4 dS  m−1. Plants were watered by drip irrigation, using 
collected rainwater. In SB–HF treatment, 60 kg  ha−1 of nitro-
gen was applied by fertigation as calcium nitrate (Di Gioia 
et al. 2018); a reduced N dose of 30 kg  ha–1 was adopted in 
the SB–LF treatment.

2.3  Soilless Growing Conditions

Rocket plants were grown in a peat:perlite (3:1) mixture in 
4.5 L plastic pots. Nutrient solution (NS), prepared by mix-
ing soluble fertilizer salts with pre-collected rainwater, was 
provided to plants via drip irrigation according to a pre-
fixed irrigation schedule controlled by a timer (the sched-
ule was periodically adjusted according to plant water need 
variations). In the SL–LF treatment, plants were fertigated 
with a NS containing N (11.0 mM), phosphorus (1.0 mM), 
potassium (4.4  mM), magnesium (1.7  mM), calcium 
(3.2 mM), sulphur (2.1 mM) (Di Gioia et al. 2018). In the 
SL–HF treatment a NS containing N (15.0 mM), phospho-
rus (1.0 mM), potassium (6.0 mM), magnesium (2.0 mM), 
calcium (5.0 mM), sulphur (2.9 mM) was used. In both treat-
ments, iron (20 μM), manganese (5 μM), zinc (2 μM), boron 
(25 μM), copper (0.5 μM), and molybdenum (0.1 μM) were 
added in NS as micronutrients (Hoagland and Arnon 1950).

2.4  Measurements

All chemicals used in this study were of the highest grade 
available (Sigma-Aldrich). Ultrapure water was produced by 
a Milli-Q system 84 (Millipore, Bedford, MA, USA). Spec-
trophotometric analyses were performed using a Beckman 
Coulter DU800 (Beckman Coulter, Fullerton, CA, USA).
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2.5  Plant Growth, Nitrate, Chloride, and Sulphate 
Contents

All treatments were harvested at commercial stage when 
leaves reached 10–12 cm in length. After determining the 
number of leaves, fresh weight, and leaf area (Li–3100, 
Licor, NE, USA), a sub-sample for each experimental unit of 
approximately 100 g was dried in a forced–air oven at 65 °C 
until constant weight and the dry matter was determined. 
Dried samples were finely ground and used to determine 
chloride  (Cl–), nitrate  (NO3

–), and sulphate  (SO4
2–) contents. 

Those were determined by ion exchange chromatography 
technique (IC–Dionex DX120, Dionex Corporation, Sun-
nyvale, CA, USA) with a conductivity detector, according 
to D’Imperio et al. (2021). Briefly, dried vegetable material 
was treated with solution of  Na2CO3 (3.5 mM) and  NaHCO3 
(1 mM), for 30 min, at room temperature. Then, the extracts 
were diluted and filtered by using 0.45 µm (RC) followed 
by a Dionex OnGuard IIP (Thermo Scientific) in order to 
remove organic compounds. The solutions obtained were 
analysed by ion chromatography (IC–Dionex DX120) with 
a conductivity detector, by using an IonPac AG14 precolumn 
and an IonPac AS14 separation column (Thermo Scientific) 
at 35 °C, flow 1 mL  min−1. In addition, the accuracy and 
precision of the chemical analysis of  NO3 were evaluated by 
using certified reference materials (CRM) SPIN–1_spinach. 
The recovery of  NO3 ions was 102 ± 6%.

