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Precipitation and temperature are very important climatic parameters as their changes may affect life conditions. *erefore,
predicting temporal trends of precipitation and temperature is very useful for societal and urban planning. In this research, in
order to study the future trends in precipitation and temperature, we have applied scenarios of the fifth assessment report of IPCC.
*e results suggest that both parameters will be increasing in the studied area (Iran) in future. Since there is interdependence
between these two climatic parameters, the independent analysis of the two fields will generate errors in the interpretation of
model simulations. *erefore, in this study, copula theory was used for joint modeling of precipitation and temperature under
climate change scenarios. By the joint distribution, we can find the structure of interdependence of precipitation and temperature
in current and future under climate change conditions, which can assist in the risk assessment of extreme hydrological and
meteorological events. Based on the results of goodness of fit test, the Frank copula function was selected for modeling of recorded
and constructed data under RCP2.6 scenario and the Gaussian copula function was used for joint modeling of the constructed data
under the RCP4.5 and RCP8.5 scenarios.

1. Introduction

Climate change has become a concern for the scientific
community over the past two decades, due to its serious
effects on humans, societies, and the environment. It is the
result of changes in external forces such as fluctuation in
solar cycle, volcanic eruption or increase of greenhouse
gases caused by human activities, and land-use change.
According to studies conducted over the past decades,
global warming has caused climate change at local,

regional, and global levels [1]. Global warming evidence
reveals that the Earth climate has undergone significant
changes between 1906 and 2005, meanwhile the temper-
ature increased by about 0.74°C [2], and it is expected that
by the end of the 21st century, global temperatures will
increase on average between 1.81°C and 4°C [3]. *ese
changes and their impacts on the ecosystems and lands may
cause changes in global water cycle, sea level rise, drying
out of lakes, penetration and mixing of saline and fresh
water, and migration of species.
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*e results of various climate change models have been
presented to now, in the framework of the 1st Assessment
Report (TAR), of the 2nd Report (FAR), of the 3rd Report
(TAR), of the 4th Report, AR4 (CMIP3), and finally of the
5th Report AR5 (CMIP5) of the Intergovernmental Panel on
Climate Change.

Unlike previous ones, the fifth report models emphasize
the socioeconomic aspects of climate change and its role in
sustainable development and risk management, and its
overall framework focuses on reducing greenhouse gases
and adaptation approaches to climate change. *e fifth
assessment report includes three working group reports and
a synthesis report. *e first working group’s report was
released in 2013, and the rest of the reports were completed
in 2014. In the preparation of the fifth report which was
gradually released from 2013 to 2014, the output of CMIP5
series models was used. *ese models use new emission
scenarios called “RCP” [4]. *ese scenarios have four
pathways, namely, RCP2.6, RCP4.5, RCP6, and RCP8.5,
which are named according to their radiative forcing in 2100
[5]. Different atmospheric general circulation model runs
include all or some of these scenarios.

Recently, a majority of researchers around the world
have used the 5th assessment report to study climate
change under new scenarios of emission in different re-
gions [6–8]. *e fifth report models have higher resolution
and use newer scenarios than previous ones. In the fifth
report, roughly half of the models have a spatial resolution
of less than 1.3°, while previous reports models had a lower
spatial resolution. *e main difference between old and
new emission scenarios is that in new ones, the radiative
forcing pathway resulted from increase in greenhouse gases
in the atmosphere at 2100 are measured in Watts/m2 while
in the old emission scenarios [9], just concentration
pathway of greenhouse gases is specified. Climate change
studies in arid and semiarid regions that are more sus-
ceptible to this phenomenon are essential to be undertaken
with higher-resolution models and under new scenarios as
these models provide a better understanding compared to
previous models (third and fourth reports).

*e general circulation models, which are the most
appropriate means for predicting future climate change
at global scales [10], have a coarse spatial resolution.
Outputs of these models have a high spatial resolution
(250–600 km) [11]. *erefore, the direct application of
these models is not suitable for a regional or local scale;
thus, their output is not proper to be used for studying the
hydrological and environmental impacts of climate
change at regional level [12]. *e most important and
suitable tool for connection between the local/regional
scale and GCM large-scale is downscaling. *ere are
various downscaling models. In general, two statistical
and dynamic methods are here presented for this pur-
pose. In the dynamic method, a numerical model with
high spatial resolution, or regional climatic model, with
grid spacing of about 5 to 50 km, is coupled to the general
circulation model. In statistical downscaling method, an
empirical/statistical relationship is set between large-
scale and local variables. Using the statistical methods,

global scale climatic variables, such as the mean pressure
at sea level, regional wind, temperature, and geopotential
height, are matched to local/regional scale variables [13].
Statistical methods are generally based on regression
relationship. Among statistical downscaling methods,
SDSM has been widely used for downscaling of climatic
variables throughout the world [14]. SDSM combines two
methods of linear multiple regression and statistical
productive climate regression [11, 15].

*e most important parameters in climate change
studies are temperature and precipitation, which also play a
crucial role in meteorological and hydrological phenomena
such as droughts and floods. Furthermore, they are con-
sidered the most effective climate variables impacting ag-
ricultural productivity [16–18] so that the temperature
affects the length of the growing season and the precipitation
affects the yield [19, 20]. Many studies have been carried out
on the impacts of precipitation and temperature on agri-
cultural products [21–24].

All of these studies found that precipitation and tem-
perature are two factors affecting the productivity of agri-
cultural crops. Precipitation and temperature are two
climatic parameters, and the knowledge about their future
trend is essential for planning natural ecosystems. *e study
of the pattern of temperature and precipitation changes is
crucial due to climate change [25–27]. Knowing the tem-
poral variation of temperature and its relationship with
other climate variables is very important for climate plan-
ning [28]. *e precipitation and temperature have very high
temporal variations [29, 30]. *e dependence of pre-
cipitation to temperature causes its high variation over the
time [27]. *e dependence between the two parameters of
temperature and precipitation [27] makes their analysis
problematic when they are treated as independent of each
other, since it creates errors in results of calculations.

In climate change condition, determining the in-
terdependence relationship between two parameters of
temperature and precipitation can help the assessment of the
risk of extreme hydrological and meteorological phenom-
ena; however, determining the interdependence of these
parameters is difficult due to complicated dependence be-
tween them.

To determine the interdependence between precipitation
and temperature, it is necessary to set the joint distribution
of these two variables. In order to survey the in-
terdependence between temperature and precipitation, de-
termining the joint distribution of two parameters is
essential. *e conventional methods of calculating joint
probability distribution functions of random variables have
the limitation of the selection of the marginal function type,
which causes error in analysis. Copula theory is a method
which does not suffer from the limitations typical of mul-
tivariable distribution functions. It can be used for modeling
distribution functions coupled with random variables
without limitations of marginal distribution functions [31].
*e copula function can be used for determining de-
pendence between temperature and precipitation in a way
that correlation calculated by this method is higher than for
other methods.
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*e joint modeling of precipitation and temperature can
be used for providing solutions aimed at reducing the risk of
extreme hydrological and meteorological events in the case
of climate change in future.

Till now, there has not been a single study on the
structure of interdependence between precipitation and
temperature under climate change condition. *e existing
studies have examined the joint distribution and in-
terdependence structure between two parameters (pre-
cipitation and temperature) in current period. Aghakouchak
et al. [31] used two copula functions of Elliptical group (t and
Gaussian) for two-variable analysis of temperature and
precipitation. *ey found that fitness of t copula is better
than Gaussian for extreme amounts. Cong and Brady [25]
specified 5 copula functions including Gumbel, T, Normal,
Clayton, and Frank as the best functions for determining
dependence structure between temperature and pre-
cipitation distributions.

Pandey et al. [27] determined the dependence between
temperature parameters (Minimum, Maximum, Mean) and
monthly precipitation using 5 copula functions including
Gumbel, Frank, T, Clayton, and Normal, of which Normal
distribution showed the best fit, so it was used for joint
modeling of temperature and precipitation variables. Other
studies on the two parameters of precipitation and tem-
perature were also carried out by Favre et al. [32], Serinaldi
[33], Schölzel and Friederichs [34], and Laux et al. [35].

In this study, changes of temperature and precipitation
as two key climatic parameters influencing natural ecosys-
tems in future in the Kerman Province (southeast Iran) are
investigated in the framework of general circulation models
under the 3rd and 5th report scenarios. *e general cir-
culation models applied include CanESM2 of the 5th as-
sessment report and HadCM3 of 3rd assessment report.
Finally, to study interdependence between precipitation and
temperature in future under climate change condition,
structure of their dependency is determined under copula
theory, which lacks the limitations of multivariable distri-
bution functions in using marginal functions. Copula theory
determines joint distribution of temperature and pre-
cipitation to identify interdependence of two parameters.
Results of this study can be used for developing strategies in
order to reduce the risk of climatic and hydrological phe-
nomena in future.

2. Study Area

Kerman Province with a total area of 181716 km2 is located
in southeast of Iran (Figure 1). According to Domarten
climatic classification, it is considered as arid zone. *e
province is at the conjunction of Zagros Chain Mountain
and central Iran mountains with 160 km length. *is con-
junction has created a unique environment and a specific
natural status. Mean annual precipitation exceeds 143.8mm,
maximum monthly temperature 28.7°C, minimum monthly
temperature 6.9°C, and mean annual temperature 15.7°C.
Tables 1 and 2 present the statistical characteristics of
precipitation and temperature in the area in an historical
period between 1961 and 2005. In order to find changes in

temperature and precipitation and their future trends, the
studies conducted on the climate change in the area have just
used the data of 3rd report and HadCM3 model. *e studies
suggest that in future, increased precipitation in winter and
spring and increased temperature in the summer and fall will
occur. However, no studies have been carried out to de-
termine the structure of the interdependency between
temperature and precipitation affected by the climate change
using copula theory in the area, yet.

3. Methodology

*e data used, in this study, includes precipitation and mean
daily temperature in Kerman synoptic station with geo-
graphical eastern longitude of 56°56′ and northern latitude
of 30°25′ and data period of 1961 to 2005, in addition to
reanalysis atmospheric data (NCEP) and data belonging to
two models of HadCM3 and CanESM2. Daily data are titled
as predictand and NCEP predictor variables and data of
general circulation model as large-scale predictor, which are
available in base periods of 1961 to 2001 for the model of 3rd
report and 1961 to 2005 for the model of 5th report and
2006–2100 for future runs of the 5th report and 2002 to 2099
for the 3rd report.

3.1. Downscaling of GCM Data Using SDSM. In order to
review the future trend of temperature and precipitation,
data of 2 models of HadCM3 and CanESM2 are converted to
tiny-scale exponential data using statistical downscaling
method/SDSM. In this method, a quantitative relationship is
set between large-scale atmospheric variables and local
surface variables such as temperature and precipitation [36].
*e relationship is as follows [37]:

Y � f(x), (1)

where Y is the predictor variable, X is the predictand var-
iable, and F is the function of transfer, which is experi-
mentally estimated from observational data.

Model of HadCM3 is one of the models of the 3rd
evaluation report of intergovernmental panel on climate
change, which has been developed by the Hadley center in
England. HadCM3 model is a ocean-atmospheric system
(AOGCM), whose simulations include 2 scenarios A2 and
B2. *e Atmospheric part of this model also includes 19
levels with spatial resolution of 2.5° lat and 3.75° long while
the oceanic part includes 20 levels with spatial resolution of
1.25° lat and 1.25° long [38, 39]. *e model of CanESM2
comes from the 5th Assessment Report of Intergovernmental
Panel on Climate Change (IPCC), which includes 3 sce-
narios, namely, RCPP2.6, RCP4.5, and RCP8.5.

CanESM2 is an improved version of the general circu-
lation model, developed by CCCma, which is called ESM.
Effort has been made to include most of the land factors
affecting the climate in the ESM modeling structure.
Downscaling of the small-scale data of HadCM3 model for
period of 1961–2001 and future period since 2002 to 2009 is
conducted by predictor variables. Data of CanESM2 model
in the base period of 1961 to 2005 and future period of 2006
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to 2100 are converted to small-scale data using predictor
variables and SDSM. �is method has 4 key steps, which
includes determining predictor variable of NCEP, model
calibration, model veri cation, and simulation of data re-
lating mean temperature and precipitation under old and
new emission scenarios.

3.2. Copula�eory. In order to identify the interdependence
structure between temperature and precipitation, the joint
distribution of two variables is determined using copula
theory. �e theory was presented for multivariable proba-
bility modeling by Sklar (1959) [40]. Copula function pro-
vides the opportunity to combine several single-variable
distributions in various families of one, two, or multivariable
distributions considering the interdependence of the vari-
ables. In other words, copula function C(u1, u2,. . .uN) is a
conjunctive function to link random variable distribution
functions of X1, X2,. . ..., XN with marginal functions of
Fx1(X1), Fx2(X2). . .., FXN(XN) [41]. According copula the-
ory, joint distribution of two variables of mean temperature
(X) and precipitation (Y) is as follows:

F x1, x2, . . . , xN( ) � Cθ FX1
x1( ), FX2

x2( ), . . . , FXN
XN( )[ ].