2.6  Levels of Reduced, Oxidized, and Total Ascorbic 
Acid

The ascorbate pool contents including ASC, dehydroascor-
bic acid (DHA), and total ascorbic acid (ASC + DHA) were 
quantified according to the methods of Law et al. (1983). 
Briefly, one gram of fresh leaf tissue was homogenized with 
four volumes of cold 5% metaphosphoric acid in a porcelain 
mortar with quartz sand. After centrifugation (20,000 × g, 
4 °C, 15 min), the supernatant was collected and immedi-
ately assayed for ASC and total ascorbic acid. The sample 
extract (0.1 mL) was mixed with 0.2 mL 0.15 M phosphate 
buffer solution (pH 7.4) containing 5 mM ethylenediamine-
tetraacetic acid (EDTA) and 0.05 mL 10 mM dithiothreitol 
(DTT) and then incubated for 10 min at room temperature 
to reduce all DHA to ASC. After incubation, 0.05 mL of 
0.5% N–ethylmaleimide (NEM), 0.15 mL 10% (w/v) trichlo-
roacetic acid (TCA) containing 3% (w/v)  FeCl3, 0.2 mL 44% 
 H3PO4, and 0.2 mL 4% (w/v) 2,2–bipyridyl in 70% ethanol 
were added to the mixture and mixed. For the ASC content, 
DTT and NEM were substituted with deionized  H2O. The 
reaction mixtures were incubated at 40 °C for 40 min and 
then the absorbance was read at 525 nm. DHA was calcu-
lated as the difference between the total ascorbic acid and 
reduced ASC.

2.7  Total Phenolic Content (TPC)

Total phenols were determined using the Folin–Ciocalteu 
method, as previously described by Loi et al. (2019). Briefly, 
around 0.6 g were homogenized with 5 mL of ethanol and 
centrifuged at 6000 × g for 10 min at 4 °C. The supernatant 
(50 μL) was mixed with 950 μL of distilled water and 50 
μL of a 1:1 water-diluted Folin-Ciocalteu reagent (Sigma-
Aldrich, Milan, Italy). After 3 min, 100 μL of a 0.1 M NaOH 
solution containing 20% (W/V)  Na2CO3 was added, and the 
resulting solution was incubated at 25 °C for 1 h. The total 
phenolic content (TPC) was determined spectrophotometri-
cally at 760 nm and gallic acid (GA) was used as standard 
and the results were expressed as gallic acid equivalents 
(GAE) in mg  g–1 dry weight (DW).

2.8  Levels of Hydrogen Peroxide and Lipid 
Peroxidation

Hydrogen peroxide  (H2O2) content was determined spec-
trophotometrically according to Velikova et  al. (2000), 
homogenizing one gram of fresh leaf tissue with 0.1% TCA, 
and using a calibration curve obtained with  H2O2 standard 
solutions prepared in 0.1% TCA for quantification. Lipid 
peroxidation was measured in terms of malondialdehyde 
(MDA) content, following the method reported by Villani 
et al. (2021). Leaves were ground with four volumes of 0.1% 
(w/v) TCA. The homogenate was centrifuged at 12,000 × g, 
for 10 min, at 4 °C. One milliliter of the supernatant was 
mixed with 4 mL of 20% TCA containing 0.5% (w/v) thio-
barbituric acid (TBA). Absorbance was measured at 532 and 
600 nm and MDA content was calculated and expressed as 
nmol  g−1 DW.

2.9  Enzymatic Activities

One gram of leaf tissue was homogenized in 50  mM 
Tris–HCl, pH 7.8 containing 0.3  mM mannitol, 1  mM 
EDTA, and 0.05% (w/v) cysteine, at 4 °C. After centrifu-
gation for 20 min at 12,000 × g, at 4 °C, the supernatant 
was used for the determination of soluble protein content 
according to Bradford (1976) with serum albumin as a 
standard. Activities of total peroxidase (POD; EC 1.11.1.7), 
catalase (CAT; EC 1.11.1.6), dehydroascorbate reductase 
(DHAR; EC 1.8.5.1), and monodehydroascorbate reductase 
(MDHAR; EC 1.6.5.4) were determined according to Paci-
olla et al. (2008) and Loi et al. (2020).