(2)

Copula functions are multivariate distributions with
uniform marginal functions, which model interdependence
between several variables [41]. �e most important ad-
vantage of using copula functions is that the structure of
dependency between variables can be de ned even if mar-
ginal functions are di�erent; this means that in order to set
(de ne) a joint distribution function having equal marginal
functions for each variable is not necessary. Other types of
probability distributions carry out the modeling of in-
terdependence of variable structures assuming that func-
tions of marginal functions are equal, but this assumption
causes error in multivariable analysis. By copula theory,
marginal functions are selected for setting multivariable
functions as well as de ning nonlinear and asymmetric
relationship between variables. Copula function includes a
variety of families such as: Elliptical (t copula, Normal),
Archimedean (Gumbel, Clayton, Frank, Ali- Mikhail-Haq),
Extreme Value (Husler-Reiss, Galambos, Tawn, and t-EV,

Table 1: Statistical characteristics of monthly precipitation (1961–2005).

Month Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
Minimum 0.6 0.3 3.4 0 0 0 0 0 0 0 0 0
Maximum 97.5 108.4 73.1 98 65 7.8 11.3 7.4 6 23.9 31 94.2
Mean 29.10 28.43 31.17 17.91 9.24 0.68 0.51 0.54 0.37 1.69 4.67 19.83
Standard deviation 19.59 24.11 18.72 14.52 1.68 1.77 1.5 1.14 4.6 4.06 8.04 22.32

Table 2: Statistical characteristics of monthly temperature (1961–2005).

Month Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
Minimum −3.12 1.51 8.16 13.31 18.23 23.15 23.57 21.94 17.9 11.67 5.5 1.2
Maximum 6.91 10.15 14.37 18 24.48 27.41 29.18 27.61 23.38 17.66 12.79 9.7
Mean 4.25 6.93 11.07 16.11 21.02 25.39 26.56 24.38 20.76 15.58 9.74 5.85
Standard deviation 1.93 1.71 1.47 1.48 1.24 1.04 1.43 1.41 1.54 1.47 1.52 1.77
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Figure 1: Location map of study area in the southeast of Iran.
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Gumbel) and other families, namely, Plackett and Farlie-
Gumbel-Morgenstern [42]. Families of Archimedean and
Elliptical are used mostly [43]. Archimedean family has two
symmetric and asymmetric forms, which, respectively, have
one parameter andmore than 2 parameters. Elliptical family,
unlike Archimedean family, does not follow a specific shape
but its advantage is the dependence between upper and
lower tails.

Interdependence structure of random variables de-
termines the type of copula function used for joint modeling.
According to Huang et al. [44], interdependence of tem-
perature and precipitation during the various months is
negative or positive. *en, joint modeling of temperature
and precipitation is different depending on the structure of
interdependency between variables. As a result, in the case
that interdependence is positive, various families of func-
tions such as Archimedean, Elliptical, and other types of
copula functions can be used. Unlikely, for negative in-
terdependence values, a minor number of functions are
usable. In this research, due to negative relationship between
precipitation and mean temperature data, symmetric
Archimedean functions such as Rotated Clayton, Rotated
Joe, Frank, Rotated Gamble, and also Elliptical of Gaussian
are used for joint modeling (Table 3).

3.3.EstimationofParameters ofCopulaFunction. In order to
estimate the parameters of copula function, both the
parametric and nonparametric methods are used. In
parametric method, relationship between generator
function of each copula and Kendall coefficient (equation
(3)) is used [45] (Table 3). In this equation, c and d are the
number of pairs of concordant and discordant variables
and n is number of observations. Two pairs of variables (Xi,
Yi) and (Xj, Yj) are concordant if Xj >Xi and Yj >Yi or
Xi >Xj and Yi >Yj. *ey are also considered discordant
when Xi >Xj and Yj >Yi or Xj >Xi and Yi > Yj. Alterna-
tively, if (Xi −Xj) (Yi −Yj) > 0, variables are concordant,
and if (Xi −Xj) (Yi −Yj) < 0, variables are discordant. In the
parametric method, using the maximum log-likelihood
function (equation (4)), parameter of θ is estimated
[32]. Log-likelihood function estimates parameter of θ
using density copula function. If dependent random
variables are as x1k, x2k, ..., xpk (k � 1, .., n) with copula
function of Fθ(x1k, .., xpk) � Cθ(F1(X1k), ..., Fp(Xpk)), log-
likelihood function is defined as follows [32]:

τ �
(c−d)

n

2
􏼠 􏼡

,
(3)

L(θ) � 􏽘
n

k�1
log cθ F1 x1k( 􏼁, . . . , Fp xpk􏼐 􏼑􏽮 􏽯􏽨 􏽩, (4)

where cθ is the copula density function; F is the marginal
distribution function; and x1k, x2k, . . . , xpk k � 1, . . . , n are
the dependent random variables.

3.4. Goodness of Fit Test for Copula Function. Before mod-
eling by copula functions, the copula function having the
best fit is selected. For selecting the best copula function,
value of joint empirical probability of two variables of
precipitation and temperature is calculated through em-
pirical copula (equation (5)) and then is compared with the
values resulted from copula functions (Archimedean and
Elliptical families). To compare empirical copula with each
copula functions, normalized root mean square error
(NRMSE) and Nash–Sutcliffe coefficient were selected
(equations (6) and (7)). Also, two criteria, namely, Akaike
Information Criterion (AIC) and Bayesian Information
Criterion (BIC) (equations (8) and (9)) [46, 47], are used. In
these equations, the empirical probability of precipitation
andmean temperature is v and u, Pei is the value of empirical
copula, Pi is the value of copula theory, K is the model
parameter, n is the number of observations, and L is the
value of maximum log-likelihood function.

Cn(u, v) �
1
n

􏽘

n

t�1
1 Ut < u, Vt < v( 􏼁, (5)

NRMSE �

�
1
n

􏽲

􏽘

n

i�1

Pei −Pi( 􏼁
2

Pei,max −Pei,min􏼐 􏼑
, (6)

NSE � 1−
􏽐

N
n�1 Pei −Pi( 􏼁

2

􏽐
N
n�11 Pei −Pei( 􏼁

2, (7)

AIC � 2k− 2 ln(L), (8)

BIC � 2n LogL + k Log(n). (9)

4. Results

4.1. Downscaling GCM Data. After reviewing and con-
trolling the quality of the observational data, the NCEP
predictor variables, which have the highest correlation
with each observational data, were selected. *e number
of NCEP variables for temperature as an unconditional
parameter is less than that for precipitation, which is a
conditional variable (due to including zero-precipitation
days) (Table 4). NCEP variables have been estimated for
models of GCM for two periods of 1961–2001 and
1961–2005 (Table 2).

*e model calibration and verification steps were un-
dertaken based on NCPE variables for both models in the
base period. In order to increase the accuracy of the model,
various values of variance inflation factor were selected for
temperature and precipitation parameters and bias correc-
tion was applied for precipitation. Later, based on the results
of the model verification exercise, the best value of each
factor was determined through statistical comparison. In
this way, variance inflation factors of temperature and
precipitation and also bias correction factors of precipitation
were determined as 6, 10, and 1, respectively. Figure 2 shows
efficiency of SDSMmodel for downscaling precipitation and
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temperature data in two base periods of 1961–2001 and
1961–2005, respectively, for two models of HadCM3 and
CanESM2. Generally, because of consistency of temperature
data, this efficiency is higher for temperature in comparison
to precipitation. Finally, large-scale data of HadCM3 and
CanESM2 were downscaled under SERA and RCP scenarios
using SDSM method for precipitation and mean tempera-
ture in future (2017–2100).

4.2. Assessment of Efficiency and Uncertainty of Model.
Statistical criteria of Nash–Sutcliffe index and NRMSE were
calculated in order to assess downscaled values of pre-
cipitation and mean temperature by NCEP variables and
large-scale (HadCM3 and CanSM2) models for the period of
1961–2001 and 1961–2005 (Table 5). *e results display that
downscaled values of mean temperature have a higher ac-
curacy compared to precipitation in both GCM models.
Given existence of so many zeroes in precipitation data
series, data do not follow normal distribution, so accuracy of
modeling precipitation decreases in comparison to tem-
perature. Furthermore, values relating to the assessment
criteria of precipitation data modeled by CanESM2 (5th
Report) have further compliance with observed data in
comparison to values estimated by HadCM3. *e data of
mean temperature modeled by GCM have nearly equal

compliance with the observed data. *erefore, in order to
joint modeling of precipitation and mean temperature,
values calculated by CanESM2 are used.

In order to study the trend of climatic parameters in
future period compared to the base period, the Mann-
Kendall test was applied for precipitation and mean tem-
perature data modeled by CanESM2 (Table 6). Based on the
Mann-Kendall test, observed and modeled precipitation do
not follow any meaningful trend under RCP2.6 and RCP8.5
scenarios. However, data produced by RCP4.5 scenario
shows a decreasing trend. *e results of the Mann-Kendall
test on mean temperature showed the series modeled by
RCP scenarios and observed data have an increasing trend,
and the increase in the data modeled under scenario of
RCP8.5 is higher. *e results of modeling of precipitation
data under scenario of RCP showed that mean annual
precipitation in future based on RCP2.6, RCP4.5, and
RCP8.5 scenarios will be 157.2mm, 148.1mm, 190.2mm,
respectively, which in comparison with the observation
period (143.8mm), an increase would be seen in the study
area (Figure 3). Also, the results of modeling of mean tem-
perature data under scenario of RCP showed mean annual
temperature in future based on RCP2.6, RCP4.5, and RCP8.5
scenarios will be 16.9°C, 17.4°C, and 18.2°C, respectively,
which in comparison with the observation period (equal to
15.6°C), an increase would be seen in the study area (Figure 3).

Table 4: NCEP variables for two periods (1961–2001 and 1961–2005).

Predictand NCEP variable

1961–2001 Precipitation

Ncepp5thas 500 hPa wind direction
Ncepr500as 500 hpa relative humidity
Ncepr850as 850 hpa relative humidity
Nceprhumas Near surface relative humidity
Ncepshumas Surface specific humidity

Temperature Ncepptemas Mean temperature at 2m

2005–1961 Precipitation

Ncepp500gl 500 hpa geopotential
Ncepprcpgl Accumulated precipitation
Nceps500gl 500 hpa specific humidity
Ncepshumgl 1000 hpa specific humidity

Temperature Ncepptempgl Screen air temperature

Table 3: Different types of copula functions.

Joint CDF θ Kendall τ

Archimedean
family

Frank C(u, v; θ) � 1/θ ln[1 + (e−θu − 1)(e−θv − 1)/e−θ − 1] R/ 0{ }
1− (4/θ)(1−D1(θ))

Dk(x) � k/xk 􏽒
x

0
tk/(exp(t)− 1)dt

Rotated Joe 1− [1− 􏽑
m
i�1(1− (1− ui)

θ)]1/θ (−∞,−1) −1− 4􏽒 x log(x)(1−x)−2(1+θ)/θ·dx

Rotated
Gumbel C(u, v; θ) � u + v− 1 + C(1− u, 1− v) (−∞,−1) −1− (1/θ)

Rotated
Clayton C(u, v; θ) � u + v− 1 + C(1− u, 1− v) (−∞, 0) θ/(2− θ)

Elliptical family Gaussian C(u, v) � 􏽒
u

0 Φ(Φ−1(v)− ρxyΦ−1(t)/
�������
1− ρ2xy

􏽰
)dt (−1, +1) (2/π)arcsin(θ)
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Figure 4 shows error bar of mean monthly precipitation
data. Error data are used for displaying deviation of data.
Based on RCP scenario, mean precipitation in future in the
months Jan, Feb, Mar, Apr, and Dec would fall down and in

other months would go up. *e error bar of mean monthly
temperature shows an increase throughout the year. *e
increase rate in warm months of May to August will be
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Figure 2: Comparison of downscaled data using predictor variables (NCEP and GCM models) with the historical precipitation and
temperature for (a) 1961–2001 (HadCM3) and (b) 1961–2005 (CanESM2).

Table 5: Evaluation criteria of downscaled data for HadCM3 and
CanESM2 models.

Predicted Predictor NSE NRMSE Correlation

Precipitation
NCEP 0.946 0.0259 0.99

CanESM2 0.551 0.057 0.84
HadCM3 0.458 0.0829 0.67

Temperature
NCEP 0.9824 0.0094 0.9923

CanESM2 0.984 0.0053 0.998
HadCM3 0.964 0.0133 0.991

Table 6: *e results of Mann-Kendall test for historical and
modeled data under RCP scenarios.

Parameter Z value P value

Precipitation

Historical −0.988 0.323
RCP2.6 0.341 0.733
RCP4.5 −2.476 0.013
RCP8.5 1.37 0.169

Temperature

Historical 4.77 0.000
RCP2.6 2.46 0.014
RCP4.5 9.4 0.000
RCP8.5 11.87 0.000
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higher than in other months. On the contrary, the increase
rate will be less between October and December (Figure 4).