2.10  Microbial Analysis

A total of 10 g samples was transferred to sterile stom-
acher bags, added with 90 mL sterile saline solution, and 
homogenized for 1.5 min in a stomacher (Seward, London, 
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UK). After 20 min of incubation at room temperature, the 
suspension was decimally diluted. Aliquots of 100 μL were 
spread–plated onto count plates (Merck, Darmstad, Ger-
many) of selective media following the manufacturers’ 
instructions. Total Viable Count (TVC) was determined on 
Plate Count Agar (PCA, Difco, 30 °C, 48 h), Pseudomonas 
spp. on Pseudomonas Agar Base (PAB, Oxoid Ltd; 25 °C, 
48 h), yeasts and fungi on Potato Dextrose Agar (PDA, 
Oxoid Ltd; 25 °C, 48–96 h). Microbiological counts were 
performed on three replicates and expressed as log cfu  g−1 
of fresh weight.

2.11  Statistical Analysis

All statistical analyses and graphical representations were 
performed on GraphPad Prism software version 9.0.0 for 
Windows, GraphPad Software, San Diego, CA, USA (www. 
graph pad. com). The data were examined for normality of 
distribution using the D'Agostino-Pearson test to determine 
whether they required log transformation before perform-
ing a one-way analysis of variance (ANOVA) followed by 
Tukey’s post–hoc test (p < 0.05). Reported data are mean 
values out of at least three replicates of three independent 
experiments. The error bars in all figures represent the stand-
ard deviation of the means.

3  Results

3.1  Plant Growth

Rocket shoot fresh weight, leaf number, and area were 
higher in SB compared to SL growing conditions (13.9 vs 
7.4 g/plant, 22.6 vs 15.6 number of leaves/plant, and 253.7 
vs 148.9  cm2/plant, respectively, on average) (Fig. 1). In 

SL conditions, the plant fresh weight increased (28%) with 
increasing the fertilizer dose (8.3 vs. 6.5 g/plant) (Fig. 1a). 
The shoot dry matter was higher in SB system (9.1 mg 
100  g−1 of fresh weight – FW) than in SL (7.2 mg 100  g−1 
of FW), with no differences between fertilization dose (data 
not shown).

3.2  Nitrate, Sulphate, and Chloride Contents

The effects of the adopted production system and the fer-
tilization rate applied on anions content  (NO3

–,  SO4
2– and 

 Cl–) were reported in Fig. 2. The highest nitrate content 
was observed in SL–HF (8,478 mg  kg−1 of FW), which 
was 1.4-fold higher than the maximum imposed limit of 
6,000 mg  kg−1 permitted by EC Regulation No. 1258/2011 
in the harvest time between 1 April to 30 September 
(Fig. 2a). The other treatments showed values below the 
limit (5702 mg  kg−1 of FW, on average). The fertilization 
rate did not modify the content of  SO4

2– and  Cl–, while dif-
ferences were related to the cultivation system (Fig. 2b,c). 
The highest  SO4

2– value was found in the SL system 
(34,538 mg  kg−1, on average, compared to 27,849 mg  kg−1, 
on average, in SB). On average, the  SO4

2– concentration of 
rocket produced by using SL was about 24% higher than 
the SB system, without differences related to fertilization 
level. On the contrary, the SL showed the lowest  Cl– con-
tent (5785 mg   kg−1, on average) while the highest was 
found in the SB system (16,619 mg  kg−1, on average). In 
our experimental conditions, the SL–HF cultivation system 
led to the highest N accumulation, while comparable levels 
were detected for SL–LF and SB–LF.  NO3

– levels slightly 
exceeded regulatory limits only in SL–HF (8478 mg  kg−1 
vs 6000 mg  kg−1), while they were compliant for all other 
treatments.

Fig. 1  Growth parameters of wild rocket leaves grown in soil (SB) 
and soilless (SL) treated with high– (HF) and low–input (LF) ferti-
lization program. a Yield expressed as gram of fresh weight (FW)/
plant; b Number of leaves for plant; c Leaf area. Vertical bars indi-

cate ± standard errors of means of 10 measurements. Means with 
different lowercase letters indicate significant differences at P < 0.05 
between different treatments, according to the Tukey’s test 

http://www.graphpad.com
http://www.graphpad.com
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3.3  Ascorbic Acid, Dehydroascorbic Acid and Total 
Phenolic Contents

The level of ASC, DHA, and ASC + DHA was higher 
(P < 0.05) in the higher nutrient–enriched soil treatment 
(SB–HF) compared to the other treatments (Fig. 3a). Simi-
larly, a higher level of fertilization significantly increased 
the contents of ASC and ASC + DHA in the leaves grown 
in the SL system (SL–HF) compared with those treated 
with a lower concentration in the nutrient solution (SL–LF). 
However, DHA contents were not altered by the fertiliza-
tion treatment in the SL plants (SL–HF and SL–LF). In our 
study, the amount of ASC (mg 100  g−1 FW) ranged from 
60.3–69.4 (SL–LF and SL–HF, respectively) to 95–122.6 
(SB–LF and SB–HF, respectively), while DHA level (mg 

100  g−1 FW) ranged from 116.8–122.7 (SL–LF and SL–HF, 
respectively) to 245.5–465 (SB–LF and SB–HF, respec-
tively) (data not shown).

In SB treatments the DHA amounts changed as a function 
of supplied nitrogen level, while in SL treatments it did not 
change (Fig. 3a). Overall, a higher concentration of nutri-
ent solution shifted the ASC/ASC + DHA ratio towards the 
oxidized form compared to the SL–LF, slightly unbalancing 
the cell redox state (Fig. 3b).

In this study, the SL treatments showed a significantly 
higher phenolic content compared to SB treatments (Fig. 3c). 
SB–HF treatment showed the lowest phenolic content, with 
39 and 34% lower TPC in comparison with SL–LF and 
SL–HF, respectively. Moreover, the SL treatments showed 
a similar TPC, independently from the nutrient solution 

Fig. 2  Concentrations of nitrate (a), sulphate (b), and chloride (c) in 
wild rocket leaves grown in soil (SB) and soilless (SL), as influenced 
by high– (HF) and low–input (LF) fertilization program. FW: fresh 
weight; DW: dry weight. Data represent the mean (± SD) of at least 3 

replicates. Means with different lowercase letters indicate significant 
differences at P < 0.05 between different treatments, according to the 
Tukey’s test

Fig. 3  a  Ascorbic acid (ASC), dehydroascorbic acid (DHA), and 
total ascorbate levels (ASC + DHA), b ASC/DHA ratio, and c poly-
phenols content in wild rocket leaves grown in soil (SB) and soilless 
(SL), as influenced by high– (HF) and low–input (LF) fertilization 

program. DW: dry weight. Data represent the mean (± SD) of at least 
3 replicates. Means with different lowercase letters indicate signifi-
cant differences at P < 0.05 between different treatments, according to 
Tukey’s test
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applied, while between the soil rocket leaves, SB–LF showed 
a significant increase of TPC compared to SB–HF.

3.4  Lipid Peroxidation and H2O2 Content

The lipid peroxidation, as an indicator of oxidative stress, 
was measured in terms of MDA content (Fig. 4a). In the 
SL–HF leaves the MDA content was the highest (P < 0.05). 
Both SB treatments (SB–LF and SB–HF) showed higher 
levels of MDA compared to SL–LF, while no significant 
differences were observed between them. Similarly,  H2O2 
content increased in the soil-grown treatments compared 
to SL–LF (Fig. 4b). However, significant differences were 
observed between SB–LF and SB–HF, showing an enhanced 
production of  H2O2 in the latter.

3.5  Enzymatic Activity

The trend of antioxidative activity of the enzymes exam-
ined in this study is reported in Fig. 5. The SB–LF showed 
the lowest CAT activity, while no significant changes were 
observed between soilless treatments and the SB–HF treat-
ment (Fig. 5a). Nutrient supply dose did not affect POD 
activity in wild rocket plants grown in the soil (SB–LF 
and SB–HF), while between the soilless treatments, the 
increased concentration of nutrients (SL–HF) induced a 
higher POD activity as compared to SL–LF (Fig. 5b). DHAR 
and MDHAR enzymes showed a similar pattern (Fig. 5c, d). 
Both activities significantly increased in soilless treatments 
(SL–LF and SL–HF) compared to the soil-bound treatments 
(SB–LF and SB–HF). The different concentrations of nutri-
ent supply only affected MDHAR, which showed a slightly 

increased activity in the SB–HF treatment compared to 
SB–LF (Fig. 5c).