4.3.Determining Interdependence Structure of Precipitationand
Mean Temperature in Two Historical and Future Periods

4.3.1. Marginal Functions of Temperature and Precipitation.
In order to provide a joint modeling of temperature and
precipitation, correlation between the variables was esti-
mated using the Kendall rank correlation coefficient. Ken-
dall correlation was selected because the data do not follow a
normal distribution. Table 7 displays the Kendall correlation
coefficient of monthly precipitation and mean temperature

for the historical period and the future. *e Kendall cor-
relation coefficient amounts show that the relationship
between precipitation and temperature is different in various
months, so in the historical period, there is a meaningful
negative correlation in March, April, May, and September.
*e meaningful relationship between temperature and
precipitation under RCP2.6 and RCP4.5 scenarios in April
and May is negative, and in other months, there is no
meaningful relationship. Meanwhile, there is a negative
meaningful relationship in April and May and a meaningful
positive relationship in August between precipitation and
temperature in future under RCP8.5. *en, the amounts of
precipitation and temperature in April which show the
highest correlation were selected for joint modeling in the
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Figure 3: Comparison of precipitation (a) and temperature (b) observed and modeled under RCP scenarios during the period 1961–2100.
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Figure 4: Error bar of mean monthly precipitation (a) and temperature (b) in historical and future periods.

8 Advances in Meteorology



historical and the future period.*emarginal distribution of
precipitation and temperature was determined through
fitting 20 univariate distribution based on Kolmogorov–
Smirnov and chi-square tests. Based on statistical tests,
Wakeby distribution was selected for precipitation data in
historical period and under RCP4.5 and RCP8.5 and
Johnson SB distribution for the modeled data under RCP2.6.
Also, Wakeby distribution was selected for temperature data
in historical period and under RCP2.6 and RCP8.5 scenarios
and Beta distribution for the data under RCP4.5 scenario
(Table 8).

4.4. Selecting the Best Copula for Joint Modeling of Temper-
ature and Precipitation in Historical and Future Periods.
In order to fit copula functions to precipitation and tem-
perature variables, the parameters of copulas were estimated
using parametric and nonparametric methods for historical
and future periods (Table 9). Parameters of copula function
present structure of dependency between temperature and
precipitation variables. Based on the results of the selection
criteria of the best fit of copula function for precipitation and
temperature in historical and future climate, among 5
copulas, Frank copula function was selected for joint
modeling in historical and future periods under scenario of
RCP2.6 and Gaussian copula function under scenarios of
RCP4.5 and RCP8.5 (Table 9). Figure 5 shows Q-Q plots of
Frank and Gaussian copula functions for historical data and
the modeled under RCP scenarios. High correlation between
theoretical and empirical copula suggests fitness of Frank
and Gaussian functions for joint modeling of temperature
and precipitation. Figure 6 shows the values of probability
density of Gaussian and Frank copula functions in historical
and the future period. *e values of joint probability density
of precipitation and temperature show these variables have
symmetric correlation in upper and lower tails; this is one of
the specifications of Frank and Gaussian copula functions

[48]. In other words, random variables which follow Frank
and Gaussian copula functions lack correlation in upper and
lower tails. *e structure of dependence between pre-
cipitation and temperature in historical and future periods
under RCP2.6 scenario is equal.*e structure of dependence
of these variables under RCP4.5 and RCP8.5 is equal as well.

4.5. Joint Probability of Precipitation and Temperature for
Two Historical and Future Periods. Joint probability of
precipitation and mean temperature is very important for
management and assessment of the risk imposed by extreme
meteorological and hydrological events as well as manage-
ment of productivity of agricultural products. Joint prob-
ability is defined as the probability when precipitation and
temperature simultaneously exceed a certain value which is
shown as (P(U≥ u, V≥ v)). Awareness of this probability can
be useful in establishment of an early warning system for
extreme events such as flood and drought. Joint probability
of precipitation and mean temperature based on copula
theory is defined as follows [49]:

P(U≥ u, V≥ v) � 1−FU(u)−FV(v) + C FU(u), FV(v)( 􏼁.

(10)

Awareness that the probability of precipitation and
temperature simultaneously exceeds a certain value is also
useful for improving water resources systems under
climate change condition in future. For example, prob-
ability that, simultaneously, precipitation exceeds its
maximum value (Pr(U ≥ 98)) and temperature exceeds
the temperature corresponding to maximum pre-
cipitation (Pr(V ≥ 18)) is 0.007 (Figure 7(a)). Also, the
probability that, simultaneously, temperature exceeds its
maximum value (Pr(U ≥ 19.55)) and precipitation ex-
ceeds the precipitation corresponding to maximum
temperature (Pr(V ≥ 0)) is 0.004 (Figure 7(a)). According

Table 7: Kendall correlation coefficient (τ) and P value for mean temperature and precipitation in historical and future periods.

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Historical τ −0.12 −0.03 −0.21 −0.43 −0.43 −0.15 0.16 0.02 0.23 −0.09 0.02 −0.08
P value 0.22 0.74 0.03 0.000 0.000 0.19 0.17 0.82 0.04 0.42 0.82 0.42

RCP2.6 τ 0.02 0.02 −0.07 −0.44 −0.27 −0.09 −0.06 −0.005 0.07 0.12 0.08 −0.04
P value 0.73 0.78 0.28 0.000 0.000 0.22 0.36 0.94 0.35 0.07 0.23 0.5

RCP4.5 τ 0.02 −0.05 −0.07 −0.34 −0.22 −0.08 0.07 −0.07 −0.004 −0.001 −0.003 −0.02
P value 0.72 0.47 0.31 0.000 0.001 0.3 0.32 0.31 0.96 0.98 0.95 0.72

RCP8.5 τ −0.03 −0.02 −0.08 −0.31 −0.27 −0.09 0.07 0.22 0.08 0.09 −0.03 0.13
P value 0.58 0.69 0.2 0.000 0.000 0.21 0.28 0.005 0.26 0.21 0.64 0.06

Table 8: Marginal distribution functions and selection of the best copula for joint modeling of temperature and precipitation in historical
and future periods.

Precipitation Temperature
Distribution Parameters Distribution Parameters

Historical Wakeby α � 21.99, β � 0.1191, c � 0, δ � 0, ξ � −1.734 Weibul α � 12.82, β � 16.67
RCP2.6 Johnson SB c � 0.91, δ � 0.50, λ � 38.6, ζ � −24.2 Wakeby α � 12.1, β � 5.35, c � 1.48, δ � −0.21, ξ � 14.1
RCP4.5 Wakeby α � 8.59, β � 0.177, c � 1.69, δ � 0.38, ξ � −0.706 Beta α1 � 6.74, α2 � 4.17, a � 9.88, b � 22.6
RCP8.5 Wakeby α � 12.93, β � 0.082, c � 0, δ � 0, ξ � −1.29 Wakeby α � 55.86, β � 24.3, c � 5.44, δ � −0.89, ξ � 13.05
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Table 9: Selection criteria of the best fit of copula functions for historical and future periods.

Copula functions
Parametric Nonparametric

AIC BIC NRMSE NSE Parameter AIC BIC NRMSE NSE Parameter

Historical

Gaussian −17.1 −15.3 0.039 0.93 −0.589 −17 −15.2 0.038 0.91 −0.597
Frank −18.8 −17.7 0.038 0.94 −4.84 −18.8 −17 0.037 0.93 −4.613

Rotated Clayton −10.6 −8.87 0.041 0.92 −0.918 −7.37 −5.57 0.043 0.90 −1.518
Rotated Gumbel −14.9 −13.1 0.039 0.93 −1.61 −14.3 −12.5 0.038 0.91 −1.759
Rotated Joe −10.5 −8.73 0.043 0.92 −1.74 −5.95 −4.41 0.045 0.89 −2.395

RCP2.6

Gaussian −41.3 −40.1 0.032 0.96 −0.602 −41.2 −39.2 0.035 0.94 −0.578
Frank −44.6 −42.3 0.027 0.97 −3.99 −44.5 −42.2 0.032 0.95 −4.06

Rotated Clayton −32.5 −30.1 0.043 0.95 −0.992 −21.5 −19.8 0.048 0.91 −1.29
Rotated Gumbel −37.9 −35.4 0.044 0.95 −1.56 −36.8 −33.1 .0.05 0.90 −1.64
Rotated Joe −26.9 −23.1 0.069 0.92 1.674 −17.7 −15.6 0.078 0.91 −2.18

RCP4.5

Gaussian −17.7 −15.3 0.020 0.9 −0.524 −17.2 −16.8 0.022 0.9 −0.517
Frank −16.1 −14.8 0.022 0.97 −3.40 −16.4 −15.2 0.024 0.95 −3.45

Rotated Clayton −10.6 −10.6 0.028 0.96 −0.851 −10.4 −7.53 0.032 0.94 −1.057
Rotated Gumbel −14.3 −14.4 0.021 0.97 −1.46 −14.7 −13 0.031 0.92 −1.52
Rotated Joe −9.95 −8.15 0.032 0.95 −1.54 −9.98 −6.55 0.038 0.91 −1.95

RCP8.5

Gaussian −19 −18.1 0.023 0.95 −0.463 −19 −17.8 0.024 0.94 −0.469
Frank −15.2 −13.2 0.024 0.94 −2.8 −14.9 −12.3 0.024 0.92 −3.04

Rotated Clayton −14.1 −11.1 0.025 0.91 −0.548 −9.64 −8.12 0.025 0.9 −0.903
Rotated Gumbel −16.2 −14.3 0.026 0.93 −1.39 −15.9 −13.5 0.027 0.91 −1.45
Rotated Joe −11.7 −9.8 0.031 0.87 −1.53 −9.32 −8.5 0.032 0.84 −1.81
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Figure 5: Q-Q plot for (a) historical data, (b) modeled data under RCP2.6, (c) modeled data under RCP4.5, and (d) modeled data under
RCP8.5.
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Figure 6: *e joint PDF and corresponding contour lines for (a) historical period, (b) RCP2.6, (c) RCP4.5, and (d) RCP8.5.
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Figure 7: *e joint probability Pr(U≥ u, V≥ v) of precipitation and temperature for historical (a) and future (b) RCP2.6, (c) RCP4.5, and
(d) RCP8.5.
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to the modeled data under RCP2.6 scenario, probability
that, simultaneously, precipitation exceeds its maximum
value (Pr (U ≥ 35.86)) and temperature exceeds the
temperature corresponding to maximum precipitation
(Pr(V ≥ 15.76)) is 0.006. Also, probability that pre-
cipitation (Pr(U ≥ 6.4)) and temperature (Pr(V ≥ 20.92))
simultaneously exceeding the maximum temperature and
its corresponding precipitation is 0.004 (Figure 7(b)).
Based on the amounts modeled under RCP4.5 scenario,
probability that precipitation (Pr(U ≥ 48.75)) and tem-
perature (Pr(V ≥ 15.36)) simultaneously exceeding max-
imum precipitation and its corresponding temperature is
0.0034. Also, probability that precipitation and temperature
simultaneously exceeding the maximum temperature (Pr(V≥
21.61)) and its corresponding precipitation (Pr(U≥ 2.33)) is
0.0005 (Figure 7(c)). Based on the modeled data under
RCP8.5, probability that precipitation and temperature si-
multaneously exceeding maximum precipitation (Pr(U ≥ 55))
and its corresponding temperature (Pr(V≥ 15.61)) is 0.002.
Also, probability that precipitation and temperature simul-
taneously exceeding the maximum temperature
(Pr(V≥ 22.55)) and its corresponding precipitation (Pr(U
≥ 0)) is 0.0002 (Figure 7(d)). According to this, probability
that precipitation and temperature simultaneously exceeding
maximum precipitation and its corresponding temperature in
historical period is higher than the future period. Further-
more, probability that precipitation and temperature ex-
ceeding the maximum temperature and its corresponding
precipitation in historical period is higher than in the future
period under climate change condition.

5. Conclusion

In this study, copula theory was used for joint modeling of
precipitation and temperature which are two main climatic
factors impacting agricultural production and meteorolog-
ical and hydrological phenomena such as flood and drought
in climate change condition. Increase or decrease of climatic
parameters such as precipitation and temperature impacts
on extreme events. Knowing the pattern of temporal change
of temperature and its relationship with other climatic
parameters is essential for climatic planning for future.
Global warming in recent years has been reported using
climate change models by many researchers. *e fifth as-
sessment report issued by IPCC, despite the former reports,
has focused on socioeconomic aspects of climate change and
its impact on sustainable development and risk management
when its general framework underlines greenhouse re-
duction and adaptation with the climate change. *ese
models have higher resolution and use new emission sce-
narios in comparison to the older reports. In this study, in
order to compare the 5th report with the former ones, two
models of HadCM3 and CanESM2 were used for reviewing
the trends of precipitation and temperature change in future
under new and old scenarios. *e results of the modeled
precipitation and temperature show that CanESM2 has
more compliance with the observed data which is because of
higher resolution of the 5th report models. Based on the

modeled data under RCP scenarios, the study area shows
temperature and precipitation will increase in future.