3.6  Microbiological Load

Microbial loads of mesophiles, moulds, and yeasts were 
shown in Fig. 6. The SB treatments showed higher levels 
of mesophiles (3.47 ± 0.10 log cfu  g−1 VS 2.9 ± 0.27 log 
cfu  g−1) and moulds and yeasts (3.67 ± 0.10 log cfu  g−1 vs 
3.1 ± 0.28 log cfu  g−1) count with respect to the SL coun-
terparts. The nutrient supply level affected the microbial 
counts of mesophiles and moulds and yeasts only in the SL 
treatments, with SL–LF having lower counts than SL–HF. 
As regards Pseudomonas counts, no statistically significant 
difference emerged amongst all samples, and the contamina-
tion level was 3.27 ± 0.26 log cfu  g−1.

4  Discussion

The effect of the composition of the culture system on the 
growth parameters measured in this study was concordant 
with previous results obtained by Di Gioia et al. (2018), 
in which fresh yield of wild rock was lower in the soil-
less cultivation system compared to the conventional soil 
system. Furthermore, the fertilization dose influenced the 
plant’s fresh weight in the SL growing conditions, show-
ing increased yield with a higher fertilization rate applied. 
Similar results were obtained for basil, where increasing 
nitrogen fertilization was followed by a likewise increase 
in yield and dry biomass (Corrado et al. 2020). Based on 
these results, a clear effect on growth parameters can be 
observed for the cultivation system (SB vs SL), but not for 

Fig. 4  a Malondialdehyde 
(MDA) and b hydrogen per-
oxide  (H2O2) contents in wild 
rocket leaves grown in soil (SB) 
and soilless (SL), as influenced 
by high– (HF) and low–input 
(LF) fertilization program. 
DW: dry weight. Data represent 
the mean (± SD) of at least 3 
replicates. Means with different 
lowercase letters indicate sig-
nificant differences at P < 0.05 
between different treatments, 
according to Tukey’s test
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N supplementation. This suggests that it is possible to use 
low levels of N supply in both SB and SL rocket production, 
avoiding a detrimental  NO3

– accumulation.
NO3

– content is a crucial parameter to be evaluated, 
especially in high nitrate–accumulating vegetables like 
D. tenuifolia, to ensure compliance with the maximum 
imposed limits (EC Regulation No. 1258/2011). In this 
study,  NO3

– levels slightly exceeded regulatory limits only 
in SL–HF, whereas in SB cultivation, N supplementation 
was not followed by a likewise  NO3

– increase, as reported 
for lettuce by Becker et al. (2015),  underlining a differen-
tial capacity of using N in the low and high fertilization 
conditions. The results obtained in this study are in accord-
ance with literature data and explained by the fact that in SL 
conditions  NO3

– is more available to the plants than in SB, 
allowing an easier absorption in leaves (Colla et al. 2018; 
Nascimento 2019) . Interestingly, using low fertigation lev-
els in SL allowed us to reach comparable  NO3

– levels with 
respect to those registered in both SB–LF and SB–HF, with 
a slight reduction in plant productivity and comparable leaf 
area and length.

NO3
– and  Cl– are important osmoregulatory molecules, 

which regulate charge balance, turgor, cell volume, and 

Fig. 5  Activity of the antioxi-
dant enzymes a catalase, b total 
peroxidase, c dehydroascorbate 
reductase, and d monodehy-
droascorbate reductase in wild 
rocket leaves grown in soil (SB) 
and soilless (SL), as influenced 
by high– (HF) and low–input 
(LF) fertilization program. Data 
represent the mean (± SD) of at 
least 3 replicates. Means with 
different lowercase letters indi-
cate significant differences at 
P < 0.05 between different treat-
ments, according to Tukey’s test

Fig. 6  Microbial loads of a mesophiles, b moulds and yeasts, and c 
Pseudomonas spp. in wild rocket leaves grown in soil (SB) and soil-
less (SL), as influenced by high– (HF) and low–input (LF) fertiliza-
tion program. Data represent the mean (± SD) of at least 3 replicates. 
Means with different lowercase letters indicate significant differences 
at P < 0.05 between different treatments, according to Tukey’s test
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growth. Being monovalent ions and similar physical prop-
erties, they share ion transport mechanisms (Corrado et al. 
2020). Consistently,  NO3

– and  Cl– contents showed an 
opposite trend in wild rocket samples. The differences in 
sulphate content were related to the different cultivation sys-
tems, rather than to the level of N fertigation. As reported 
for  NO3

–, the greater availability of sulphur in hydroponic 
compared to soil-bound cultivation can explain the results 
obtained. Accordingly, Di Gioia and colleagues (2018) 
observed the same trend in hydroponic compared to soil-
bound rocket cultivation.

To assess how growing conditions and fertilization dose 
affect the ascorbic acid system and its redox state, reduced 
(ASC) and oxidized (DHA) forms of ascorbic acid were 
analyzed and the relative ratio ASC/ASC + DHA was cal-
culated. Overall, the content of ASC obtained in this study 
were consistent with those reported for wild rocket by other 
researchers (Hamilton and Fonseca 2010; Guijarro–Real 
et al. 2019). Although there is evidence-based literature 
to support the down-accumulation of some bioactive com-
pounds by increasing nitrogen supply (Albornoz 2016; 
Kolega et al. 2020), the effect of nutrient solution on ASC 
content seems not to be linear. Indeed, several other factors 
may affect the production of ascorbic acid, such as the spe-
cies and even the cultivar, the growth stage and system, the 
harvest date, the light intensity, the growing season, biotic 
and abiotic stress (El–Nakhel et al. 2019; Machado et al. 
2020). Furthermore, the lower content of ASC in the SL 
system may be due to the lower oxidative stress assured by 
the timely availability of nutrients and water.

The results of this study revealed that TPC was signifi-
cantly higher in SL compared to SB treatments. Moreover, 
higher fertilizer doses in SB treatments determined a strong 
decrease in total phenols levels. Since both the applied grow-
ing systems were subjected to the same conditions (tempera-
ture, relative humidity, and lighting), the key factors that 
may have led to such outcomes could have been the nutrient 
availability and the cultivation system. Our results corrobo-
rate previous findings showing a significant increase in phe-
nolic compounds elicited by low concentration of available 
nutrients (El–Nakhel et al. 2019; Naikoo et al. 2019; Pan-
nico et al. 2020; Sgherri et al. 2010). As wild rockets grown 
in soil showed greater biomass compared to the soilless 
treatments, this evidence could be explained by the hypoth-
eses of the protein competition model (PCM) according to 
which biomass accumulation and secondary metabolites are 
inversely related (Jones and Hartley 1999; Nybakken et al. 
2018). In particular, both protein synthesis and the phenyl-
propanoid pathways are catalyzed by phenylalanine ammo-
nia-lyase that uses phenylalanine as a precursor. Therefore, 
an increased protein demand for growth preferentially may 
convey the phenylalanine into protein synthesis rather than 
toward the phenolic biosynthetic pathway.

The level of lipid peroxidation follows a pattern similar to 
that of the nitrate concentration. Although exogenous nitrate 
nutrition did not affect the level of MDA, its accumulation 
in leaf tissue seems to have adversely affected the oxidative 
stress. The results of the current study are consistent with 
those reported in the literature (Wei et al. 2009; Zervouda-
kis et al. 2015), showing enhanced MDA content at high N 
levels in leaves of basil (Ocimum basilicum L.) and eggplant 
(Solanum melongena L.), respectively. Moreover, several 
studies have shown that exists a positive correlation between 
plant infections and changes in lipid peroxidation and ROS 
concentration  (de Dios 2019; Lanubile et al. 2015). There-
fore, the enhanced  H2O2 and MDA content in soil–bound 
leaves might be due to the significant increase in micro-
bial biomass (in terms of mesophiles and moulds) observed 
compared to the SL–LF treatment. The results of our study 
clearly show that the soilless growing system triggered the 
induction of  H2O2 in rocket leaves to a much less extent than 
the SB system. The enhanced production of  H2O2 in the SB 
treatments may act as a signal to activate stress response 
pathways such as ascorbic acid.