Interdependence between temperature and precipitation
is such that their independent analysis will cause errors in
estimations. Dependence of precipitation to temperature
causes its significant change over the time. In climate change
condition, determining the relationship of interdependence
between precipitation and temperature can help assessing
risk associated with extreme hydrological and meteorolog-
ical phenomena. Aiming at finding the interdependence of
precipitation and temperature, it is needed to determine the
joint distribution of these variables. For this purpose, copula
theory has been used for joint modeling of temperature and
precipitation in climate change condition. According to the
results of applying selection criteria of the best fit, Frank
copula function for historical and modeled data under
RCP2.6 scenario and Gaussian copula function for modeled
data under RCP4.5 and RCP8.5 scenarios were selected for
joint analyzing temperature and precipitation.*e presented
results of joint modeling are in line with previously pub-
lished research. For instance, Cong and Brady [25], Keer-
thirathne and Perera [18], and [50] indicated two Frank and
Gaussian copulas for joint modeling of precipitation and
temperature [48].

Frank and Gaussian copula functions show that data in
the historical and future periods have symmetric de-
pendence in upper and lower tails. Frank and Gaussian
copula functions were used for joint modeling in the
historical and future periods. Awareness that precipitation
and temperature simultaneously exceed a certain value is
very useful for improving water resources systems under
climate change condition in future. *e joint probability
values showed that the probability of simultaneously ex-
ceeding temperature and precipitation with respect to the
maximum precipitation and its corresponding tempera-
ture is higher in historical period than that in the future
period under climate change. In addition, the probability
that precipitation and temperature exceed the maximum
temperature and its corresponding precipitation in his-
torical period is higher than that in future under climate
change condition. As a whole, joint modeling of pre-
cipitation and temperature for future under climate
change condition can be used towards providing risk
reduction strategies for extreme meteorological and hy-
drological events.
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[13] F. A.Wetterhall, D. Bárdossy, S. H. Chen, and C. Y. Xu, “Daily
precipitation downscaling techniques in three Chinese re-
gions,” Water Resources Research, vol. 42, article W11423,
2006.

[14] J. Huang, J. Zhang, Z. Zhang, C. Xu, B. Wang, and J. Yao,
“Estimation of future precipitation change in the Yangtze
River basin by using statistical downscaling method,” Sto-
chastic Environmental Research and Risk Assessment, vol. 25,
no. 6, pp. 781–792, 2011.

[15] R. L. Wilby, P. G. Whitehead, A. J. Wade, D. Butterfield,
R. J. Davis, and G. Watts, “Integrated modelling of climate
change impacts on water resources and quality in a lowland
catchment: River Kennet, UK,” Journal of Hydrology, vol. 330,
no. 1-2, pp. 204–220, 2006.

[16] L. Chen, V. P. Singh, S. Guo, A. K. Mishra, and J. Guo,
“Drought analysis using copulas,” Journal of Hydrologic En-
gineering, vol. 18, no. 7, pp. 797–808, 2013.

[17] D. J. Dupuis, “Using copulas in hydrology: benefits, cautions,
and issues,” Journal of Hydrologic Engineering, vol. 12, no. 4,
pp. 381–393, 2007.

[18] D. G. T. C. Keerthirathne and K. Perera, “Joint Distribution of
rainfall and temperature in Anuradhapura, Srilanka using
copulas,” in Proceedings of the International Research Sym-
posium on Engineering Advancements, (RSEA 2015) SAITM,
Malabe, Sri Lanka, 2015.

[19] P. Cantelaube and J.-M. Terres, “Seasonal weather forecasts
for crop yield modelling in Europe,” Tellus A: Dynamic
Meteorology and Oceanography, vol. 57, no. 3, pp. 476–487,
2005.

[20] J. E. Olesen and M. Bindi, “Consequences of climate change
for European agricultural productivity, land use and policy,”
European Journal of Agronomy, vol. 16, no. 4, pp. 239–262,
2002.

[21] P. Cooper, J. Dimes, K. Rao, B. Shapiro, B. Shiferaw, and
S. Twomlow, “Coping better with current climatic variability
in the rain-fed farming systems of sub-Saharan Africa: an
essential first step in adapting to future climate change?,”
Agriculture Ecosystems and Environment, vol. 126, no. 1-2,
pp. 24–35, 2008.

[22] W. Erskine and F. El Ashkar, “Rainfall and temperature effects
on lentil (Lens culinaris) seed yield in Mediterranean envi-
ronmentsffects on lentil (Lens culinaris) seed yield in Med-
iterranean environments,” Journal of Agricultural Science,
vol. 121, no. 3, pp. 347–354, 1993.

[23] D. Lobell and C. Field, “Global scale climate-crop yield re-
lationships and the impacts of recent warming,” Environ-
mental Research Letters, vol. 2, no. 1, article 014002, 2007.

[24] R. Muchow, T. Sinclair, and M. Bennett, “Temperature and
solar-radiation effects on potential maize yield across loca-
tions,” Agronomy Journal, vol. 82, no. 2, pp. 338–343, 1999.

[25] R.-G. Cong and M. Brady, “*e interdependence between
rainfall and temperature: copula analyses,” Scientific World
Journal, vol. 2012, pp. 1–11, 2012.

[26] J. Kreyling and C. Beier, “Complexity in climate change
manipulation experiments,” Bioscience, vol. 63, no. 9,
pp. 763–767, 2013.

[27] P. K. Pandey, L. Das, D. Jhajharia, and V. Pandey, “Modelling
of interdependence between rainfall and temperature using
copula,” Modeling Earth Systems and Environment, vol. 4,
no. 2, pp. 867–879, 2018.

[28] S. Balyani, Y. Khosravi, F. Ghadami, M. Naghavi, and
A. Bayat, “Modeling the spatial structure of annual temper-
ature in Iran,” Modeling Earth Systems and Environment,
vol. 3, no. 2, pp. 581–593, 2017.

[29] L. F. Buba, N. U. Kura, and J. B. Dakagan, “Spatiotemporal
trend analysis of changing rainfall characteristics in Guinea
Savanna of Nigeria,” Modeling Earth Systems and Environ-
ment, vol. 3, no. 3, pp. 1081–1090, 2017.

[30] R. Sethi, B. K. Pandey, R. Krishan, D. Khare, and P. C. Nayak,
“Performance evaluation and hydrological trend detection of
a reservoir under climate change condition,” Modeling Earth
Systems and Environment, vol. 1, no. 4, 2015.

[31] A. AghaKouchak, A. B. Bardossy, and E. Habib, “Copula-
based uncertainty modelling: application to multisensor
precipitation estimates,” Hydrological Processes, vol. 24,
no. 15, pp. 2111–2124, 2010.

[32] A. C. Favre, S. E. Adlouni, L. Perreault, N. *iemonge, and
B. Bernard, “Multivariate hydrological frequency analysis
using copulas,” Water Resources Research, vol. 40, no. 1,
pp. 1–12, 2004.

14 Advances in Meteorology



[33] F. Serinaldi, “Analysis of inter-gauge dependence by Kendall’s
τK, upper tail dependence coefficient, and 2-copulas with
application to rainfall fields,” Stochastic Environmental Re-
search and Risk Assessment, vol. 22, no. 6, pp. 671–688, 2008.

[34] C. Schölzel and P. Friederichs, “Multivariate non-normally
distributed random variables in climate research &amp;
ndash; introduction to the copula approach,” Nonlinear
Processes in Geophysics, vol. 15, no. 5, pp. 761–772, 2008.

[35] P. Laux, S. Vogl, W. Qiu, H. R. Knoche, and H. Kunstmann,
“Copula-based statistical refinement of precipitation in RCM
simulations over complex terrain,” Hydrology and Earth
System Sciences, vol. 15, no. 7, pp. 2401–2419, 2011.

[36] R. L. Wilby, C. W. Dawson, and E. M. Barrow, “SDSM–A
decision support tool for the assessment of regional climate
change impacts,” Journal of Environmental Modeling and
Software, vol. 17, no. 2, pp. 147–159, 2002.

[37] Y. B. Dibike and P. Coulibaly, “Hydrologic impact of climate
change in the Saguenay watershed: comparison of down-
scaling methods and hydrologic models,” Hydrology, vol. 307,
no. 1–4, pp. 145–163, 2005.

[38] C. Gordon, C. Cooper, C. A. Senior et al., “*e simulation of
SST, sea ice extents and ocean heat transports in a version of
the Hadley Centre coupled model without flux adjust-
mentsflux adjustments,” Climate Dynamics, vol. 16, no. 2-3,
pp. 147–168, 2000.

[39] V. D. Pope, M. L. Gallani, P. R. Rowntree, and R. A. Stratton,
“*e impact of new physical parameterizations in the Hadley
Centre climate model: HadAM3,” Climate Dynamic, vol. 16,
no. 2-3, pp. 123–146, 2000.

[40] A. Sklar, Fonctions der´epartition ` a n dimensionset leursmarges,
Publications de l’Institut de Statistique de l’Universit´e de Paris,
vol. 8, pp. 229–231, 1959.

[41] R. B. Nelsen, An Introduction to Copulas, Springer, New York,
NY, USA, 2006.

[42] J. Yan, “Enjoy the joy of copulas: with a package copula,”
Statistical Software, vol. 21, no. 4, pp. 1–21, 2007.

[43] S. Madadgar and H. Moradkhani, “Drought analysis under
climate change using copula,” Journal of Hydrologic Engi-
neering, vol. 18, no. 7, pp. 746–759, 2013.

[44] Y. Huang, J. Cai, H. Yin, and M. Cai, “Correlation of pre-
cipitation to temperature variation in the Huanghe river
(yellow river) basin during 1957–2006,” Journal of Hydrology,
vol. 372, no. 1–4, pp. 1–8, 2009.

[45] C. Genest and L.-P. Rivest, “Statistical inference procedures
for bivariate archimedean copulas,” Journal of the American
Statistical Association, vol. 88, no. 423, pp. 1034–1043, 1993.

[46] H. Akaike, “A new look at the statistical model identification,”
IEEE Transactions on Automatic Control, vol. 19, no. 6,
pp. 716–723, 1974.

[47] H. Bozdogan, “Akaike’s information criterion and recent
developments in information complexity,” Journal of Math-
ematical Psychology, vol. 44, no. 1, pp. 62–91, 2000.

[48] P. K. Mohammadi and D. M. Zimmer, “Copula modeling: an
introduction for practitioners,” Foundations and Trends in
Econometrics, vol. 1, no. 1, pp. 1–111, 2005.

[49] J. T. Shiau, “Fitting drought duration and severity with two-
dimensional copulas,” Water Resources Management, vol. 20,
no. 5, pp. 795–815, 2006.

[50] N. Bezak, K. Zabre, and M. Sraj, “Application of copula
functions for rainfall interception modelling,” Journal of
Water, vol. 10, no. 8, pp. 1–17, 2018.

Advances in Meteorology 15



Hindawi
www.hindawi.com Volume 2018

Journal of

ChemistryArchaea
Hindawi
www.hindawi.com Volume 2018

Marine Biology
Journal of

Hindawi
www.hindawi.com Volume 2018

Biodiversity
International Journal of

Hindawi
www.hindawi.com Volume 2018

Ecology
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Applied &
Environmental
Soil Science

Volume 2018

Forestry Research
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 International Journal of

Geophysics

Environmental and 
Public Health

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

International Journal of

Microbiology

Hindawi
www.hindawi.com Volume 2018

Public Health  
Advances in

Agriculture
Advances in

Hindawi
www.hindawi.com Volume 2018

Agronomy

Hindawi
www.hindawi.com Volume 2018

International Journal of

Hindawi
www.hindawi.com Volume 2018

Meteorology
Advances in

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018
Hindawi
www.hindawi.com Volume 2018

Chemistry
Advances in

Scienti�ca
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Geological Research
Journal of

Analytical Chemistry
International Journal of

Hindawi
www.hindawi.com Volume 2018

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jchem/
https://www.hindawi.com/journals/archaea/
https://www.hindawi.com/journals/jmb/
https://www.hindawi.com/journals/ijbd/
https://www.hindawi.com/journals/ijecol/
https://www.hindawi.com/journals/aess/
https://www.hindawi.com/journals/ijfr/
https://www.hindawi.com/journals/ijge/
https://www.hindawi.com/journals/jeph/
https://www.hindawi.com/journals/ijmicro/
https://www.hindawi.com/journals/aph/
https://www.hindawi.com/journals/aag/
https://www.hindawi.com/journals/ija/
https://www.hindawi.com/journals/amete/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ac/
https://www.hindawi.com/journals/scientifica/
https://www.hindawi.com/journals/jgr/
https://www.hindawi.com/journals/ijac/
https://www.hindawi.com/
https://www.hindawi.com/