The findings of the present study highlighted that the 
activity of antioxidant enzymes, including CAT, POD, and 
two enzymes belonging to the ascorbate–glutathione cycle 
(DHAR and MDHAR) was modulated by the growing treat-
ments. Interestingly, the POD enzymes, which have anti-
oxidative properties, have been more relevant in decreasing 
 H2O2 accumulation and maintaining cell membrane integ-
rity, compared to CAT. Indeed, although CAT is a powerful 
antioxidant metalloenzyme, enzymes displaying peroxi-
dase activity, work synergistically with catalase to scavenge 
 H2O2, even at low concentrations, due to their higher affinity 
for  H2O2 (lower  KM) (Palma et al. 2020; Tuzet et al. 2019; 
Villani et al. 2021). Furthermore, the ascorbate–glutathione 
pathway has long been considered to play a central role in 
 H2O2 scavenging in plants (Ding et al. 2020). Previous stud-
ies have investigated and discussed the molecular properties 
of MDHAR and DHAR and the importance of the latter 
in coupling the ASC and glutathione (GSH) pools to  H2O2 
metabolism and signaling (Ding et al. 2020; Loi et al. 2020; 
Rahantaniaina et al. 2017). DHAR catalyzes the reduction 
of DHA to ASC and it has been considered to be important 
in maintaining the balanced ascorbic acid pool and its redox 
state, both in unstressed and in stressful conditions (Ding 
et al. 2020). Our results support this evidence showing sig-
nificantly lower levels of DHA in the SL treatments com-
pared to the SB treatments, due to higher DHAR activity.

As expected, the microbial loads of mesophiles, moulds, 
and yeasts were significantly affected by the growth sys-
tem and nutrient solution applied. Microbial counts for 
SL cultivation were lower than those of SB-grown rock-
ets. The range was 3.3–3.7 log cfu  g−1, in accordance with 
or lower than those reported in other papers for rocket and 
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baby leaves (Selma et al. 2012; Sirsat and Neal 2013;  Xylia 
et al. 2021). Accordingly, SL cultivation proved to posi-
tively affect the microbiological parameters and reduce the 
increase of microbiological load also in other fresh-cut pro-
duce like lettuce (Pace et al. 2018; Selma et al. 2012; Sirsat 
and Neal 2013)  and table grape (Cefola et al. 2011).

5  Conclusions

This study evaluated for the first time the effect of different 
culture systems and composition of the nutrient solutions 
on growth, antioxidant components, quality, and mineral 
content in D. tenuifolia cv Dallas. This cultivar responded 
strongly to the cultivation method. Soil-bound cultivation 
led to higher fresh weight, leaves number and area, ascor-
bate, and chloride levels. Conversely, soilless cultivation 
showed a higher accumulation of sulphates, total phenols, 
and increased activity of the antioxidant enzymes dehy-
droascorbate reductase and monodehydroascorbate reduc-
tase, while lower hydrogen peroxide levels and microbial 
loads were detected. The nutrient solution concentration had 
little or no influence on the plant growth, the activity of 
antioxidant enzymes, and the content of sulphate and chlo-
ride, while it affected the levels of ascorbate, total phenols, 
nitrate, hydrogen peroxide, and lipid peroxidation. Overall, 
in soilless cultivation, the effect of higher nutrient supply on 
the assayed parameters was generally more pronounced than 
in soil-bound cultivation, confirming the hypothesis that the 
low-input fertilization rate improved the nutritional quality 
of D. tenuifolia cv Dallas without eliciting nitrate accumu-
lation. These findings provide useful new information for 
soil and soilless fertilization and growth management of D. 
tenuifolia cv Dallas and for further research aimed at verify-
ing such responses on a broader selection of wild rocket cul-
tivars and elucidating them more in-depth at transcriptomic 
and proteomic levels.
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